1 /* 2 * linux/drivers/mmc/core/mmc_ops.h 3 * 4 * Copyright 2006-2007 Pierre Ossman 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or (at 9 * your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/export.h> 14 #include <linux/types.h> 15 #include <linux/scatterlist.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 21 #include "core.h" 22 #include "card.h" 23 #include "host.h" 24 #include "mmc_ops.h" 25 26 #define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 27 28 static const u8 tuning_blk_pattern_4bit[] = { 29 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 30 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 31 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 32 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 33 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 34 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 35 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 36 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, 37 }; 38 39 static const u8 tuning_blk_pattern_8bit[] = { 40 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 41 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 42 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 43 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 44 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 45 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 46 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 47 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 48 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 49 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 50 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 51 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 52 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 53 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 54 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 55 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 56 }; 57 58 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries) 59 { 60 int err; 61 struct mmc_command cmd = {}; 62 63 cmd.opcode = MMC_SEND_STATUS; 64 if (!mmc_host_is_spi(card->host)) 65 cmd.arg = card->rca << 16; 66 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 67 68 err = mmc_wait_for_cmd(card->host, &cmd, retries); 69 if (err) 70 return err; 71 72 /* NOTE: callers are required to understand the difference 73 * between "native" and SPI format status words! 74 */ 75 if (status) 76 *status = cmd.resp[0]; 77 78 return 0; 79 } 80 EXPORT_SYMBOL_GPL(__mmc_send_status); 81 82 int mmc_send_status(struct mmc_card *card, u32 *status) 83 { 84 return __mmc_send_status(card, status, MMC_CMD_RETRIES); 85 } 86 EXPORT_SYMBOL_GPL(mmc_send_status); 87 88 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) 89 { 90 struct mmc_command cmd = {}; 91 92 cmd.opcode = MMC_SELECT_CARD; 93 94 if (card) { 95 cmd.arg = card->rca << 16; 96 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 97 } else { 98 cmd.arg = 0; 99 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 100 } 101 102 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 103 } 104 105 int mmc_select_card(struct mmc_card *card) 106 { 107 108 return _mmc_select_card(card->host, card); 109 } 110 111 int mmc_deselect_cards(struct mmc_host *host) 112 { 113 return _mmc_select_card(host, NULL); 114 } 115 116 /* 117 * Write the value specified in the device tree or board code into the optional 118 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and 119 * drive strength of the DAT and CMD outputs. The actual meaning of a given 120 * value is hardware dependant. 121 * The presence of the DSR register can be determined from the CSD register, 122 * bit 76. 