1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 33 static const unsigned int tran_exp[] = { 34 10000, 100000, 1000000, 10000000, 35 0, 0, 0, 0 36 }; 37 38 static const unsigned char tran_mant[] = { 39 0, 10, 12, 13, 15, 20, 25, 30, 40 35, 40, 45, 50, 55, 60, 70, 80, 41 }; 42 43 static const unsigned int tacc_exp[] = { 44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 45 }; 46 47 static const unsigned int tacc_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 #define UNSTUFF_BITS(resp,start,size) \ 53 ({ \ 54 const int __size = size; \ 55 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 56 const int __off = 3 - ((start) / 32); \ 57 const int __shft = (start) & 31; \ 58 u32 __res; \ 59 \ 60 __res = resp[__off] >> __shft; \ 61 if (__size + __shft > 32) \ 62 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 63 __res & __mask; \ 64 }) 65 66 /* 67 * Given the decoded CSD structure, decode the raw CID to our CID structure. 68 */ 69 static int mmc_decode_cid(struct mmc_card *card) 70 { 71 u32 *resp = card->raw_cid; 72 73 /* 74 * The selection of the format here is based upon published 75 * specs from sandisk and from what people have reported. 76 */ 77 switch (card->csd.mmca_vsn) { 78 case 0: /* MMC v1.0 - v1.2 */ 79 case 1: /* MMC v1.4 */ 80 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 81 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 82 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 83 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 84 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 85 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 86 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 87 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 88 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 89 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 90 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 91 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 92 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 93 break; 94 95 case 2: /* MMC v2.0 - v2.2 */ 96 case 3: /* MMC v3.1 - v3.3 */ 97 case 4: /* MMC v4 */ 98 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 99 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 100 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 101 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 102 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 103 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 104 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 105 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 106 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 107 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 108 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 109 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 110 break; 111 112 default: 113 pr_err("%s: card has unknown MMCA version %d\n", 114 mmc_hostname(card->host), card->csd.mmca_vsn); 115 return -EINVAL; 116 } 117 118 return 0; 119 } 120 121 static void mmc_set_erase_size(struct mmc_card *card) 122 { 123 if (card->ext_csd.erase_group_def & 1) 124 card->erase_size = card->ext_csd.hc_erase_size; 125 else 126 card->erase_size = card->csd.erase_size; 127 128 mmc_init_erase(card); 129 } 130 131 /* 132 * Given a 128-bit response, decode to our card CSD structure. 133 */ 134 static int mmc_decode_csd(struct mmc_card *card) 135 { 136 struct mmc_csd *csd = &card->csd; 137 unsigned int e, m, a, b; 138 u32 *resp = card->raw_csd; 139 140 /* 141 * We only understand CSD structure v1.1 and v1.2. 142 * v1.2 has extra information in bits 15, 11 and 10. 143 * We also support eMMC v4.4 & v4.41. 144 */ 145 csd->structure = UNSTUFF_BITS(resp, 126, 2); 146 if (csd->structure == 0) { 147 pr_err("%s: unrecognised CSD structure version %d\n", 148 mmc_hostname(card->host), csd->structure); 149 return -EINVAL; 150 } 151 152 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 153 m = UNSTUFF_BITS(resp, 115, 4); 154 e = UNSTUFF_BITS(resp, 112, 3); 155 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 156 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 157 158 m = UNSTUFF_BITS(resp, 99, 4); 159 e = UNSTUFF_BITS(resp, 96, 3); 160 csd->max_dtr = tran_exp[e] * tran_mant[m]; 161 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 162 163 e = UNSTUFF_BITS(resp, 47, 3); 164 m = UNSTUFF_BITS(resp, 62, 12); 165 csd->capacity = (1 + m) << (e + 2); 166 167 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 168 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 169 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 170 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 171 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 172 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 173 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 174 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 175 176 if (csd->write_blkbits >= 9) { 177 a = UNSTUFF_BITS(resp, 42, 5); 178 b = UNSTUFF_BITS(resp, 37, 5); 179 csd->erase_size = (a + 1) * (b + 1); 180 csd->erase_size <<= csd->write_blkbits - 9; 181 } 182 183 return 0; 184 } 185 186 static void mmc_select_card_type(struct mmc_card *card) 187 { 188 struct mmc_host *host = card->host; 189 u8 card_type = card->ext_csd.raw_card_type; 190 u32 caps = host->caps, caps2 = host->caps2; 191 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 192 unsigned int avail_type = 0; 193 194 if (caps & MMC_CAP_MMC_HIGHSPEED && 195 card_type & EXT_CSD_CARD_TYPE_HS_26) { 196 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 197 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 198 } 199 200 if (caps & MMC_CAP_MMC_HIGHSPEED && 201 card_type & EXT_CSD_CARD_TYPE_HS_52) { 202 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 203 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 204 } 205 206 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 207 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 208 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 209 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 210 } 211 212 if (caps & MMC_CAP_1_2V_DDR && 213 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 216 } 217 218 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 219 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 220 hs200_max_dtr = MMC_HS200_MAX_DTR; 221 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 222 } 223 224 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 225 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 226 hs200_max_dtr = MMC_HS200_MAX_DTR; 227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 228 } 229 230 if (caps2 & MMC_CAP2_HS400_1_8V && 231 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 232 hs200_max_dtr = MMC_HS200_MAX_DTR; 233 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 234 } 235 236 if (caps2 & MMC_CAP2_HS400_1_2V && 237 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 238 hs200_max_dtr = MMC_HS200_MAX_DTR; 239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 240 } 241 242 if ((caps2 & MMC_CAP2_HS400_ES) && 243 card->ext_csd.strobe_support && 244 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 245 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 246 247 card->ext_csd.hs_max_dtr = hs_max_dtr; 248 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 249 card->mmc_avail_type = avail_type; 250 } 251 252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 253 { 254 u8 hc_erase_grp_sz, hc_wp_grp_sz; 255 256 /* 257 * Disable these attributes by default 258 */ 259 card->ext_csd.enhanced_area_offset = -EINVAL; 260 card->ext_csd.enhanced_area_size = -EINVAL; 261 262 /* 263 * Enhanced area feature support -- check whether the eMMC 264 * card has the Enhanced area enabled. If so, export enhanced 265 * area offset and size to user by adding sysfs interface. 