1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * linux/drivers/mmc/core/mmc_ops.h 4 * 5 * Copyright 2006-2007 Pierre Ossman 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/export.h> 10 #include <linux/types.h> 11 #include <linux/scatterlist.h> 12 13 #include <linux/mmc/host.h> 14 #include <linux/mmc/card.h> 15 #include <linux/mmc/mmc.h> 16 17 #include "core.h" 18 #include "card.h" 19 #include "host.h" 20 #include "mmc_ops.h" 21 22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */ 23 #define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */ 24 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */ 25 26 static const u8 tuning_blk_pattern_4bit[] = { 27 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 28 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 29 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 30 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 31 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 32 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 33 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 34 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, 35 }; 36 37 static const u8 tuning_blk_pattern_8bit[] = { 38 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 39 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 40 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 41 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 42 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 43 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 44 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 45 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 46 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 47 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 48 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 49 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 50 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 51 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 52 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 53 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 54 }; 55 56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries) 57 { 58 int err; 59 struct mmc_command cmd = {}; 60 61 cmd.opcode = MMC_SEND_STATUS; 62 if (!mmc_host_is_spi(card->host)) 63 cmd.arg = card->rca << 16; 64 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 65 66 err = mmc_wait_for_cmd(card->host, &cmd, retries); 67 if (err) 68 return err; 69 70 /* NOTE: callers are required to understand the difference 71 * between "native" and SPI format status words! 72 */ 73 if (status) 74 *status = cmd.resp[0]; 75 76 return 0; 77 } 78 EXPORT_SYMBOL_GPL(__mmc_send_status); 79 80 int mmc_send_status(struct mmc_card *card, u32 *status) 81 { 82 return __mmc_send_status(card, status, MMC_CMD_RETRIES); 83 } 84 EXPORT_SYMBOL_GPL(mmc_send_status); 85 86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) 87 { 88 struct mmc_command cmd = {}; 89 90 cmd.opcode = MMC_SELECT_CARD; 91 92 if (card) { 93 cmd.arg = card->rca << 16; 94 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 95 } else { 96 cmd.arg = 0; 97 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 98 } 99 100 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 101 } 102 103 int mmc_select_card(struct mmc_card *card) 104 { 105 106 return _mmc_select_card(card->host, card); 107 } 108 109 int mmc_deselect_cards(struct mmc_host *host) 110 { 111 return _mmc_select_card(host, NULL); 112 } 113 114 /* 115 * Write the value specified in the device tree or board code into the optional 116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and 117 * drive strength of the DAT and CMD outputs. The actual meaning of a given 118 * value is hardware dependant. 119 * The presence of the DSR register can be determined from the CSD register, 120 * bit 76. 