xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision f7d84fa7)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 
31 #define DEFAULT_CMD6_TIMEOUT_MS	500
32 
33 static const unsigned int tran_exp[] = {
34 	10000,		100000,		1000000,	10000000,
35 	0,		0,		0,		0
36 };
37 
38 static const unsigned char tran_mant[] = {
39 	0,	10,	12,	13,	15,	20,	25,	30,
40 	35,	40,	45,	50,	55,	60,	70,	80,
41 };
42 
43 static const unsigned int tacc_exp[] = {
44 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
45 };
46 
47 static const unsigned int tacc_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 #define UNSTUFF_BITS(resp,start,size)					\
53 	({								\
54 		const int __size = size;				\
55 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
56 		const int __off = 3 - ((start) / 32);			\
57 		const int __shft = (start) & 31;			\
58 		u32 __res;						\
59 									\
60 		__res = resp[__off] >> __shft;				\
61 		if (__size + __shft > 32)				\
62 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
63 		__res & __mask;						\
64 	})
65 
66 /*
67  * Given the decoded CSD structure, decode the raw CID to our CID structure.
68  */
69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 	u32 *resp = card->raw_cid;
72 
73 	/*
74 	 * The selection of the format here is based upon published
75 	 * specs from sandisk and from what people have reported.
76 	 */
77 	switch (card->csd.mmca_vsn) {
78 	case 0: /* MMC v1.0 - v1.2 */
79 	case 1: /* MMC v1.4 */
80 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
81 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
82 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
83 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
84 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
85 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
86 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
87 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
88 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
89 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
90 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
91 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
92 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
93 		break;
94 
95 	case 2: /* MMC v2.0 - v2.2 */
96 	case 3: /* MMC v3.1 - v3.3 */
97 	case 4: /* MMC v4 */
98 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
99 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
100 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
101 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
102 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
103 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
104 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
105 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
106 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
107 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
108 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
109 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
110 		break;
111 
112 	default:
113 		pr_err("%s: card has unknown MMCA version %d\n",
114 			mmc_hostname(card->host), card->csd.mmca_vsn);
115 		return -EINVAL;
116 	}
117 
118 	return 0;
119 }
120 
121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 	if (card->ext_csd.erase_group_def & 1)
124 		card->erase_size = card->ext_csd.hc_erase_size;
125 	else
126 		card->erase_size = card->csd.erase_size;
127 
128 	mmc_init_erase(card);
129 }
130 
131 /*
132  * Given a 128-bit response, decode to our card CSD structure.
133  */
134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 	struct mmc_csd *csd = &card->csd;
137 	unsigned int e, m, a, b;
138 	u32 *resp = card->raw_csd;
139 
140 	/*
141 	 * We only understand CSD structure v1.1 and v1.2.
142 	 * v1.2 has extra information in bits 15, 11 and 10.
143 	 * We also support eMMC v4.4 & v4.41.
144 	 */
145 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 	if (csd->structure == 0) {
147 		pr_err("%s: unrecognised CSD structure version %d\n",
148 			mmc_hostname(card->host), csd->structure);
149 		return -EINVAL;
150 	}
151 
152 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
153 	m = UNSTUFF_BITS(resp, 115, 4);
154 	e = UNSTUFF_BITS(resp, 112, 3);
155 	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
156 	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
157 
158 	m = UNSTUFF_BITS(resp, 99, 4);
159 	e = UNSTUFF_BITS(resp, 96, 3);
160 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
161 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
162 
163 	e = UNSTUFF_BITS(resp, 47, 3);
164 	m = UNSTUFF_BITS(resp, 62, 12);
165 	csd->capacity	  = (1 + m) << (e + 2);
166 
167 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 
176 	if (csd->write_blkbits >= 9) {
177 		a = UNSTUFF_BITS(resp, 42, 5);
178 		b = UNSTUFF_BITS(resp, 37, 5);
179 		csd->erase_size = (a + 1) * (b + 1);
180 		csd->erase_size <<= csd->write_blkbits - 9;
181 	}
182 
183 	return 0;
184 }
185 
186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 	struct mmc_host *host = card->host;
189 	u8 card_type = card->ext_csd.raw_card_type;
190 	u32 caps = host->caps, caps2 = host->caps2;
191 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 	unsigned int avail_type = 0;
193 
194 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 	}
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 	}
205 
206 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 	}
211 
212 	if (caps & MMC_CAP_1_2V_DDR &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 	}
217 
218 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 		hs200_max_dtr = MMC_HS200_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS400_1_8V &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_2V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 	}
241 
242 	if ((caps2 & MMC_CAP2_HS400_ES) &&
243 	    card->ext_csd.strobe_support &&
244 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 
247 	card->ext_csd.hs_max_dtr = hs_max_dtr;
248 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 	card->mmc_avail_type = avail_type;
250 }
251 
252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
255 
256 	/*
257 	 * Disable these attributes by default
258 	 */
259 	card->ext_csd.enhanced_area_offset = -EINVAL;
260 	card->ext_csd.enhanced_area_size = -EINVAL;
261 
262 	/*
263 	 * Enhanced area feature support -- check whether the eMMC
264 	 * card has the Enhanced area enabled.  If so, export enhanced
265 	 * area offset and size to user by adding sysfs interface.
266 	 */
267 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 		if (card->ext_csd.partition_setting_completed) {
270 			hc_erase_grp_sz =
271 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 			hc_wp_grp_sz =
273 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274 
275 			/*
276 			 * calculate the enhanced data area offset, in bytes
277 			 */
278 			card->ext_csd.enhanced_area_offset =
279 				(((unsigned long long)ext_csd[139]) << 24) +
280 				(((unsigned long long)ext_csd[138]) << 16) +
281 				(((unsigned long long)ext_csd[137]) << 8) +
282 				(((unsigned long long)ext_csd[136]));
283 			if (mmc_card_blockaddr(card))
284 				card->ext_csd.enhanced_area_offset <<= 9;
285 			/*
286 			 * calculate the enhanced data area size, in kilobytes
287 			 */
288 			card->ext_csd.enhanced_area_size =
289 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 				ext_csd[140];
291 			card->ext_csd.enhanced_area_size *=
292 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 			card->ext_csd.enhanced_area_size <<= 9;
294 		} else {
295 			pr_warn("%s: defines enhanced area without partition setting complete\n",
296 				mmc_hostname(card->host));
297 		}
298 	}
299 }
300 
301 static void mmc_part_add(struct mmc_card *card, unsigned int size,
302 			 unsigned int part_cfg, char *name, int idx, bool ro,
303 			 int area_type)
304 {
305 	card->part[card->nr_parts].size = size;
306 	card->part[card->nr_parts].part_cfg = part_cfg;
307 	sprintf(card->part[card->nr_parts].name, name, idx);
308 	card->part[card->nr_parts].force_ro = ro;
309 	card->part[card->nr_parts].area_type = area_type;
310 	card->nr_parts++;
311 }
312 
313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 	int idx;
316 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 	unsigned int part_size;
318 
319 	/*
320 	 * General purpose partition feature support --
321 	 * If ext_csd has the size of general purpose partitions,
322 	 * set size, part_cfg, partition name in mmc_part.
323 	 */
324 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 	    EXT_CSD_PART_SUPPORT_PART_EN) {
326 		hc_erase_grp_sz =
327 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 		hc_wp_grp_sz =
329 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 
331 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 				continue;
336 			if (card->ext_csd.partition_setting_completed == 0) {
337 				pr_warn("%s: has partition size defined without partition complete\n",
338 					mmc_hostname(card->host));
339 				break;
340 			}
341 			part_size =
342 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 				<< 16) +
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 				<< 8) +
346 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 			part_size *= (size_t)(hc_erase_grp_sz *
348 				hc_wp_grp_sz);
349 			mmc_part_add(card, part_size << 19,
350 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
351 				"gp%d", idx, false,
352 				MMC_BLK_DATA_AREA_GP);
353 		}
354 	}
355 }
356 
357 /* Minimum partition switch timeout in milliseconds */
358 #define MMC_MIN_PART_SWITCH_TIME	300
359 
360 /*
361  * Decode extended CSD.
