xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
25 
26 static const u8 tuning_blk_pattern_4bit[] = {
27 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36 
37 static const u8 tuning_blk_pattern_8bit[] = {
38 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55 
56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 	int err;
59 	struct mmc_command cmd = {};
60 
61 	cmd.opcode = MMC_SEND_STATUS;
62 	if (!mmc_host_is_spi(card->host))
63 		cmd.arg = card->rca << 16;
64 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65 
66 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 	if (err)
68 		return err;
69 
70 	/* NOTE: callers are required to understand the difference
71 	 * between "native" and SPI format status words!
72 	 */
73 	if (status)
74 		*status = cmd.resp[0];
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79 
80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85 
86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 	struct mmc_command cmd = {};
89 
90 	cmd.opcode = MMC_SELECT_CARD;
91 
92 	if (card) {
93 		cmd.arg = card->rca << 16;
94 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 	} else {
96 		cmd.arg = 0;
97 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 	}
99 
100 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102 
103 int mmc_select_card(struct mmc_card *card)
104 {
105 
106 	return _mmc_select_card(card->host, card);
107 }
108 
109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 	return _mmc_select_card(host, NULL);
112 }
113 
114 /*
115  * Write the value specified in the device tree or board code into the optional
116  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117  * drive strength of the DAT and CMD outputs. The actual meaning of a given
118  * value is hardware dependant.
119  * The presence of the DSR register can be determined from the CSD register,
120  * bit 76.
121  */
122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 	struct mmc_command cmd = {};
125 
126 	cmd.opcode = MMC_SET_DSR;
127 
128 	cmd.arg = (host->dsr << 16) | 0xffff;
129 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133 
134 int mmc_go_idle(struct mmc_host *host)
135 {
136 	int err;
137 	struct mmc_command cmd = {};
138 
139 	/*
140 	 * Non-SPI hosts need to prevent chipselect going active during
141 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
142 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 	 *
144 	 * SPI hosts ignore ios.chip_select; it's managed according to
145 	 * rules that must accommodate non-MMC slaves which this layer
146 	 * won't even know about.
147 	 */
148 	if (!mmc_host_is_spi(host)) {
149 		mmc_set_chip_select(host, MMC_CS_HIGH);
150 		mmc_delay(1);
151 	}
152 
153 	cmd.opcode = MMC_GO_IDLE_STATE;
154 	cmd.arg = 0;
155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156 
157 	err = mmc_wait_for_cmd(host, &cmd, 0);
158 
159 	mmc_delay(1);
160 
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 		mmc_delay(1);
164 	}
165 
166 	host->use_spi_crc = 0;
167 
168 	return err;
169 }
170 
171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 	struct mmc_command cmd = {};
174 	int i, err = 0;
175 
176 	cmd.opcode = MMC_SEND_OP_COND;
177 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179 
180 	for (i = 100; i; i--) {
181 		err = mmc_wait_for_cmd(host, &cmd, 0);
182 		if (err)
183 			break;
184 
185 		/* wait until reset completes */
186 		if (mmc_host_is_spi(host)) {
187 			if (!(cmd.resp[0] & R1_SPI_IDLE))
188 				break;
189 		} else {
190 			if (cmd.resp[0] & MMC_CARD_BUSY)
191 				break;
192 		}
193 
194 		err = -ETIMEDOUT;
195 
196 		mmc_delay(10);
197 
198 		/*
199 		 * According to eMMC specification v5.1 section 6.4.3, we
200 		 * should issue CMD1 repeatedly in the idle state until
201 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 		 * the inactive mode after mmc_init_card() issued CMD0 when
203 		 * the eMMC device is busy.
204 		 */
205 		if (!ocr && !mmc_host_is_spi(host))
206 			cmd.arg = cmd.resp[0] | BIT(30);
207 	}
208 
209 	if (rocr && !mmc_host_is_spi(host))
210 		*rocr = cmd.resp[0];
211 
212 	return err;
213 }
214 
215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 	struct mmc_command cmd = {};
218 
219 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 	cmd.arg = card->rca << 16;
221 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222 
223 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225 
226 static int
227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 	int err;
230 	struct mmc_command cmd = {};
231 
232 	cmd.opcode = opcode;
233 	cmd.arg = arg;
234 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235 
236 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 	if (err)
238 		return err;
239 
240 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241 
242 	return 0;
243 }
244 
245 /*
246  * NOTE: void *buf, caller for the buf is required to use DMA-capable
247  * buffer or on-stack buffer (with some overhead in callee).
