1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 #include "pwrseq.h" 31 32 #define DEFAULT_CMD6_TIMEOUT_MS 500 33 34 static const unsigned int tran_exp[] = { 35 10000, 100000, 1000000, 10000000, 36 0, 0, 0, 0 37 }; 38 39 static const unsigned char tran_mant[] = { 40 0, 10, 12, 13, 15, 20, 25, 30, 41 35, 40, 45, 50, 55, 60, 70, 80, 42 }; 43 44 static const unsigned int taac_exp[] = { 45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 46 }; 47 48 static const unsigned int taac_mant[] = { 49 0, 10, 12, 13, 15, 20, 25, 30, 50 35, 40, 45, 50, 55, 60, 70, 80, 51 }; 52 53 #define UNSTUFF_BITS(resp,start,size) \ 54 ({ \ 55 const int __size = size; \ 56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 57 const int __off = 3 - ((start) / 32); \ 58 const int __shft = (start) & 31; \ 59 u32 __res; \ 60 \ 61 __res = resp[__off] >> __shft; \ 62 if (__size + __shft > 32) \ 63 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 64 __res & __mask; \ 65 }) 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 static int mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * The selection of the format here is based upon published 76 * specs from sandisk and from what people have reported. 77 */ 78 switch (card->csd.mmca_vsn) { 79 case 0: /* MMC v1.0 - v1.2 */ 80 case 1: /* MMC v1.4 */ 81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 92 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 94 break; 95 96 case 2: /* MMC v2.0 - v2.2 */ 97 case 3: /* MMC v3.1 - v3.3 */ 98 case 4: /* MMC v4 */ 99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 109 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 111 break; 112 113 default: 114 pr_err("%s: card has unknown MMCA version %d\n", 115 mmc_hostname(card->host), card->csd.mmca_vsn); 116 return -EINVAL; 117 } 118 119 return 0; 120 } 121 122 static void mmc_set_erase_size(struct mmc_card *card) 123 { 124 if (card->ext_csd.erase_group_def & 1) 125 card->erase_size = card->ext_csd.hc_erase_size; 126 else 127 card->erase_size = card->csd.erase_size; 128 129 mmc_init_erase(card); 130 } 131 132 /* 133 * Given a 128-bit response, decode to our card CSD structure. 134 */ 135 static int mmc_decode_csd(struct mmc_card *card) 136 { 137 struct mmc_csd *csd = &card->csd; 138 unsigned int e, m, a, b; 139 u32 *resp = card->raw_csd; 140 141 /* 142 * We only understand CSD structure v1.1 and v1.2. 143 * v1.2 has extra information in bits 15, 11 and 10. 144 * We also support eMMC v4.4 & v4.41. 145 */ 146 csd->structure = UNSTUFF_BITS(resp, 126, 2); 147 if (csd->structure == 0) { 148 pr_err("%s: unrecognised CSD structure version %d\n", 149 mmc_hostname(card->host), csd->structure); 150 return -EINVAL; 151 } 152 153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 154 m = UNSTUFF_BITS(resp, 115, 4); 155 e = UNSTUFF_BITS(resp, 112, 3); 156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 158 159 m = UNSTUFF_BITS(resp, 99, 4); 160 e = UNSTUFF_BITS(resp, 96, 3); 161 csd->max_dtr = tran_exp[e] * tran_mant[m]; 162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 163 164 e = UNSTUFF_BITS(resp, 47, 3); 165 m = UNSTUFF_BITS(resp, 62, 12); 166 csd->capacity = (1 + m) << (e + 2); 167 168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 176 177 if (csd->write_blkbits >= 9) { 178 a = UNSTUFF_BITS(resp, 42, 5); 179 b = UNSTUFF_BITS(resp, 37, 5); 180 csd->erase_size = (a + 1) * (b + 1); 181 csd->erase_size <<= csd->write_blkbits - 9; 182 } 183 184 return 0; 185 } 186 187 static void mmc_select_card_type(struct mmc_card *card) 188 { 189 struct mmc_host *host = card->host; 190 u8 card_type = card->ext_csd.raw_card_type; 191 u32 caps = host->caps, caps2 = host->caps2; 192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 193 unsigned int avail_type = 0; 194 195 if (caps & MMC_CAP_MMC_HIGHSPEED && 196 card_type & EXT_CSD_CARD_TYPE_HS_26) { 197 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 198 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 199 } 200 201 if (caps & MMC_CAP_MMC_HIGHSPEED && 202 card_type & EXT_CSD_CARD_TYPE_HS_52) { 203 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 204 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 205 } 206 207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 211 } 212 213 if (caps & MMC_CAP_1_2V_DDR && 214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 217 } 218 219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 221 hs200_max_dtr = MMC_HS200_MAX_DTR; 222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 223 } 224 225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 227 hs200_max_dtr = MMC_HS200_MAX_DTR; 228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 229 } 230 231 if (caps2 & MMC_CAP2_HS400_1_8V && 232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 233 hs200_max_dtr = MMC_HS200_MAX_DTR; 234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 235 } 236 237 if (caps2 & MMC_CAP2_HS400_1_2V && 238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 239 hs200_max_dtr = MMC_HS200_MAX_DTR; 240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 241 } 242 243 if ((caps2 & MMC_CAP2_HS400_ES) && 244 card->ext_csd.strobe_support && 245 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 247 248 card->ext_csd.hs_max_dtr = hs_max_dtr; 249 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 250 card->mmc_avail_type = avail_type; 251 } 252 253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 254 { 255 u8 hc_erase_grp_sz, hc_wp_grp_sz; 256 257 /* 258 * Disable these attributes by default 259 */ 260 card->ext_csd.enhanced_area_offset = -EINVAL; 261 card->ext_csd.enhanced_area_size = -EINVAL; 262 263 /* 264 * Enhanced area feature support -- check whether the eMMC 265 * card has the Enhanced area enabled. If so, export enhanced 266 * area offset and size to user by adding sysfs interface. 