123 */ 124 int mmc_set_dsr(struct mmc_host *host) 125 { 126 struct mmc_command cmd = {}; 127 128 cmd.opcode = MMC_SET_DSR; 129 130 cmd.arg = (host->dsr << 16) | 0xffff; 131 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 132 133 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 134 } 135 136 int mmc_go_idle(struct mmc_host *host) 137 { 138 int err; 139 struct mmc_command cmd = {}; 140 141 /* 142 * Non-SPI hosts need to prevent chipselect going active during 143 * GO_IDLE; that would put chips into SPI mode. Remind them of 144 * that in case of hardware that won't pull up DAT3/nCS otherwise. 145 * 146 * SPI hosts ignore ios.chip_select; it's managed according to 147 * rules that must accommodate non-MMC slaves which this layer 148 * won't even know about. 149 */ 150 if (!mmc_host_is_spi(host)) { 151 mmc_set_chip_select(host, MMC_CS_HIGH); 152 mmc_delay(1); 153 } 154 155 cmd.opcode = MMC_GO_IDLE_STATE; 156 cmd.arg = 0; 157 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; 158 159 err = mmc_wait_for_cmd(host, &cmd, 0); 160 161 mmc_delay(1); 162 163 if (!mmc_host_is_spi(host)) { 164 mmc_set_chip_select(host, MMC_CS_DONTCARE); 165 mmc_delay(1); 166 } 167 168 host->use_spi_crc = 0; 169 170 return err; 171 } 172 173 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) 174 { 175 struct mmc_command cmd = {}; 176 int i, err = 0; 177 178 cmd.opcode = MMC_SEND_OP_COND; 179 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; 180 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; 181 182 for (i = 100; i; i--) { 183 err = mmc_wait_for_cmd(host, &cmd, 0); 184 if (err) 185 break; 186 187 /* if we're just probing, do a single pass */ 188 if (ocr == 0) 189 break; 190 191 /* otherwise wait until reset completes */ 192 if (mmc_host_is_spi(host)) { 193 if (!(cmd.resp[0] & R1_SPI_IDLE)) 194 break; 195 } else { 196 if (cmd.resp[0] & MMC_CARD_BUSY) 197 break; 198 } 199 200 err = -ETIMEDOUT; 201 202 mmc_delay(10); 203 } 204 205 if (rocr && !mmc_host_is_spi(host)) 206 *rocr = cmd.resp[0]; 207 208 return err; 209 } 210 211 int mmc_set_relative_addr(struct mmc_card *card) 212 { 213 struct mmc_command cmd = {}; 214 215 cmd.opcode = MMC_SET_RELATIVE_ADDR; 216 cmd.arg = card->rca << 16; 217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 218 219 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 220 } 221 222 static int 223 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) 224 { 225 int err; 226 struct mmc_command cmd = {}; 227 228 cmd.opcode = opcode; 229 cmd.arg = arg; 230 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; 231 232 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 233 if (err) 234 return err; 235 236 memcpy(cxd, cmd.resp, sizeof(u32) * 4); 237 238 return 0; 239 } 240 241 /* 242 * NOTE: void *buf, caller for the buf is required to use DMA-capable 243 * buffer or on-stack buffer (with some overhead in callee). 244 */ 245 static int 246 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, 247 u32 opcode, void *buf, unsigned len) 248 { 249 struct mmc_request mrq = {}; 250 struct mmc_command cmd = {}; 251 struct mmc_data data = {}; 252 struct scatterlist sg; 253 254 mrq.cmd = &cmd; 255 mrq.data = &data; 256 257 cmd.opcode = opcode; 258 cmd.arg = 0; 259 260 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 261 * rely on callers to never use this with "native" calls for reading 262 * CSD or CID. Native versions of those commands use the R2 type, 263 * not R1 plus a data block. 