121 */ 122 int mmc_set_dsr(struct mmc_host *host) 123 { 124 struct mmc_command cmd = {}; 125 126 cmd.opcode = MMC_SET_DSR; 127 128 cmd.arg = (host->dsr << 16) | 0xffff; 129 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 130 131 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 132 } 133 134 int mmc_go_idle(struct mmc_host *host) 135 { 136 int err; 137 struct mmc_command cmd = {}; 138 139 /* 140 * Non-SPI hosts need to prevent chipselect going active during 141 * GO_IDLE; that would put chips into SPI mode. Remind them of 142 * that in case of hardware that won't pull up DAT3/nCS otherwise. 143 * 144 * SPI hosts ignore ios.chip_select; it's managed according to 145 * rules that must accommodate non-MMC slaves which this layer 146 * won't even know about. 147 */ 148 if (!mmc_host_is_spi(host)) { 149 mmc_set_chip_select(host, MMC_CS_HIGH); 150 mmc_delay(1); 151 } 152 153 cmd.opcode = MMC_GO_IDLE_STATE; 154 cmd.arg = 0; 155 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; 156 157 err = mmc_wait_for_cmd(host, &cmd, 0); 158 159 mmc_delay(1); 160 161 if (!mmc_host_is_spi(host)) { 162 mmc_set_chip_select(host, MMC_CS_DONTCARE); 163 mmc_delay(1); 164 } 165 166 host->use_spi_crc = 0; 167 168 return err; 169 } 170 171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) 172 { 173 struct mmc_command cmd = {}; 174 int i, err = 0; 175 176 cmd.opcode = MMC_SEND_OP_COND; 177 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; 178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; 179 180 for (i = 100; i; i--) { 181 err = mmc_wait_for_cmd(host, &cmd, 0); 182 if (err) 183 break; 184 185 /* wait until reset completes */ 186 if (mmc_host_is_spi(host)) { 187 if (!(cmd.resp[0] & R1_SPI_IDLE)) 188 break; 189 } else { 190 if (cmd.resp[0] & MMC_CARD_BUSY) 191 break; 192 } 193 194 err = -ETIMEDOUT; 195 196 mmc_delay(10); 197 198 /* 199 * According to eMMC specification v5.1 section 6.4.3, we 200 * should issue CMD1 repeatedly in the idle state until 201 * the eMMC is ready. Otherwise some eMMC devices seem to enter 202 * the inactive mode after mmc_init_card() issued CMD0 when 203 * the eMMC device is busy. 204 */ 205 if (!ocr && !mmc_host_is_spi(host)) 206 cmd.arg = cmd.resp[0] | BIT(30); 207 } 208 209 if (rocr && !mmc_host_is_spi(host)) 210 *rocr = cmd.resp[0]; 211 212 return err; 213 } 214 215 int mmc_set_relative_addr(struct mmc_card *card) 216 { 217 struct mmc_command cmd = {}; 218 219 cmd.opcode = MMC_SET_RELATIVE_ADDR; 220 cmd.arg = card->rca << 16; 221 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 222 223 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 224 } 225 226 static int 227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) 228 { 229 int err; 230 struct mmc_command cmd = {}; 231 232 cmd.opcode = opcode; 233 cmd.arg = arg; 234 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; 235 236 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 237 if (err) 238 return err; 239 240 memcpy(cxd, cmd.resp, sizeof(u32) * 4); 241 242 return 0; 243 } 244 245 /* 246 * NOTE: void *buf, caller for the buf is required to use DMA-capable 247 * buffer or on-stack buffer (with some overhead in callee). 248 */ 249 static int 250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, 251 u32 opcode, void *buf, unsigned len) 252 { 253 struct mmc_request mrq = {}; 254 struct mmc_command cmd = {}; 255 struct mmc_data data = {}; 256 struct scatterlist sg; 257 258 mrq.cmd = &cmd; 259 mrq.data = &data; 260 261 cmd.opcode = opcode; 262 cmd.arg = 0; 263 264 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 265 * rely on callers to never use this with "native" calls for reading 266 * CSD or CID. Native versions of those commands use the R2 type, 267 * not R1 plus a data block. 268 */ 269 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 270 271 data.blksz = len; 272 data.blocks = 1; 273 data.flags = MMC_DATA_READ; 274 data.sg = &sg; 275 data.sg_len = 1; 276 277 sg_init_one(&sg, buf, len); 278 279 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { 280 /* 281 * The spec states that CSR and CID accesses have a timeout 282 * of 64 clock cycles. 