362  */
363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
364 {
365 	int err = 0, idx;
366 	unsigned int part_size;
367 	struct device_node *np;
368 	bool broken_hpi = false;
369 
370 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
371 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
372 	if (card->csd.structure == 3) {
373 		if (card->ext_csd.raw_ext_csd_structure > 2) {
374 			pr_err("%s: unrecognised EXT_CSD structure "
375 				"version %d\n", mmc_hostname(card->host),
376 					card->ext_csd.raw_ext_csd_structure);
377 			err = -EINVAL;
378 			goto out;
379 		}
380 	}
381 
382 	np = mmc_of_find_child_device(card->host, 0);
383 	if (np && of_device_is_compatible(np, "mmc-card"))
384 		broken_hpi = of_property_read_bool(np, "broken-hpi");
385 	of_node_put(np);
386 
387 	/*
388 	 * The EXT_CSD format is meant to be forward compatible. As long
389 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
390 	 * are authorized, see JEDEC JESD84-B50 section B.8.
391 	 */
392 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
393 
394 	/* fixup device after ext_csd revision field is updated */
395 	mmc_fixup_device(card, mmc_ext_csd_fixups);
396 
397 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
398 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
399 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
400 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
401 	if (card->ext_csd.rev >= 2) {
402 		card->ext_csd.sectors =
403 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
404 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
405 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
406 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
407 
408 		/* Cards with density > 2GiB are sector addressed */
409 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
410 			mmc_card_set_blockaddr(card);
411 	}
412 
413 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
414 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
415 	mmc_select_card_type(card);
416 
417 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
418 	card->ext_csd.raw_erase_timeout_mult =
419 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
420 	card->ext_csd.raw_hc_erase_grp_size =
421 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
422 	if (card->ext_csd.rev >= 3) {
423 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
424 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
425 
426 		/* EXT_CSD value is in units of 10ms, but we store in ms */
427 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
428 		/* Some eMMC set the value too low so set a minimum */
429 		if (card->ext_csd.part_time &&
430 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
431 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
432 
433 		/* Sleep / awake timeout in 100ns units */
434 		if (sa_shift > 0 && sa_shift <= 0x17)
435 			card->ext_csd.sa_timeout =
436 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
437 		card->ext_csd.erase_group_def =
438 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
439 		card->ext_csd.hc_erase_timeout = 300 *
440 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
441 		card->ext_csd.hc_erase_size =
442 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
443 
444 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
445 
446 		/*
447 		 * There are two boot regions of equal size, defined in
448 		 * multiples of 128K.
449 		 */
450 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
451 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
452 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
453 				mmc_part_add(card, part_size,
454 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
455 					"boot%d", idx, true,
456 					MMC_BLK_DATA_AREA_BOOT);
457 			}
458 		}
459 	}
460 
461 	card->ext_csd.raw_hc_erase_gap_size =
462 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
463 	card->ext_csd.raw_sec_trim_mult =
464 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
465 	card->ext_csd.raw_sec_erase_mult =
466 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
467 	card->ext_csd.raw_sec_feature_support =
468 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
469 	card->ext_csd.raw_trim_mult =
470 		ext_csd[EXT_CSD_TRIM_MULT];
471 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
472 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
473 	if (card->ext_csd.rev >= 4) {
474 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
475 		    EXT_CSD_PART_SETTING_COMPLETED)
476 			card->ext_csd.partition_setting_completed = 1;
477 		else
478 			card->ext_csd.partition_setting_completed = 0;
479 
480 		mmc_manage_enhanced_area(card, ext_csd);
481 
482 		mmc_manage_gp_partitions(card, ext_csd);
483 
484 		card->ext_csd.sec_trim_mult =
485 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
486 		card->ext_csd.sec_erase_mult =
487 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
488 		card->ext_csd.sec_feature_support =
489 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
490 		card->ext_csd.trim_timeout = 300 *
491 			ext_csd[EXT_CSD_TRIM_MULT];
492 
493 		/*
494 		 * Note that the call to mmc_part_add above defaults to read
495 		 * only. If this default assumption is changed, the call must
496 		 * take into account the value of boot_locked below.
497 		 */
498 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
499 		card->ext_csd.boot_ro_lockable = true;
500 
501 		/* Save power class values */
502 		card->ext_csd.raw_pwr_cl_52_195 =
503 			ext_csd[EXT_CSD_PWR_CL_52_195];
504 		card->ext_csd.raw_pwr_cl_26_195 =
505 			ext_csd[EXT_CSD_PWR_CL_26_195];
506 		card->ext_csd.raw_pwr_cl_52_360 =
507 			ext_csd[EXT_CSD_PWR_CL_52_360];
508 		card->ext_csd.raw_pwr_cl_26_360 =
509 			ext_csd[EXT_CSD_PWR_CL_26_360];
510 		card->ext_csd.raw_pwr_cl_200_195 =
511 			ext_csd[EXT_CSD_PWR_CL_200_195];
512 		card->ext_csd.raw_pwr_cl_200_360 =
513 			ext_csd[EXT_CSD_PWR_CL_200_360];
514 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
516 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
518 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
519 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
520 	}
521 
522 	if (card->ext_csd.rev >= 5) {
523 		/* Adjust production date as per JEDEC JESD84-B451 */
524 		if (card->cid.year < 2010)
525 			card->cid.year += 16;
526 
527 		/* check whether the eMMC card supports BKOPS */
528 		if (!mmc_card_broken_hpi(card) &&
529 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
530 			card->ext_csd.bkops = 1;
531 			card->ext_csd.man_bkops_en =
532 					(ext_csd[EXT_CSD_BKOPS_EN] &
533 						EXT_CSD_MANUAL_BKOPS_MASK);
534 			card->ext_csd.raw_bkops_status =
535 				ext_csd[EXT_CSD_BKOPS_STATUS];
536 			if (card->ext_csd.man_bkops_en)
537 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
538 					mmc_hostname(card->host));
539 			card->ext_csd.auto_bkops_en =
540 					(ext_csd[EXT_CSD_BKOPS_EN] &
541 						EXT_CSD_AUTO_BKOPS_MASK);
542 			if (card->ext_csd.auto_bkops_en)
543 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
544 					mmc_hostname(card->host));
545 		}
546 
547 		/* check whether the eMMC card supports HPI */
548 		if (!mmc_card_broken_hpi(card) &&
549 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
550 			card->ext_csd.hpi = 1;
551 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
552 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
553 			else
554 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
555 			/*
556 			 * Indicate the maximum timeout to close
557 			 * a command interrupted by HPI
558 			 */
559 			card->ext_csd.out_of_int_time =
560 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
561 		}
562 
563 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
564 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
565 
566 		/*
567 		 * RPMB regions are defined in multiples of 128K.