248  */
249 static int
250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 		u32 opcode, void *buf, unsigned len)
252 {
253 	struct mmc_request mrq = {};
254 	struct mmc_command cmd = {};
255 	struct mmc_data data = {};
256 	struct scatterlist sg;
257 
258 	mrq.cmd = &cmd;
259 	mrq.data = &data;
260 
261 	cmd.opcode = opcode;
262 	cmd.arg = 0;
263 
264 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
265 	 * rely on callers to never use this with "native" calls for reading
266 	 * CSD or CID.  Native versions of those commands use the R2 type,
267 	 * not R1 plus a data block.
268 	 */
269 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270 
271 	data.blksz = len;
272 	data.blocks = 1;
273 	data.flags = MMC_DATA_READ;
274 	data.sg = &sg;
275 	data.sg_len = 1;
276 
277 	sg_init_one(&sg, buf, len);
278 
279 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 		/*
281 		 * The spec states that CSR and CID accesses have a timeout
282 		 * of 64 clock cycles.
283 		 */
284 		data.timeout_ns = 0;
285 		data.timeout_clks = 64;
286 	} else
287 		mmc_set_data_timeout(&data, card);
288 
289 	mmc_wait_for_req(host, &mrq);
290 
291 	if (cmd.error)
292 		return cmd.error;
293 	if (data.error)
294 		return data.error;
295 
296 	return 0;
297 }
298 
299 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
300 {
301 	int ret, i;
302 	__be32 *cxd_tmp;
303 
304 	cxd_tmp = kzalloc(16, GFP_KERNEL);
305 	if (!cxd_tmp)
306 		return -ENOMEM;
307 
308 	ret = mmc_send_cxd_data(NULL, host, opcode, cxd_tmp, 16);
309 	if (ret)
310 		goto err;
311 
312 	for (i = 0; i < 4; i++)
313 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
314 
315 err:
316 	kfree(cxd_tmp);
317 	return ret;
318 }
319 
320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 	if (mmc_host_is_spi(card->host))
323 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
324 
325 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
326 				MMC_SEND_CSD);
327 }
328 
329 int mmc_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 	if (mmc_host_is_spi(host))
332 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
333 
334 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
335 }
336 
337 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
338 {
339 	int err;
340 	u8 *ext_csd;
341 
342 	if (!card || !new_ext_csd)
343 		return -EINVAL;
344 
345 	if (!mmc_can_ext_csd(card))
346 		return -EOPNOTSUPP;
347 
348 	/*
349 	 * As the ext_csd is so large and mostly unused, we don't store the
350 	 * raw block in mmc_card.
351 	 */
352 	ext_csd = kzalloc(512, GFP_KERNEL);
353 	if (!ext_csd)
354 		return -ENOMEM;
355 
356 	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
357 				512);
358 	if (err)
359 		kfree(ext_csd);
360 	else
361 		*new_ext_csd = ext_csd;
362 
363 	return err;
364 }
365 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
366 
367 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
368 {
369 	struct mmc_command cmd = {};
370 	int err;
371 
372 	cmd.opcode = MMC_SPI_READ_OCR;
373 	cmd.arg = highcap ? (1 << 30) : 0;
374 	cmd.flags = MMC_RSP_SPI_R3;
375 
376 	err = mmc_wait_for_cmd(host, &cmd, 0);
377 
378 	*ocrp = cmd.resp[1];
379 	return err;
380 }
381 
382 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
383 {
384 	struct mmc_command cmd = {};
385 	int err;
386 
387 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
388 	cmd.flags = MMC_RSP_SPI_R1;
389 	cmd.arg = use_crc;
390 
391 	err = mmc_wait_for_cmd(host, &cmd, 0);
392 	if (!err)
393 		host->use_spi_crc = use_crc;
394 	return err;
395 }
396 
397 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
398 {
399 	if (mmc_host_is_spi(host)) {
400 		if (status & R1_SPI_ILLEGAL_COMMAND)
401 			return -EBADMSG;
402 	} else {
403 		if (R1_STATUS(status))
404 			pr_warn("%s: unexpected status %#x after switch\n",
405 				mmc_hostname(host), status);
406 		if (status & R1_SWITCH_ERROR)
407 			return -EBADMSG;
408 	}
409 	return 0;
410 }
411 
412 /* Caller must hold re-tuning */
413 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
414 {
415 	u32 status;
416 	int err;
417 
418 	err = mmc_send_status(card, &status);
419 	if (!crc_err_fatal && err == -EILSEQ)
420 		return 0;