283 */ 284 data.timeout_ns = 0; 285 data.timeout_clks = 64; 286 } else 287 mmc_set_data_timeout(&data, card); 288 289 mmc_wait_for_req(host, &mrq); 290 291 if (cmd.error) 292 return cmd.error; 293 if (data.error) 294 return data.error; 295 296 return 0; 297 } 298 299 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd) 300 { 301 int ret, i; 302 __be32 *csd_tmp; 303 304 csd_tmp = kzalloc(16, GFP_KERNEL); 305 if (!csd_tmp) 306 return -ENOMEM; 307 308 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); 309 if (ret) 310 goto err; 311 312 for (i = 0; i < 4; i++) 313 csd[i] = be32_to_cpu(csd_tmp[i]); 314 315 err: 316 kfree(csd_tmp); 317 return ret; 318 } 319 320 int mmc_send_csd(struct mmc_card *card, u32 *csd) 321 { 322 if (mmc_host_is_spi(card->host)) 323 return mmc_spi_send_csd(card, csd); 324 325 return mmc_send_cxd_native(card->host, card->rca << 16, csd, 326 MMC_SEND_CSD); 327 } 328 329 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid) 330 { 331 int ret, i; 332 __be32 *cid_tmp; 333 334 cid_tmp = kzalloc(16, GFP_KERNEL); 335 if (!cid_tmp) 336 return -ENOMEM; 337 338 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); 339 if (ret) 340 goto err; 341 342 for (i = 0; i < 4; i++) 343 cid[i] = be32_to_cpu(cid_tmp[i]); 344 345 err: 346 kfree(cid_tmp); 347 return ret; 348 } 349 350 int mmc_send_cid(struct mmc_host *host, u32 *cid) 351 { 352 if (mmc_host_is_spi(host)) 353 return mmc_spi_send_cid(host, cid); 354 355 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID); 356 } 357 358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) 359 { 360 int err; 361 u8 *ext_csd; 362 363 if (!card || !new_ext_csd) 364 return -EINVAL; 365 366 if (!mmc_can_ext_csd(card)) 367 return -EOPNOTSUPP; 368 369 /* 370 * As the ext_csd is so large and mostly unused, we don't store the 371 * raw block in mmc_card. 372 */ 373 ext_csd = kzalloc(512, GFP_KERNEL); 374 if (!ext_csd) 375 return -ENOMEM; 376 377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 378 512); 379 if (err) 380 kfree(ext_csd); 381 else 382 *new_ext_csd = ext_csd; 383 384 return err; 385 } 386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd); 387 388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) 389 { 390 struct mmc_command cmd = {}; 391 int err; 392 393 cmd.opcode = MMC_SPI_READ_OCR; 394 cmd.arg = highcap ? (1 << 30) : 0; 395 cmd.flags = MMC_RSP_SPI_R3; 396 397 err = mmc_wait_for_cmd(host, &cmd, 0); 398 399 *ocrp = cmd.resp[1]; 400 return err; 401 } 402 403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc) 404 { 405 struct mmc_command cmd = {}; 406 int err; 407 408 cmd.opcode = MMC_SPI_CRC_ON_OFF; 409 cmd.flags = MMC_RSP_SPI_R1; 410 cmd.arg = use_crc; 411 412 err = mmc_wait_for_cmd(host, &cmd, 0); 413 if (!err) 414 host->use_spi_crc = use_crc; 415 return err; 416 } 417 418 static int mmc_switch_status_error(struct mmc_host *host, u32 status) 419 { 420 if (mmc_host_is_spi(host)) { 421 if (status & R1_SPI_ILLEGAL_COMMAND) 422 return -EBADMSG; 423 } else { 424 if (R1_STATUS(status)) 425 pr_warn("%s: unexpected status %#x after switch\n", 426 mmc_hostname(host), status); 427 if (status & R1_SWITCH_ERROR) 428 return -EBADMSG; 429 } 430 return 0; 431 } 432 433 /* Caller must hold re-tuning */ 434 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) 435 { 436 u32 status; 437 int err; 438 439 err = mmc_send_status(card, &status); 440 if (!crc_err_fatal && err == -EILSEQ) 441 return 0; 442 if (err) 443 return err; 444 445 return mmc_switch_status_error(card->host, status); 446 } 447 448 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err, 449 enum mmc_busy_cmd busy_cmd, bool *busy) 450 { 451 struct mmc_host *host = card->host; 452 u32 status = 0; 453 int err; 454 455 if (host->ops->card_busy) { 456 *busy = host->ops->card_busy(host); 457 return 0; 458 } 459 460 err = mmc_send_status(card, &status); 461 if (retry_crc_err && err == -EILSEQ) { 462 *busy = true; 463 return 0; 464 } 465 if (err) 466 return err; 467 468 switch (busy_cmd) { 469 case MMC_BUSY_CMD6: 470 err = mmc_switch_status_error(card->host, status); 471 break; 472 case MMC_BUSY_ERASE: 