266 */ 267 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 268 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 269 if (card->ext_csd.partition_setting_completed) { 270 hc_erase_grp_sz = 271 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 272 hc_wp_grp_sz = 273 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 274 275 /* 276 * calculate the enhanced data area offset, in bytes 277 */ 278 card->ext_csd.enhanced_area_offset = 279 (((unsigned long long)ext_csd[139]) << 24) + 280 (((unsigned long long)ext_csd[138]) << 16) + 281 (((unsigned long long)ext_csd[137]) << 8) + 282 (((unsigned long long)ext_csd[136])); 283 if (mmc_card_blockaddr(card)) 284 card->ext_csd.enhanced_area_offset <<= 9; 285 /* 286 * calculate the enhanced data area size, in kilobytes 287 */ 288 card->ext_csd.enhanced_area_size = 289 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 290 ext_csd[140]; 291 card->ext_csd.enhanced_area_size *= 292 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 293 card->ext_csd.enhanced_area_size <<= 9; 294 } else { 295 pr_warn("%s: defines enhanced area without partition setting complete\n", 296 mmc_hostname(card->host)); 297 } 298 } 299 } 300 301 static void mmc_part_add(struct mmc_card *card, unsigned int size, 302 unsigned int part_cfg, char *name, int idx, bool ro, 303 int area_type) 304 { 305 card->part[card->nr_parts].size = size; 306 card->part[card->nr_parts].part_cfg = part_cfg; 307 sprintf(card->part[card->nr_parts].name, name, idx); 308 card->part[card->nr_parts].force_ro = ro; 309 card->part[card->nr_parts].area_type = area_type; 310 card->nr_parts++; 311 } 312 313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 314 { 315 int idx; 316 u8 hc_erase_grp_sz, hc_wp_grp_sz; 317 unsigned int part_size; 318 319 /* 320 * General purpose partition feature support -- 321 * If ext_csd has the size of general purpose partitions, 322 * set size, part_cfg, partition name in mmc_part. 323 */ 324 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 325 EXT_CSD_PART_SUPPORT_PART_EN) { 326 hc_erase_grp_sz = 327 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 328 hc_wp_grp_sz = 329 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 330 331 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 332 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 335 continue; 336 if (card->ext_csd.partition_setting_completed == 0) { 337 pr_warn("%s: has partition size defined without partition complete\n", 338 mmc_hostname(card->host)); 339 break; 340 } 341 part_size = 342 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 343 << 16) + 344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 345 << 8) + 346 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 347 part_size *= (size_t)(hc_erase_grp_sz * 348 hc_wp_grp_sz); 349 mmc_part_add(card, part_size << 19, 350 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 351 "gp%d", idx, false, 352 MMC_BLK_DATA_AREA_GP); 353 } 354 } 355 } 356 357 /* Minimum partition switch timeout in milliseconds */ 358 #define MMC_MIN_PART_SWITCH_TIME 300 359 360 /* 361 * Decode extended CSD. 362 */ 363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 364 { 365 int err = 0, idx; 366 unsigned int part_size; 367 struct device_node *np; 368 bool broken_hpi = false; 369 370 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 371 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 372 if (card->csd.structure == 3) { 373 if (card->ext_csd.raw_ext_csd_structure > 2) { 374 pr_err("%s: unrecognised EXT_CSD structure " 375 "version %d\n", mmc_hostname(card->host), 376 card->ext_csd.raw_ext_csd_structure); 377 err = -EINVAL; 378 goto out; 379 } 380 } 381 382 np = mmc_of_find_child_device(card->host, 0); 383 if (np && of_device_is_compatible(np, "mmc-card")) 384 broken_hpi = of_property_read_bool(np, "broken-hpi"); 385 of_node_put(np); 386 387 /* 388 * The EXT_CSD format is meant to be forward compatible. As long 389 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 390 * are authorized, see JEDEC JESD84-B50 section B.8. 391 */ 392 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 393 394 /* fixup device after ext_csd revision field is updated */ 395 mmc_fixup_device(card, mmc_ext_csd_fixups); 396 397 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 398 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 399 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 400 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 401 if (card->ext_csd.rev >= 2) { 402 card->ext_csd.sectors = 403 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 404 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 405 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 406 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 407 408 /* Cards with density > 2GiB are sector addressed */ 409 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 410 mmc_card_set_blockaddr(card); 411 } 412 413 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 414 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 415 mmc_select_card_type(card); 416 417 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 418 card->ext_csd.raw_erase_timeout_mult = 419 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 420 card->ext_csd.raw_hc_erase_grp_size = 421 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 422 if (card->ext_csd.rev >= 3) { 423 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 424 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 425 426 /* EXT_CSD value is in units of 10ms, but we store in ms */ 427 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 428 /* Some eMMC set the value too low so set a minimum */ 429 if (card->ext_csd.part_time && 430 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 431 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 432 433 /* Sleep / awake timeout in 100ns units */ 434 if (sa_shift > 0 && sa_shift <= 0x17) 435 card->ext_csd.sa_timeout = 436 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 437 card->ext_csd.erase_group_def = 438 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 439 card->ext_csd.hc_erase_timeout = 300 * 440 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 441 card->ext_csd.hc_erase_size = 442 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 443 444 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 445 446 /* 447 * There are two boot regions of equal size, defined in 448 * multiples of 128K. 449 */ 450 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 451 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 452 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 453 mmc_part_add(card, part_size, 454 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 455 "boot%d", idx, true, 456 MMC_BLK_DATA_AREA_BOOT); 457 } 458 } 459 } 460 461 card->ext_csd.raw_hc_erase_gap_size = 462 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 463 card->ext_csd.raw_sec_trim_mult = 464 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 465 card->ext_csd.raw_sec_erase_mult = 466 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 467 card->ext_csd.raw_sec_feature_support = 468 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 469 card->ext_csd.raw_trim_mult = 470 ext_csd[EXT_CSD_TRIM_MULT]; 471 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 472 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 473 if (card->ext_csd.rev >= 4) { 474 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 475 EXT_CSD_PART_SETTING_COMPLETED) 476 card->ext_csd.partition_setting_completed = 1; 477 else 478 card->ext_csd.partition_setting_completed = 0; 479 480 mmc_manage_enhanced_area(card, ext_csd); 481 482 mmc_manage_gp_partitions(card, ext_csd); 483 484 card->ext_csd.sec_trim_mult = 485 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 486 card->ext_csd.sec_erase_mult = 487 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 488 card->ext_csd.sec_feature_support = 489 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 490 card->ext_csd.trim_timeout = 300 * 491 ext_csd[EXT_CSD_TRIM_MULT]; 492 493 /* 494 * Note that the call to mmc_part_add above defaults to read 495 * only. If this default assumption is changed, the call must 496 * take into account the value of boot_locked below. 