421 	if (err)
422 		return err;
423 
424 	return mmc_switch_status_error(card->host, status);
425 }
426 
427 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
428 			   enum mmc_busy_cmd busy_cmd, bool *busy)
429 {
430 	struct mmc_host *host = card->host;
431 	u32 status = 0;
432 	int err;
433 
434 	if (host->ops->card_busy) {
435 		*busy = host->ops->card_busy(host);
436 		return 0;
437 	}
438 
439 	err = mmc_send_status(card, &status);
440 	if (retry_crc_err && err == -EILSEQ) {
441 		*busy = true;
442 		return 0;
443 	}
444 	if (err)
445 		return err;
446 
447 	switch (busy_cmd) {
448 	case MMC_BUSY_CMD6:
449 		err = mmc_switch_status_error(card->host, status);
450 		break;
451 	case MMC_BUSY_ERASE:
452 		err = R1_STATUS(status) ? -EIO : 0;
453 		break;
454 	case MMC_BUSY_HPI:
455 		break;
456 	default:
457 		err = -EINVAL;
458 	}
459 
460 	if (err)
461 		return err;
462 
463 	*busy = !mmc_ready_for_data(status);
464 	return 0;
465 }
466 
467 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
468 			       bool send_status, bool retry_crc_err,
469 			       enum mmc_busy_cmd busy_cmd)
470 {
471 	struct mmc_host *host = card->host;
472 	int err;
473 	unsigned long timeout;
474 	unsigned int udelay = 32, udelay_max = 32768;
475 	bool expired = false;
476 	bool busy = false;
477 
478 	/*
479 	 * In cases when not allowed to poll by using CMD13 or because we aren't
480 	 * capable of polling by using ->card_busy(), then rely on waiting the
481 	 * stated timeout to be sufficient.
482 	 */
483 	if (!send_status && !host->ops->card_busy) {
484 		mmc_delay(timeout_ms);
485 		return 0;
486 	}
487 
488 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
489 	do {
490 		/*
491 		 * Due to the possibility of being preempted while polling,
492 		 * check the expiration time first.
493 		 */
494 		expired = time_after(jiffies, timeout);
495 
496 		err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
497 		if (err)
498 			return err;
499 
500 		/* Timeout if the device still remains busy. */
501 		if (expired && busy) {
502 			pr_err("%s: Card stuck being busy! %s\n",
503 				mmc_hostname(host), __func__);
504 			return -ETIMEDOUT;
505 		}
506 
507 		/* Throttle the polling rate to avoid hogging the CPU. */
508 		if (busy) {
509 			usleep_range(udelay, udelay * 2);
510 			if (udelay < udelay_max)
511 				udelay *= 2;
512 		}
513 	} while (busy);
514 
515 	return 0;
516 }
517 
518 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
519 		      enum mmc_busy_cmd busy_cmd)
520 {
521 	return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
522 }
523 
524 /**
525  *	__mmc_switch - modify EXT_CSD register
526  *	@card: the MMC card associated with the data transfer
527  *	@set: cmd set values
528  *	@index: EXT_CSD register index
529  *	@value: value to program into EXT_CSD register
530  *	@timeout_ms: timeout (ms) for operation performed by register write,
531  *                   timeout of zero implies maximum possible timeout
532  *	@timing: new timing to change to
533  *	@send_status: send status cmd to poll for busy
534  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
535  *	@retries: number of retries
536  *
537  *	Modifies the EXT_CSD register for selected card.
538  */
539 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
540 		unsigned int timeout_ms, unsigned char timing,
541 		bool send_status, bool retry_crc_err, unsigned int retries)
542 {
543 	struct mmc_host *host = card->host;
544 	int err;
545 	struct mmc_command cmd = {};
546 	bool use_r1b_resp = true;
547 	unsigned char old_timing = host->ios.timing;
548 
549 	mmc_retune_hold(host);
550 
551 	if (!timeout_ms) {
552 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
553 			mmc_hostname(host));
554 		timeout_ms = card->ext_csd.generic_cmd6_time;
555 	}
556 
557 	/*
558 	 * If the max_busy_timeout of the host is specified, make sure it's
559 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
560 	 * the host to avoid HW busy detection, by converting to a R1 response
561 	 * instead of a R1B. Note, some hosts requires R1B, which also means
562 	 * they are on their own when it comes to deal with the busy timeout.