568 		 */
569 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
570 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
571 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
572 				EXT_CSD_PART_CONFIG_ACC_RPMB,
573 				"rpmb", 0, false,
574 				MMC_BLK_DATA_AREA_RPMB);
575 		}
576 	}
577 
578 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
579 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
580 		card->erased_byte = 0xFF;
581 	else
582 		card->erased_byte = 0x0;
583 
584 	/* eMMC v4.5 or later */
585 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
586 	if (card->ext_csd.rev >= 6) {
587 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
588 
589 		card->ext_csd.generic_cmd6_time = 10 *
590 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
591 		card->ext_csd.power_off_longtime = 10 *
592 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
593 
594 		card->ext_csd.cache_size =
595 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
596 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
599 
600 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
601 			card->ext_csd.data_sector_size = 4096;
602 		else
603 			card->ext_csd.data_sector_size = 512;
604 
605 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
606 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
607 			card->ext_csd.data_tag_unit_size =
608 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
609 			(card->ext_csd.data_sector_size);
610 		} else {
611 			card->ext_csd.data_tag_unit_size = 0;
612 		}
613 
614 		card->ext_csd.max_packed_writes =
615 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
616 		card->ext_csd.max_packed_reads =
617 			ext_csd[EXT_CSD_MAX_PACKED_READS];
618 	} else {
619 		card->ext_csd.data_sector_size = 512;
620 	}
621 
622 	/* eMMC v5 or later */
623 	if (card->ext_csd.rev >= 7) {
624 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
625 		       MMC_FIRMWARE_LEN);
626 		card->ext_csd.ffu_capable =
627 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
628 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
629 
630 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
631 		card->ext_csd.device_life_time_est_typ_a =
632 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
633 		card->ext_csd.device_life_time_est_typ_b =
634 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
635 	}
636 
637 	/* eMMC v5.1 or later */
638 	if (card->ext_csd.rev >= 8) {
639 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
640 					     EXT_CSD_CMDQ_SUPPORTED;
641 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
642 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
643 		/* Exclude inefficiently small queue depths */
644 		if (card->ext_csd.cmdq_depth <= 2) {
645 			card->ext_csd.cmdq_support = false;
646 			card->ext_csd.cmdq_depth = 0;
647 		}
648 		if (card->ext_csd.cmdq_support) {
649 			pr_debug("%s: Command Queue supported depth %u\n",
650 				 mmc_hostname(card->host),
651 				 card->ext_csd.cmdq_depth);
652 		}
653 	}
654 out:
655 	return err;
656 }
657 
658 static int mmc_read_ext_csd(struct mmc_card *card)
659 {
660 	u8 *ext_csd;
661 	int err;
662 
663 	if (!mmc_can_ext_csd(card))
664 		return 0;
665 
666 	err = mmc_get_ext_csd(card, &ext_csd);
667 	if (err) {
668 		/* If the host or the card can't do the switch,
669 		 * fail more gracefully. */
670 		if ((err != -EINVAL)
671 		 && (err != -ENOSYS)
672 		 && (err != -EFAULT))
673 			return err;
674 
675 		/*
676 		 * High capacity cards should have this "magic" size
677 		 * stored in their CSD.
678 		 */
679 		if (card->csd.capacity == (4096 * 512)) {
680 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
681 				mmc_hostname(card->host));
682 		} else {
683 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
684 				mmc_hostname(card->host));
685 			err = 0;
686 		}
687 
688 		return err;
689 	}
690 
691 	err = mmc_decode_ext_csd(card, ext_csd);
692 	kfree(ext_csd);
693 	return err;
694 }
695 
696 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
697 {
698 	u8 *bw_ext_csd;
699 	int err;
700 
701 	if (bus_width == MMC_BUS_WIDTH_1)
702 		return 0;
703 
704 	err = mmc_get_ext_csd(card, &bw_ext_csd);
705 	if (err)
706 		return err;
707 
708 	/* only compare read only fields */
709 	err = !((card->ext_csd.raw_partition_support ==
710 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
711 		(card->ext_csd.raw_erased_mem_count ==
712 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
713 		(card->ext_csd.rev ==
714 			bw_ext_csd[EXT_CSD_REV]) &&
715 		(card->ext_csd.raw_ext_csd_structure ==
716 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
717 		(card->ext_csd.raw_card_type ==
718 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
719 		(card->ext_csd.raw_s_a_timeout ==
720 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
721 		(card->ext_csd.raw_hc_erase_gap_size ==
722 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
723 		(card->ext_csd.raw_erase_timeout_mult ==
724 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
725 		(card->ext_csd.raw_hc_erase_grp_size ==
726 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
727 		(card->ext_csd.raw_sec_trim_mult ==
728 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
729 		(card->ext_csd.raw_sec_erase_mult ==
730 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
731 		(card->ext_csd.raw_sec_feature_support ==
732 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
733 		(card->ext_csd.raw_trim_mult ==
734 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
735 		(card->ext_csd.raw_sectors[0] ==
736 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
737 		(card->ext_csd.raw_sectors[1] ==
738 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
739 		(card->ext_csd.raw_sectors[2] ==
740 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
741 		(card->ext_csd.raw_sectors[3] ==
742 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
743 		(card->ext_csd.raw_pwr_cl_52_195 ==
744 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
745 		(card->ext_csd.raw_pwr_cl_26_195 ==
746 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
747 		(card->ext_csd.raw_pwr_cl_52_360 ==
748 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
749 		(card->ext_csd.raw_pwr_cl_26_360 ==
750 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
751 		(card->ext_csd.raw_pwr_cl_200_195 ==
752 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
753 		(card->ext_csd.raw_pwr_cl_200_360 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
755 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
757 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
761 
762 	if (err)
763 		err = -EINVAL;
764 
765 	kfree(bw_ext_csd);
766 	return err;
767 }
768 
769 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
770 	card->raw_cid[2], card->raw_cid[3]);
771 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
772 	card->raw_csd[2], card->raw_csd[3]);
773 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
774 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
775 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
776 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
777 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
778 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
779 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
780 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
781 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
782 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info);
783 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
784 	card->ext_csd.device_life_time_est_typ_a,
785 	card->ext_csd.device_life_time_est_typ_b);
786 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
787 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
788 		card->ext_csd.enhanced_area_offset);
789 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
790 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
791 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
792 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
793 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
794 
795 static ssize_t mmc_fwrev_show(struct device *dev,
796 			      struct device_attribute *attr,
797 			      char *buf)
798 {
799 	struct mmc_card *card = mmc_dev_to_card(dev);
800 
801 	if (card->ext_csd.rev < 7) {
802 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
803 	} else {
804 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
805 			       card->ext_csd.fwrev);
806 	}
807 }
808 
809 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
810 
811 static ssize_t mmc_dsr_show(struct device *dev,
812 			    struct device_attribute *attr,
813 			    char *buf)
814 {
815 	struct mmc_card *card = mmc_dev_to_card(dev);
816 	struct mmc_host *host = card->host;
817 
818 	if (card->csd.dsr_imp && host->dsr_req)
819 		return sprintf(buf, "0x%x\n", host->dsr);
820 	else
821 		/* return default DSR value */
822 		return sprintf(buf, "0x%x\n", 0x404);
823 }
824 
825 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
826 
827 static struct attribute *mmc_std_attrs[] = {
828 	&dev_attr_cid.attr,
829 	&dev_attr_csd.attr,
830 	&dev_attr_date.attr,
831 	&dev_attr_erase_size.attr,
832 	&dev_attr_preferred_erase_size.attr,
833 	&dev_attr_fwrev.attr,
834 	&dev_attr_ffu_capable.attr,
835 	&dev_attr_hwrev.attr,
836 	&dev_attr_manfid.attr,
837 	&dev_attr_name.attr,
838 	&dev_attr_oemid.attr,
839 	&dev_attr_prv.attr,
840 	&dev_attr_pre_eol_info.attr,
841 	&dev_attr_life_time.attr,
842 	&dev_attr_serial.attr,
843 	&dev_attr_enhanced_area_offset.attr,
844 	&dev_attr_enhanced_area_size.attr,
845 	&dev_attr_raw_rpmb_size_mult.attr,
846 	&dev_attr_rel_sectors.attr,
847 	&dev_attr_ocr.attr,
848 	&dev_attr_dsr.attr,
849 	&dev_attr_cmdq_en.attr,
850 	NULL,
851 };
852 ATTRIBUTE_GROUPS(mmc_std);
853 
854 static struct device_type mmc_type = {
855 	.groups = mmc_std_groups,
856 };
857 
858 /*
859  * Select the PowerClass for the current bus width
860  * If power class is defined for 4/8 bit bus in the
861  * extended CSD register, select it by executing the
862  * mmc_switch command.