267 */ 268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 270 if (card->ext_csd.partition_setting_completed) { 271 hc_erase_grp_sz = 272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 273 hc_wp_grp_sz = 274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 275 276 /* 277 * calculate the enhanced data area offset, in bytes 278 */ 279 card->ext_csd.enhanced_area_offset = 280 (((unsigned long long)ext_csd[139]) << 24) + 281 (((unsigned long long)ext_csd[138]) << 16) + 282 (((unsigned long long)ext_csd[137]) << 8) + 283 (((unsigned long long)ext_csd[136])); 284 if (mmc_card_blockaddr(card)) 285 card->ext_csd.enhanced_area_offset <<= 9; 286 /* 287 * calculate the enhanced data area size, in kilobytes 288 */ 289 card->ext_csd.enhanced_area_size = 290 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 291 ext_csd[140]; 292 card->ext_csd.enhanced_area_size *= 293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 294 card->ext_csd.enhanced_area_size <<= 9; 295 } else { 296 pr_warn("%s: defines enhanced area without partition setting complete\n", 297 mmc_hostname(card->host)); 298 } 299 } 300 } 301 302 static void mmc_part_add(struct mmc_card *card, unsigned int size, 303 unsigned int part_cfg, char *name, int idx, bool ro, 304 int area_type) 305 { 306 card->part[card->nr_parts].size = size; 307 card->part[card->nr_parts].part_cfg = part_cfg; 308 sprintf(card->part[card->nr_parts].name, name, idx); 309 card->part[card->nr_parts].force_ro = ro; 310 card->part[card->nr_parts].area_type = area_type; 311 card->nr_parts++; 312 } 313 314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 315 { 316 int idx; 317 u8 hc_erase_grp_sz, hc_wp_grp_sz; 318 unsigned int part_size; 319 320 /* 321 * General purpose partition feature support -- 322 * If ext_csd has the size of general purpose partitions, 323 * set size, part_cfg, partition name in mmc_part. 324 */ 325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 326 EXT_CSD_PART_SUPPORT_PART_EN) { 327 hc_erase_grp_sz = 328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 329 hc_wp_grp_sz = 330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 331 332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 336 continue; 337 if (card->ext_csd.partition_setting_completed == 0) { 338 pr_warn("%s: has partition size defined without partition complete\n", 339 mmc_hostname(card->host)); 340 break; 341 } 342 part_size = 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 344 << 16) + 345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 346 << 8) + 347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 348 part_size *= (size_t)(hc_erase_grp_sz * 349 hc_wp_grp_sz); 350 mmc_part_add(card, part_size << 19, 351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 352 "gp%d", idx, false, 353 MMC_BLK_DATA_AREA_GP); 354 } 355 } 356 } 357 358 /* Minimum partition switch timeout in milliseconds */ 359 #define MMC_MIN_PART_SWITCH_TIME 300 360 361 /* 362 * Decode extended CSD. 363 */ 364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 365 { 366 int err = 0, idx; 367 unsigned int part_size; 368 struct device_node *np; 369 bool broken_hpi = false; 370 371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 373 if (card->csd.structure == 3) { 374 if (card->ext_csd.raw_ext_csd_structure > 2) { 375 pr_err("%s: unrecognised EXT_CSD structure " 376 "version %d\n", mmc_hostname(card->host), 377 card->ext_csd.raw_ext_csd_structure); 378 err = -EINVAL; 379 goto out; 380 } 381 } 382 383 np = mmc_of_find_child_device(card->host, 0); 384 if (np && of_device_is_compatible(np, "mmc-card")) 385 broken_hpi = of_property_read_bool(np, "broken-hpi"); 386 of_node_put(np); 387 388 /* 389 * The EXT_CSD format is meant to be forward compatible. As long 390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 391 * are authorized, see JEDEC JESD84-B50 section B.8. 392 */ 393 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 394 395 /* fixup device after ext_csd revision field is updated */ 396 mmc_fixup_device(card, mmc_ext_csd_fixups); 397 398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 402 if (card->ext_csd.rev >= 2) { 403 card->ext_csd.sectors = 404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 408 409 /* Cards with density > 2GiB are sector addressed */ 410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 411 mmc_card_set_blockaddr(card); 412 } 413 414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 416 mmc_select_card_type(card); 417 418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 419 card->ext_csd.raw_erase_timeout_mult = 420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 421 card->ext_csd.raw_hc_erase_grp_size = 422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 423 if (card->ext_csd.rev >= 3) { 424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 426 427 /* EXT_CSD value is in units of 10ms, but we store in ms */ 428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 429 /* Some eMMC set the value too low so set a minimum */ 430 if (card->ext_csd.part_time && 431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 433 434 /* Sleep / awake timeout in 100ns units */ 435 if (sa_shift > 0 && sa_shift <= 0x17) 436 card->ext_csd.sa_timeout = 437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 438 card->ext_csd.erase_group_def = 439 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 440 card->ext_csd.hc_erase_timeout = 300 * 441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 442 card->ext_csd.hc_erase_size = 443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 444 445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 446 447 /* 448 * There are two boot regions of equal size, defined in 449 * multiples of 128K. 450 */ 451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 454 mmc_part_add(card, part_size, 455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 456 "boot%d", idx, true, 457 MMC_BLK_DATA_AREA_BOOT); 458 } 459 } 460 } 461 462 card->ext_csd.raw_hc_erase_gap_size = 463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 464 card->ext_csd.raw_sec_trim_mult = 465 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 466 card->ext_csd.raw_sec_erase_mult = 467 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 468 card->ext_csd.raw_sec_feature_support = 469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 470 card->ext_csd.raw_trim_mult = 471 ext_csd[EXT_CSD_TRIM_MULT]; 472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 474 if (card->ext_csd.rev >= 4) { 475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 476 EXT_CSD_PART_SETTING_COMPLETED) 477 card->ext_csd.partition_setting_completed = 1; 478 else 479 card->ext_csd.partition_setting_completed = 0; 480 481 mmc_manage_enhanced_area(card, ext_csd); 482 483 mmc_manage_gp_partitions(card, ext_csd); 484 485 card->ext_csd.sec_trim_mult = 486 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 487 card->ext_csd.sec_erase_mult = 488 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 489 card->ext_csd.sec_feature_support = 490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 491 card->ext_csd.trim_timeout = 300 * 492 ext_csd[EXT_CSD_TRIM_MULT]; 493 494 /* 495 * Note that the call to mmc_part_add above defaults to read 496 * only. If this default assumption is changed, the call must 497 * take into account the value of boot_locked below. 