563 	 */
564 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
565 	    (timeout_ms > host->max_busy_timeout))
566 		use_r1b_resp = false;
567 
568 	cmd.opcode = MMC_SWITCH;
569 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
570 		  (index << 16) |
571 		  (value << 8) |
572 		  set;
573 	cmd.flags = MMC_CMD_AC;
574 	if (use_r1b_resp) {
575 		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
576 		cmd.busy_timeout = timeout_ms;
577 	} else {
578 		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
579 	}
580 
581 	err = mmc_wait_for_cmd(host, &cmd, retries);
582 	if (err)
583 		goto out;
584 
585 	/*If SPI or used HW busy detection above, then we don't need to poll. */
586 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
587 		mmc_host_is_spi(host))
588 		goto out_tim;
589 
590 	/* Let's try to poll to find out when the command is completed. */
591 	err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
592 				  MMC_BUSY_CMD6);
593 	if (err)
594 		goto out;
595 
596 out_tim:
597 	/* Switch to new timing before check switch status. */
598 	if (timing)
599 		mmc_set_timing(host, timing);
600 
601 	if (send_status) {
602 		err = mmc_switch_status(card, true);
603 		if (err && timing)
604 			mmc_set_timing(host, old_timing);
605 	}
606 out:
607 	mmc_retune_release(host);
608 
609 	return err;
610 }
611 
612 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
613 		unsigned int timeout_ms)
614 {
615 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
616 			    true, false, MMC_CMD_RETRIES);
617 }
618 EXPORT_SYMBOL_GPL(mmc_switch);
619 
620 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
621 {
622 	struct mmc_request mrq = {};
623 	struct mmc_command cmd = {};
624 	struct mmc_data data = {};
625 	struct scatterlist sg;
626 	struct mmc_ios *ios = &host->ios;
627 	const u8 *tuning_block_pattern;
628 	int size, err = 0;
629 	u8 *data_buf;
630 
631 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
632 		tuning_block_pattern = tuning_blk_pattern_8bit;
633 		size = sizeof(tuning_blk_pattern_8bit);
634 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
635 		tuning_block_pattern = tuning_blk_pattern_4bit;
636 		size = sizeof(tuning_blk_pattern_4bit);
637 	} else
638 		return -EINVAL;
639 
640 	data_buf = kzalloc(size, GFP_KERNEL);
641 	if (!data_buf)
642 		return -ENOMEM;
643 
644 	mrq.cmd = &cmd;
645 	mrq.data = &data;
646 
647 	cmd.opcode = opcode;
648 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
649 
650 	data.blksz = size;
651 	data.blocks = 1;
652 	data.flags = MMC_DATA_READ;
653 
654 	/*
655 	 * According to the tuning specs, Tuning process
656 	 * is normally shorter 40 executions of CMD19,
657 	 * and timeout value should be shorter than 150 ms
658 	 */
659 	data.timeout_ns = 150 * NSEC_PER_MSEC;
660 
661 	data.sg = &sg;
662 	data.sg_len = 1;
663 	sg_init_one(&sg, data_buf, size);
664 
665 	mmc_wait_for_req(host, &mrq);
666 
667 	if (cmd_error)
668 		*cmd_error = cmd.error;
669 
670 	if (cmd.error) {
671 		err = cmd.error;
672 		goto out;
673 	}
674 
675 	if (data.error) {
676 		err = data.error;
677 		goto out;
678 	}
679 
680 	if (memcmp(data_buf, tuning_block_pattern, size))
681 		err = -EIO;
682 
683 out:
684 	kfree(data_buf);
685 	return err;
686 }
687 EXPORT_SYMBOL_GPL(mmc_send_tuning);
688 
689 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
690 {
691 	struct mmc_command cmd = {};
692 
693 	/*
694 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
695 	 * command, but SD specification does not, so do nothing unless it is
696 	 * eMMC.
697 	 */
698 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
699 		return 0;
700 
701 	cmd.opcode = MMC_STOP_TRANSMISSION;
702 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
703 
704 	/*
705 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
706 	 * on the tuning timeout i.e. 150ms.
707 	 */
708 	cmd.busy_timeout = 150;
709 
710 	return mmc_wait_for_cmd(host, &cmd, 0);
711 }
712 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
713 
714 static int
715 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
716 		  u8 len)
717 {
718 	struct mmc_request mrq = {};
719 	struct mmc_command cmd = {};
720 	struct mmc_data data = {};
721 	struct scatterlist sg;
722 	u8 *data_buf;
723 	u8 *test_buf;
724 	int i, err;
725 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
726 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
727 
728 	/* dma onto stack is unsafe/nonportable, but callers to this
729 	 * routine normally provide temporary on-stack buffers ...