497 */ 498 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 499 card->ext_csd.boot_ro_lockable = true; 500 501 /* Save power class values */ 502 card->ext_csd.raw_pwr_cl_52_195 = 503 ext_csd[EXT_CSD_PWR_CL_52_195]; 504 card->ext_csd.raw_pwr_cl_26_195 = 505 ext_csd[EXT_CSD_PWR_CL_26_195]; 506 card->ext_csd.raw_pwr_cl_52_360 = 507 ext_csd[EXT_CSD_PWR_CL_52_360]; 508 card->ext_csd.raw_pwr_cl_26_360 = 509 ext_csd[EXT_CSD_PWR_CL_26_360]; 510 card->ext_csd.raw_pwr_cl_200_195 = 511 ext_csd[EXT_CSD_PWR_CL_200_195]; 512 card->ext_csd.raw_pwr_cl_200_360 = 513 ext_csd[EXT_CSD_PWR_CL_200_360]; 514 card->ext_csd.raw_pwr_cl_ddr_52_195 = 515 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 516 card->ext_csd.raw_pwr_cl_ddr_52_360 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 518 card->ext_csd.raw_pwr_cl_ddr_200_360 = 519 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 520 } 521 522 if (card->ext_csd.rev >= 5) { 523 /* Adjust production date as per JEDEC JESD84-B451 */ 524 if (card->cid.year < 2010) 525 card->cid.year += 16; 526 527 /* check whether the eMMC card supports BKOPS */ 528 if (!mmc_card_broken_hpi(card) && 529 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 530 card->ext_csd.bkops = 1; 531 card->ext_csd.man_bkops_en = 532 (ext_csd[EXT_CSD_BKOPS_EN] & 533 EXT_CSD_MANUAL_BKOPS_MASK); 534 card->ext_csd.raw_bkops_status = 535 ext_csd[EXT_CSD_BKOPS_STATUS]; 536 if (card->ext_csd.man_bkops_en) 537 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 538 mmc_hostname(card->host)); 539 card->ext_csd.auto_bkops_en = 540 (ext_csd[EXT_CSD_BKOPS_EN] & 541 EXT_CSD_AUTO_BKOPS_MASK); 542 if (card->ext_csd.auto_bkops_en) 543 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 544 mmc_hostname(card->host)); 545 } 546 547 /* check whether the eMMC card supports HPI */ 548 if (!mmc_card_broken_hpi(card) && 549 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 550 card->ext_csd.hpi = 1; 551 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 552 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 553 else 554 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 555 /* 556 * Indicate the maximum timeout to close 557 * a command interrupted by HPI 558 */ 559 card->ext_csd.out_of_int_time = 560 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 561 } 562 563 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 564 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 565 566 /* 567 * RPMB regions are defined in multiples of 128K. 568 */ 569 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 570 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 571 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 572 EXT_CSD_PART_CONFIG_ACC_RPMB, 573 "rpmb", 0, false, 574 MMC_BLK_DATA_AREA_RPMB); 575 } 576 } 577 578 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 579 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 580 card->erased_byte = 0xFF; 581 else 582 card->erased_byte = 0x0; 583 584 /* eMMC v4.5 or later */ 585 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 586 if (card->ext_csd.rev >= 6) { 587 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 588 589 card->ext_csd.generic_cmd6_time = 10 * 590 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 591 card->ext_csd.power_off_longtime = 10 * 592 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 593 594 card->ext_csd.cache_size = 595 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 596 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 599 600 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 601 card->ext_csd.data_sector_size = 4096; 602 else 603 card->ext_csd.data_sector_size = 512; 604 605 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 606 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 607 card->ext_csd.data_tag_unit_size = 608 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 609 (card->ext_csd.data_sector_size); 610 } else { 611 card->ext_csd.data_tag_unit_size = 0; 612 } 613 614 card->ext_csd.max_packed_writes = 615 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 616 card->ext_csd.max_packed_reads = 617 ext_csd[EXT_CSD_MAX_PACKED_READS]; 618 } else { 619 card->ext_csd.data_sector_size = 512; 620 } 621 622 /* eMMC v5 or later */ 623 if (card->ext_csd.rev >= 7) { 624 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 625 MMC_FIRMWARE_LEN); 626 card->ext_csd.ffu_capable = 627 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 628 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 629 630 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 631 card->ext_csd.device_life_time_est_typ_a = 632 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 633 card->ext_csd.device_life_time_est_typ_b = 634 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 635 } 636 637 /* eMMC v5.1 or later */ 638 if (card->ext_csd.rev >= 8) { 639 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 640 EXT_CSD_CMDQ_SUPPORTED; 641 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 642 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 643 /* Exclude inefficiently small queue depths */ 644 if (card->ext_csd.cmdq_depth <= 2) { 645 card->ext_csd.cmdq_support = false; 646 card->ext_csd.cmdq_depth = 0; 647 } 648 if (card->ext_csd.cmdq_support) { 649 pr_debug("%s: Command Queue supported depth %u\n", 650 mmc_hostname(card->host), 651 card->ext_csd.cmdq_depth); 652 } 653 } 654 out: 655 return err; 656 } 657 658 static int mmc_read_ext_csd(struct mmc_card *card) 659 { 660 u8 *ext_csd; 661 int err; 662 663 if (!mmc_can_ext_csd(card)) 664 return 0; 665 666 err = mmc_get_ext_csd(card, &ext_csd); 667 if (err) { 668 /* If the host or the card can't do the switch, 669 * fail more gracefully. */ 670 if ((err != -EINVAL) 671 && (err != -ENOSYS) 672 && (err != -EFAULT)) 673 return err; 674 675 /* 676 * High capacity cards should have this "magic" size 677 * stored in their CSD. 678 */ 679 if (card->csd.capacity == (4096 * 512)) { 680 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 681 mmc_hostname(card->host)); 682 } else { 683 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 684 mmc_hostname(card->host)); 685 err = 0; 686 } 687 688 return err; 689 } 690 691 err = mmc_decode_ext_csd(card, ext_csd); 692 kfree(ext_csd); 693 return err; 694 } 695 696 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 697 { 698 u8 *bw_ext_csd; 699 int err; 700 701 if (bus_width == MMC_BUS_WIDTH_1) 702 return 0; 703 704 err = mmc_get_ext_csd(card, &bw_ext_csd); 705 if (err) 706 return err; 707 708 /* only compare read only fields */ 709 err = !((card->ext_csd.raw_partition_support == 710 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 711 (card->ext_csd.raw_erased_mem_count == 712 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 713 (card->ext_csd.rev == 714 bw_ext_csd[EXT_CSD_REV]) && 715 (card->ext_csd.raw_ext_csd_structure == 716 bw_ext_csd[EXT_CSD_STRUCTURE]) && 717 (card->ext_csd.raw_card_type == 718 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 719 (card->ext_csd.raw_s_a_timeout == 720 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 721 (card->ext_csd.raw_hc_erase_gap_size == 722 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 723 (card->ext_csd.raw_erase_timeout_mult == 724 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 725 (card->ext_csd.raw_hc_erase_grp_size == 726 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 727 (card->ext_csd.raw_sec_trim_mult == 728 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 729 (card->ext_csd.raw_sec_erase_mult == 730 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 731 (card->ext_csd.raw_sec_feature_support == 732 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 733 (card->ext_csd.raw_trim_mult == 734 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 735 (card->ext_csd.raw_sectors[0] == 736 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 737 (card->ext_csd.raw_sectors[1] == 738 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 739 (card->ext_csd.raw_sectors[2] == 740 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 741 (card->ext_csd.raw_sectors[3] == 742 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 743 (card->ext_csd.raw_pwr_cl_52_195 == 744 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 745 (card->ext_csd.raw_pwr_cl_26_195 == 746 