498 */ 499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 500 card->ext_csd.boot_ro_lockable = true; 501 502 /* Save power class values */ 503 card->ext_csd.raw_pwr_cl_52_195 = 504 ext_csd[EXT_CSD_PWR_CL_52_195]; 505 card->ext_csd.raw_pwr_cl_26_195 = 506 ext_csd[EXT_CSD_PWR_CL_26_195]; 507 card->ext_csd.raw_pwr_cl_52_360 = 508 ext_csd[EXT_CSD_PWR_CL_52_360]; 509 card->ext_csd.raw_pwr_cl_26_360 = 510 ext_csd[EXT_CSD_PWR_CL_26_360]; 511 card->ext_csd.raw_pwr_cl_200_195 = 512 ext_csd[EXT_CSD_PWR_CL_200_195]; 513 card->ext_csd.raw_pwr_cl_200_360 = 514 ext_csd[EXT_CSD_PWR_CL_200_360]; 515 card->ext_csd.raw_pwr_cl_ddr_52_195 = 516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 517 card->ext_csd.raw_pwr_cl_ddr_52_360 = 518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 519 card->ext_csd.raw_pwr_cl_ddr_200_360 = 520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 521 } 522 523 if (card->ext_csd.rev >= 5) { 524 /* Adjust production date as per JEDEC JESD84-B451 */ 525 if (card->cid.year < 2010) 526 card->cid.year += 16; 527 528 /* check whether the eMMC card supports BKOPS */ 529 if (!mmc_card_broken_hpi(card) && 530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 531 card->ext_csd.bkops = 1; 532 card->ext_csd.man_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_MANUAL_BKOPS_MASK); 535 card->ext_csd.raw_bkops_status = 536 ext_csd[EXT_CSD_BKOPS_STATUS]; 537 if (card->ext_csd.man_bkops_en) 538 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 539 mmc_hostname(card->host)); 540 card->ext_csd.auto_bkops_en = 541 (ext_csd[EXT_CSD_BKOPS_EN] & 542 EXT_CSD_AUTO_BKOPS_MASK); 543 if (card->ext_csd.auto_bkops_en) 544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 545 mmc_hostname(card->host)); 546 } 547 548 /* check whether the eMMC card supports HPI */ 549 if (!mmc_card_broken_hpi(card) && 550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 551 card->ext_csd.hpi = 1; 552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 554 else 555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 556 /* 557 * Indicate the maximum timeout to close 558 * a command interrupted by HPI 559 */ 560 card->ext_csd.out_of_int_time = 561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 562 } 563 564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 566 567 /* 568 * RPMB regions are defined in multiples of 128K. 569 */ 570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 573 EXT_CSD_PART_CONFIG_ACC_RPMB, 574 "rpmb", 0, false, 575 MMC_BLK_DATA_AREA_RPMB); 576 } 577 } 578 579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 581 card->erased_byte = 0xFF; 582 else 583 card->erased_byte = 0x0; 584 585 /* eMMC v4.5 or later */ 586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 587 if (card->ext_csd.rev >= 6) { 588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 589 590 card->ext_csd.generic_cmd6_time = 10 * 591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 592 card->ext_csd.power_off_longtime = 10 * 593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 594 595 card->ext_csd.cache_size = 596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 600 601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 602 card->ext_csd.data_sector_size = 4096; 603 else 604 card->ext_csd.data_sector_size = 512; 605 606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 608 card->ext_csd.data_tag_unit_size = 609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 610 (card->ext_csd.data_sector_size); 611 } else { 612 card->ext_csd.data_tag_unit_size = 0; 613 } 614 615 card->ext_csd.max_packed_writes = 616 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 617 card->ext_csd.max_packed_reads = 618 ext_csd[EXT_CSD_MAX_PACKED_READS]; 619 } else { 620 card->ext_csd.data_sector_size = 512; 621 } 622 623 /* eMMC v5 or later */ 624 if (card->ext_csd.rev >= 7) { 625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 626 MMC_FIRMWARE_LEN); 627 card->ext_csd.ffu_capable = 628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 630 631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 632 card->ext_csd.device_life_time_est_typ_a = 633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 634 card->ext_csd.device_life_time_est_typ_b = 635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 636 } 637 638 /* eMMC v5.1 or later */ 639 if (card->ext_csd.rev >= 8) { 640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 641 EXT_CSD_CMDQ_SUPPORTED; 642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 643 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 644 /* Exclude inefficiently small queue depths */ 645 if (card->ext_csd.cmdq_depth <= 2) { 646 card->ext_csd.cmdq_support = false; 647 card->ext_csd.cmdq_depth = 0; 648 } 649 if (card->ext_csd.cmdq_support) { 650 pr_debug("%s: Command Queue supported depth %u\n", 651 mmc_hostname(card->host), 652 card->ext_csd.cmdq_depth); 653 } 654 } 655 out: 656 return err; 657 } 658 659 static int mmc_read_ext_csd(struct mmc_card *card) 660 { 661 u8 *ext_csd; 662 int err; 663 664 if (!mmc_can_ext_csd(card)) 665 return 0; 666 667 err = mmc_get_ext_csd(card, &ext_csd); 668 if (err) { 669 /* If the host or the card can't do the switch, 670 * fail more gracefully. */ 671 if ((err != -EINVAL) 672 && (err != -ENOSYS) 673 && (err != -EFAULT)) 674 return err; 675 676 /* 677 * High capacity cards should have this "magic" size 678 * stored in their CSD. 679 */ 680 if (card->csd.capacity == (4096 * 512)) { 681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 682 mmc_hostname(card->host)); 683 } else { 684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 685 mmc_hostname(card->host)); 686 err = 0; 687 } 688 689 return err; 690 } 691 692 err = mmc_decode_ext_csd(card, ext_csd); 693 kfree(ext_csd); 694 return err; 695 } 696 697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 698 { 699 u8 *bw_ext_csd; 700 int err; 701 702 if (bus_width == MMC_BUS_WIDTH_1) 703 return 0; 704 705 err = mmc_get_ext_csd(card, &bw_ext_csd); 706 if (err) 707 return err; 708 709 /* only compare read only fields */ 710 err = !