473 err = R1_STATUS(status) ? -EIO : 0; 474 break; 475 case MMC_BUSY_HPI: 476 break; 477 default: 478 err = -EINVAL; 479 } 480 481 if (err) 482 return err; 483 484 *busy = !mmc_ready_for_data(status); 485 return 0; 486 } 487 488 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 489 bool send_status, bool retry_crc_err, 490 enum mmc_busy_cmd busy_cmd) 491 { 492 struct mmc_host *host = card->host; 493 int err; 494 unsigned long timeout; 495 unsigned int udelay = 32, udelay_max = 32768; 496 bool expired = false; 497 bool busy = false; 498 499 /* 500 * In cases when not allowed to poll by using CMD13 or because we aren't 501 * capable of polling by using ->card_busy(), then rely on waiting the 502 * stated timeout to be sufficient. 503 */ 504 if (!send_status && !host->ops->card_busy) { 505 mmc_delay(timeout_ms); 506 return 0; 507 } 508 509 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; 510 do { 511 /* 512 * Due to the possibility of being preempted while polling, 513 * check the expiration time first. 514 */ 515 expired = time_after(jiffies, timeout); 516 517 err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy); 518 if (err) 519 return err; 520 521 /* Timeout if the device still remains busy. */ 522 if (expired && busy) { 523 pr_err("%s: Card stuck being busy! %s\n", 524 mmc_hostname(host), __func__); 525 return -ETIMEDOUT; 526 } 527 528 /* Throttle the polling rate to avoid hogging the CPU. */ 529 if (busy) { 530 usleep_range(udelay, udelay * 2); 531 if (udelay < udelay_max) 532 udelay *= 2; 533 } 534 } while (busy); 535 536 return 0; 537 } 538 539 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 540 enum mmc_busy_cmd busy_cmd) 541 { 542 return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd); 543 } 544 545 /** 546 * __mmc_switch - modify EXT_CSD register 547 * @card: the MMC card associated with the data transfer 548 * @set: cmd set values 549 * @index: EXT_CSD register index 550 * @value: value to program into EXT_CSD register 551 * @timeout_ms: timeout (ms) for operation performed by register write, 552 * timeout of zero implies maximum possible timeout 553 * @timing: new timing to change to 554 * @send_status: send status cmd to poll for busy 555 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy 556 * 557 * Modifies the EXT_CSD register for selected card. 558 */ 559 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 560 unsigned int timeout_ms, unsigned char timing, 561 bool send_status, bool retry_crc_err) 562 { 563 struct mmc_host *host = card->host; 564 int err; 565 struct mmc_command cmd = {}; 566 bool use_r1b_resp = true; 567 unsigned char old_timing = host->ios.timing; 568 569 mmc_retune_hold(host); 570 571 if (!timeout_ms) { 572 pr_warn("%s: unspecified timeout for CMD6 - use generic\n", 573 mmc_hostname(host)); 574 timeout_ms = card->ext_csd.generic_cmd6_time; 575 } 576 577 /* 578 * If the max_busy_timeout of the host is specified, make sure it's 579 * enough to fit the used timeout_ms. In case it's not, let's instruct 580 * the host to avoid HW busy detection, by converting to a R1 response 581 * instead of a R1B. Note, some hosts requires R1B, which also means 582 * they are on their own when it comes to deal with the busy timeout. 583 */ 584 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && 585 (timeout_ms > host->max_busy_timeout)) 586 use_r1b_resp = false; 587 588 cmd.opcode = MMC_SWITCH; 589 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 590 (index << 16) | 591 (value << 8) | 592 set; 593 cmd.flags = MMC_CMD_AC; 594 if (use_r1b_resp) { 595 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; 596 cmd.busy_timeout = timeout_ms; 597 } else { 598 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; 599 } 600 601 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 602 if (err) 603 goto out; 604 605 /*If SPI or used HW busy detection above, then we don't need to poll. */ 606 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || 607 mmc_host_is_spi(host)) 608 goto out_tim; 609 