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 747 (card->ext_csd.raw_pwr_cl_52_360 == 748 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 749 (card->ext_csd.raw_pwr_cl_26_360 == 750 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 751 (card->ext_csd.raw_pwr_cl_200_195 == 752 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 753 (card->ext_csd.raw_pwr_cl_200_360 == 754 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 755 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 756 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 757 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 758 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 759 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 760 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 761 762 if (err) 763 err = -EINVAL; 764 765 kfree(bw_ext_csd); 766 return err; 767 } 768 769 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 770 card->raw_cid[2], card->raw_cid[3]); 771 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 772 card->raw_csd[2], card->raw_csd[3]); 773 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 774 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 775 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 776 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 777 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 778 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 779 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 780 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 781 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 782 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info); 783 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 784 card->ext_csd.device_life_time_est_typ_a, 785 card->ext_csd.device_life_time_est_typ_b); 786 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 787 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 788 card->ext_csd.enhanced_area_offset); 789 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 790 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 791 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 792 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr); 793 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 794 795 static ssize_t mmc_fwrev_show(struct device *dev, 796 struct device_attribute *attr, 797 char *buf) 798 { 799 struct mmc_card *card = mmc_dev_to_card(dev); 800 801 if (card->ext_csd.rev < 7) { 802 return sprintf(buf, "0x%x\n", card->cid.fwrev); 803 } else { 804 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 805 card->ext_csd.fwrev); 806 } 807 } 808 809 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 810 811 static ssize_t mmc_dsr_show(struct device *dev, 812 struct device_attribute *attr, 813 char *buf) 814 { 815 struct mmc_card *card = mmc_dev_to_card(dev); 816 struct mmc_host *host = card->host; 817 818 if (card->csd.dsr_imp && host->dsr_req) 819 return sprintf(buf, "0x%x\n", host->dsr); 820 else 821 /* return default DSR value */ 822 return sprintf(buf, "0x%x\n", 0x404); 823 } 824 825 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 826 827 static struct attribute *mmc_std_attrs[] = { 828 &dev_attr_cid.attr, 829 &dev_attr_csd.attr, 830 &dev_attr_date.attr, 831 &dev_attr_erase_size.attr, 832 &dev_attr_preferred_erase_size.attr, 833 &dev_attr_fwrev.attr, 834 &dev_attr_ffu_capable.attr, 835 &dev_attr_hwrev.attr, 836 &dev_attr_manfid.attr, 837 &dev_attr_name.attr, 838 &dev_attr_oemid.attr, 839 &dev_attr_prv.attr, 840 &dev_attr_pre_eol_info.attr, 841 &dev_attr_life_time.attr, 842 &dev_attr_serial.attr, 843 &dev_attr_enhanced_area_offset.attr, 844 &dev_attr_enhanced_area_size.attr, 845 &dev_attr_raw_rpmb_size_mult.attr, 846 &dev_attr_rel_sectors.attr, 847 &dev_attr_ocr.attr, 848 &dev_attr_dsr.attr, 849 &dev_attr_cmdq_en.attr, 850 NULL, 851 }; 852 ATTRIBUTE_GROUPS(mmc_std); 853 854 static struct device_type mmc_type = { 855 .groups = mmc_std_groups, 856 }; 857 858 /* 859 * Select the PowerClass for the current bus width 860 * If power class is defined for 4/8 bit bus in the 861 * extended CSD register, select it by executing the 862 * mmc_switch command. 863 */ 864 static int __mmc_select_powerclass(struct mmc_card *card, 865 unsigned int bus_width) 866 { 867 struct mmc_host *host = card->host; 868 struct mmc_ext_csd *ext_csd = &card->ext_csd; 869 unsigned int pwrclass_val = 0; 870 int err = 0; 871 872 switch (1 << host->ios.vdd) { 873 case MMC_VDD_165_195: 874 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 875 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 876 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 877 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 878 ext_csd->raw_pwr_cl_52_195 : 879 ext_csd->raw_pwr_cl_ddr_52_195; 880 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 881 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 882 break; 883 case MMC_VDD_27_28: 884 case MMC_VDD_28_29: 885 case MMC_VDD_29_30: 886 case MMC_VDD_30_31: 887 case MMC_VDD_31_32: 888 case MMC_VDD_32_33: 889 case MMC_VDD_33_34: 890 case MMC_VDD_34_35: 891 case MMC_VDD_35_36: 892 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 893 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 894 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 895 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 896 ext_csd->raw_pwr_cl_52_360 : 897 ext_csd->raw_pwr_cl_ddr_52_360; 898 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 899 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 900 ext_csd->raw_pwr_cl_ddr_200_360 : 901 ext_csd->raw_pwr_cl_200_360; 902 break; 903 default: 904 pr_warn("%s: Voltage range not supported for power class\n", 905 mmc_hostname(host)); 906 return -EINVAL; 907 } 908 909 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 910 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 911 EXT_CSD_PWR_CL_8BIT_SHIFT; 912 else 913 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 914 EXT_CSD_PWR_CL_4BIT_SHIFT; 915 916 /* If the power class is different from the default value */ 917 if (pwrclass_val > 0) { 918 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 919 EXT_CSD_POWER_CLASS, 920 pwrclass_val, 921 card->ext_csd.generic_cmd6_time); 922 } 923 924 return err; 925 } 926 927 static int mmc_select_powerclass(struct mmc_card *card) 928 { 929 struct mmc_host *host = card->host; 930 u32 bus_width, ext_csd_bits; 931 int err, ddr; 932 933 /* Power class selection is supported for versions >= 4.0 */ 934 if (!mmc_can_ext_csd(card)) 935 return 0; 936 937 bus_width = host->ios.bus_width; 938 /* Power class values are defined only for 4/8 bit bus */ 939 if (bus_width == MMC_BUS_WIDTH_1) 940 return 0; 941 942 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 943 if (ddr) 944 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 945 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 946 else 947 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 948 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 949 950 err = __mmc_select_powerclass(card, ext_csd_bits); 951 if (err) 952 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 953 mmc_hostname(host), 1 << bus_width, ddr); 954 955 return err; 956 } 957 958 /* 959 * Set the bus speed for the selected speed mode. 960 */ 961 static void mmc_set_bus_speed(struct mmc_card *card) 962 { 963 unsigned int max_dtr = (unsigned int)-1; 964 965 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 966 max_dtr > card->ext_csd.hs200_max_dtr) 967 max_dtr = card->ext_csd.hs200_max_dtr; 968 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 969 max_dtr = card->ext_csd.hs_max_dtr; 970 else if (max_dtr > card->csd.max_dtr) 971 max_dtr = card->csd.max_dtr; 972 973 mmc_set_clock(card->host, max_dtr); 974 } 975 976 /* 977 * Select the bus width amoung 4-bit and 8-bit(SDR). 978 * If the bus width is changed successfully, return the selected width value. 979 * Zero is returned instead of error value if the wide width is not supported. 