((card->ext_csd.raw_partition_support == 711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 712 (card->ext_csd.raw_erased_mem_count == 713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 714 (card->ext_csd.rev == 715 bw_ext_csd[EXT_CSD_REV]) && 716 (card->ext_csd.raw_ext_csd_structure == 717 bw_ext_csd[EXT_CSD_STRUCTURE]) && 718 (card->ext_csd.raw_card_type == 719 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 720 (card->ext_csd.raw_s_a_timeout == 721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 722 (card->ext_csd.raw_hc_erase_gap_size == 723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 724 (card->ext_csd.raw_erase_timeout_mult == 725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 726 (card->ext_csd.raw_hc_erase_grp_size == 727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 728 (card->ext_csd.raw_sec_trim_mult == 729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 730 (card->ext_csd.raw_sec_erase_mult == 731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 732 (card->ext_csd.raw_sec_feature_support == 733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 734 (card->ext_csd.raw_trim_mult == 735 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 736 (card->ext_csd.raw_sectors[0] == 737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 738 (card->ext_csd.raw_sectors[1] == 739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 740 (card->ext_csd.raw_sectors[2] == 741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 742 (card->ext_csd.raw_sectors[3] == 743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 744 (card->ext_csd.raw_pwr_cl_52_195 == 745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 746 (card->ext_csd.raw_pwr_cl_26_195 == 747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 748 (card->ext_csd.raw_pwr_cl_52_360 == 749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 750 (card->ext_csd.raw_pwr_cl_26_360 == 751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 752 (card->ext_csd.raw_pwr_cl_200_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 754 (card->ext_csd.raw_pwr_cl_200_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 756 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 758 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 760 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 762 763 if (err) 764 err = -EINVAL; 765 766 kfree(bw_ext_csd); 767 return err; 768 } 769 770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 771 card->raw_cid[2], card->raw_cid[3]); 772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 773 card->raw_csd[2], card->raw_csd[3]); 774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 786 card->ext_csd.device_life_time_est_typ_a, 787 card->ext_csd.device_life_time_est_typ_b); 788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 790 card->ext_csd.enhanced_area_offset); 791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 797 798 static ssize_t mmc_fwrev_show(struct device *dev, 799 struct device_attribute *attr, 800 char *buf) 801 { 802 struct mmc_card *card = mmc_dev_to_card(dev); 803 804 if (card->ext_csd.rev < 7) { 805 return sprintf(buf, "0x%x\n", card->cid.fwrev); 806 } else { 807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 808 card->ext_csd.fwrev); 809 } 810 } 811 812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 813 814 static ssize_t mmc_dsr_show(struct device *dev, 815 struct device_attribute *attr, 816 char *buf) 817 { 818 struct mmc_card *card = mmc_dev_to_card(dev); 819 struct mmc_host *host = card->host; 820 821 if (card->csd.dsr_imp && host->dsr_req) 822 return sprintf(buf, "0x%x\n", host->dsr); 823 else 824 /* return default DSR value */ 825 return sprintf(buf, "0x%x\n", 0x404); 826 } 827 828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 829 830 static struct attribute *mmc_std_attrs[] = { 831 &dev_attr_cid.attr, 832 &dev_attr_csd.attr, 833 &dev_attr_date.attr, 834 &dev_attr_erase_size.attr, 835 &dev_attr_preferred_erase_size.attr, 836 &dev_attr_fwrev.attr, 837 &dev_attr_ffu_capable.attr, 838 &dev_attr_hwrev.attr, 839 &dev_attr_manfid.attr, 840 &dev_attr_name.attr, 841 &dev_attr_oemid.attr, 842 &dev_attr_prv.attr, 843 &dev_attr_rev.attr, 844 &dev_attr_pre_eol_info.attr, 845 &dev_attr_life_time.attr, 846 &dev_attr_serial.attr, 847 &dev_attr_enhanced_area_offset.attr, 848 &dev_attr_enhanced_area_size.attr, 849 &dev_attr_raw_rpmb_size_mult.attr, 850 &dev_attr_rel_sectors.attr, 851 &dev_attr_ocr.attr, 852 &dev_attr_rca.attr, 853 &dev_attr_dsr.attr, 854 &dev_attr_cmdq_en.attr, 855 NULL, 856 }; 857 ATTRIBUTE_GROUPS(mmc_std); 858 859 static struct device_type mmc_type = { 860 .groups = mmc_std_groups, 861 }; 862 863 /* 864 * Select the PowerClass for the current bus width 865 * If power class is defined for 4/8 bit bus in the 866 * extended CSD register, select it by executing the 867 * mmc_switch command. 868 */ 869 static int __mmc_select_powerclass(struct mmc_card *card, 870 unsigned int bus_width) 871 { 872 struct mmc_host *host = card->host; 873 struct mmc_ext_csd *ext_csd = &card->ext_csd; 874 unsigned int pwrclass_val = 0; 875 int err = 0; 876 877 switch (1 << host->ios.vdd) { 878 case MMC_VDD_165_195: 879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 880 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 883 ext_csd->raw_pwr_cl_52_195 : 884 ext_csd->raw_pwr_cl_ddr_52_195; 885 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 886 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 887 break; 888 case MMC_VDD_27_28: 889 case MMC_VDD_28_29: 890 case MMC_VDD_29_30: 891 case MMC_VDD_30_31: 892 case MMC_VDD_31_32: 893 case MMC_VDD_32_33: 894 case MMC_VDD_33_34: 895 case MMC_VDD_34_35: 896 case MMC_VDD_35_36: 897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 898 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 901 ext_csd->raw_pwr_cl_52_360 : 902 ext_csd->raw_pwr_cl_ddr_52_360; 903 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 905 ext_csd->raw_pwr_cl_ddr_200_360 : 906 ext_csd->raw_pwr_cl_200_360; 907 break; 908 default: 909 pr_warn("%s: Voltage range not supported for power class\n", 910 mmc_hostname(host)); 911 return -EINVAL; 912 } 913 914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 916 EXT_CSD_PWR_CL_8BIT_SHIFT; 917 else 918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 919 EXT_CSD_PWR_CL_4BIT_SHIFT; 920 921 /* If the power class is different from the default value */ 922 if (pwrclass_val > 0) { 923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 924 EXT_CSD_POWER_CLASS, 925 pwrclass_val, 926 card->ext_csd.generic_cmd6_time); 927 } 928 929 return err; 930 } 931 932 static int mmc_select_powerclass(struct mmc_card *card) 933 { 934 struct mmc_host *host = card->host; 935 u32 bus_width, ext_csd_bits; 936 int err, ddr; 937 938 /* Power class selection is supported for versions >= 4.0 */ 939 if (!mmc_can_ext_csd(card)) 940 return 0; 941 942 bus_width = host->ios.bus_width; 943 /* Power class values are defined only for 4/8 bit bus */ 944 if (bus_width == MMC_BUS_WIDTH_1) 945 return 0; 946 947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 948 if (ddr) 949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 951 else 952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 954 955 err = __mmc_select_powerclass(card, ext_csd_bits); 956 if (err) 957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 958 mmc_hostname(host), 1 << bus_width, ddr); 959 960 return err; 961 } 962 963 /* 964 * Set the bus speed for the selected speed mode. 965 */ 966 static void mmc_set_bus_speed(struct mmc_card *card) 967 { 968 unsigned int max_dtr = (unsigned int)-1; 969 970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 971 max_dtr > card->ext_csd.hs200_max_dtr) 972 max_dtr = card->ext_csd.hs200_max_dtr; 973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 974 max_dtr = card->ext_csd.hs_max_dtr; 975 else if (max_dtr > card->csd.max_dtr) 976 max_dtr = card->csd.max_dtr; 977 978 mmc_set_clock(card->host, max_dtr); 979 } 980 981 /* 982 * Select the bus width amoung 4-bit and 8-bit(SDR). 