264 */ 265 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 266 267 data.blksz = len; 268 data.blocks = 1; 269 data.flags = MMC_DATA_READ; 270 data.sg = &sg; 271 data.sg_len = 1; 272 273 sg_init_one(&sg, buf, len); 274 275 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { 276 /* 277 * The spec states that CSR and CID accesses have a timeout 278 * of 64 clock cycles. 279 */ 280 data.timeout_ns = 0; 281 data.timeout_clks = 64; 282 } else 283 mmc_set_data_timeout(&data, card); 284 285 mmc_wait_for_req(host, &mrq); 286 287 if (cmd.error) 288 return cmd.error; 289 if (data.error) 290 return data.error; 291 292 return 0; 293 } 294 295 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd) 296 { 297 int ret, i; 298 __be32 *csd_tmp; 299 300 csd_tmp = kzalloc(16, GFP_KERNEL); 301 if (!csd_tmp) 302 return -ENOMEM; 303 304 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); 305 if (ret) 306 goto err; 307 308 for (i = 0; i < 4; i++) 309 csd[i] = be32_to_cpu(csd_tmp[i]); 310 311 err: 312 kfree(csd_tmp); 313 return ret; 314 } 315 316 int mmc_send_csd(struct mmc_card *card, u32 *csd) 317 { 318 if (mmc_host_is_spi(card->host)) 319 return mmc_spi_send_csd(card, csd); 320 321 return mmc_send_cxd_native(card->host, card->rca << 16, csd, 322 MMC_SEND_CSD); 323 } 324 325 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid) 326 { 327 int ret, i; 328 __be32 *cid_tmp; 329 330 cid_tmp = kzalloc(16, GFP_KERNEL); 331 if (!cid_tmp) 332 return -ENOMEM; 333 334 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); 335 if (ret) 336 goto err; 337 338 for (i = 0; i < 4; i++) 339 cid[i] = be32_to_cpu(cid_tmp[i]); 340 341 err: 342 kfree(cid_tmp); 343 return ret; 344 } 345 346 int mmc_send_cid(struct mmc_host *host, u32 *cid) 347 { 348 if (mmc_host_is_spi(host)) 349 return mmc_spi_send_cid(host, cid); 350 351 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID); 352 } 353 354 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) 355 { 356 int err; 357 u8 *ext_csd; 358 359 if (!card || !new_ext_csd) 360 return -EINVAL; 361 362 if (!mmc_can_ext_csd(card)) 363 return -EOPNOTSUPP; 364 365 /* 366 * As the ext_csd is so large and mostly unused, we don't store the 367 * raw block in mmc_card. 368 */ 369 ext_csd = kzalloc(512, GFP_KERNEL); 370 if (!ext_csd) 371 return -ENOMEM; 372 373 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 374 512); 375 if (err) 376 kfree(ext_csd); 377 else 378 *new_ext_csd = ext_csd; 379 380 return err; 381 } 382 EXPORT_SYMBOL_GPL(mmc_get_ext_csd); 383 384 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) 385 { 386 struct mmc_command cmd = {}; 387 int err; 388 389 cmd.opcode = MMC_SPI_READ_OCR; 390 cmd.arg = highcap ? (1 << 30) : 0; 391 cmd.flags = MMC_RSP_SPI_R3; 392 393 err = mmc_wait_for_cmd(host, &cmd, 0); 394 395 *ocrp = cmd.resp[1]; 396 return err; 397 } 398 399 int mmc_spi_set_crc(struct mmc_host *host, int use_crc) 400 { 401 struct mmc_command cmd = {}; 402 int err; 403 404 cmd.opcode = MMC_SPI_CRC_ON_OFF; 405 cmd.flags = MMC_RSP_SPI_R1; 406 cmd.arg = use_crc; 407 408 err = mmc_wait_for_cmd(host, &cmd, 0); 409 if (!err) 410 host->use_spi_crc = use_crc; 411 return err; 412 } 413 414 static int mmc_switch_status_error(struct mmc_host *host, u32 status) 415 { 416 if (mmc_host_is_spi(host)) { 417 if (status & R1_SPI_ILLEGAL_COMMAND) 418 return -EBADMSG; 419 } else { 420 if (R1_STATUS(status)) 421 pr_warn("%s: unexpected status %#x after switch\n", 422 mmc_hostname(host), status); 423 if (status & R1_SWITCH_ERROR) 424 return -EBADMSG; 425 } 426 return 0; 427 } 428 429 /* Caller must hold re-tuning */ 430 int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) 431 { 432 u32 status; 433 int err; 434 435 err = mmc_send_status(card, &status); 436 if (!crc_err_fatal && err == -EILSEQ) 437 return 0; 438 if (err) 439 return err; 440 441 return