980 */ 981 static int mmc_select_bus_width(struct mmc_card *card) 982 { 983 static unsigned ext_csd_bits[] = { 984 EXT_CSD_BUS_WIDTH_8, 985 EXT_CSD_BUS_WIDTH_4, 986 }; 987 static unsigned bus_widths[] = { 988 MMC_BUS_WIDTH_8, 989 MMC_BUS_WIDTH_4, 990 }; 991 struct mmc_host *host = card->host; 992 unsigned idx, bus_width = 0; 993 int err = 0; 994 995 if (!mmc_can_ext_csd(card) || 996 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 997 return 0; 998 999 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1000 1001 /* 1002 * Unlike SD, MMC cards dont have a configuration register to notify 1003 * supported bus width. So bus test command should be run to identify 1004 * the supported bus width or compare the ext csd values of current 1005 * bus width and ext csd values of 1 bit mode read earlier. 1006 */ 1007 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1008 /* 1009 * Host is capable of 8bit transfer, then switch 1010 * the device to work in 8bit transfer mode. If the 1011 * mmc switch command returns error then switch to 1012 * 4bit transfer mode. On success set the corresponding 1013 * bus width on the host. 1014 */ 1015 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1016 EXT_CSD_BUS_WIDTH, 1017 ext_csd_bits[idx], 1018 card->ext_csd.generic_cmd6_time); 1019 if (err) 1020 continue; 1021 1022 bus_width = bus_widths[idx]; 1023 mmc_set_bus_width(host, bus_width); 1024 1025 /* 1026 * If controller can't handle bus width test, 1027 * compare ext_csd previously read in 1 bit mode 1028 * against ext_csd at new bus width 1029 */ 1030 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1031 err = mmc_compare_ext_csds(card, bus_width); 1032 else 1033 err = mmc_bus_test(card, bus_width); 1034 1035 if (!err) { 1036 err = bus_width; 1037 break; 1038 } else { 1039 pr_warn("%s: switch to bus width %d failed\n", 1040 mmc_hostname(host), 1 << bus_width); 1041 } 1042 } 1043 1044 return err; 1045 } 1046 1047 /* 1048 * Switch to the high-speed mode 1049 */ 1050 static int mmc_select_hs(struct mmc_card *card) 1051 { 1052 int err; 1053 1054 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1055 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1056 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1057 true, true, true); 1058 if (err) 1059 pr_warn("%s: switch to high-speed failed, err:%d\n", 1060 mmc_hostname(card->host), err); 1061 1062 return err; 1063 } 1064 1065 /* 1066 * Activate wide bus and DDR if supported. 1067 */ 1068 static int mmc_select_hs_ddr(struct mmc_card *card) 1069 { 1070 struct mmc_host *host = card->host; 1071 u32 bus_width, ext_csd_bits; 1072 int err = 0; 1073 1074 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1075 return 0; 1076 1077 bus_width = host->ios.bus_width; 1078 if (bus_width == MMC_BUS_WIDTH_1) 1079 return 0; 1080 1081 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1082 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1083 1084 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1085 EXT_CSD_BUS_WIDTH, 1086 ext_csd_bits, 1087 card->ext_csd.generic_cmd6_time, 1088 MMC_TIMING_MMC_DDR52, 1089 true, true, true); 1090 if (err) { 1091 pr_err("%s: switch to bus width %d ddr failed\n", 1092 mmc_hostname(host), 1 << bus_width); 1093 return err; 1094 } 1095 1096 /* 1097 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1098 * signaling. 1099 * 1100 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1101 * 1102 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1103 * in the JEDEC spec for DDR. 1104 * 1105 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1106 * host controller can support this, like some of the SDHCI 1107 * controller which connect to an eMMC device. Some of these 1108 * host controller still needs to use 1.8v vccq for supporting 1109 * DDR mode. 1110 * 1111 * So the sequence will be: 1112 * if (host and device can both support 1.2v IO) 1113 * use 1.2v IO; 1114 * else if (host and device can both support 1.8v IO) 1115 * use 1.8v IO; 1116 * so if host and device can only support 3.3v IO, this is the 1117 * last choice. 1118 * 1119 * WARNING: eMMC rules are NOT the same as SD DDR 1120 */ 1121 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1122 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1123 if (!err) 1124 return 0; 1125 } 1126 1127 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1128 host->caps & MMC_CAP_1_8V_DDR) 1129 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1130 1131 /* make sure vccq is 3.3v after switching disaster */ 1132 if (err) 1133 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1134 1135 return err; 1136 } 1137 1138 static int mmc_select_hs400(struct mmc_card *card) 1139 { 1140 struct mmc_host *host = card->host; 1141 unsigned int max_dtr; 1142 int err = 0; 1143 u8 val; 1144 1145 /* 1146 * HS400 mode requires 8-bit bus width 1147 */ 1148 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1149 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1150 return 0; 1151 1152 /* Switch card to HS mode */ 1153 val = EXT_CSD_TIMING_HS; 1154 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1155 EXT_CSD_HS_TIMING, val, 1156 card->ext_csd.generic_cmd6_time, 0, 1157 true, false, true); 1158 if (err) { 1159 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1160 mmc_hostname(host), err); 1161 return err; 1162 } 1163 1164 /* Set host controller to HS timing */ 1165 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1166 1167 /* Reduce frequency to HS frequency */ 1168 max_dtr = card->ext_csd.hs_max_dtr; 1169 mmc_set_clock(host, max_dtr); 1170 1171 err = mmc_switch_status(card); 1172 if (err) 1173 goto out_err; 1174 1175 /* Switch card to DDR */ 1176 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1177 EXT_CSD_BUS_WIDTH, 1178 EXT_CSD_DDR_BUS_WIDTH_8, 1179 card->ext_csd.generic_cmd6_time); 1180 if (err) { 1181 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1182 mmc_hostname(host), err); 1183 return err; 1184 } 1185 1186 /* Switch card to HS400 */ 1187 val = EXT_CSD_TIMING_HS400 | 1188 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1189 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1190 EXT_CSD_HS_TIMING, val, 1191 card->ext_csd.generic_cmd6_time, 0, 1192 true, false, true); 1193 if (err) { 1194 pr_err("%s: switch to hs400 failed, err:%d\n", 1195 mmc_hostname(host), err); 1196 return err; 1197 } 1198 1199 /* Set host controller to HS400 timing and frequency */ 1200 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1201 mmc_set_bus_speed(card); 1202 1203 err = mmc_switch_status(card); 1204 if (err) 1205 goto out_err; 1206 1207 return 0; 1208 1209 out_err: 1210 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1211 __func__, err); 1212 return err; 1213 } 1214 1215 int mmc_hs200_to_hs400(struct mmc_card *card) 1216 { 1217 return mmc_select_hs400(card); 1218 } 1219 1220 int mmc_hs400_to_hs200(struct mmc_card *card) 1221 { 1222 struct mmc_host *host = card->host; 1223 unsigned int max_dtr; 1224 int err; 1225 u8 val; 1226 1227 /* Reduce frequency to HS */ 1228 max_dtr = card->ext_csd.hs_max_dtr; 1229 mmc_set_clock(host, max_dtr); 1230 1231 /* Switch HS400 to HS DDR */ 1232 val = EXT_CSD_TIMING_HS; 1233 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1234 val, card->ext_csd.generic_cmd6_time, 0, 1235 true, false, true); 1236 if (err) 1237 goto out_err; 1238 1239 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1240 1241 err = mmc_switch_status(card); 1242 if (err) 1243 goto out_err; 1244 1245 /* Switch HS DDR to HS */ 1246 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1247 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1248 0, true, false, true); 1249 if (err) 1250 goto out_err; 1251 1252 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1253 1254 err = mmc_switch_status(card); 1255 if (err) 1256 goto out_err; 1257 1258 /* Switch HS to HS200 */ 1259 val = EXT_CSD_TIMING_HS200 | 1260 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1261 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1262 val, card->ext_csd.generic_cmd6_time, 0, 1263 true, false, true); 1264 if (err) 1265 goto out_err; 1266 1267 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1268 1269 /* 1270 * For HS200, CRC errors are not a reliable way to know the switch 1271 * failed. If there really is a problem, we would expect