1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * linux/drivers/mmc/core/mmc_ops.h 4 * 5 * Copyright 2006-2007 Pierre Ossman 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/types.h> 11 #include <linux/scatterlist.h> 12 13 #include <linux/mmc/host.h> 14 #include <linux/mmc/card.h> 15 #include <linux/mmc/mmc.h> 16 17 #include "core.h" 18 #include "card.h" 19 #include "host.h" 20 #include "mmc_ops.h" 21 22 #define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 23 24 static const u8 tuning_blk_pattern_4bit[] = { 25 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 26 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 27 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 28 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 29 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 30 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 31 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 32 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, 33 }; 34 35 static const u8 tuning_blk_pattern_8bit[] = { 36 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 37 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 38 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 39 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 40 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 41 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 42 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 43 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 44 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 45 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 46 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 47 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 48 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 49 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 50 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 51 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 52 }; 53 54 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries) 55 { 56 int err; 57 struct mmc_command cmd = {}; 58 59 cmd.opcode = MMC_SEND_STATUS; 60 if (!mmc_host_is_spi(card->host)) 61 cmd.arg = card->rca << 16; 62 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 63 64 err = mmc_wait_for_cmd(card->host, &cmd, retries); 65 if (err) 66 return err; 67 68 /* NOTE: callers are required to understand the difference 69 * between "native" and SPI format status words! 70 */ 71 if (status) 72 *status = cmd.resp[0]; 73 74 return 0; 75 } 76 EXPORT_SYMBOL_GPL(__mmc_send_status); 77 78 int mmc_send_status(struct mmc_card *card, u32 *status) 79 { 80 return __mmc_send_status(card, status, MMC_CMD_RETRIES); 81 } 82 EXPORT_SYMBOL_GPL(mmc_send_status); 83 84 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) 85 { 86 struct mmc_command cmd = {}; 87 88 cmd.opcode = MMC_SELECT_CARD; 89 90 if (card) { 91 cmd.arg = card->rca << 16; 92 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 93 } else { 94 cmd.arg = 0; 95 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 96 } 97 98 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 99 } 100 101 int mmc_select_card(struct mmc_card *card) 102 { 103 104 return _mmc_select_card(card->host, card); 105 } 106 107 int mmc_deselect_cards(struct mmc_host *host) 108 { 109 return _mmc_select_card(host, NULL); 110 } 111 112 /* 113 * Write the value specified in the device tree or board code into the optional 114 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and 115 * drive strength of the DAT and CMD outputs. The actual meaning of a given 116 * value is hardware dependant. 117 * The presence of the DSR register can be determined from the CSD register, 118 * bit 76. 