983 * If the bus width is changed successfully, return the selected width value. 984 * Zero is returned instead of error value if the wide width is not supported. 985 */ 986 static int mmc_select_bus_width(struct mmc_card *card) 987 { 988 static unsigned ext_csd_bits[] = { 989 EXT_CSD_BUS_WIDTH_8, 990 EXT_CSD_BUS_WIDTH_4, 991 }; 992 static unsigned bus_widths[] = { 993 MMC_BUS_WIDTH_8, 994 MMC_BUS_WIDTH_4, 995 }; 996 struct mmc_host *host = card->host; 997 unsigned idx, bus_width = 0; 998 int err = 0; 999 1000 if (!mmc_can_ext_csd(card) || 1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1002 return 0; 1003 1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1005 1006 /* 1007 * Unlike SD, MMC cards dont have a configuration register to notify 1008 * supported bus width. So bus test command should be run to identify 1009 * the supported bus width or compare the ext csd values of current 1010 * bus width and ext csd values of 1 bit mode read earlier. 1011 */ 1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1013 /* 1014 * Host is capable of 8bit transfer, then switch 1015 * the device to work in 8bit transfer mode. If the 1016 * mmc switch command returns error then switch to 1017 * 4bit transfer mode. On success set the corresponding 1018 * bus width on the host. 1019 */ 1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1021 EXT_CSD_BUS_WIDTH, 1022 ext_csd_bits[idx], 1023 card->ext_csd.generic_cmd6_time); 1024 if (err) 1025 continue; 1026 1027 bus_width = bus_widths[idx]; 1028 mmc_set_bus_width(host, bus_width); 1029 1030 /* 1031 * If controller can't handle bus width test, 1032 * compare ext_csd previously read in 1 bit mode 1033 * against ext_csd at new bus width 1034 */ 1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1036 err = mmc_compare_ext_csds(card, bus_width); 1037 else 1038 err = mmc_bus_test(card, bus_width); 1039 1040 if (!err) { 1041 err = bus_width; 1042 break; 1043 } else { 1044 pr_warn("%s: switch to bus width %d failed\n", 1045 mmc_hostname(host), 1 << bus_width); 1046 } 1047 } 1048 1049 return err; 1050 } 1051 1052 /* 1053 * Switch to the high-speed mode 1054 */ 1055 static int mmc_select_hs(struct mmc_card *card) 1056 { 1057 int err; 1058 1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1062 true, true, true); 1063 if (err) 1064 pr_warn("%s: switch to high-speed failed, err:%d\n", 1065 mmc_hostname(card->host), err); 1066 1067 return err; 1068 } 1069 1070 /* 1071 * Activate wide bus and DDR if supported. 1072 */ 1073 static int mmc_select_hs_ddr(struct mmc_card *card) 1074 { 1075 struct mmc_host *host = card->host; 1076 u32 bus_width, ext_csd_bits; 1077 int err = 0; 1078 1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1080 return 0; 1081 1082 bus_width = host->ios.bus_width; 1083 if (bus_width == MMC_BUS_WIDTH_1) 1084 return 0; 1085 1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1088 1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1090 EXT_CSD_BUS_WIDTH, 1091 ext_csd_bits, 1092 card->ext_csd.generic_cmd6_time, 1093 MMC_TIMING_MMC_DDR52, 1094 true, true, true); 1095 if (err) { 1096 pr_err("%s: switch to bus width %d ddr failed\n", 1097 mmc_hostname(host), 1 << bus_width); 1098 return err; 1099 } 1100 1101 /* 1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1103 * signaling. 1104 * 1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1106 * 1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1108 * in the JEDEC spec for DDR. 1109 * 1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1111 * host controller can support this, like some of the SDHCI 1112 * controller which connect to an eMMC device. Some of these 1113 * host controller still needs to use 1.8v vccq for supporting 1114 * DDR mode. 1115 * 1116 * So the sequence will be: 1117 * if (host and device can both support 1.2v IO) 1118 * use 1.2v IO; 1119 * else if (host and device can both support 1.8v IO) 1120 * use 1.8v IO; 1121 * so if host and device can only support 3.3v IO, this is the 1122 * last choice. 1123 * 1124 * WARNING: eMMC rules are NOT the same as SD DDR 1125 */ 1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1128 if (!err) 1129 return 0; 1130 } 1131 1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1133 host->caps & MMC_CAP_1_8V_DDR) 1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1135 1136 /* make sure vccq is 3.3v after switching disaster */ 1137 if (err) 1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1139 1140 return err; 1141 } 1142 1143 static int mmc_select_hs400(struct mmc_card *card) 1144 { 1145 struct mmc_host *host = card->host; 1146 unsigned int max_dtr; 1147 int err = 0; 1148 u8 val; 1149 1150 /* 1151 * HS400 mode requires 8-bit bus width 1152 */ 1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1154 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1155 return 0; 1156 1157 /* Switch card to HS mode */ 1158 val = EXT_CSD_TIMING_HS; 1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1160 EXT_CSD_HS_TIMING, val, 1161 card->ext_csd.generic_cmd6_time, 0, 1162 true, false, true); 1163 if (err) { 1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1165 mmc_hostname(host), err); 1166 return err; 1167 } 1168 1169 /* Set host controller to HS timing */ 1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1171 1172 /* Prepare host to downgrade to HS timing */ 1173 if (host->ops->hs400_downgrade) 1174 host->ops->hs400_downgrade(host); 1175 1176 /* Reduce frequency to HS frequency */ 1177 max_dtr = card->ext_csd.hs_max_dtr; 1178 mmc_set_clock(host, max_dtr); 1179 1180 err = mmc_switch_status(card); 1181 if (err) 1182 goto out_err; 1183 1184 /* Switch card to DDR */ 1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1186 EXT_CSD_BUS_WIDTH, 1187 EXT_CSD_DDR_BUS_WIDTH_8, 1188 card->ext_csd.generic_cmd6_time); 1189 if (err) { 1190 