863  */
864 static int __mmc_select_powerclass(struct mmc_card *card,
865 				   unsigned int bus_width)
866 {
867 	struct mmc_host *host = card->host;
868 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
869 	unsigned int pwrclass_val = 0;
870 	int err = 0;
871 
872 	switch (1 << host->ios.vdd) {
873 	case MMC_VDD_165_195:
874 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
875 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
876 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
877 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
878 				ext_csd->raw_pwr_cl_52_195 :
879 				ext_csd->raw_pwr_cl_ddr_52_195;
880 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
881 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
882 		break;
883 	case MMC_VDD_27_28:
884 	case MMC_VDD_28_29:
885 	case MMC_VDD_29_30:
886 	case MMC_VDD_30_31:
887 	case MMC_VDD_31_32:
888 	case MMC_VDD_32_33:
889 	case MMC_VDD_33_34:
890 	case MMC_VDD_34_35:
891 	case MMC_VDD_35_36:
892 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
893 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
894 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
895 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
896 				ext_csd->raw_pwr_cl_52_360 :
897 				ext_csd->raw_pwr_cl_ddr_52_360;
898 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
899 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
900 				ext_csd->raw_pwr_cl_ddr_200_360 :
901 				ext_csd->raw_pwr_cl_200_360;
902 		break;
903 	default:
904 		pr_warn("%s: Voltage range not supported for power class\n",
905 			mmc_hostname(host));
906 		return -EINVAL;
907 	}
908 
909 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
910 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
911 				EXT_CSD_PWR_CL_8BIT_SHIFT;
912 	else
913 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
914 				EXT_CSD_PWR_CL_4BIT_SHIFT;
915 
916 	/* If the power class is different from the default value */
917 	if (pwrclass_val > 0) {
918 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
919 				 EXT_CSD_POWER_CLASS,
920 				 pwrclass_val,
921 				 card->ext_csd.generic_cmd6_time);
922 	}
923 
924 	return err;
925 }
926 
927 static int mmc_select_powerclass(struct mmc_card *card)
928 {
929 	struct mmc_host *host = card->host;
930 	u32 bus_width, ext_csd_bits;
931 	int err, ddr;
932 
933 	/* Power class selection is supported for versions >= 4.0 */
934 	if (!mmc_can_ext_csd(card))
935 		return 0;
936 
937 	bus_width = host->ios.bus_width;
938 	/* Power class values are defined only for 4/8 bit bus */
939 	if (bus_width == MMC_BUS_WIDTH_1)
940 		return 0;
941 
942 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
943 	if (ddr)
944 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
945 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
946 	else
947 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
948 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
949 
950 	err = __mmc_select_powerclass(card, ext_csd_bits);
951 	if (err)
952 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
953 			mmc_hostname(host), 1 << bus_width, ddr);
954 
955 	return err;
956 }
957 
958 /*
959  * Set the bus speed for the selected speed mode.
960  */
961 static void mmc_set_bus_speed(struct mmc_card *card)
962 {
963 	unsigned int max_dtr = (unsigned int)-1;
964 
965 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
966 	     max_dtr > card->ext_csd.hs200_max_dtr)
967 		max_dtr = card->ext_csd.hs200_max_dtr;
968 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
969 		max_dtr = card->ext_csd.hs_max_dtr;
970 	else if (max_dtr > card->csd.max_dtr)
971 		max_dtr = card->csd.max_dtr;
972 
973 	mmc_set_clock(card->host, max_dtr);
974 }
975 
976 /*
977  * Select the bus width amoung 4-bit and 8-bit(SDR).
978  * If the bus width is changed successfully, return the selected width value.
979  * Zero is returned instead of error value if the wide width is not supported.
980  */
981 static int mmc_select_bus_width(struct mmc_card *card)
982 {
983 	static unsigned ext_csd_bits[] = {
984 		EXT_CSD_BUS_WIDTH_8,
985 		EXT_CSD_BUS_WIDTH_4,
986 	};
987 	static unsigned bus_widths[] = {
988 		MMC_BUS_WIDTH_8,
989 		MMC_BUS_WIDTH_4,
990 	};
991 	struct mmc_host *host = card->host;
992 	unsigned idx, bus_width = 0;
993 	int err = 0;
994 
995 	if (!mmc_can_ext_csd(card) ||
996 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
997 		return 0;
998 
999 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1000 
1001 	/*
1002 	 * Unlike SD, MMC cards dont have a configuration register to notify
1003 	 * supported bus width. So bus test command should be run to identify
1004 	 * the supported bus width or compare the ext csd values of current
1005 	 * bus width and ext csd values of 1 bit mode read earlier.
1006 	 */
1007 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1008 		/*
1009 		 * Host is capable of 8bit transfer, then switch
1010 		 * the device to work in 8bit transfer mode. If the
1011 		 * mmc switch command returns error then switch to
1012 		 * 4bit transfer mode. On success set the corresponding
1013 		 * bus width on the host.
1014 		 */
1015 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1016 				 EXT_CSD_BUS_WIDTH,
1017 				 ext_csd_bits[idx],
1018 				 card->ext_csd.generic_cmd6_time);
1019 		if (err)
1020 			continue;
1021 
1022 		bus_width = bus_widths[idx];
1023 		mmc_set_bus_width(host, bus_width);
1024 
1025 		/*
1026 		 * If controller can't handle bus width test,
1027 		 * compare ext_csd previously read in 1 bit mode
1028 		 * against ext_csd at new bus width
1029 		 */
1030 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1031 			err = mmc_compare_ext_csds(card, bus_width);
1032 		else
1033 			err = mmc_bus_test(card, bus_width);
1034 
1035 		if (!err) {
1036 			err = bus_width;
1037 			break;
1038 		} else {
1039 			pr_warn("%s: switch to bus width %d failed\n",
1040 				mmc_hostname(host), 1 << bus_width);
1041 		}
1042 	}
1043 
1044 	return err;
1045 }
1046 
1047 /*
1048  * Switch to the high-speed mode
1049  */
1050 static int mmc_select_hs(struct mmc_card *card)
1051 {
1052 	int err;
1053 
1054 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1055 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1056 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1057 			   true, true, true);
1058 	if (err)
1059 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1060 			mmc_hostname(card->host), err);
1061 
1062 	return err;
1063 }
1064 
1065 /*
1066  * Activate wide bus and DDR if supported.
1067  */
1068 static int mmc_select_hs_ddr(struct mmc_card *card)
1069 {
1070 	struct mmc_host *host = card->host;
1071 	u32 bus_width, ext_csd_bits;
1072 	int err = 0;
1073 
1074 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1075 		return 0;
1076 
1077 	bus_width = host->ios.bus_width;
1078 	if (bus_width == MMC_BUS_WIDTH_1)
1079 		return 0;
1080 
1081 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1082 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1083 
1084 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1085 			   EXT_CSD_BUS_WIDTH,
1086 			   ext_csd_bits,
1087 			   card->ext_csd.generic_cmd6_time,
1088 			   MMC_TIMING_MMC_DDR52,
1089 			   true, true, true);
1090 	if (err) {
1091 		pr_err("%s: switch to bus width %d ddr failed\n",
1092 			mmc_hostname(host), 1 << bus_width);
1093 		return err;
1094 	}
1095 
1096 	/*
1097 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1098 	 * signaling.
1099 	 *
1100 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1101 	 *
1102 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1103 	 * in the JEDEC spec for DDR.
1104 	 *
1105 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1106 	 * host controller can support this, like some of the SDHCI
1107 	 * controller which connect to an eMMC device. Some of these
1108 	 * host controller still needs to use 1.8v vccq for supporting
1109 	 * DDR mode.
1110 	 *
1111 	 * So the sequence will be:
1112 	 * if (host and device can both support 1.2v IO)
1113 	 *	use 1.2v IO;
1114 	 * else if (host and device can both support 1.8v IO)
1115 	 *	use 1.8v IO;
1116 	 * so if host and device can only support 3.3v IO, this is the
1117 	 * last choice.