119 */ 120 int mmc_set_dsr(struct mmc_host *host) 121 { 122 struct mmc_command cmd = {}; 123 124 cmd.opcode = MMC_SET_DSR; 125 126 cmd.arg = (host->dsr << 16) | 0xffff; 127 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 128 129 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 130 } 131 132 int mmc_go_idle(struct mmc_host *host) 133 { 134 int err; 135 struct mmc_command cmd = {}; 136 137 /* 138 * Non-SPI hosts need to prevent chipselect going active during 139 * GO_IDLE; that would put chips into SPI mode. Remind them of 140 * that in case of hardware that won't pull up DAT3/nCS otherwise. 141 * 142 * SPI hosts ignore ios.chip_select; it's managed according to 143 * rules that must accommodate non-MMC slaves which this layer 144 * won't even know about. 145 */ 146 if (!mmc_host_is_spi(host)) { 147 mmc_set_chip_select(host, MMC_CS_HIGH); 148 mmc_delay(1); 149 } 150 151 cmd.opcode = MMC_GO_IDLE_STATE; 152 cmd.arg = 0; 153 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; 154 155 err = mmc_wait_for_cmd(host, &cmd, 0); 156 157 mmc_delay(1); 158 159 if (!mmc_host_is_spi(host)) { 160 mmc_set_chip_select(host, MMC_CS_DONTCARE); 161 mmc_delay(1); 162 } 163 164 host->use_spi_crc = 0; 165 166 return err; 167 } 168 169 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) 170 { 171 struct mmc_command cmd = {}; 172 int i, err = 0; 173 174 cmd.opcode = MMC_SEND_OP_COND; 175 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; 176 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; 177 178 for (i = 100; i; i--) { 179 err = mmc_wait_for_cmd(host, &cmd, 0); 180 if (err) 181 break; 182 183 /* wait until reset completes */ 184 if (mmc_host_is_spi(host)) { 185 if (!(cmd.resp[0] & R1_SPI_IDLE)) 186 break; 187 } else { 188 if (cmd.resp[0] & MMC_CARD_BUSY) 189 break; 190 } 191 192 err = -ETIMEDOUT; 193 194 mmc_delay(10); 195 196 /* 197 * According to eMMC specification v5.1 section 6.4.3, we 198 * should issue CMD1 repeatedly in the idle state until 199 * the eMMC is ready. Otherwise some eMMC devices seem to enter 200 * the inactive mode after mmc_init_card() issued CMD0 when 201 * the eMMC device is busy. 202 */ 203 if (!ocr && !mmc_host_is_spi(host)) 204 cmd.arg = cmd.resp[0] | BIT(30); 205 } 206 207 if (rocr && !mmc_host_is_spi(host)) 208 *rocr = cmd.resp[0]; 209 210 return err; 211 } 212 213 int mmc_set_relative_addr(struct mmc_card *card) 214 { 215 struct mmc_command cmd = {}; 216 217 cmd.opcode = MMC_SET_RELATIVE_ADDR; 218 cmd.arg = card->rca << 16; 219 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 220 221 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 222 } 223 224 static int 225 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) 226 { 227 int err; 228 struct mmc_command cmd = {}; 229 230 cmd.opcode = opcode; 231 cmd.arg = arg; 232 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; 233 234 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 235 if (err) 236 return err; 237 238 memcpy(cxd, cmd.resp, sizeof(u32) * 4); 239 240 return 0; 241 } 242 243 /* 244 * NOTE: void *buf, caller for the buf is required to use DMA-capable 245 * buffer or on-stack buffer (with some overhead in callee). 246 */ 247 static int 248 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, 249 u32 opcode, void *buf, unsigned len) 250 { 251 struct mmc_request mrq = {}; 252 struct mmc_command cmd = {}; 253 struct mmc_data data = {}; 254 struct scatterlist sg; 255 256 mrq.cmd = &cmd; 257 mrq.data = &data; 258 259 cmd.opcode = opcode; 260 cmd.arg = 0; 261 262 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 263 * rely on callers to never use this with "native" calls for reading 264 * CSD or CID. Native versions of those commands use the R2 type, 265 * not R1 plus a data block. 