tuning will 1272 * fail and the result ends up the same. 1273 */ 1274 err = __mmc_switch_status(card, false); 1275 if (err) 1276 goto out_err; 1277 1278 mmc_set_bus_speed(card); 1279 1280 return 0; 1281 1282 out_err: 1283 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1284 __func__, err); 1285 return err; 1286 } 1287 1288 static int mmc_select_hs400es(struct mmc_card *card) 1289 { 1290 struct mmc_host *host = card->host; 1291 int err = 0; 1292 u8 val; 1293 1294 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1295 err = -ENOTSUPP; 1296 goto out_err; 1297 } 1298 1299 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1300 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1301 1302 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1303 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1304 1305 /* If fails try again during next card power cycle */ 1306 if (err) 1307 goto out_err; 1308 1309 err = mmc_select_bus_width(card); 1310 if (err < 0) 1311 goto out_err; 1312 1313 /* Switch card to HS mode */ 1314 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1315 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1316 card->ext_csd.generic_cmd6_time, 0, 1317 true, false, true); 1318 if (err) { 1319 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1320 mmc_hostname(host), err); 1321 goto out_err; 1322 } 1323 1324 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1325 err = mmc_switch_status(card); 1326 if (err) 1327 goto out_err; 1328 1329 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1330 1331 /* Switch card to DDR with strobe bit */ 1332 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1333 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1334 EXT_CSD_BUS_WIDTH, 1335 val, 1336 card->ext_csd.generic_cmd6_time); 1337 if (err) { 1338 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1339 mmc_hostname(host), err); 1340 goto out_err; 1341 } 1342 1343 /* Switch card to HS400 */ 1344 val = EXT_CSD_TIMING_HS400 | 1345 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1347 EXT_CSD_HS_TIMING, val, 1348 card->ext_csd.generic_cmd6_time, 0, 1349 true, false, true); 1350 if (err) { 1351 pr_err("%s: switch to hs400es failed, err:%d\n", 1352 mmc_hostname(host), err); 1353 goto out_err; 1354 } 1355 1356 /* Set host controller to HS400 timing and frequency */ 1357 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1358 1359 /* Controller enable enhanced strobe function */ 1360 host->ios.enhanced_strobe = true; 1361 if (host->ops->hs400_enhanced_strobe) 1362 host->ops->hs400_enhanced_strobe(host, &host->ios); 1363 1364 err = mmc_switch_status(card); 1365 if (err) 1366 goto out_err; 1367 1368 return 0; 1369 1370 out_err: 1371 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1372 __func__, err); 1373 return err; 1374 } 1375 1376 static void mmc_select_driver_type(struct mmc_card *card) 1377 { 1378 int card_drv_type, drive_strength, drv_type; 1379 1380 card_drv_type = card->ext_csd.raw_driver_strength | 1381 mmc_driver_type_mask(0); 1382 1383 drive_strength = mmc_select_drive_strength(card, 1384 card->ext_csd.hs200_max_dtr, 1385 card_drv_type, &drv_type); 1386 1387 card->drive_strength = drive_strength; 1388 1389 if (drv_type) 1390 mmc_set_driver_type(card->host, drv_type); 1391 } 1392 1393 /* 1394 * For device supporting HS200 mode, the following sequence 1395 * should be done before executing the tuning process. 1396 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1397 * 2. switch to HS200 mode 1398 * 3. set the clock to > 52Mhz and <=200MHz 1399 */ 1400 static int mmc_select_hs200(struct mmc_card *card) 1401 { 1402 struct mmc_host *host = card->host; 1403 unsigned int old_timing, old_signal_voltage; 1404 int err = -EINVAL; 1405 u8 val; 1406 1407 old_signal_voltage = host->ios.signal_voltage; 1408 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1409 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1410 1411 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1412 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1413 1414 /* If fails try again during next card power cycle */ 1415 if (err) 1416 return err; 1417 1418 mmc_select_driver_type(card); 1419 1420 /* 1421 * Set the bus width(4 or 8) with host's support and 1422 * switch to HS200 mode if bus width is set successfully. 1423 */ 1424 err = mmc_select_bus_width(card); 1425 if (err > 0) { 1426 val = EXT_CSD_TIMING_HS200 | 1427 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1428 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1429 EXT_CSD_HS_TIMING, val, 1430 card->ext_csd.generic_cmd6_time, 0, 1431 true, false, true); 1432 if (err) 1433 goto err; 1434 old_timing = host->ios.timing; 1435 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1436 1437 /* 1438 * For HS200, CRC errors are not a reliable way to know the 1439 * switch failed. If there really is a problem, we would expect 1440 * tuning will fail and the result ends up the same. 1441 */ 1442 err = __mmc_switch_status(card, false); 1443 1444 /* 1445 * mmc_select_timing() assumes timing has not changed if 1446 * it is a switch error. 1447 */ 1448 if (err == -EBADMSG) 1449 mmc_set_timing(host, old_timing); 1450 } 1451 err: 1452 if (err) { 1453 /* fall back to the old signal voltage, if fails report error */ 1454 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1455 err = -EIO; 1456 1457 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1458 __func__, err); 1459 } 1460 return err; 1461 } 1462 1463 /* 1464 * Activate High Speed, HS200 or HS400ES mode if supported. 1465 */ 1466 static int mmc_select_timing(struct mmc_card *card) 1467 { 1468 int err = 0; 1469 1470 if (!mmc_can_ext_csd(card)) 1471 goto bus_speed; 1472 1473 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1474 err = mmc_select_hs400es(card); 1475 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1476 err = mmc_select_hs200(card); 1477 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1478 err = mmc_select_hs(card); 1479 1480 if (err && err != -EBADMSG) 1481 return err; 1482 1483 bus_speed: 1484 /* 1485 * Set the bus speed to the selected bus timing. 1486 * If timing is not selected, backward compatible is the default. 1487 */ 1488 mmc_set_bus_speed(card); 1489 return 0; 1490 } 1491 1492 /* 1493 * Execute tuning sequence to seek the proper bus operating 1494 * conditions for HS200 and HS400, which sends CMD21 to the device. 1495 */ 1496 static int mmc_hs200_tuning(struct mmc_card *card) 1497 { 1498 struct mmc_host *host = card->host; 1499 1500 /* 1501 * Timing should be adjusted to the HS400 target 1502 * operation frequency for tuning process 1503 */ 1504 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1505 host->ios.bus_width == MMC_BUS_WIDTH_8) 1506 if (host->ops->prepare_hs400_tuning) 1507 host->ops->prepare_hs400_tuning(host, &host->ios); 1508 1509 return mmc_execute_tuning(card); 1510 } 1511 1512 /* 1513 * Handle the detection and initialisation of a card. 1514 * 1515 * In the case of a resume, "oldcard" will contain the card 1516 * we're trying to reinitialise. 1517 */ 1518 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1519 struct mmc_card *oldcard) 1520 { 1521 struct mmc_card *card; 1522 int err; 1523 u32 cid[4]; 1524 u32 rocr; 1525 1526 WARN_ON(!host->claimed); 1527 1528 /* Set correct bus mode for MMC before attempting init */ 1529 if (!mmc_host_is_spi(host)) 1530 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1531 1532 /* 1533 * Since we're changing the OCR value, we seem to 1534 * need to tell some cards to go back to the idle 1535 * state. We wait 1ms to give cards time to 1536 * respond. 1537 * mmc_go_idle is needed for eMMC that are asleep 1538 */ 1539 mmc_go_idle(host); 1540 1541 /* The extra bit indicates that we support high capacity */ 1542 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1543 if (err) 1544 goto err; 1545 1546 /* 1547 * For SPI, enable CRC as appropriate. 