mmc_switch_status_error(card->host, status); 442 } 443 444 int mmc_switch_status(struct mmc_card *card) 445 { 446 return __mmc_switch_status(card, true); 447 } 448 449 static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 450 bool send_status, bool retry_crc_err) 451 { 452 struct mmc_host *host = card->host; 453 int err; 454 unsigned long timeout; 455 u32 status = 0; 456 bool expired = false; 457 bool busy = false; 458 459 /* We have an unspecified cmd timeout, use the fallback value. */ 460 if (!timeout_ms) 461 timeout_ms = MMC_OPS_TIMEOUT_MS; 462 463 /* 464 * In cases when not allowed to poll by using CMD13 or because we aren't 465 * capable of polling by using ->card_busy(), then rely on waiting the 466 * stated timeout to be sufficient. 467 */ 468 if (!send_status && !host->ops->card_busy) { 469 mmc_delay(timeout_ms); 470 return 0; 471 } 472 473 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; 474 do { 475 /* 476 * Due to the possibility of being preempted while polling, 477 * check the expiration time first. 478 */ 479 expired = time_after(jiffies, timeout); 480 481 if (host->ops->card_busy) { 482 busy = host->ops->card_busy(host); 483 } else { 484 err = mmc_send_status(card, &status); 485 if (retry_crc_err && err == -EILSEQ) { 486 busy = true; 487 } else if (err) { 488 return err; 489 } else { 490 err = mmc_switch_status_error(host, status); 491 if (err) 492 return err; 493 busy = R1_CURRENT_STATE(status) == R1_STATE_PRG; 494 } 495 } 496 497 /* Timeout if the device still remains busy. */ 498 if (expired && busy) { 499 pr_err("%s: Card stuck being busy! %s\n", 500 mmc_hostname(host), __func__); 501 return -ETIMEDOUT; 502 } 503 } while (busy); 504 505 return 0; 506 } 507 508 /** 509 * __mmc_switch - modify EXT_CSD register 510 * @card: the MMC card associated with the data transfer 511 * @set: cmd set values 512 * @index: EXT_CSD register index 513 * @value: value to program into EXT_CSD register 514 * @timeout_ms: timeout (ms) for operation performed by register write, 515 * timeout of zero implies maximum possible timeout 516 * @timing: new timing to change to 517 * @use_busy_signal: use the busy signal as response type 518 * @send_status: send status cmd to poll for busy 519 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy 520 * 521 * Modifies the EXT_CSD register for selected card. 522 */ 523 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 524 unsigned int timeout_ms, unsigned char timing, 525 bool use_busy_signal, bool send_status, bool retry_crc_err) 526 { 527 struct mmc_host *host = card->host; 528 int err; 529 struct mmc_command cmd = {}; 530 bool use_r1b_resp = use_busy_signal; 531 unsigned char old_timing = host->ios.timing; 532 533 mmc_retune_hold(host); 534 535 /* 536 * If the cmd timeout and the max_busy_timeout of the host are both 537 * specified, let's validate them. A failure means we need to prevent 538 * the host from doing hw busy detection, which is done by converting 539 * to a R1 response instead of a R1B. 540 */ 541 if (timeout_ms && host->max_busy_timeout && 542 (timeout_ms > host->max_busy_timeout)) 543 use_r1b_resp = false; 544 545 cmd.opcode = MMC_SWITCH; 546 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 547 (index << 16) | 548 (value << 8) | 549 set; 550 cmd.flags = MMC_CMD_AC; 551 if (use_r1b_resp) { 552 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; 553 /* 554 * A busy_timeout of zero means the host can decide to use 555 * whatever value it finds suitable. 