266 */ 267 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 268 269 data.blksz = len; 270 data.blocks = 1; 271 data.flags = MMC_DATA_READ; 272 data.sg = &sg; 273 data.sg_len = 1; 274 275 sg_init_one(&sg, buf, len); 276 277 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { 278 /* 279 * The spec states that CSR and CID accesses have a timeout 280 * of 64 clock cycles. 281 */ 282 data.timeout_ns = 0; 283 data.timeout_clks = 64; 284 } else 285 mmc_set_data_timeout(&data, card); 286 287 mmc_wait_for_req(host, &mrq); 288 289 if (cmd.error) 290 return cmd.error; 291 if (data.error) 292 return data.error; 293 294 return 0; 295 } 296 297 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd) 298 { 299 int ret, i; 300 __be32 *csd_tmp; 301 302 csd_tmp = kzalloc(16, GFP_KERNEL); 303 if (!csd_tmp) 304 return -ENOMEM; 305 306 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); 307 if (ret) 308 goto err; 309 310 for (i = 0; i < 4; i++) 311 csd[i] = be32_to_cpu(csd_tmp[i]); 312 313 err: 314 kfree(csd_tmp); 315 return ret; 316 } 317 318 int mmc_send_csd(struct mmc_card *card, u32 *csd) 319 { 320 if (mmc_host_is_spi(card->host)) 321 return mmc_spi_send_csd(card, csd); 322 323 return mmc_send_cxd_native(card->host, card->rca << 16, csd, 324 MMC_SEND_CSD); 325 } 326 327 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid) 328 { 329 int ret, i; 330 __be32 *cid_tmp; 331 332 cid_tmp = kzalloc(16, GFP_KERNEL); 333 if (!cid_tmp) 334 return -ENOMEM; 335 336 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); 337 if (ret) 338 goto err; 339 340 for (i = 0; i < 4; i++) 341 cid[i] = be32_to_cpu(cid_tmp[i]); 342 343 err: 344 kfree(cid_tmp); 345 return ret; 346 } 347 348 int mmc_send_cid(struct mmc_host *host, u32 *cid) 349 { 350 if (mmc_host_is_spi(host)) 351 return mmc_spi_send_cid(host, cid); 352 353 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID); 354 } 355 356 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) 357 { 358 int err; 359 u8 *ext_csd; 360 361 if (!card || !new_ext_csd) 362 return -EINVAL; 363 364 if (!mmc_can_ext_csd(card)) 365 return -EOPNOTSUPP; 366 367 /* 368 * As the ext_csd is so large and mostly unused, we don't store the 369 * raw block in mmc_card. 370 */ 371 ext_csd = kzalloc(512, GFP_KERNEL); 372 if (!ext_csd) 373 return -ENOMEM; 374 375 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 376 512); 377 if (err) 378 kfree(ext_csd); 379 else 380 *new_ext_csd = ext_csd; 381 382 return err; 383 } 384 EXPORT_SYMBOL_GPL(mmc_get_ext_csd); 385 386 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) 387 { 388 struct mmc_command cmd = {}; 389 int err; 390 391 cmd.opcode = MMC_SPI_READ_OCR; 392 cmd.arg = highcap ? (1 << 30) : 0; 393 cmd.flags = MMC_RSP_SPI_R3; 394 395 err = mmc_wait_for_cmd(host, &cmd, 0); 396 397 *ocrp = cmd.resp[1]; 398 return err; 399 } 400 401 int mmc_spi_set_crc(struct mmc_host *host, int use_crc) 402 { 403 struct mmc_command cmd = {}; 404 int err; 405 406 cmd.opcode = MMC_SPI_CRC_ON_OFF; 407 cmd.flags = MMC_RSP_SPI_R1; 408 cmd.arg = use_crc; 409 410 err = mmc_wait_for_cmd(host, &cmd, 0); 411 if (!err) 412 host->use_spi_crc = use_crc; 413 return err; 414 } 415 416 static int mmc_switch_status_error(struct mmc_host *host, u32 status) 417 { 418 if (mmc_host_is_spi(host)) { 419 if (status & R1_SPI_ILLEGAL_COMMAND) 420 return -EBADMSG; 421 } else { 422 if (R1_STATUS(status)) 423 pr_warn("%s: unexpected status %#x after switch\n", 424 mmc_hostname(host), status); 425 if (status & R1_SWITCH_ERROR) 426 return -EBADMSG; 427 } 428 return 0; 429 } 430 431 /* Caller must hold re-tuning */ 432 int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) 433 { 434 u32 status; 435 int err; 436 