1118 	 *
1119 	 * WARNING: eMMC rules are NOT the same as SD DDR
1120 	 */
1121 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1122 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1123 		if (!err)
1124 			return 0;
1125 	}
1126 
1127 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1128 	    host->caps & MMC_CAP_1_8V_DDR)
1129 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1130 
1131 	/* make sure vccq is 3.3v after switching disaster */
1132 	if (err)
1133 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1134 
1135 	return err;
1136 }
1137 
1138 static int mmc_select_hs400(struct mmc_card *card)
1139 {
1140 	struct mmc_host *host = card->host;
1141 	unsigned int max_dtr;
1142 	int err = 0;
1143 	u8 val;
1144 
1145 	/*
1146 	 * HS400 mode requires 8-bit bus width
1147 	 */
1148 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1149 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1150 		return 0;
1151 
1152 	/* Switch card to HS mode */
1153 	val = EXT_CSD_TIMING_HS;
1154 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1155 			   EXT_CSD_HS_TIMING, val,
1156 			   card->ext_csd.generic_cmd6_time, 0,
1157 			   true, false, true);
1158 	if (err) {
1159 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1160 			mmc_hostname(host), err);
1161 		return err;
1162 	}
1163 
1164 	/* Set host controller to HS timing */
1165 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1166 
1167 	/* Reduce frequency to HS frequency */
1168 	max_dtr = card->ext_csd.hs_max_dtr;
1169 	mmc_set_clock(host, max_dtr);
1170 
1171 	err = mmc_switch_status(card);
1172 	if (err)
1173 		goto out_err;
1174 
1175 	/* Switch card to DDR */
1176 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1177 			 EXT_CSD_BUS_WIDTH,
1178 			 EXT_CSD_DDR_BUS_WIDTH_8,
1179 			 card->ext_csd.generic_cmd6_time);
1180 	if (err) {
1181 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1182 			mmc_hostname(host), err);
1183 		return err;
1184 	}
1185 
1186 	/* Switch card to HS400 */
1187 	val = EXT_CSD_TIMING_HS400 |
1188 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1189 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190 			   EXT_CSD_HS_TIMING, val,
1191 			   card->ext_csd.generic_cmd6_time, 0,
1192 			   true, false, true);
1193 	if (err) {
1194 		pr_err("%s: switch to hs400 failed, err:%d\n",
1195 			 mmc_hostname(host), err);
1196 		return err;
1197 	}
1198 
1199 	/* Set host controller to HS400 timing and frequency */
1200 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1201 	mmc_set_bus_speed(card);
1202 
1203 	err = mmc_switch_status(card);
1204 	if (err)
1205 		goto out_err;
1206 
1207 	return 0;
1208 
1209 out_err:
1210 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1211 	       __func__, err);
1212 	return err;
1213 }
1214 
1215 int mmc_hs200_to_hs400(struct mmc_card *card)
1216 {
1217 	return mmc_select_hs400(card);
1218 }
1219 
1220 int mmc_hs400_to_hs200(struct mmc_card *card)
1221 {
1222 	struct mmc_host *host = card->host;
1223 	unsigned int max_dtr;
1224 	int err;
1225 	u8 val;
1226 
1227 	/* Reduce frequency to HS */
1228 	max_dtr = card->ext_csd.hs_max_dtr;
1229 	mmc_set_clock(host, max_dtr);
1230 
1231 	/* Switch HS400 to HS DDR */
1232 	val = EXT_CSD_TIMING_HS;
1233 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1234 			   val, card->ext_csd.generic_cmd6_time, 0,
1235 			   true, false, true);
1236 	if (err)
1237 		goto out_err;
1238 
1239 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1240 
1241 	err = mmc_switch_status(card);
1242 	if (err)
1243 		goto out_err;
1244 
1245 	/* Switch HS DDR to HS */
1246 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1247 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1248 			   0, true, false, true);
1249 	if (err)
1250 		goto out_err;
1251 
1252 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1253 
1254 	err = mmc_switch_status(card);
1255 	if (err)
1256 		goto out_err;
1257 
1258 	/* Switch HS to HS200 */
1259 	val = EXT_CSD_TIMING_HS200 |
1260 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1261 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1262 			   val, card->ext_csd.generic_cmd6_time, 0,
1263 			   true, false, true);
1264 	if (err)
1265 		goto out_err;
1266 
1267 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1268 
1269 	/*
1270 	 * For HS200, CRC errors are not a reliable way to know the switch
1271 	 * failed. If there really is a problem, we would expect tuning will
1272 	 * fail and the result ends up the same.
1273 	 */
1274 	err = __mmc_switch_status(card, false);
1275 	if (err)
1276 		goto out_err;
1277 
1278 	mmc_set_bus_speed(card);
1279 
1280 	return 0;
1281 
1282 out_err:
1283 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1284 	       __func__, err);
1285 	return err;
1286 }
1287 
1288 static int mmc_select_hs400es(struct mmc_card *card)
1289 {
1290 	struct mmc_host *host = card->host;
1291 	int err = 0;
1292 	u8 val;
1293 
1294 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1295 		err = -ENOTSUPP;
1296 		goto out_err;
1297 	}
1298 
1299 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1300 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1301 
1302 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1303 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1304 
1305 	/* If fails try again during next card power cycle */
1306 	if (err)
1307 		goto out_err;
1308 
1309 	err = mmc_select_bus_width(card);
1310 	if (err < 0)
1311 		goto out_err;
1312 
1313 	/* Switch card to HS mode */
1314 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1315 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1316 			   card->ext_csd.generic_cmd6_time, 0,
1317 			   true, false, true);
1318 	if (err) {
1319 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1320 			mmc_hostname(host), err);
1321 		goto out_err;
1322 	}
1323 
1324 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1325 	err = mmc_switch_status(card);
1326 	if (err)
1327 		goto out_err;
1328 
1329 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1330 
1331 	/* Switch card to DDR with strobe bit */
1332 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1333 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1334 			 EXT_CSD_BUS_WIDTH,
1335 			 val,
1336 			 card->ext_csd.generic_cmd6_time);
1337 	if (err) {
1338 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1339 			mmc_hostname(host), err);
1340 		goto out_err;
1341 	}
1342 
1343 	/* Switch card to HS400 */
1344 	val = EXT_CSD_TIMING_HS400 |
1345 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1346 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1347 			   EXT_CSD_HS_TIMING, val,
1348 			   card->ext_csd.generic_cmd6_time, 0,
1349 			   true, false, true);
1350 	if (err) {
1351 		pr_err("%s: switch to hs400es failed, err:%d\n",
1352 			mmc_hostname(host), err);
1353 		goto out_err;
1354 	}
1355 
1356 	/* Set host controller to HS400 timing and frequency */
1357 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1358 
1359 	/* Controller enable enhanced strobe function */
1360 	host->ios.enhanced_strobe = true;
1361 	if (host->ops->hs400_enhanced_strobe)
1362 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1363 
1364 	err = mmc_switch_status(card);
1365 	if (err)
1366 		goto out_err;
1367 
1368 	return 0;
1369 
1370 out_err:
1371 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1372 	       __func__, err);
1373 	return err;
1374 }
1375 
1376 static void mmc_select_driver_type(struct mmc_card *card)
1377 {
1378 	int card_drv_type, drive_strength, drv_type;
1379 
1380 	card_drv_type = card->ext_csd.raw_driver_strength |
1381 			mmc_driver_type_mask(0);
1382 
1383 	drive_strength = mmc_select_drive_strength(card,
1384 						   card->ext_csd.hs200_max_dtr,
1385 						   card_drv_type, &drv_type);
1386 
1387 	card->drive_strength = drive_strength;
1388 
1389 	if (drv_type)
1390 		mmc_set_driver_type(card->host, drv_type);
1391 }
1392 
1393 /*
1394  * For device supporting HS200 mode, the following sequence
1395  * should be done before executing the tuning process.
1396  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1397  * 2. switch to HS200 mode
1398  * 3. set the clock to > 52Mhz and <=200MHz
1399  */
1400 static int mmc_select_hs200(struct mmc_card *card)
1401 {
1402 	struct mmc_host *host = card->host;
1403 	unsigned int old_timing, old_signal_voltage;
1404 	int err = -EINVAL;
1405 	u8 val;
1406 
1407 	old_signal_voltage = host->ios.signal_voltage;
1408 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1409 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1410 
1411 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1412 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1413 
1414 	/* If fails try again during next card power cycle */
1415 	if (err)
1416 		return err;
1417 
1418 	mmc_select_driver_type(card);
1419 
1420 	/*
1421 	 * Set the bus width(4 or 8) with host's support and
1422 	 * switch to HS200 mode if bus width is set successfully.