556 */ 557 cmd.busy_timeout = timeout_ms; 558 } else { 559 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; 560 } 561 562 if (index == EXT_CSD_SANITIZE_START) 563 cmd.sanitize_busy = true; 564 565 err = mmc_wait_for_cmd(host, &cmd, 0); 566 if (err) 567 goto out; 568 569 /* No need to check card status in case of unblocking command */ 570 if (!use_busy_signal) 571 goto out; 572 573 /*If SPI or used HW busy detection above, then we don't need to poll. */ 574 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || 575 mmc_host_is_spi(host)) 576 goto out_tim; 577 578 /* Let's try to poll to find out when the command is completed. */ 579 err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err); 580 if (err) 581 goto out; 582 583 out_tim: 584 /* Switch to new timing before check switch status. */ 585 if (timing) 586 mmc_set_timing(host, timing); 587 588 if (send_status) { 589 err = mmc_switch_status(card); 590 if (err && timing) 591 mmc_set_timing(host, old_timing); 592 } 593 out: 594 mmc_retune_release(host); 595 596 return err; 597 } 598 599 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 600 unsigned int timeout_ms) 601 { 602 return __mmc_switch(card, set, index, value, timeout_ms, 0, 603 true, true, false); 604 } 605 EXPORT_SYMBOL_GPL(mmc_switch); 606 607 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) 608 { 609 struct mmc_request mrq = {}; 610 struct mmc_command cmd = {}; 611 struct mmc_data data = {}; 612 struct scatterlist sg; 613 struct mmc_ios *ios = &host->ios; 614 const u8 *tuning_block_pattern; 615 int size, err = 0; 616 u8 *data_buf; 617 618 if (ios->bus_width == MMC_BUS_WIDTH_8) { 619 tuning_block_pattern = tuning_blk_pattern_8bit; 620 size = sizeof(tuning_blk_pattern_8bit); 621 } else if (ios->bus_width == MMC_BUS_WIDTH_4) { 622 tuning_block_pattern = tuning_blk_pattern_4bit; 623 size = sizeof(tuning_blk_pattern_4bit); 624 } else 625 return -EINVAL; 626 627 data_buf = kzalloc(size, GFP_KERNEL); 628 if (!data_buf) 629 return -ENOMEM; 630 631 mrq.cmd = &cmd; 632 mrq.data = &data; 633 634 cmd.opcode = opcode; 635 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 636 637 data.blksz = size; 638 data.blocks = 1; 639 data.flags = MMC_DATA_READ; 640 641 /* 642 * According to the tuning specs, Tuning process 643 * is normally shorter 40 executions of CMD19, 644 * and timeout value should be shorter than 150 ms 645 */ 646 data.timeout_ns = 150 * NSEC_PER_MSEC; 647 648 data.sg = &sg; 649 data.sg_len = 1; 650 sg_init_one(&sg, data_buf, size); 651 652 mmc_wait_for_req(host, &mrq); 653 654 if (cmd_error) 655 *cmd_error = cmd.error; 656 657 if (cmd.error) { 658 err = cmd.error; 659 goto out; 660 } 661 662 if (data.error) { 663 err = data.error; 664 goto out; 665 } 666 667 if (memcmp(data_buf, tuning_block_pattern, size)) 668 err = -EIO; 669 670 out: 671 kfree(data_buf); 672 return err; 673 } 674 EXPORT_SYMBOL_GPL(mmc_send_tuning); 675 676 int mmc_abort_tuning(struct mmc_host *host, u32 opcode) 677 { 678 struct mmc_command cmd = {}; 679 680 /* 681 * eMMC specification specifies that CMD12 can be used to stop a tuning 682 * command, but SD specification does not, so do nothing unless it is 683 * eMMC. 684 */ 685 if (opcode != MMC_SEND_TUNING_BLOCK_HS200) 686 return 0; 687 688 cmd.opcode = MMC_STOP_TRANSMISSION; 689 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 690 691 /* 692 * For drivers that override R1 to R1b, set an arbitrary timeout based 693 * on the tuning timeout i.e. 150ms. 694 */ 695 cmd.busy_timeout = 150; 696 697 return mmc_wait_for_cmd(host, &cmd, 0); 698 } 699 EXPORT_SYMBOL_GPL(mmc_abort_tuning); 700 701 static int 702 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, 703 u8 len) 704 { 705 struct mmc_request mrq = {}; 706 struct mmc_command cmd = {}; 707 struct mmc_data data = {}; 708 struct scatterlist sg; 709 u8 *data_buf; 710 u8 *test_buf; 711 int i, err; 712 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; 713 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; 714 715 /* dma onto stack is unsafe/nonportable, but callers to this 716 * routine normally provide temporary on-stack buffers ... 