437 err = mmc_send_status(card, &status); 438 if (!crc_err_fatal && err == -EILSEQ) 439 return 0; 440 if (err) 441 return err; 442 443 return mmc_switch_status_error(card->host, status); 444 } 445 446 int mmc_switch_status(struct mmc_card *card) 447 { 448 return __mmc_switch_status(card, true); 449 } 450 451 static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 452 bool send_status, bool retry_crc_err) 453 { 454 struct mmc_host *host = card->host; 455 int err; 456 unsigned long timeout; 457 u32 status = 0; 458 bool expired = false; 459 bool busy = false; 460 461 /* We have an unspecified cmd timeout, use the fallback value. */ 462 if (!timeout_ms) 463 timeout_ms = MMC_OPS_TIMEOUT_MS; 464 465 /* 466 * In cases when not allowed to poll by using CMD13 or because we aren't 467 * capable of polling by using ->card_busy(), then rely on waiting the 468 * stated timeout to be sufficient. 469 */ 470 if (!send_status && !host->ops->card_busy) { 471 mmc_delay(timeout_ms); 472 return 0; 473 } 474 475 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; 476 do { 477 /* 478 * Due to the possibility of being preempted while polling, 479 * check the expiration time first. 480 */ 481 expired = time_after(jiffies, timeout); 482 483 if (host->ops->card_busy) { 484 busy = host->ops->card_busy(host); 485 } else { 486 err = mmc_send_status(card, &status); 487 if (retry_crc_err && err == -EILSEQ) { 488 busy = true; 489 } else if (err) { 490 return err; 491 } else { 492 err = mmc_switch_status_error(host, status); 493 if (err) 494 return err; 495 busy = R1_CURRENT_STATE(status) == R1_STATE_PRG; 496 } 497 } 498 499 /* Timeout if the device still remains busy. */ 500 if (expired && busy) { 501 pr_err("%s: Card stuck being busy! %s\n", 502 mmc_hostname(host), __func__); 503 return -ETIMEDOUT; 504 } 505 } while (busy); 506 507 return 0; 508 } 509 510 /** 511 * __mmc_switch - modify EXT_CSD register 512 * @card: the MMC card associated with the data transfer 513 * @set: cmd set values 514 * @index: EXT_CSD register index 515 * @value: value to program into EXT_CSD register 516 * @timeout_ms: timeout (ms) for operation performed by register write, 517 * timeout of zero implies maximum possible timeout 518 * @timing: new timing to change to 519 * @use_busy_signal: use the busy signal as response type 520 * @send_status: send status cmd to poll for busy 521 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy 522 * 523 * Modifies the EXT_CSD register for selected card. 524 */ 525 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 526 unsigned int timeout_ms, unsigned char timing, 527 bool use_busy_signal, bool send_status, bool retry_crc_err) 528 { 529 struct mmc_host *host = card->host; 530 int err; 531 struct mmc_command cmd = {}; 532 bool use_r1b_resp = use_busy_signal; 533 unsigned char old_timing = host->ios.timing; 534 535 mmc_retune_hold(host); 536 537 /* 538 * If the cmd timeout and the max_busy_timeout of the host are both 539 * specified, let's validate them. A failure means we need to prevent 540 * the host from doing hw busy detection, which is done by converting 541 * to a R1 response instead of a R1B. 542 */ 543 if (timeout_ms && host->max_busy_timeout && 544 (timeout_ms > host->max_busy_timeout)) 545 use_r1b_resp = false; 546 547 cmd.opcode = MMC_SWITCH; 548 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 549 (index << 16) | 550 (value << 8) | 551 set; 552 cmd.flags = MMC_CMD_AC; 553 if (use_r1b_resp) { 554 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; 555 /* 556 * A busy_timeout of zero means the host can decide to use 557 * whatever value it finds suitable. 