1423 	 */
1424 	err = mmc_select_bus_width(card);
1425 	if (err > 0) {
1426 		val = EXT_CSD_TIMING_HS200 |
1427 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1428 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1429 				   EXT_CSD_HS_TIMING, val,
1430 				   card->ext_csd.generic_cmd6_time, 0,
1431 				   true, false, true);
1432 		if (err)
1433 			goto err;
1434 		old_timing = host->ios.timing;
1435 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1436 
1437 		/*
1438 		 * For HS200, CRC errors are not a reliable way to know the
1439 		 * switch failed. If there really is a problem, we would expect
1440 		 * tuning will fail and the result ends up the same.
1441 		 */
1442 		err = __mmc_switch_status(card, false);
1443 
1444 		/*
1445 		 * mmc_select_timing() assumes timing has not changed if
1446 		 * it is a switch error.
1447 		 */
1448 		if (err == -EBADMSG)
1449 			mmc_set_timing(host, old_timing);
1450 	}
1451 err:
1452 	if (err) {
1453 		/* fall back to the old signal voltage, if fails report error */
1454 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1455 			err = -EIO;
1456 
1457 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1458 		       __func__, err);
1459 	}
1460 	return err;
1461 }
1462 
1463 /*
1464  * Activate High Speed, HS200 or HS400ES mode if supported.
1465  */
1466 static int mmc_select_timing(struct mmc_card *card)
1467 {
1468 	int err = 0;
1469 
1470 	if (!mmc_can_ext_csd(card))
1471 		goto bus_speed;
1472 
1473 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1474 		err = mmc_select_hs400es(card);
1475 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1476 		err = mmc_select_hs200(card);
1477 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1478 		err = mmc_select_hs(card);
1479 
1480 	if (err && err != -EBADMSG)
1481 		return err;
1482 
1483 bus_speed:
1484 	/*
1485 	 * Set the bus speed to the selected bus timing.
1486 	 * If timing is not selected, backward compatible is the default.
1487 	 */
1488 	mmc_set_bus_speed(card);
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Execute tuning sequence to seek the proper bus operating
1494  * conditions for HS200 and HS400, which sends CMD21 to the device.
1495  */
1496 static int mmc_hs200_tuning(struct mmc_card *card)
1497 {
1498 	struct mmc_host *host = card->host;
1499 
1500 	/*
1501 	 * Timing should be adjusted to the HS400 target
1502 	 * operation frequency for tuning process
1503 	 */
1504 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1505 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1506 		if (host->ops->prepare_hs400_tuning)
1507 			host->ops->prepare_hs400_tuning(host, &host->ios);
1508 
1509 	return mmc_execute_tuning(card);
1510 }
1511 
1512 /*
1513  * Handle the detection and initialisation of a card.
1514  *
1515  * In the case of a resume, "oldcard" will contain the card
1516  * we're trying to reinitialise.
1517  */
1518 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1519 	struct mmc_card *oldcard)
1520 {
1521 	struct mmc_card *card;
1522 	int err;
1523 	u32 cid[4];
1524 	u32 rocr;
1525 
1526 	WARN_ON(!host->claimed);
1527 
1528 	/* Set correct bus mode for MMC before attempting init */
1529 	if (!mmc_host_is_spi(host))
1530 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1531 
1532 	/*
1533 	 * Since we're changing the OCR value, we seem to
1534 	 * need to tell some cards to go back to the idle
1535 	 * state.  We wait 1ms to give cards time to
1536 	 * respond.
1537 	 * mmc_go_idle is needed for eMMC that are asleep
1538 	 */
1539 	mmc_go_idle(host);
1540 
1541 	/* The extra bit indicates that we support high capacity */
1542 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1543 	if (err)
1544 		goto err;
1545 
1546 	/*
1547 	 * For SPI, enable CRC as appropriate.
1548 	 */
1549 	if (mmc_host_is_spi(host)) {
1550 		err = mmc_spi_set_crc(host, use_spi_crc);
1551 		if (err)
1552 			goto err;
1553 	}
1554 
1555 	/*
1556 	 * Fetch CID from card.
1557 	 */
1558 	if (mmc_host_is_spi(host))
1559 		err = mmc_send_cid(host, cid);
1560 	else
1561 		err = mmc_all_send_cid(host, cid);
1562 	if (err)
1563 		goto err;
1564 
1565 	if (oldcard) {
1566 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1567 			err = -ENOENT;
1568 			goto err;
1569 		}
1570 
1571 		card = oldcard;
1572 	} else {
1573 		/*
1574 		 * Allocate card structure.
1575 		 */
1576 		card = mmc_alloc_card(host, &mmc_type);
1577 		if (IS_ERR(card)) {
1578 			err = PTR_ERR(card);
1579 			goto err;
1580 		}
1581 
1582 		card->ocr = ocr;
1583 		card->type = MMC_TYPE_MMC;
1584 		card->rca = 1;
1585 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1586 	}
1587 
1588 	/*
1589 	 * Call the optional HC's init_card function to handle quirks.
1590 	 */
1591 	if (host->ops->init_card)
1592 		host->ops->init_card(host, card);
1593 
1594 	/*
1595 	 * For native busses:  set card RCA and quit open drain mode.
1596 	 */
1597 	if (!mmc_host_is_spi(host)) {
1598 		err = mmc_set_relative_addr(card);
1599 		if (err)
1600 			goto free_card;
1601 
1602 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1603 	}
1604 
1605 	if (!oldcard) {
1606 		/*
1607 		 * Fetch CSD from card.
1608 		 */
1609 		err = mmc_send_csd(card, card->raw_csd);
1610 		if (err)
1611 			goto free_card;
1612 
1613 		err = mmc_decode_csd(card);
1614 		if (err)
1615 			goto free_card;
1616 		err = mmc_decode_cid(card);
1617 		if (err)
1618 			goto free_card;
1619 	}
1620 
1621 	/*
1622 	 * handling only for cards supporting DSR and hosts requesting
1623 	 * DSR configuration
1624 	 */
1625 	if (card->csd.dsr_imp && host->dsr_req)
1626 		mmc_set_dsr(host);
1627 
1628 	/*
1629 	 * Select card, as all following commands rely on that.
1630 	 */
1631 	if (!mmc_host_is_spi(host)) {
1632 		err = mmc_select_card(card);
1633 		if (err)
1634 			goto free_card;
1635 	}
1636 
1637 	if (!oldcard) {
1638 		/* Read extended CSD. */
1639 		err = mmc_read_ext_csd(card);
1640 		if (err)
1641 			goto free_card;
1642 
1643 		/*
1644 		 * If doing byte addressing, check if required to do sector
1645 		 * addressing.  Handle the case of <2GB cards needing sector
1646 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1647 		 * ocr register has bit 30 set for sector addressing.
1648 		 */
1649 		if (rocr & BIT(30))
1650 			mmc_card_set_blockaddr(card);
1651 
1652 		/* Erase size depends on CSD and Extended CSD */
1653 		mmc_set_erase_size(card);
1654 	}
1655 
1656 	/*
1657 	 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1658 	 * bit.  This bit will be lost every time after a reset or power off.
1659 	 */
1660 	if (card->ext_csd.partition_setting_completed ||
1661 	    (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1662 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1663 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1664 				 card->ext_csd.generic_cmd6_time);
1665 
1666 		if (err && err != -EBADMSG)
1667 			goto free_card;
1668 
1669 		if (err) {
1670 			err = 0;
1671 			/*
1672 			 * Just disable enhanced area off & sz
1673 			 * will try to enable ERASE_GROUP_DEF
1674 			 * during next time reinit
1675 			 */
1676 			card->ext_csd.enhanced_area_offset = -EINVAL;
1677 			card->ext_csd.enhanced_area_size = -EINVAL;
1678 		} else {
1679 			card->ext_csd.erase_group_def = 1;
1680 			/*
1681 			 * enable ERASE_GRP_DEF successfully.