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1191 mmc_hostname(host), err); 1192 return err; 1193 } 1194 1195 /* Switch card to HS400 */ 1196 val = EXT_CSD_TIMING_HS400 | 1197 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1198 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1199 EXT_CSD_HS_TIMING, val, 1200 card->ext_csd.generic_cmd6_time, 0, 1201 true, false, true); 1202 if (err) { 1203 pr_err("%s: switch to hs400 failed, err:%d\n", 1204 mmc_hostname(host), err); 1205 return err; 1206 } 1207 1208 /* Set host controller to HS400 timing and frequency */ 1209 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1210 mmc_set_bus_speed(card); 1211 1212 err = mmc_switch_status(card); 1213 if (err) 1214 goto out_err; 1215 1216 if (host->ops->hs400_complete) 1217 host->ops->hs400_complete(host); 1218 1219 return 0; 1220 1221 out_err: 1222 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1223 __func__, err); 1224 return err; 1225 } 1226 1227 int mmc_hs200_to_hs400(struct mmc_card *card) 1228 { 1229 return mmc_select_hs400(card); 1230 } 1231 1232 int mmc_hs400_to_hs200(struct mmc_card *card) 1233 { 1234 struct mmc_host *host = card->host; 1235 unsigned int max_dtr; 1236 int err; 1237 u8 val; 1238 1239 /* Reduce frequency to HS */ 1240 max_dtr = card->ext_csd.hs_max_dtr; 1241 mmc_set_clock(host, max_dtr); 1242 1243 /* Switch HS400 to HS DDR */ 1244 val = EXT_CSD_TIMING_HS; 1245 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1246 val, card->ext_csd.generic_cmd6_time, 0, 1247 true, false, true); 1248 if (err) 1249 goto out_err; 1250 1251 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1252 1253 err = mmc_switch_status(card); 1254 if (err) 1255 goto out_err; 1256 1257 /* Switch HS DDR to HS */ 1258 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1259 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1260 0, true, false, true); 1261 if (err) 1262 goto out_err; 1263 1264 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1265 1266 if (host->ops->hs400_downgrade) 1267 host->ops->hs400_downgrade(host); 1268 1269 err = mmc_switch_status(card); 1270 if (err) 1271 goto out_err; 1272 1273 /* Switch HS to HS200 */ 1274 val = EXT_CSD_TIMING_HS200 | 1275 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1276 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1277 val, card->ext_csd.generic_cmd6_time, 0, 1278 true, false, true); 1279 if (err) 1280 goto out_err; 1281 1282 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1283 1284 /* 1285 * For HS200, CRC errors are not a reliable way to know the switch 1286 * failed. If there really is a problem, we would expect tuning will 1287 * fail and the result ends up the same. 1288 */ 1289 err = __mmc_switch_status(card, false); 1290 if (err) 1291 goto out_err; 1292 1293 mmc_set_bus_speed(card); 1294 1295 /* Prepare tuning for HS400 mode. */ 1296 if (host->ops->prepare_hs400_tuning) 1297 host->ops->prepare_hs400_tuning(host, &host->ios); 1298 1299 return 0; 1300 1301 out_err: 1302 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1303 __func__, err); 1304 return err; 1305 } 1306 1307 static void mmc_select_driver_type(struct mmc_card *card) 1308 { 1309 int card_drv_type, drive_strength, drv_type = 0; 1310 int fixed_drv_type = card->host->fixed_drv_type; 1311 1312 card_drv_type = card->ext_csd.raw_driver_strength | 1313 mmc_driver_type_mask(0); 1314 1315 if (fixed_drv_type >= 0) 1316 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1317 ? fixed_drv_type : 0; 1318 else 1319 drive_strength = mmc_select_drive_strength(card, 1320 card->ext_csd.hs200_max_dtr, 1321 card_drv_type, &drv_type); 1322 1323 card->drive_strength = drive_strength; 1324 1325 if (drv_type) 1326 mmc_set_driver_type(card->host, drv_type); 1327 } 1328 1329 static int mmc_select_hs400es(struct mmc_card *card) 1330 { 1331 struct mmc_host *host = card->host; 1332 int err = -EINVAL; 1333 u8 val; 1334 1335 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1336 err = -ENOTSUPP; 1337 goto out_err; 1338 } 1339 1340 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1341 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1342 1343 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1344 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1345 1346 /* If fails try again during next card power cycle */ 1347 if (err) 1348 goto out_err; 1349 1350 err = mmc_select_bus_width(card); 1351 if (err != MMC_BUS_WIDTH_8) { 1352 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1353 mmc_hostname(host), err); 1354 err = err < 0 ? err : -ENOTSUPP; 1355 goto out_err; 1356 } 1357 1358 /* Switch card to HS mode */ 1359 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1360 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1361 card->ext_csd.generic_cmd6_time, 0, 1362 true, false, true); 1363 if (err) { 1364 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1365 mmc_hostname(host), err); 1366 goto out_err; 1367 } 1368 1369 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1370 err = mmc_switch_status(card); 1371 if (err) 1372 goto out_err; 1373 1374 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1375 1376 /* Switch card to DDR with strobe bit */ 1377 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1378 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1379 EXT_CSD_BUS_WIDTH, 1380 val, 1381 card->ext_csd.generic_cmd6_time); 1382 if (err) { 1383 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1384 mmc_hostname(host), err); 1385 goto out_err; 1386 } 1387 1388 mmc_select_driver_type(card); 1389 1390 /* Switch card to HS400 */ 1391 val = EXT_CSD_TIMING_HS400 | 1392 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1393 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1394 EXT_CSD_HS_TIMING, val, 1395 card->ext_csd.generic_cmd6_time, 0, 1396 true, false, true); 1397 if (err) { 1398 pr_err("%s: switch to hs400es failed, err:%d\n", 1399 mmc_hostname(host), err); 1400 goto out_err; 1401 } 1402 1403 /* Set host controller to HS400 timing and frequency */ 1404 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1405 1406 /* Controller enable enhanced strobe function */ 1407 host->ios.enhanced_strobe = true; 1408 if (host->ops->hs400_enhanced_strobe) 1409 host->ops->hs400_enhanced_strobe(host, &host->ios); 1410 1411 err = mmc_switch_status(card); 1412 if (err) 1413 goto out_err; 1414 1415 return 0; 1416 1417 out_err: 1418 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1419 __func__, err); 1420 return err; 1421 } 1422 1423 /* 1424 * For device supporting HS200 mode, the following sequence 1425 * should be done before executing the tuning process. 