558 */ 559 cmd.busy_timeout = timeout_ms; 560 } else { 561 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; 562 } 563 564 if (index == EXT_CSD_SANITIZE_START) 565 cmd.sanitize_busy = true; 566 567 err = mmc_wait_for_cmd(host, &cmd, 0); 568 if (err) 569 goto out; 570 571 /* No need to check card status in case of unblocking command */ 572 if (!use_busy_signal) 573 goto out; 574 575 /*If SPI or used HW busy detection above, then we don't need to poll. */ 576 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || 577 mmc_host_is_spi(host)) 578 goto out_tim; 579 580 /* Let's try to poll to find out when the command is completed. */ 581 err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err); 582 if (err) 583 goto out; 584 585 out_tim: 586 /* Switch to new timing before check switch status. */ 587 if (timing) 588 mmc_set_timing(host, timing); 589 590 if (send_status) { 591 err = mmc_switch_status(card); 592 if (err && timing) 593 mmc_set_timing(host, old_timing); 594 } 595 out: 596 mmc_retune_release(host); 597 598 return err; 599 } 600 601 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 602 unsigned int timeout_ms) 603 { 604 return __mmc_switch(card, set, index, value, timeout_ms, 0, 605 true, true, false); 606 } 607 EXPORT_SYMBOL_GPL(mmc_switch); 608 609 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) 610 { 611 struct mmc_request mrq = {}; 612 struct mmc_command cmd = {}; 613 struct mmc_data data = {}; 614 struct scatterlist sg; 615 struct mmc_ios *ios = &host->ios; 616 const u8 *tuning_block_pattern; 617 int size, err = 0; 618 u8 *data_buf; 619 620 if (ios->bus_width == MMC_BUS_WIDTH_8) { 621 tuning_block_pattern = tuning_blk_pattern_8bit; 622 size = sizeof(tuning_blk_pattern_8bit); 623 } else if (ios->bus_width == MMC_BUS_WIDTH_4) { 624 tuning_block_pattern = tuning_blk_pattern_4bit; 625 size = sizeof(tuning_blk_pattern_4bit); 626 } else 627 return -EINVAL; 628 629 data_buf = kzalloc(size, GFP_KERNEL); 630 if (!data_buf) 631 return -ENOMEM; 632 633 mrq.cmd = &cmd; 634 mrq.data = &data; 635 636 cmd.opcode = opcode; 637 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 638 639 data.blksz = size; 640 data.blocks = 1; 641 data.flags = MMC_DATA_READ; 642 643 /* 644 * According to the tuning specs, Tuning process 645 * is normally shorter 40 executions of CMD19, 646 * and timeout value should be shorter than 150 ms 647 */ 648 data.timeout_ns = 150 * NSEC_PER_MSEC; 649 650 data.sg = &sg; 651 data.sg_len = 1; 652 sg_init_one(&sg, data_buf, size); 653 654 mmc_wait_for_req(host, &mrq); 655 656 if (cmd_error) 657 *cmd_error = cmd.error; 658 659 if (cmd.error) { 660 err = cmd.error; 661 goto out; 662 } 663 664 if (data.error) { 665 err = data.error; 666 goto out; 667 } 668 669 if (memcmp(data_buf, tuning_block_pattern, size)) 670 err = -EIO; 671 672 out: 673 kfree(data_buf); 674 return err; 675 } 676 EXPORT_SYMBOL_GPL(mmc_send_tuning); 677 678 int mmc_abort_tuning(struct mmc_host *host, u32 opcode) 679 { 680 struct mmc_command cmd = {}; 681 682 /* 683 * eMMC specification specifies that CMD12 can be used to stop a tuning 684 * command, but SD specification does not, so do nothing unless it is 685 * eMMC. 686 */ 687 if (opcode != MMC_SEND_TUNING_BLOCK_HS200) 688 return 0; 689 690 cmd.opcode = MMC_STOP_TRANSMISSION; 691 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 692 693 /* 694 * For drivers that override R1 to R1b, set an arbitrary timeout based 695 * on the tuning timeout i.e. 150ms. 696 */ 697 cmd.busy_timeout = 150; 698 699 return mmc_wait_for_cmd(host, &cmd, 0); 700 } 701 EXPORT_SYMBOL_GPL(mmc_abort_tuning); 702 703 static int 704 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, 705 u8 len) 706 { 707 struct mmc_request mrq = {}; 708 struct mmc_command cmd = {}; 709 struct mmc_data data = {}; 710 struct scatterlist sg; 711 u8 *data_buf; 712 u8 *test_buf; 713 int i, err; 714 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; 715 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; 716 717 /* dma onto stack is unsafe/nonportable, but callers to this 718 * routine normally provide temporary on-stack buffers ... 