717 */ 718 data_buf = kmalloc(len, GFP_KERNEL); 719 if (!data_buf) 720 return -ENOMEM; 721 722 if (len == 8) 723 test_buf = testdata_8bit; 724 else if (len == 4) 725 test_buf = testdata_4bit; 726 else { 727 pr_err("%s: Invalid bus_width %d\n", 728 mmc_hostname(host), len); 729 kfree(data_buf); 730 return -EINVAL; 731 } 732 733 if (opcode == MMC_BUS_TEST_W) 734 memcpy(data_buf, test_buf, len); 735 736 mrq.cmd = &cmd; 737 mrq.data = &data; 738 cmd.opcode = opcode; 739 cmd.arg = 0; 740 741 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 742 * rely on callers to never use this with "native" calls for reading 743 * CSD or CID. Native versions of those commands use the R2 type, 744 * not R1 plus a data block. 745 */ 746 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 747 748 data.blksz = len; 749 data.blocks = 1; 750 if (opcode == MMC_BUS_TEST_R) 751 data.flags = MMC_DATA_READ; 752 else 753 data.flags = MMC_DATA_WRITE; 754 755 data.sg = &sg; 756 data.sg_len = 1; 757 mmc_set_data_timeout(&data, card); 758 sg_init_one(&sg, data_buf, len); 759 mmc_wait_for_req(host, &mrq); 760 err = 0; 761 if (opcode == MMC_BUS_TEST_R) { 762 for (i = 0; i < len / 4; i++) 763 if ((test_buf[i] ^ data_buf[i]) != 0xff) { 764 err = -EIO; 765 break; 766 } 767 } 768 kfree(data_buf); 769 770 if (cmd.error) 771 return cmd.error; 772 if (data.error) 773 return data.error; 774 775 return err; 776 } 777 778 int mmc_bus_test(struct mmc_card *card, u8 bus_width) 779 { 780 int width; 781 782 if (bus_width == MMC_BUS_WIDTH_8) 783 width = 8; 784 else if (bus_width == MMC_BUS_WIDTH_4) 785 width = 4; 786 else if (bus_width == MMC_BUS_WIDTH_1) 787 return 0; /* no need for test */ 788 else 789 return -EINVAL; 790 791 /* 792 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there 793 * is a problem. This improves chances that the test will work. 794 */ 795 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); 796 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); 797 } 798 799 static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status) 800 { 801 struct mmc_command cmd = {}; 802 unsigned int opcode; 803 int err; 804 805 opcode = card->ext_csd.hpi_cmd; 806 if (opcode == MMC_STOP_TRANSMISSION) 807 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 808 else if (opcode == MMC_SEND_STATUS) 809 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 810 811 cmd.opcode = opcode; 812 cmd.arg = card->rca << 16 | 1; 813 814 err = mmc_wait_for_cmd(card->host, &cmd, 0); 815 if (err) { 816 pr_warn("%s: error %d interrupting operation. " 817 "HPI command response %#x\n", mmc_hostname(card->host), 818 err, cmd.resp[0]); 819 return err; 820 } 821 if (status) 822 *status = cmd.resp[0]; 823 824 return 0; 825 } 826 827 /** 828 * mmc_interrupt_hpi - Issue for High priority Interrupt 829 * @card: the MMC card associated with the HPI transfer 830 * 831 * Issued High Priority Interrupt, and check for card status 832 * until out-of prg-state. 