730 	 */
731 	data_buf = kmalloc(len, GFP_KERNEL);
732 	if (!data_buf)
733 		return -ENOMEM;
734 
735 	if (len == 8)
736 		test_buf = testdata_8bit;
737 	else if (len == 4)
738 		test_buf = testdata_4bit;
739 	else {
740 		pr_err("%s: Invalid bus_width %d\n",
741 		       mmc_hostname(host), len);
742 		kfree(data_buf);
743 		return -EINVAL;
744 	}
745 
746 	if (opcode == MMC_BUS_TEST_W)
747 		memcpy(data_buf, test_buf, len);
748 
749 	mrq.cmd = &cmd;
750 	mrq.data = &data;
751 	cmd.opcode = opcode;
752 	cmd.arg = 0;
753 
754 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
755 	 * rely on callers to never use this with "native" calls for reading
756 	 * CSD or CID.  Native versions of those commands use the R2 type,
757 	 * not R1 plus a data block.
758 	 */
759 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
760 
761 	data.blksz = len;
762 	data.blocks = 1;
763 	if (opcode == MMC_BUS_TEST_R)
764 		data.flags = MMC_DATA_READ;
765 	else
766 		data.flags = MMC_DATA_WRITE;
767 
768 	data.sg = &sg;
769 	data.sg_len = 1;
770 	mmc_set_data_timeout(&data, card);
771 	sg_init_one(&sg, data_buf, len);
772 	mmc_wait_for_req(host, &mrq);
773 	err = 0;
774 	if (opcode == MMC_BUS_TEST_R) {
775 		for (i = 0; i < len / 4; i++)
776 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
777 				err = -EIO;
778 				break;
779 			}
780 	}
781 	kfree(data_buf);
782 
783 	if (cmd.error)
784 		return cmd.error;
785 	if (data.error)
786 		return data.error;
787 
788 	return err;
789 }
790 
791 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
792 {
793 	int width;
794 
795 	if (bus_width == MMC_BUS_WIDTH_8)
796 		width = 8;
797 	else if (bus_width == MMC_BUS_WIDTH_4)
798 		width = 4;
799 	else if (bus_width == MMC_BUS_WIDTH_1)
800 		return 0; /* no need for test */
801 	else
802 		return -EINVAL;
803 
804 	/*
805 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
806 	 * is a problem.  This improves chances that the test will work.
807 	 */
808 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
809 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
810 }
811 
812 static int mmc_send_hpi_cmd(struct mmc_card *card)
813 {
814 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
815 	struct mmc_host *host = card->host;
816 	bool use_r1b_resp = true;
817 	struct mmc_command cmd = {};
818 	int err;
819 
820 	cmd.opcode = card->ext_csd.hpi_cmd;
821 	cmd.arg = card->rca << 16 | 1;
822 
823 	/*
824 	 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
825 	 * In case it doesn't, let's instruct the host to avoid HW busy
826 	 * detection, by using a R1 response instead of R1B.
827 	 */
828 	if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
829 		use_r1b_resp = false;
830 
831 	if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
832 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
833 		cmd.busy_timeout = busy_timeout_ms;
834 	} else {
835 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
836 		use_r1b_resp = false;
837 	}
838 
839 	err = mmc_wait_for_cmd(host, &cmd, 0);
840 	if (err) {
841 		pr_warn("%s: HPI error %d. Command response %#x\n",
842 			mmc_hostname(host), err, cmd.resp[0]);
843 		return err;
844 	}
845 
846 	/* No need to poll when using HW busy detection. */
847 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
848 		return 0;
849 
850 	/* Let's poll to find out when the HPI request completes. */
851 	return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
852 }
853 
854 /**
855  *	mmc_interrupt_hpi - Issue for High priority Interrupt
856  *	@card: the MMC card associated with the HPI transfer
857  *
858  *	Issued High Priority Interrupt, and check for card status
859  *	until out-of prg-state.