719 */ 720 data_buf = kmalloc(len, GFP_KERNEL); 721 if (!data_buf) 722 return -ENOMEM; 723 724 if (len == 8) 725 test_buf = testdata_8bit; 726 else if (len == 4) 727 test_buf = testdata_4bit; 728 else { 729 pr_err("%s: Invalid bus_width %d\n", 730 mmc_hostname(host), len); 731 kfree(data_buf); 732 return -EINVAL; 733 } 734 735 if (opcode == MMC_BUS_TEST_W) 736 memcpy(data_buf, test_buf, len); 737 738 mrq.cmd = &cmd; 739 mrq.data = &data; 740 cmd.opcode = opcode; 741 cmd.arg = 0; 742 743 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 744 * rely on callers to never use this with "native" calls for reading 745 * CSD or CID. Native versions of those commands use the R2 type, 746 * not R1 plus a data block. 747 */ 748 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 749 750 data.blksz = len; 751 data.blocks = 1; 752 if (opcode == MMC_BUS_TEST_R) 753 data.flags = MMC_DATA_READ; 754 else 755 data.flags = MMC_DATA_WRITE; 756 757 data.sg = &sg; 758 data.sg_len = 1; 759 mmc_set_data_timeout(&data, card); 760 sg_init_one(&sg, data_buf, len); 761 mmc_wait_for_req(host, &mrq); 762 err = 0; 763 if (opcode == MMC_BUS_TEST_R) { 764 for (i = 0; i < len / 4; i++) 765 if ((test_buf[i] ^ data_buf[i]) != 0xff) { 766 err = -EIO; 767 break; 768 } 769 } 770 kfree(data_buf); 771 772 if (cmd.error) 773 return cmd.error; 774 if (data.error) 775 return data.error; 776 777 return err; 778 } 779 780 int mmc_bus_test(struct mmc_card *card, u8 bus_width) 781 { 782 int width; 783 784 if (bus_width == MMC_BUS_WIDTH_8) 785 width = 8; 786 else if (bus_width == MMC_BUS_WIDTH_4) 787 width = 4; 788 else if (bus_width == MMC_BUS_WIDTH_1) 789 return 0; /* no need for test */ 790 else 791 return -EINVAL; 792 793 /* 794 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there 795 * is a problem. This improves chances that the test will work. 796 */ 797 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); 798 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); 799 } 800 801 static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status) 802 { 803 struct mmc_command cmd = {}; 804 unsigned int opcode; 805 int err; 806 807 opcode = card->ext_csd.hpi_cmd; 808 if (opcode == MMC_STOP_TRANSMISSION) 809 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 810 else if (opcode == MMC_SEND_STATUS) 811 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 812 813 cmd.opcode = opcode; 814 cmd.arg = card->rca << 16 | 1; 815 816 err = mmc_wait_for_cmd(card->host, &cmd, 0); 817 if (err) { 818 pr_warn("%s: error %d interrupting operation. " 819 "HPI command response %#x\n", mmc_hostname(card->host), 820 err, cmd.resp[0]); 821 return err; 822 } 823 if (status) 824 *status = cmd.resp[0]; 825 826 return 0; 827 } 828 829 /** 830 * mmc_interrupt_hpi - Issue for High priority Interrupt 831 * @card: the MMC card associated with the HPI transfer 832 * 833 * Issued High Priority Interrupt, and check for card status 834 * until out-of prg-state. 