833 */ 834 int mmc_interrupt_hpi(struct mmc_card *card) 835 { 836 int err; 837 u32 status; 838 unsigned long prg_wait; 839 840 if (!card->ext_csd.hpi_en) { 841 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 842 return 1; 843 } 844 845 err = mmc_send_status(card, &status); 846 if (err) { 847 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 848 goto out; 849 } 850 851 switch (R1_CURRENT_STATE(status)) { 852 case R1_STATE_IDLE: 853 case R1_STATE_READY: 854 case R1_STATE_STBY: 855 case R1_STATE_TRAN: 856 /* 857 * In idle and transfer states, HPI is not needed and the caller 858 * can issue the next intended command immediately 859 */ 860 goto out; 861 case R1_STATE_PRG: 862 break; 863 default: 864 /* In all other states, it's illegal to issue HPI */ 865 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 866 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 867 err = -EINVAL; 868 goto out; 869 } 870 871 err = mmc_send_hpi_cmd(card, &status); 872 if (err) 873 goto out; 874 875 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 876 do { 877 err = mmc_send_status(card, &status); 878 879 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 880 break; 881 if (time_after(jiffies, prg_wait)) 882 err = -ETIMEDOUT; 883 } while (!err); 884 885 out: 886 return err; 887 } 888 889 int mmc_can_ext_csd(struct mmc_card *card) 890 { 891 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); 892 } 893 894 static int mmc_read_bkops_status(struct mmc_card *card) 895 { 896 int err; 897 u8 *ext_csd; 898 899 err = mmc_get_ext_csd(card, &ext_csd); 900 if (err) 901 return err; 902 903 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 904 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 905 kfree(ext_csd); 906 return 0; 907 } 908 909 /** 910 * mmc_run_bkops - Run BKOPS for supported cards 911 * @card: MMC card to run BKOPS for 912 * 913 * Run background operations synchronously for cards having manual BKOPS 914 * enabled and in case it reports urgent BKOPS level. 915 */ 916 void mmc_run_bkops(struct mmc_card *card) 917 { 918 int err; 919 920 if (!card->ext_csd.man_bkops_en) 921 return; 922 923 err = mmc_read_bkops_status(card); 924 if (err) { 925 pr_err("%s: Failed to read bkops status: %d\n", 926 mmc_hostname(card->host), err); 927 return; 928 } 929 930 if (!card->ext_csd.raw_bkops_status || 931 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2) 932 return; 933 934 mmc_retune_hold(card->host); 935 936 /* 937 * For urgent BKOPS status, LEVEL_2 and higher, let's execute 938 * synchronously. Future wise, we may consider to start BKOPS, for less 939 * urgent levels by using an asynchronous background task, when idle. 940 */ 941 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 942 EXT_CSD_BKOPS_START, 1, MMC_OPS_TIMEOUT_MS); 943 if (err) 944 pr_warn("%s: Error %d starting bkops\n", 945 mmc_hostname(card->host), err); 946 947 mmc_retune_release(card->host); 948 } 949 EXPORT_SYMBOL(mmc_run_bkops); 950 951 /* 952 * Flush the cache to the non-volatile storage. 953 */ 954 int mmc_flush_cache(struct mmc_card *card) 955 { 956 int err = 0; 957 958 if (mmc_card_mmc(card) && 959 (card->ext_csd.cache_size > 0) && 960 (card->ext_csd.cache_ctrl & 1)) { 961 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 962 EXT_CSD_FLUSH_CACHE, 1, 0); 963 if (err) 964 pr_err("%s: cache flush error %d\n", 965 mmc_hostname(card->host), err); 966 } 967 968 return err; 969 } 970 EXPORT_SYMBOL(mmc_flush_cache); 971 972 static int mmc_cmdq_switch(struct mmc_card *card, bool enable) 973 { 974 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; 975 int err; 976 977 if (!card->ext_csd.cmdq_support) 978 return -EOPNOTSUPP; 979 980 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 981 val, card->ext_csd.generic_cmd6_time); 982 if (!err) 983 card->ext_csd.cmdq_en = enable; 984 985 return err; 986 } 987 988 int mmc_cmdq_enable(struct mmc_card *card) 989 { 990 return mmc_cmdq_switch(card, true); 991 } 992 EXPORT_SYMBOL_GPL(mmc_cmdq_enable); 993 994 int mmc_cmdq_disable(struct mmc_card *card) 995 { 996 return mmc_cmdq_switch(card, false); 997 } 998 EXPORT_SYMBOL_GPL(mmc_cmdq_disable); 999