860  */
861 static int mmc_interrupt_hpi(struct mmc_card *card)
862 {
863 	int err;
864 	u32 status;
865 
866 	if (!card->ext_csd.hpi_en) {
867 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
868 		return 1;
869 	}
870 
871 	err = mmc_send_status(card, &status);
872 	if (err) {
873 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
874 		goto out;
875 	}
876 
877 	switch (R1_CURRENT_STATE(status)) {
878 	case R1_STATE_IDLE:
879 	case R1_STATE_READY:
880 	case R1_STATE_STBY:
881 	case R1_STATE_TRAN:
882 		/*
883 		 * In idle and transfer states, HPI is not needed and the caller
884 		 * can issue the next intended command immediately
885 		 */
886 		goto out;
887 	case R1_STATE_PRG:
888 		break;
889 	default:
890 		/* In all other states, it's illegal to issue HPI */
891 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
892 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
893 		err = -EINVAL;
894 		goto out;
895 	}
896 
897 	err = mmc_send_hpi_cmd(card);
898 out:
899 	return err;
900 }
901 
902 int mmc_can_ext_csd(struct mmc_card *card)
903 {
904 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
905 }
906 
907 static int mmc_read_bkops_status(struct mmc_card *card)
908 {
909 	int err;
910 	u8 *ext_csd;
911 
912 	err = mmc_get_ext_csd(card, &ext_csd);
913 	if (err)
914 		return err;
915 
916 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
917 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
918 	kfree(ext_csd);
919 	return 0;
920 }
921 
922 /**
923  *	mmc_run_bkops - Run BKOPS for supported cards
924  *	@card: MMC card to run BKOPS for
925  *
926  *	Run background operations synchronously for cards having manual BKOPS
927  *	enabled and in case it reports urgent BKOPS level.
928 */
929 void mmc_run_bkops(struct mmc_card *card)
930 {
931 	int err;
932 
933 	if (!card->ext_csd.man_bkops_en)
934 		return;
935 
936 	err = mmc_read_bkops_status(card);
937 	if (err) {
938 		pr_err("%s: Failed to read bkops status: %d\n",
939 		       mmc_hostname(card->host), err);
940 		return;
941 	}
942 
943 	if (!card->ext_csd.raw_bkops_status ||
944 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
945 		return;
946 
947 	mmc_retune_hold(card->host);
948 
949 	/*
950 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
951 	 * synchronously. Future wise, we may consider to start BKOPS, for less
952 	 * urgent levels by using an asynchronous background task, when idle.
953 	 */
954 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
955 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
956 	if (err)
957 		pr_warn("%s: Error %d starting bkops\n",
958 			mmc_hostname(card->host), err);
959 
960 	mmc_retune_release(card->host);
961 }
962 EXPORT_SYMBOL(mmc_run_bkops);
963 
964 /*
965  * Flush the cache to the non-volatile storage.
966  */
967 int mmc_flush_cache(struct mmc_card *card)
968 {
969 	int err = 0;
970 
971 	if (mmc_cache_enabled(card->host)) {
972 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
973 				 EXT_CSD_FLUSH_CACHE, 1,
974 				 MMC_CACHE_FLUSH_TIMEOUT_MS);
975 		if (err)
976 			pr_err("%s: cache flush error %d\n",
977 					mmc_hostname(card->host), err);
978 	}
979 
980 	return err;
981 }
982 EXPORT_SYMBOL(mmc_flush_cache);
983 
984 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
985 {
986 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
987 	int err;
988 
989 	if (!card->ext_csd.cmdq_support)
990 		return -EOPNOTSUPP;
991 
992 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
993 			 val, card->ext_csd.generic_cmd6_time);
994 	if (!err)
995 		card->ext_csd.cmdq_en = enable;
996 
997 	return err;
998 }
999 
1000 int mmc_cmdq_enable(struct mmc_card *card)
1001 {
1002 	return mmc_cmdq_switch(card, true);
1003 }
1004 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1005 
1006 int mmc_cmdq_disable(struct mmc_card *card)
1007 {
1008 	return mmc_cmdq_switch(card, false);
1009 }
1010 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1011 
1012 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1013 {
1014 	struct mmc_host *host = card->host;
1015 	int err;
1016 
1017 	if (!mmc_can_sanitize(card)) {
1018 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1019 		return -EOPNOTSUPP;
1020 	}
1021 
1022 	if (!timeout_ms)
1023 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1024 
1025 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1026 
1027 	mmc_retune_hold(host);
1028 
1029 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1030 			   1, timeout_ms, 0, true, false, 0);
1031 	if (err)
1032 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1033 
1034 	/*
1035 	 * If the sanitize operation timed out, the card is probably still busy
1036 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1037 	 * it with a HPI command to get back into R1_STATE_TRAN.
1038 	 */
1039 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1040 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1041 
1042 	mmc_retune_release(host);
1043 
1044 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1045 	return err;
1046 }
1047 EXPORT_SYMBOL_GPL(mmc_sanitize);
1048