610 /* Let's try to poll to find out when the command is completed. */ 611 err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err, 612 MMC_BUSY_CMD6); 613 if (err) 614 goto out; 615 616 out_tim: 617 /* Switch to new timing before check switch status. */ 618 if (timing) 619 mmc_set_timing(host, timing); 620 621 if (send_status) { 622 err = mmc_switch_status(card, true); 623 if (err && timing) 624 mmc_set_timing(host, old_timing); 625 } 626 out: 627 mmc_retune_release(host); 628 629 return err; 630 } 631 632 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 633 unsigned int timeout_ms) 634 { 635 return __mmc_switch(card, set, index, value, timeout_ms, 0, 636 true, false); 637 } 638 EXPORT_SYMBOL_GPL(mmc_switch); 639 640 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) 641 { 642 struct mmc_request mrq = {}; 643 struct mmc_command cmd = {}; 644 struct mmc_data data = {}; 645 struct scatterlist sg; 646 struct mmc_ios *ios = &host->ios; 647 const u8 *tuning_block_pattern; 648 int size, err = 0; 649 u8 *data_buf; 650 651 if (ios->bus_width == MMC_BUS_WIDTH_8) { 652 tuning_block_pattern = tuning_blk_pattern_8bit; 653 size = sizeof(tuning_blk_pattern_8bit); 654 } else if (ios->bus_width == MMC_BUS_WIDTH_4) { 655 tuning_block_pattern = tuning_blk_pattern_4bit; 656 size = sizeof(tuning_blk_pattern_4bit); 657 } else 658 return -EINVAL; 659 660 data_buf = kzalloc(size, GFP_KERNEL); 661 if (!data_buf) 662 return -ENOMEM; 663 664 mrq.cmd = &cmd; 665 mrq.data = &data; 666 667 cmd.opcode = opcode; 668 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 669 670 data.blksz = size; 671 data.blocks = 1; 672 data.flags = MMC_DATA_READ; 673 674 /* 675 * According to the tuning specs, Tuning process 676 * is normally shorter 40 executions of CMD19, 677 * and timeout value should be shorter than 150 ms 678 */ 679 data.timeout_ns = 150 * NSEC_PER_MSEC; 680 681 data.sg = &sg; 682 data.sg_len = 1; 683 sg_init_one(&sg, data_buf, size); 684 685 mmc_wait_for_req(host, &mrq); 686 687 if (cmd_error) 688 *cmd_error = cmd.error; 689 690 if (cmd.error) { 691 err = cmd.error; 692 goto out; 693 } 694 695 if (data.error) { 696 err = data.error; 697 goto out; 698 } 699 700 if (memcmp(data_buf, tuning_block_pattern, size)) 701 err = -EIO; 702 703 out: 704 kfree(data_buf); 705 return err; 706 } 707 EXPORT_SYMBOL_GPL(mmc_send_tuning); 708 709 int mmc_abort_tuning(struct mmc_host *host, u32 opcode) 710 { 711 struct mmc_command cmd = {}; 712 713 /* 714 * eMMC specification specifies that CMD12 can be used to stop a tuning 715 * command, but SD specification does not, so do nothing unless it is 716 * eMMC. 717 */ 718 if (opcode != MMC_SEND_TUNING_BLOCK_HS200) 719 return 0; 720 721 cmd.opcode = MMC_STOP_TRANSMISSION; 722 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 723 724 /* 725 * For drivers that override R1 to R1b, set an arbitrary timeout based 726 * on the tuning timeout i.e. 150ms. 727 */ 728 cmd.busy_timeout = 150; 729 730 return mmc_wait_for_cmd(host, &cmd, 0); 731 } 732 EXPORT_SYMBOL_GPL(mmc_abort_tuning); 733 734 static int 735 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, 736 u8 len) 737 { 738 struct mmc_request mrq = {}; 739 struct mmc_command cmd = {}; 740 struct mmc_data data = {}; 741 struct scatterlist sg; 742 u8 *data_buf; 743 u8 *test_buf; 744 int i, err; 745 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; 746 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; 747 748 /* dma onto stack is unsafe/nonportable, but callers to this 749 * routine normally provide temporary on-stack buffers ... 750 */ 751 data_buf = kmalloc(len, GFP_KERNEL); 752 if (!data_buf) 753 return -ENOMEM; 754 755 if (len == 8) 756 test_buf = testdata_8bit; 757 else if (len == 4) 758 test_buf = testdata_4bit; 759 else { 760 pr_err("%s: Invalid bus_width %d\n", 761 mmc_hostname(host), len); 762 kfree(data_buf); 763 return -EINVAL; 764 } 765 766 if (opcode == MMC_BUS_TEST_W) 767 memcpy(data_buf, test_buf, len); 768 769 mrq.cmd = &cmd; 770 mrq.data = &data; 771 cmd.opcode = opcode; 772 cmd.arg = 0; 773 774 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 775 * rely on callers to never use this with "native" calls for reading 776 * CSD or CID. Native versions of those commands use the R2 type, 777 * not R1 plus a data block. 