1548 */ 1549 if (mmc_host_is_spi(host)) { 1550 err = mmc_spi_set_crc(host, use_spi_crc); 1551 if (err) 1552 goto err; 1553 } 1554 1555 /* 1556 * Fetch CID from card. 1557 */ 1558 if (mmc_host_is_spi(host)) 1559 err = mmc_send_cid(host, cid); 1560 else 1561 err = mmc_all_send_cid(host, cid); 1562 if (err) 1563 goto err; 1564 1565 if (oldcard) { 1566 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1567 err = -ENOENT; 1568 goto err; 1569 } 1570 1571 card = oldcard; 1572 } else { 1573 /* 1574 * Allocate card structure. 1575 */ 1576 card = mmc_alloc_card(host, &mmc_type); 1577 if (IS_ERR(card)) { 1578 err = PTR_ERR(card); 1579 goto err; 1580 } 1581 1582 card->ocr = ocr; 1583 card->type = MMC_TYPE_MMC; 1584 card->rca = 1; 1585 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1586 } 1587 1588 /* 1589 * Call the optional HC's init_card function to handle quirks. 1590 */ 1591 if (host->ops->init_card) 1592 host->ops->init_card(host, card); 1593 1594 /* 1595 * For native busses: set card RCA and quit open drain mode. 1596 */ 1597 if (!mmc_host_is_spi(host)) { 1598 err = mmc_set_relative_addr(card); 1599 if (err) 1600 goto free_card; 1601 1602 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1603 } 1604 1605 if (!oldcard) { 1606 /* 1607 * Fetch CSD from card. 1608 */ 1609 err = mmc_send_csd(card, card->raw_csd); 1610 if (err) 1611 goto free_card; 1612 1613 err = mmc_decode_csd(card); 1614 if (err) 1615 goto free_card; 1616 err = mmc_decode_cid(card); 1617 if (err) 1618 goto free_card; 1619 } 1620 1621 /* 1622 * handling only for cards supporting DSR and hosts requesting 1623 * DSR configuration 1624 */ 1625 if (card->csd.dsr_imp && host->dsr_req) 1626 mmc_set_dsr(host); 1627 1628 /* 1629 * Select card, as all following commands rely on that. 1630 */ 1631 if (!mmc_host_is_spi(host)) { 1632 err = mmc_select_card(card); 1633 if (err) 1634 goto free_card; 1635 } 1636 1637 if (!oldcard) { 1638 /* Read extended CSD. */ 1639 err = mmc_read_ext_csd(card); 1640 if (err) 1641 goto free_card; 1642 1643 /* 1644 * If doing byte addressing, check if required to do sector 1645 * addressing. Handle the case of <2GB cards needing sector 1646 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1647 * ocr register has bit 30 set for sector addressing. 1648 */ 1649 if (rocr & BIT(30)) 1650 mmc_card_set_blockaddr(card); 1651 1652 /* Erase size depends on CSD and Extended CSD */ 1653 mmc_set_erase_size(card); 1654 } 1655 1656 /* 1657 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF 1658 * bit. This bit will be lost every time after a reset or power off. 1659 */ 1660 if (card->ext_csd.partition_setting_completed || 1661 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) { 1662 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1663 EXT_CSD_ERASE_GROUP_DEF, 1, 1664 card->ext_csd.generic_cmd6_time); 1665 1666 if (err && err != -EBADMSG) 1667 goto free_card; 1668 1669 if (err) { 1670 err = 0; 1671 /* 1672 * Just disable enhanced area off & sz 1673 * will try to enable ERASE_GROUP_DEF 1674 * during next time reinit 1675 */ 1676 card->ext_csd.enhanced_area_offset = -EINVAL; 1677 card->ext_csd.enhanced_area_size = -EINVAL; 1678 } else { 1679 card->ext_csd.erase_group_def = 1; 1680 /* 1681 * enable ERASE_GRP_DEF successfully. 1682 * This will affect the erase size, so 1683 * here need to reset erase size 1684 */ 1685 mmc_set_erase_size(card); 1686 } 1687 } 1688 1689 /* 1690 * Ensure eMMC user default partition is enabled 1691 */ 1692 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1693 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1694 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1695 card->ext_csd.part_config, 1696 card->ext_csd.part_time); 1697 if (err && err != -EBADMSG) 1698 goto free_card; 1699 } 1700 1701 /* 1702 * Enable power_off_notification byte in the ext_csd register 1703 */ 1704 if (card->ext_csd.rev >= 6) { 1705 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1706 EXT_CSD_POWER_OFF_NOTIFICATION, 1707 EXT_CSD_POWER_ON, 1708 card->ext_csd.generic_cmd6_time); 1709 if (err && err != -EBADMSG) 1710 goto free_card; 1711 1712 /* 1713 * The err can be -EBADMSG or 0, 1714 * so check for success and update the flag 1715 */ 1716 if (!err) 1717 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1718 } 1719 1720 /* 1721 * Select timing interface 1722 */ 1723 err = mmc_select_timing(card); 1724 if (err) 1725 goto free_card; 1726 1727 if (mmc_card_hs200(card)) { 1728 err = mmc_hs200_tuning(card); 1729 if (err) 1730 goto free_card; 1731 1732 err = mmc_select_hs400(card); 1733 if (err) 1734 goto free_card; 1735 } else if (!mmc_card_hs400es(card)) { 1736 /* Select the desired bus width optionally */ 1737 err = mmc_select_bus_width(card); 1738 if (err > 0 && mmc_card_hs(card)) { 1739 err = mmc_select_hs_ddr(card); 1740 if (err) 1741 goto free_card; 1742 } 1743 } 1744 1745 /* 1746 * Choose the power class with selected bus interface 1747 */ 1748 mmc_select_powerclass(card); 1749 1750 /* 1751 * Enable HPI feature (if supported) 1752 */ 1753 if (card->ext_csd.hpi) { 1754 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1755 EXT_CSD_HPI_MGMT, 1, 1756 card->ext_csd.generic_cmd6_time); 1757 if (err && err != -EBADMSG) 1758 goto free_card; 1759 if (err) { 1760 pr_warn("%s: Enabling HPI failed\n", 1761 mmc_hostname(card->host)); 1762 err = 0; 1763 } else 1764 card->ext_csd.hpi_en = 1; 1765 } 1766 1767 /* 1768 * If cache size is higher than 0, this indicates 1769 * the existence of cache and it can be turned on. 1770 */ 1771 if (!mmc_card_broken_hpi(card) && 1772 card->ext_csd.cache_size > 0) { 1773 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1774 EXT_CSD_CACHE_CTRL, 1, 1775 card->ext_csd.generic_cmd6_time); 1776 if (err && err != -EBADMSG) 1777 goto free_card; 1778 1779 /* 1780 * Only if no error, cache is turned on successfully. 1781 */ 1782 if (err) { 1783 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1784 mmc_hostname(card->host), err); 1785 card->ext_csd.cache_ctrl = 0; 1786 err = 0; 1787 } else { 1788 card->ext_csd.cache_ctrl = 1; 1789 } 1790 } 1791 1792 /* 1793 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1794 * disabled for a time, so a flag is needed to indicate to re-enable the 1795 * Command Queue. 1796 */ 1797 card->reenable_cmdq = card->ext_csd.cmdq_en; 1798 1799 /* 1800 * The mandatory minimum values are defined for packed command. 1801 * read: 5, write: 3 1802 */ 1803 if (card->ext_csd.max_packed_writes >= 3 && 1804 card->ext_csd.max_packed_reads >= 5 && 1805 host->caps2 & MMC_CAP2_PACKED_CMD) { 1806 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1807 EXT_CSD_EXP_EVENTS_CTRL, 1808 EXT_CSD_PACKED_EVENT_EN, 1809 card->ext_csd.generic_cmd6_time); 1810 if (err && err != -EBADMSG) 1811 goto free_card; 1812 if (err) { 1813 pr_warn("%s: Enabling packed event failed\n", 1814 mmc_hostname(card->host)); 1815 card->ext_csd.packed_event_en = 0; 1816 err = 0; 1817 } else { 1818 card->ext_csd.packed_event_en = 1; 1819 } 1820 } 1821 1822 if (!oldcard) 1823 host->card = card; 1824 1825 return 0; 1826 1827 free_card: 1828 if (!oldcard) 1829 mmc_remove_card(card); 1830 err: 1831 return err; 1832 } 1833 1834 static int mmc_can_sleep(struct mmc_card *card) 1835 { 1836 return (card && card->ext_csd.rev >= 3); 1837 } 1838 1839 static int mmc_sleep(struct mmc_host *host) 1840 { 1841 struct mmc_command cmd = {}; 1842 struct mmc_card *card = host->card; 1843 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1844 int err; 1845 1846 /* Re-tuning can't be done once the card is deselected */ 1847 mmc_retune_hold(host); 1848 1849 err = mmc_deselect_cards(host); 1850 if (err) 1851 goto out_release; 1852 1853 cmd.opcode = MMC_SLEEP_AWAKE; 1854 cmd.arg = card->rca << 16; 1855 cmd.arg |= 1 << 15; 1856 1857 /* 1858 * If the max_busy_timeout of the host is specified, validate it against 1859 * the sleep cmd timeout. A failure means we need to prevent the host 1860 * from doing hw busy detection, which is done by converting to a R1 1861 * response instead of a R1B. 1862 */ 1863 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1864 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1865 } else { 1866 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1867 cmd.busy_timeout = timeout_ms; 1868 } 1869 1870 err = mmc_wait_for_cmd(host, &cmd, 0); 1871 if (err) 1872 goto out_release; 1873 1874 /* 1875 * If the host does not wait while the card signals busy, then we will 1876 * will have to wait the sleep/awake timeout. Note, we cannot use the 1877 * SEND_STATUS command to poll the status because that command (and most 1878 * others) is invalid while the card sleeps. 