1426 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1427 * 2. switch to HS200 mode 1428 * 3. set the clock to > 52Mhz and <=200MHz 1429 */ 1430 static int mmc_select_hs200(struct mmc_card *card) 1431 { 1432 struct mmc_host *host = card->host; 1433 unsigned int old_timing, old_signal_voltage; 1434 int err = -EINVAL; 1435 u8 val; 1436 1437 old_signal_voltage = host->ios.signal_voltage; 1438 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1439 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1440 1441 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1442 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1443 1444 /* If fails try again during next card power cycle */ 1445 if (err) 1446 return err; 1447 1448 mmc_select_driver_type(card); 1449 1450 /* 1451 * Set the bus width(4 or 8) with host's support and 1452 * switch to HS200 mode if bus width is set successfully. 1453 */ 1454 err = mmc_select_bus_width(card); 1455 if (err > 0) { 1456 val = EXT_CSD_TIMING_HS200 | 1457 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1458 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1459 EXT_CSD_HS_TIMING, val, 1460 card->ext_csd.generic_cmd6_time, 0, 1461 true, false, true); 1462 if (err) 1463 goto err; 1464 old_timing = host->ios.timing; 1465 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1466 1467 /* 1468 * For HS200, CRC errors are not a reliable way to know the 1469 * switch failed. If there really is a problem, we would expect 1470 * tuning will fail and the result ends up the same. 1471 */ 1472 err = __mmc_switch_status(card, false); 1473 1474 /* 1475 * mmc_select_timing() assumes timing has not changed if 1476 * it is a switch error. 1477 */ 1478 if (err == -EBADMSG) 1479 mmc_set_timing(host, old_timing); 1480 } 1481 err: 1482 if (err) { 1483 /* fall back to the old signal voltage, if fails report error */ 1484 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1485 err = -EIO; 1486 1487 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1488 __func__, err); 1489 } 1490 return err; 1491 } 1492 1493 /* 1494 * Activate High Speed, HS200 or HS400ES mode if supported. 1495 */ 1496 static int mmc_select_timing(struct mmc_card *card) 1497 { 1498 int err = 0; 1499 1500 if (!mmc_can_ext_csd(card)) 1501 goto bus_speed; 1502 1503 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1504 err = mmc_select_hs400es(card); 1505 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1506 err = mmc_select_hs200(card); 1507 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1508 err = mmc_select_hs(card); 1509 1510 if (err && err != -EBADMSG) 1511 return err; 1512 1513 bus_speed: 1514 /* 1515 * Set the bus speed to the selected bus timing. 1516 * If timing is not selected, backward compatible is the default. 1517 */ 1518 mmc_set_bus_speed(card); 1519 return 0; 1520 } 1521 1522 /* 1523 * Execute tuning sequence to seek the proper bus operating 1524 * conditions for HS200 and HS400, which sends CMD21 to the device. 1525 */ 1526 static int mmc_hs200_tuning(struct mmc_card *card) 1527 { 1528 struct mmc_host *host = card->host; 1529 1530 /* 1531 * Timing should be adjusted to the HS400 target 1532 * operation frequency for tuning process 1533 */ 1534 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1535 host->ios.bus_width == MMC_BUS_WIDTH_8) 1536 if (host->ops->prepare_hs400_tuning) 1537 host->ops->prepare_hs400_tuning(host, &host->ios); 1538 1539 return mmc_execute_tuning(card); 1540 } 1541 1542 /* 1543 * Handle the detection and initialisation of a card. 1544 * 1545 * In the case of a resume, "oldcard" will contain the card 1546 * we're trying to reinitialise. 1547 */ 1548 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1549 struct mmc_card *oldcard) 1550 { 1551 struct mmc_card *card; 1552 int err; 1553 u32 cid[4]; 1554 u32 rocr; 1555 1556 WARN_ON(!host->claimed); 1557 1558 /* Set correct bus mode for MMC before attempting init */ 1559 if (!mmc_host_is_spi(host)) 1560 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1561 1562 /* 1563 * Since we're changing the OCR value, we seem to 1564 * need to tell some cards to go back to the idle 1565 * state. We wait 1ms to give cards time to 1566 * respond. 1567 * mmc_go_idle is needed for eMMC that are asleep 1568 */ 1569 mmc_go_idle(host); 1570 1571 /* The extra bit indicates that we support high capacity */ 1572 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1573 if (err) 1574 goto err; 1575 1576 /* 1577 * For SPI, enable CRC as appropriate. 1578 */ 1579 if (mmc_host_is_spi(host)) { 1580 err = mmc_spi_set_crc(host, use_spi_crc); 1581 if (err) 1582 goto err; 1583 } 1584 1585 /* 1586 * Fetch CID from card. 1587 */ 1588 err = mmc_send_cid(host, cid); 1589 if (err) 1590 goto err; 1591 1592 if (oldcard) { 1593 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1594 err = -ENOENT; 1595 goto err; 1596 } 1597 1598 card = oldcard; 1599 } else { 1600 /* 1601 * Allocate card structure. 1602 */ 1603 card = mmc_alloc_card(host, &mmc_type); 1604 if (IS_ERR(card)) { 1605 err = PTR_ERR(card); 1606 goto err; 1607 } 1608 1609 card->ocr = ocr; 1610 card->type = MMC_TYPE_MMC; 1611 card->rca = 1; 1612 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1613 } 1614 1615 /* 1616 * Call the optional HC's init_card function to handle quirks. 1617 */ 1618 if (host->ops->init_card) 1619 host->ops->init_card(host, card); 1620 1621 /* 1622 * For native busses: set card RCA and quit open drain mode. 1623 */ 1624 if (!mmc_host_is_spi(host)) { 1625 err = mmc_set_relative_addr(card); 1626 if (err) 1627 goto free_card; 1628 1629 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1630 } 1631 1632 if (!oldcard) { 1633 /* 1634 * Fetch CSD from card. 1635 */ 1636 err = mmc_send_csd(card, card->raw_csd); 1637 if (err) 1638 goto free_card; 1639 1640 err = mmc_decode_csd(card); 1641 if (err) 1642 goto free_card; 1643 err = mmc_decode_cid(card); 1644 if (err) 1645 goto free_card; 1646 } 1647 1648 /* 1649 * handling only for cards supporting DSR and hosts requesting 1650 * DSR configuration 1651 */ 1652 if (card->csd.dsr_imp && host->dsr_req) 1653 mmc_set_dsr(host); 1654 1655 /* 1656 * Select card, as all following commands rely on that. 1657 */ 1658 if (!mmc_host_is_spi(host)) { 1659 err = mmc_select_card(card); 1660 if (err) 1661 goto free_card; 1662 } 1663 1664 if (!oldcard) { 1665 /* Read extended CSD. */ 1666 err = mmc_read_ext_csd(card); 1667 if (err) 1668 goto free_card; 1669 1670 /* 1671 * If doing byte addressing, check if required to do sector 1672 * addressing. Handle the case of <2GB cards needing sector 1673 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1674 * ocr register has bit 30 set for sector addressing. 