778 */ 779 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 780 781 data.blksz = len; 782 data.blocks = 1; 783 if (opcode == MMC_BUS_TEST_R) 784 data.flags = MMC_DATA_READ; 785 else 786 data.flags = MMC_DATA_WRITE; 787 788 data.sg = &sg; 789 data.sg_len = 1; 790 mmc_set_data_timeout(&data, card); 791 sg_init_one(&sg, data_buf, len); 792 mmc_wait_for_req(host, &mrq); 793 err = 0; 794 if (opcode == MMC_BUS_TEST_R) { 795 for (i = 0; i < len / 4; i++) 796 if ((test_buf[i] ^ data_buf[i]) != 0xff) { 797 err = -EIO; 798 break; 799 } 800 } 801 kfree(data_buf); 802 803 if (cmd.error) 804 return cmd.error; 805 if (data.error) 806 return data.error; 807 808 return err; 809 } 810 811 int mmc_bus_test(struct mmc_card *card, u8 bus_width) 812 { 813 int width; 814 815 if (bus_width == MMC_BUS_WIDTH_8) 816 width = 8; 817 else if (bus_width == MMC_BUS_WIDTH_4) 818 width = 4; 819 else if (bus_width == MMC_BUS_WIDTH_1) 820 return 0; /* no need for test */ 821 else 822 return -EINVAL; 823 824 /* 825 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there 826 * is a problem. This improves chances that the test will work. 827 */ 828 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); 829 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); 830 } 831 832 static int mmc_send_hpi_cmd(struct mmc_card *card) 833 { 834 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time; 835 struct mmc_host *host = card->host; 836 bool use_r1b_resp = true; 837 struct mmc_command cmd = {}; 838 int err; 839 840 cmd.opcode = card->ext_csd.hpi_cmd; 841 cmd.arg = card->rca << 16 | 1; 842 843 /* 844 * Make sure the host's max_busy_timeout fit the needed timeout for HPI. 845 * In case it doesn't, let's instruct the host to avoid HW busy 846 * detection, by using a R1 response instead of R1B. 847 */ 848 if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout) 849 use_r1b_resp = false; 850 851 if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) { 852 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 853 cmd.busy_timeout = busy_timeout_ms; 854 } else { 855 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 856 use_r1b_resp = false; 857 } 858 859 err = mmc_wait_for_cmd(host, &cmd, 0); 860 if (err) { 861 pr_warn("%s: HPI error %d. Command response %#x\n", 862 mmc_hostname(host), err, cmd.resp[0]); 863 return err; 864 } 865 866 /* No need to poll when using HW busy detection. */ 867 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 868 return 0; 869 870 /* Let's poll to find out when the HPI request completes. */ 871 return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI); 872 } 873 874 /** 875 * mmc_interrupt_hpi - Issue for High priority Interrupt 876 * @card: the MMC card associated with the HPI transfer 877 * 878 * Issued High Priority Interrupt, and check for card status 879 * until out-of prg-state. 880 */ 881 int mmc_interrupt_hpi(struct mmc_card *card) 882 { 883 int err; 884 u32 status; 885 886 if (!card->ext_csd.hpi_en) { 887 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 888 return 1; 889 } 890 891 err = mmc_send_status(card, &status); 892 if (err) { 893 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 894 goto out; 895 } 896 897 switch (R1_CURRENT_STATE(status)) { 898 case R1_STATE_IDLE: 899 case R1_STATE_READY: 900 case R1_STATE_STBY: 901 case R1_STATE_TRAN: 902 /* 903 * In idle and transfer states, HPI is not needed and the caller 904 * can issue the next intended command immediately 905 */ 906 goto out; 907 case R1_STATE_PRG: 908 break; 909 default: 910 /* In all other states, it's illegal to issue HPI */ 911 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 912 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 913 err = -EINVAL; 914 goto out; 915 } 916 917 err = mmc_send_hpi_cmd(card); 918 out: 919 return err; 920 } 921 922 int mmc_can_ext_csd(struct mmc_card *card) 923 { 924 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); 925 } 926 927 static int mmc_read_bkops_status(struct mmc_card *card) 928 { 929 int err; 930 u8 *ext_csd; 931 932 err = mmc_get_ext_csd(card, &ext_csd); 933 if (err) 934 return err; 935 936 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 937 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 938 kfree(ext_csd); 939 return 0; 940 } 941 942 /** 943 * mmc_run_bkops - Run BKOPS for supported cards 944 * @card: MMC card to run BKOPS for 945 * 946 * Run background operations synchronously for cards having manual BKOPS 947 * enabled and in case it reports urgent BKOPS level. 948 */ 949 void mmc_run_bkops(struct mmc_card *card) 950 { 951 int err; 952 953 if (!card->ext_csd.man_bkops_en) 954 return; 955 956 err = mmc_read_bkops_status(card); 957 if (err) { 958 pr_err("%s: Failed to read bkops status: %d\n", 959 mmc_hostname(card->host), err); 960 return; 961 } 962 963 if (!card->ext_csd.raw_bkops_status || 964 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2) 965 return; 966 967 mmc_retune_hold(card->host); 968 969 /* 970 * For urgent BKOPS status, LEVEL_2 and higher, let's execute 971 * synchronously. Future wise, we may consider to start BKOPS, for less 972 * urgent levels by using an asynchronous background task, when idle. 973 */ 974 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 975 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS); 976 if (err) 977 pr_warn("%s: Error %d starting bkops\n", 978 mmc_hostname(card->host), err); 979 980 mmc_retune_release(card->host); 981 } 982 EXPORT_SYMBOL(mmc_run_bkops); 983 984 /* 985 * Flush the cache to the non-volatile storage. 986 */ 987 int mmc_flush_cache(struct mmc_card *card) 988 { 989 int err = 0; 990 991 if (mmc_card_mmc(card) && 992 (card->ext_csd.cache_size > 0) && 993 (card->ext_csd.cache_ctrl & 1)) { 994 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 995 EXT_CSD_FLUSH_CACHE, 1, 996 MMC_CACHE_FLUSH_TIMEOUT_MS); 997 if (err) 998 pr_err("%s: cache flush error %d\n", 999 mmc_hostname(card->host), err); 1000 } 1001 1002 return err; 1003 } 1004 EXPORT_SYMBOL(mmc_flush_cache); 1005 1006 static int mmc_cmdq_switch(struct mmc_card *card, bool enable) 1007 { 1008 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; 1009 int err; 1010 1011 if (!card->ext_csd.cmdq_support) 1012 return -EOPNOTSUPP; 1013 1014 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 1015 val, card->ext_csd.generic_cmd6_time); 1016 if (!err) 1017 card->ext_csd.cmdq_en = enable; 1018 1019 return err; 1020 } 1021 1022 int mmc_cmdq_enable(struct mmc_card *card) 1023 { 1024 return mmc_cmdq_switch(card, true); 1025 } 1026 EXPORT_SYMBOL_GPL(mmc_cmdq_enable); 1027 1028 int mmc_cmdq_disable(struct mmc_card *card) 1029 { 1030 return mmc_cmdq_switch(card, false); 1031 } 1032 EXPORT_SYMBOL_GPL(mmc_cmdq_disable); 1033 1034 int mmc_sanitize(struct mmc_card *card) 1035 { 1036 struct mmc_host *host = card->host; 1037 int err; 1038 1039 if (!mmc_can_sanitize(card)) { 1040 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host)); 1041 return -EOPNOTSUPP; 1042 } 1043 1044 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host)); 1045 1046 mmc_retune_hold(host); 1047 1048 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, 1049 1, MMC_SANITIZE_TIMEOUT_MS); 1050 if (err) 1051 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err); 1052 1053 /* 1054 * If the sanitize operation timed out, the card is probably still busy 1055 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort 1056 * it with a HPI command to get back into R1_STATE_TRAN. 1057 */ 1058 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card)) 1059 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host)); 1060 1061 mmc_retune_release(host); 1062 1063 pr_debug("%s: Sanitize completed\n", mmc_hostname(host)); 1064 return err; 1065 } 1066 EXPORT_SYMBOL_GPL(mmc_sanitize); 1067