1879 */ 1880 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1881 mmc_delay(timeout_ms); 1882 1883 out_release: 1884 mmc_retune_release(host); 1885 return err; 1886 } 1887 1888 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1889 { 1890 return card && 1891 mmc_card_mmc(card) && 1892 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1893 } 1894 1895 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1896 { 1897 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1898 int err; 1899 1900 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1901 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1902 timeout = card->ext_csd.power_off_longtime; 1903 1904 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1905 EXT_CSD_POWER_OFF_NOTIFICATION, 1906 notify_type, timeout, 0, true, false, false); 1907 if (err) 1908 pr_err("%s: Power Off Notification timed out, %u\n", 1909 mmc_hostname(card->host), timeout); 1910 1911 /* Disable the power off notification after the switch operation. */ 1912 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1913 1914 return err; 1915 } 1916 1917 /* 1918 * Host is being removed. Free up the current card. 1919 */ 1920 static void mmc_remove(struct mmc_host *host) 1921 { 1922 mmc_remove_card(host->card); 1923 host->card = NULL; 1924 } 1925 1926 /* 1927 * Card detection - card is alive. 1928 */ 1929 static int mmc_alive(struct mmc_host *host) 1930 { 1931 return mmc_send_status(host->card, NULL); 1932 } 1933 1934 /* 1935 * Card detection callback from host. 1936 */ 1937 static void mmc_detect(struct mmc_host *host) 1938 { 1939 int err; 1940 1941 mmc_get_card(host->card); 1942 1943 /* 1944 * Just check if our card has been removed. 1945 */ 1946 err = _mmc_detect_card_removed(host); 1947 1948 mmc_put_card(host->card); 1949 1950 if (err) { 1951 mmc_remove(host); 1952 1953 mmc_claim_host(host); 1954 mmc_detach_bus(host); 1955 mmc_power_off(host); 1956 mmc_release_host(host); 1957 } 1958 } 1959 1960 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 1961 { 1962 int err = 0; 1963 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 1964 EXT_CSD_POWER_OFF_LONG; 1965 1966 mmc_claim_host(host); 1967 1968 if (mmc_card_suspended(host->card)) 1969 goto out; 1970 1971 if (mmc_card_doing_bkops(host->card)) { 1972 err = mmc_stop_bkops(host->card); 1973 if (err) 1974 goto out; 1975 } 1976 1977 err = mmc_flush_cache(host->card); 1978 if (err) 1979 goto out; 1980 1981 if (mmc_can_poweroff_notify(host->card) && 1982 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 1983 err = mmc_poweroff_notify(host->card, notify_type); 1984 else if (mmc_can_sleep(host->card)) 1985 err = mmc_sleep(host); 1986 else if (!mmc_host_is_spi(host)) 1987 err = mmc_deselect_cards(host); 1988 1989 if (!err) { 1990 mmc_power_off(host); 1991 mmc_card_set_suspended(host->card); 1992 } 1993 out: 1994 mmc_release_host(host); 1995 return err; 1996 } 1997 1998 /* 1999 * Suspend callback 2000 */ 2001 static int mmc_suspend(struct mmc_host *host) 2002 { 2003 int err; 2004 2005 err = _mmc_suspend(host, true); 2006 if (!err) { 2007 pm_runtime_disable(&host->card->dev); 2008 pm_runtime_set_suspended(&host->card->dev); 2009 } 2010 2011 return err; 2012 } 2013 2014 /* 2015 * This function tries to determine if the same card is still present 2016 * and, if so, restore all state to it. 2017 */ 2018 static int _mmc_resume(struct mmc_host *host) 2019 { 2020 int err = 0; 2021 2022 mmc_claim_host(host); 2023 2024 if (!mmc_card_suspended(host->card)) 2025 goto out; 2026 2027 mmc_power_up(host, host->card->ocr); 2028 err = mmc_init_card(host, host->card->ocr, host->card); 2029 mmc_card_clr_suspended(host->card); 2030 2031 out: 2032 mmc_release_host(host); 2033 return err; 2034 } 2035 2036 /* 2037 * Shutdown callback 2038 */ 2039 static int mmc_shutdown(struct mmc_host *host) 2040 { 2041 int err = 0; 2042 2043 /* 2044 * In a specific case for poweroff notify, we need to resume the card 2045 * before we can shutdown it properly. 2046 */ 2047 if (mmc_can_poweroff_notify(host->card) && 2048 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2049 err = _mmc_resume(host); 2050 2051 if (!err) 2052 err = _mmc_suspend(host, false); 2053 2054 return err; 2055 } 2056 2057 /* 2058 * Callback for resume. 2059 */ 2060 static int mmc_resume(struct mmc_host *host) 2061 { 2062 pm_runtime_enable(&host->card->dev); 2063 return 0; 2064 } 2065 2066 /* 2067 * Callback for runtime_suspend. 2068 */ 2069 static int mmc_runtime_suspend(struct mmc_host *host) 2070 { 2071 int err; 2072 2073 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2074 return 0; 2075 2076 err = _mmc_suspend(host, true); 2077 if (err) 2078 pr_err("%s: error %d doing aggressive suspend\n", 2079 mmc_hostname(host), err); 2080 2081 return err; 2082 } 2083 2084 /* 2085 * Callback for runtime_resume. 2086 */ 2087 static int mmc_runtime_resume(struct mmc_host *host) 2088 { 2089 int err; 2090 2091 err = _mmc_resume(host); 2092 if (err && err != -ENOMEDIUM) 2093 pr_err("%s: error %d doing runtime resume\n", 2094 mmc_hostname(host), err); 2095 2096 return 0; 2097 } 2098 2099 int mmc_can_reset(struct mmc_card *card) 2100 { 2101 u8 rst_n_function; 2102 2103 rst_n_function = card->ext_csd.rst_n_function; 2104 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2105 return 0; 2106 return 1; 2107 } 2108 EXPORT_SYMBOL(mmc_can_reset); 2109 2110 static int mmc_reset(struct mmc_host *host) 2111 { 2112 struct mmc_card *card = host->card; 2113 2114 /* 2115 * In the case of recovery, we can't expect flushing the cache to work 2116 * always, but we have a go and ignore errors. 2117 */ 2118 mmc_flush_cache(host->card); 2119 2120 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2121 mmc_can_reset(card)) { 2122 /* If the card accept RST_n signal, send it. */ 2123 mmc_set_clock(host, host->f_init); 2124 host->ops->hw_reset(host); 2125 /* Set initial state and call mmc_set_ios */ 2126 mmc_set_initial_state(host); 2127 } else { 2128 /* Do a brute force power cycle */ 2129 mmc_power_cycle(host, card->ocr); 2130 } 2131 return mmc_init_card(host, card->ocr, card); 2132 } 2133 2134 static const struct mmc_bus_ops mmc_ops = { 2135 .remove = mmc_remove, 2136 .detect = mmc_detect, 2137 .suspend = mmc_suspend, 2138 .resume = mmc_resume, 2139 .runtime_suspend = mmc_runtime_suspend, 2140 .runtime_resume = mmc_runtime_resume, 2141 .alive = mmc_alive, 2142 .shutdown = mmc_shutdown, 2143 .reset = mmc_reset, 2144 }; 2145 2146 /* 2147 * Starting point for MMC card init. 2148 */ 2149 int mmc_attach_mmc(struct mmc_host *host) 2150 { 2151 int err; 2152 u32 ocr, rocr; 2153 2154 WARN_ON(!host->claimed); 2155 2156 /* Set correct bus mode for MMC before attempting attach */ 2157 if (!mmc_host_is_spi(host)) 2158 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2159 2160 err = mmc_send_op_cond(host, 0, &ocr); 2161 if (err) 2162 return err; 2163 2164 mmc_attach_bus(host, &mmc_ops); 2165 if (host->ocr_avail_mmc) 2166 host->ocr_avail = host->ocr_avail_mmc; 2167 2168 /* 2169 * We need to get OCR a different way for SPI. 2170 */ 2171 if (mmc_host_is_spi(host)) { 2172 err = mmc_spi_read_ocr(host, 1, &ocr); 2173 if (err) 2174 goto err; 2175 } 2176 2177 rocr = mmc_select_voltage(host, ocr); 2178 2179 /* 2180 * Can we support the voltage of the card? 2181 */ 2182 if (!rocr) { 2183 err = -EINVAL; 2184 goto err; 2185 } 2186 2187 /* 2188 * Detect and init the card. 2189 */ 2190 err = mmc_init_card(host, rocr, NULL); 2191 if (err) 2192 goto err; 2193 2194 mmc_release_host(host); 2195 err = mmc_add_card(host->card); 2196 if (err) 2197 goto remove_card; 2198 2199 mmc_claim_host(host); 2200 return 0; 2201 2202 remove_card: 2203 mmc_remove_card(host->card); 2204 mmc_claim_host(host); 2205 host->card = NULL; 2206 err: 2207 mmc_detach_bus(host); 2208 2209 pr_err("%s: error %d whilst initialising MMC card\n", 2210 mmc_hostname(host), err); 2211 2212 return err; 2213 } 2214