1682 			 * This will affect the erase size, so
1683 			 * here need to reset erase size
1684 			 */
1685 			mmc_set_erase_size(card);
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Ensure eMMC user default partition is enabled
1691 	 */
1692 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1693 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1694 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1695 				 card->ext_csd.part_config,
1696 				 card->ext_csd.part_time);
1697 		if (err && err != -EBADMSG)
1698 			goto free_card;
1699 	}
1700 
1701 	/*
1702 	 * Enable power_off_notification byte in the ext_csd register
1703 	 */
1704 	if (card->ext_csd.rev >= 6) {
1705 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1706 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1707 				 EXT_CSD_POWER_ON,
1708 				 card->ext_csd.generic_cmd6_time);
1709 		if (err && err != -EBADMSG)
1710 			goto free_card;
1711 
1712 		/*
1713 		 * The err can be -EBADMSG or 0,
1714 		 * so check for success and update the flag
1715 		 */
1716 		if (!err)
1717 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1718 	}
1719 
1720 	/*
1721 	 * Select timing interface
1722 	 */
1723 	err = mmc_select_timing(card);
1724 	if (err)
1725 		goto free_card;
1726 
1727 	if (mmc_card_hs200(card)) {
1728 		err = mmc_hs200_tuning(card);
1729 		if (err)
1730 			goto free_card;
1731 
1732 		err = mmc_select_hs400(card);
1733 		if (err)
1734 			goto free_card;
1735 	} else if (!mmc_card_hs400es(card)) {
1736 		/* Select the desired bus width optionally */
1737 		err = mmc_select_bus_width(card);
1738 		if (err > 0 && mmc_card_hs(card)) {
1739 			err = mmc_select_hs_ddr(card);
1740 			if (err)
1741 				goto free_card;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * Choose the power class with selected bus interface
1747 	 */
1748 	mmc_select_powerclass(card);
1749 
1750 	/*
1751 	 * Enable HPI feature (if supported)
1752 	 */
1753 	if (card->ext_csd.hpi) {
1754 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1755 				EXT_CSD_HPI_MGMT, 1,
1756 				card->ext_csd.generic_cmd6_time);
1757 		if (err && err != -EBADMSG)
1758 			goto free_card;
1759 		if (err) {
1760 			pr_warn("%s: Enabling HPI failed\n",
1761 				mmc_hostname(card->host));
1762 			err = 0;
1763 		} else
1764 			card->ext_csd.hpi_en = 1;
1765 	}
1766 
1767 	/*
1768 	 * If cache size is higher than 0, this indicates
1769 	 * the existence of cache and it can be turned on.
1770 	 */
1771 	if (!mmc_card_broken_hpi(card) &&
1772 	    card->ext_csd.cache_size > 0) {
1773 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1774 				EXT_CSD_CACHE_CTRL, 1,
1775 				card->ext_csd.generic_cmd6_time);
1776 		if (err && err != -EBADMSG)
1777 			goto free_card;
1778 
1779 		/*
1780 		 * Only if no error, cache is turned on successfully.
1781 		 */
1782 		if (err) {
1783 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1784 				mmc_hostname(card->host), err);
1785 			card->ext_csd.cache_ctrl = 0;
1786 			err = 0;
1787 		} else {
1788 			card->ext_csd.cache_ctrl = 1;
1789 		}
1790 	}
1791 
1792 	/*
1793 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1794 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1795 	 * Command Queue.
1796 	 */
1797 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1798 
1799 	/*
1800 	 * The mandatory minimum values are defined for packed command.
1801 	 * read: 5, write: 3
1802 	 */
1803 	if (card->ext_csd.max_packed_writes >= 3 &&
1804 	    card->ext_csd.max_packed_reads >= 5 &&
1805 	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1806 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1807 				EXT_CSD_EXP_EVENTS_CTRL,
1808 				EXT_CSD_PACKED_EVENT_EN,
1809 				card->ext_csd.generic_cmd6_time);
1810 		if (err && err != -EBADMSG)
1811 			goto free_card;
1812 		if (err) {
1813 			pr_warn("%s: Enabling packed event failed\n",
1814 				mmc_hostname(card->host));
1815 			card->ext_csd.packed_event_en = 0;
1816 			err = 0;
1817 		} else {
1818 			card->ext_csd.packed_event_en = 1;
1819 		}
1820 	}
1821 
1822 	if (!oldcard)
1823 		host->card = card;
1824 
1825 	return 0;
1826 
1827 free_card:
1828 	if (!oldcard)
1829 		mmc_remove_card(card);
1830 err:
1831 	return err;
1832 }
1833 
1834 static int mmc_can_sleep(struct mmc_card *card)
1835 {
1836 	return (card && card->ext_csd.rev >= 3);
1837 }
1838 
1839 static int mmc_sleep(struct mmc_host *host)
1840 {
1841 	struct mmc_command cmd = {};
1842 	struct mmc_card *card = host->card;
1843 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1844 	int err;
1845 
1846 	/* Re-tuning can't be done once the card is deselected */
1847 	mmc_retune_hold(host);
1848 
1849 	err = mmc_deselect_cards(host);
1850 	if (err)
1851 		goto out_release;
1852 
1853 	cmd.opcode = MMC_SLEEP_AWAKE;
1854 	cmd.arg = card->rca << 16;
1855 	cmd.arg |= 1 << 15;
1856 
1857 	/*
1858 	 * If the max_busy_timeout of the host is specified, validate it against
1859 	 * the sleep cmd timeout. A failure means we need to prevent the host
1860 	 * from doing hw busy detection, which is done by converting to a R1
1861 	 * response instead of a R1B.
1862 	 */
1863 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1864 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1865 	} else {
1866 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1867 		cmd.busy_timeout = timeout_ms;
1868 	}
1869 
1870 	err = mmc_wait_for_cmd(host, &cmd, 0);
1871 	if (err)
1872 		goto out_release;
1873 
1874 	/*
1875 	 * If the host does not wait while the card signals busy, then we will
1876 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1877 	 * SEND_STATUS command to poll the status because that command (and most
1878 	 * others) is invalid while the card sleeps.
1879 	 */
1880 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1881 		mmc_delay(timeout_ms);
1882 
1883 out_release:
1884 	mmc_retune_release(host);
1885 	return err;
1886 }
1887 
1888 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1889 {
1890 	return card &&
1891 		mmc_card_mmc(card) &&
1892 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1893 }
1894 
1895 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1896 {
1897 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1898 	int err;
1899 
1900 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1901 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1902 		timeout = card->ext_csd.power_off_longtime;
1903 
1904 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1905 			EXT_CSD_POWER_OFF_NOTIFICATION,
1906 			notify_type, timeout, 0, true, false, false);
1907 	if (err)
1908 		pr_err("%s: Power Off Notification timed out, %u\n",
1909 		       mmc_hostname(card->host), timeout);
1910 
1911 	/* Disable the power off notification after the switch operation. */
1912 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1913 
1914 	return err;
1915 }
1916 
1917 /*
1918  * Host is being removed. Free up the current card.
1919  */
1920 static void mmc_remove(struct mmc_host *host)
1921 {
1922 	mmc_remove_card(host->card);
1923 	host->card = NULL;
1924 }
1925 
1926 /*
1927  * Card detection - card is alive.
1928  */
1929 static int mmc_alive(struct mmc_host *host)
1930 {
1931 	return mmc_send_status(host->card, NULL);
1932 }
1933 
1934 /*
1935  * Card detection callback from host.
1936  */
1937 static void mmc_detect(struct mmc_host *host)
1938 {
1939 	int err;
1940 
1941 	mmc_get_card(host->card);
1942 
1943 	/*
1944 	 * Just check if our card has been removed.