835 */ 836 int mmc_interrupt_hpi(struct mmc_card *card) 837 { 838 int err; 839 u32 status; 840 unsigned long prg_wait; 841 842 if (!card->ext_csd.hpi_en) { 843 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 844 return 1; 845 } 846 847 err = mmc_send_status(card, &status); 848 if (err) { 849 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 850 goto out; 851 } 852 853 switch (R1_CURRENT_STATE(status)) { 854 case R1_STATE_IDLE: 855 case R1_STATE_READY: 856 case R1_STATE_STBY: 857 case R1_STATE_TRAN: 858 /* 859 * In idle and transfer states, HPI is not needed and the caller 860 * can issue the next intended command immediately 861 */ 862 goto out; 863 case R1_STATE_PRG: 864 break; 865 default: 866 /* In all other states, it's illegal to issue HPI */ 867 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 868 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 869 err = -EINVAL; 870 goto out; 871 } 872 873 err = mmc_send_hpi_cmd(card, &status); 874 if (err) 875 goto out; 876 877 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 878 do { 879 err = mmc_send_status(card, &status); 880 881 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 882 break; 883 if (time_after(jiffies, prg_wait)) 884 err = -ETIMEDOUT; 885 } while (!err); 886 887 out: 888 return err; 889 } 890 891 int mmc_can_ext_csd(struct mmc_card *card) 892 { 893 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); 894 } 895 896 static int mmc_read_bkops_status(struct mmc_card *card) 897 { 898 int err; 899 u8 *ext_csd; 900 901 err = mmc_get_ext_csd(card, &ext_csd); 902 if (err) 903 return err; 904 905 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 906 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 907 kfree(ext_csd); 908 return 0; 909 } 910 911 /** 912 * mmc_run_bkops - Run BKOPS for supported cards 913 * @card: MMC card to run BKOPS for 914 * 915 * Run background operations synchronously for cards having manual BKOPS 916 * enabled and in case it reports urgent BKOPS level. 917 */ 918 void mmc_run_bkops(struct mmc_card *card) 919 { 920 int err; 921 922 if (!card->ext_csd.man_bkops_en) 923 return; 924 925 err = mmc_read_bkops_status(card); 926 if (err) { 927 pr_err("%s: Failed to read bkops status: %d\n", 928 mmc_hostname(card->host), err); 929 return; 930 } 931 932 if (!card->ext_csd.raw_bkops_status || 933 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2) 934 return; 935 936 mmc_retune_hold(card->host); 937 938 /* 939 * For urgent BKOPS status, LEVEL_2 and higher, let's execute 940 * synchronously. Future wise, we may consider to start BKOPS, for less 941 * urgent levels by using an asynchronous background task, when idle. 942 */ 943 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 944 EXT_CSD_BKOPS_START, 1, MMC_OPS_TIMEOUT_MS); 945 if (err) 946 pr_warn("%s: Error %d starting bkops\n", 947 mmc_hostname(card->host), err); 948 949 mmc_retune_release(card->host); 950 } 951 EXPORT_SYMBOL(mmc_run_bkops); 952 953 /* 954 * Flush the cache to the non-volatile storage. 955 */ 956 int mmc_flush_cache(struct mmc_card *card) 957 { 958 int err = 0; 959 960 if (mmc_card_mmc(card) && 961 (card->ext_csd.cache_size > 0) && 962 (card->ext_csd.cache_ctrl & 1)) { 963 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 964 EXT_CSD_FLUSH_CACHE, 1, 0); 965 if (err) 966 pr_err("%s: cache flush error %d\n", 967 mmc_hostname(card->host), err); 968 } 969 970 return err; 971 } 972 EXPORT_SYMBOL(mmc_flush_cache); 973 974 static int mmc_cmdq_switch(struct mmc_card *card, bool enable) 975 { 976 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; 977 int err; 978 979 if (!card->ext_csd.cmdq_support) 980 return -EOPNOTSUPP; 981 982 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 983 val, card->ext_csd.generic_cmd6_time); 984 if (!err) 985 card->ext_csd.cmdq_en = enable; 986 987 return err; 988 } 989 990 int mmc_cmdq_enable(struct mmc_card *card) 991 { 992 return mmc_cmdq_switch(card, true); 993 } 994 EXPORT_SYMBOL_GPL(mmc_cmdq_enable); 995 996 int mmc_cmdq_disable(struct mmc_card *card) 997 { 998 return mmc_cmdq_switch(card, false); 999 } 1000 EXPORT_SYMBOL_GPL(mmc_cmdq_disable); 1001