1945 	 */
1946 	err = _mmc_detect_card_removed(host);
1947 
1948 	mmc_put_card(host->card);
1949 
1950 	if (err) {
1951 		mmc_remove(host);
1952 
1953 		mmc_claim_host(host);
1954 		mmc_detach_bus(host);
1955 		mmc_power_off(host);
1956 		mmc_release_host(host);
1957 	}
1958 }
1959 
1960 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1961 {
1962 	int err = 0;
1963 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1964 					EXT_CSD_POWER_OFF_LONG;
1965 
1966 	mmc_claim_host(host);
1967 
1968 	if (mmc_card_suspended(host->card))
1969 		goto out;
1970 
1971 	if (mmc_card_doing_bkops(host->card)) {
1972 		err = mmc_stop_bkops(host->card);
1973 		if (err)
1974 			goto out;
1975 	}
1976 
1977 	err = mmc_flush_cache(host->card);
1978 	if (err)
1979 		goto out;
1980 
1981 	if (mmc_can_poweroff_notify(host->card) &&
1982 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1983 		err = mmc_poweroff_notify(host->card, notify_type);
1984 	else if (mmc_can_sleep(host->card))
1985 		err = mmc_sleep(host);
1986 	else if (!mmc_host_is_spi(host))
1987 		err = mmc_deselect_cards(host);
1988 
1989 	if (!err) {
1990 		mmc_power_off(host);
1991 		mmc_card_set_suspended(host->card);
1992 	}
1993 out:
1994 	mmc_release_host(host);
1995 	return err;
1996 }
1997 
1998 /*
1999  * Suspend callback
2000  */
2001 static int mmc_suspend(struct mmc_host *host)
2002 {
2003 	int err;
2004 
2005 	err = _mmc_suspend(host, true);
2006 	if (!err) {
2007 		pm_runtime_disable(&host->card->dev);
2008 		pm_runtime_set_suspended(&host->card->dev);
2009 	}
2010 
2011 	return err;
2012 }
2013 
2014 /*
2015  * This function tries to determine if the same card is still present
2016  * and, if so, restore all state to it.
2017  */
2018 static int _mmc_resume(struct mmc_host *host)
2019 {
2020 	int err = 0;
2021 
2022 	mmc_claim_host(host);
2023 
2024 	if (!mmc_card_suspended(host->card))
2025 		goto out;
2026 
2027 	mmc_power_up(host, host->card->ocr);
2028 	err = mmc_init_card(host, host->card->ocr, host->card);
2029 	mmc_card_clr_suspended(host->card);
2030 
2031 out:
2032 	mmc_release_host(host);
2033 	return err;
2034 }
2035 
2036 /*
2037  * Shutdown callback
2038  */
2039 static int mmc_shutdown(struct mmc_host *host)
2040 {
2041 	int err = 0;
2042 
2043 	/*
2044 	 * In a specific case for poweroff notify, we need to resume the card
2045 	 * before we can shutdown it properly.
2046 	 */
2047 	if (mmc_can_poweroff_notify(host->card) &&
2048 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2049 		err = _mmc_resume(host);
2050 
2051 	if (!err)
2052 		err = _mmc_suspend(host, false);
2053 
2054 	return err;
2055 }
2056 
2057 /*
2058  * Callback for resume.
2059  */
2060 static int mmc_resume(struct mmc_host *host)
2061 {
2062 	pm_runtime_enable(&host->card->dev);
2063 	return 0;
2064 }
2065 
2066 /*
2067  * Callback for runtime_suspend.
2068  */
2069 static int mmc_runtime_suspend(struct mmc_host *host)
2070 {
2071 	int err;
2072 
2073 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2074 		return 0;
2075 
2076 	err = _mmc_suspend(host, true);
2077 	if (err)
2078 		pr_err("%s: error %d doing aggressive suspend\n",
2079 			mmc_hostname(host), err);
2080 
2081 	return err;
2082 }
2083 
2084 /*
2085  * Callback for runtime_resume.
2086  */
2087 static int mmc_runtime_resume(struct mmc_host *host)
2088 {
2089 	int err;
2090 
2091 	err = _mmc_resume(host);
2092 	if (err && err != -ENOMEDIUM)
2093 		pr_err("%s: error %d doing runtime resume\n",
2094 			mmc_hostname(host), err);
2095 
2096 	return 0;
2097 }
2098 
2099 int mmc_can_reset(struct mmc_card *card)
2100 {
2101 	u8 rst_n_function;
2102 
2103 	rst_n_function = card->ext_csd.rst_n_function;
2104 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2105 		return 0;
2106 	return 1;
2107 }
2108 EXPORT_SYMBOL(mmc_can_reset);
2109 
2110 static int mmc_reset(struct mmc_host *host)
2111 {
2112 	struct mmc_card *card = host->card;
2113 
2114 	/*
2115 	 * In the case of recovery, we can't expect flushing the cache to work
2116 	 * always, but we have a go and ignore errors.
2117 	 */
2118 	mmc_flush_cache(host->card);
2119 
2120 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2121 	     mmc_can_reset(card)) {
2122 		/* If the card accept RST_n signal, send it. */
2123 		mmc_set_clock(host, host->f_init);
2124 		host->ops->hw_reset(host);
2125 		/* Set initial state and call mmc_set_ios */
2126 		mmc_set_initial_state(host);
2127 	} else {
2128 		/* Do a brute force power cycle */
2129 		mmc_power_cycle(host, card->ocr);
2130 	}
2131 	return mmc_init_card(host, card->ocr, card);
2132 }
2133 
2134 static const struct mmc_bus_ops mmc_ops = {
2135 	.remove = mmc_remove,
2136 	.detect = mmc_detect,
2137 	.suspend = mmc_suspend,
2138 	.resume = mmc_resume,
2139 	.runtime_suspend = mmc_runtime_suspend,
2140 	.runtime_resume = mmc_runtime_resume,
2141 	.alive = mmc_alive,
2142 	.shutdown = mmc_shutdown,
2143 	.reset = mmc_reset,
2144 };
2145 
2146 /*
2147  * Starting point for MMC card init.
2148  */
2149 int mmc_attach_mmc(struct mmc_host *host)
2150 {
2151 	int err;
2152 	u32 ocr, rocr;
2153 
2154 	WARN_ON(!host->claimed);
2155 
2156 	/* Set correct bus mode for MMC before attempting attach */
2157 	if (!mmc_host_is_spi(host))
2158 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2159 
2160 	err = mmc_send_op_cond(host, 0, &ocr);
2161 	if (err)
2162 		return err;
2163 
2164 	mmc_attach_bus(host, &mmc_ops);
2165 	if (host->ocr_avail_mmc)
2166 		host->ocr_avail = host->ocr_avail_mmc;
2167 
2168 	/*
2169 	 * We need to get OCR a different way for SPI.
2170 	 */
2171 	if (mmc_host_is_spi(host)) {
2172 		err = mmc_spi_read_ocr(host, 1, &ocr);
2173 		if (err)
2174 			goto err;
2175 	}
2176 
2177 	rocr = mmc_select_voltage(host, ocr);
2178 
2179 	/*
2180 	 * Can we support the voltage of the card?
2181 	 */
2182 	if (!rocr) {
2183 		err = -EINVAL;
2184 		goto err;
2185 	}
2186 
2187 	/*
2188 	 * Detect and init the card.
2189 	 */
2190 	err = mmc_init_card(host, rocr, NULL);
2191 	if (err)
2192 		goto err;
2193 
2194 	mmc_release_host(host);
2195 	err = mmc_add_card(host->card);
2196 	if (err)
2197 		goto remove_card;
2198 
2199 	mmc_claim_host(host);
2200 	return 0;
2201 
2202 remove_card:
2203 	mmc_remove_card(host->card);
2204 	mmc_claim_host(host);
2205 	host->card = NULL;
2206 err:
2207 	mmc_detach_bus(host);
2208 
2209 	pr_err("%s: error %d whilst initialising MMC card\n",
2210 		mmc_hostname(host), err);
2211 
2212 	return err;
2213 }
2214