1675 */ 1676 if (rocr & BIT(30)) 1677 mmc_card_set_blockaddr(card); 1678 1679 /* Erase size depends on CSD and Extended CSD */ 1680 mmc_set_erase_size(card); 1681 } 1682 1683 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1684 if (card->ext_csd.rev >= 3) { 1685 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1686 EXT_CSD_ERASE_GROUP_DEF, 1, 1687 card->ext_csd.generic_cmd6_time); 1688 1689 if (err && err != -EBADMSG) 1690 goto free_card; 1691 1692 if (err) { 1693 err = 0; 1694 /* 1695 * Just disable enhanced area off & sz 1696 * will try to enable ERASE_GROUP_DEF 1697 * during next time reinit 1698 */ 1699 card->ext_csd.enhanced_area_offset = -EINVAL; 1700 card->ext_csd.enhanced_area_size = -EINVAL; 1701 } else { 1702 card->ext_csd.erase_group_def = 1; 1703 /* 1704 * enable ERASE_GRP_DEF successfully. 1705 * This will affect the erase size, so 1706 * here need to reset erase size 1707 */ 1708 mmc_set_erase_size(card); 1709 } 1710 } 1711 1712 /* 1713 * Ensure eMMC user default partition is enabled 1714 */ 1715 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1716 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1717 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1718 card->ext_csd.part_config, 1719 card->ext_csd.part_time); 1720 if (err && err != -EBADMSG) 1721 goto free_card; 1722 } 1723 1724 /* 1725 * Enable power_off_notification byte in the ext_csd register 1726 */ 1727 if (card->ext_csd.rev >= 6) { 1728 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1729 EXT_CSD_POWER_OFF_NOTIFICATION, 1730 EXT_CSD_POWER_ON, 1731 card->ext_csd.generic_cmd6_time); 1732 if (err && err != -EBADMSG) 1733 goto free_card; 1734 1735 /* 1736 * The err can be -EBADMSG or 0, 1737 * so check for success and update the flag 1738 */ 1739 if (!err) 1740 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1741 } 1742 1743 /* 1744 * Select timing interface 1745 */ 1746 err = mmc_select_timing(card); 1747 if (err) 1748 goto free_card; 1749 1750 if (mmc_card_hs200(card)) { 1751 err = mmc_hs200_tuning(card); 1752 if (err) 1753 goto free_card; 1754 1755 err = mmc_select_hs400(card); 1756 if (err) 1757 goto free_card; 1758 } else if (!mmc_card_hs400es(card)) { 1759 /* Select the desired bus width optionally */ 1760 err = mmc_select_bus_width(card); 1761 if (err > 0 && mmc_card_hs(card)) { 1762 err = mmc_select_hs_ddr(card); 1763 if (err) 1764 goto free_card; 1765 } 1766 } 1767 1768 /* 1769 * Choose the power class with selected bus interface 1770 */ 1771 mmc_select_powerclass(card); 1772 1773 /* 1774 * Enable HPI feature (if supported) 1775 */ 1776 if (card->ext_csd.hpi) { 1777 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1778 EXT_CSD_HPI_MGMT, 1, 1779 card->ext_csd.generic_cmd6_time); 1780 if (err && err != -EBADMSG) 1781 goto free_card; 1782 if (err) { 1783 pr_warn("%s: Enabling HPI failed\n", 1784 mmc_hostname(card->host)); 1785 err = 0; 1786 } else 1787 card->ext_csd.hpi_en = 1; 1788 } 1789 1790 /* 1791 * If cache size is higher than 0, this indicates 1792 * the existence of cache and it can be turned on. 1793 */ 1794 if (!mmc_card_broken_hpi(card) && 1795 card->ext_csd.cache_size > 0) { 1796 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1797 EXT_CSD_CACHE_CTRL, 1, 1798 card->ext_csd.generic_cmd6_time); 1799 if (err && err != -EBADMSG) 1800 goto free_card; 1801 1802 /* 1803 * Only if no error, cache is turned on successfully. 1804 */ 1805 if (err) { 1806 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1807 mmc_hostname(card->host), err); 1808 card->ext_csd.cache_ctrl = 0; 1809 err = 0; 1810 } else { 1811 card->ext_csd.cache_ctrl = 1; 1812 } 1813 } 1814 1815 /* 1816 * Enable Command Queue if supported. Note that Packed Commands cannot 1817 * be used with Command Queue. 1818 */ 1819 card->ext_csd.cmdq_en = false; 1820 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1821 err = mmc_cmdq_enable(card); 1822 if (err && err != -EBADMSG) 1823 goto free_card; 1824 if (err) { 1825 pr_warn("%s: Enabling CMDQ failed\n", 1826 mmc_hostname(card->host)); 1827 card->ext_csd.cmdq_support = false; 1828 card->ext_csd.cmdq_depth = 0; 1829 err = 0; 1830 } 1831 } 1832 /* 1833 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1834 * disabled for a time, so a flag is needed to indicate to re-enable the 1835 * Command Queue. 1836 */ 1837 card->reenable_cmdq = card->ext_csd.cmdq_en; 1838 1839 if (card->ext_csd.cmdq_en && !host->cqe_enabled) { 1840 err = host->cqe_ops->cqe_enable(host, card); 1841 if (err) { 1842 pr_err("%s: Failed to enable CQE, error %d\n", 1843 mmc_hostname(host), err); 1844 } else { 1845 host->cqe_enabled = true; 1846 pr_info("%s: Command Queue Engine enabled\n", 1847 mmc_hostname(host)); 1848 } 1849 } 1850 1851 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1852 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1853 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1854 mmc_hostname(host)); 1855 err = -EINVAL; 1856 goto free_card; 1857 } 1858 1859 if (!oldcard) 1860 host->card = card; 1861 1862 return 0; 1863 1864 free_card: 1865 if (!oldcard) 1866 mmc_remove_card(card); 1867 err: 1868 return err; 1869 } 1870 1871 static int mmc_can_sleep(struct mmc_card *card) 1872 { 1873 return (card && card->ext_csd.rev >= 3); 1874 } 1875 1876 static int mmc_sleep(struct mmc_host *host) 1877 { 1878 struct mmc_command cmd = {}; 1879 struct mmc_card *card = host->card; 1880 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1881 int err; 1882 1883 /* Re-tuning can't be done once the card is deselected */ 1884 mmc_retune_hold(host); 1885 1886 err = mmc_deselect_cards(host); 1887 if (err) 1888 goto out_release; 1889 1890 cmd.opcode = MMC_SLEEP_AWAKE; 1891 cmd.arg = card->rca << 16; 1892 cmd.arg |= 1 << 15; 1893 1894 /* 1895 * If the max_busy_timeout of the host is specified, validate it against 1896 * the sleep cmd timeout. A failure means we need to prevent the host 1897 * from doing hw busy detection, which is done by converting to a R1 1898 * response instead of a R1B. 1899 */ 1900 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1901 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1902 } else { 1903 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1904 cmd.busy_timeout = timeout_ms; 1905 } 1906 1907 err = mmc_wait_for_cmd(host, &cmd, 0); 1908 if (err) 1909 goto out_release; 1910 1911 /* 1912 * If the host does not wait while the card signals busy, then we will 1913 * will have to wait the sleep/awake timeout. Note, we cannot use the 1914 * SEND_STATUS command to poll the status because that command (and most 1915 * others) is invalid while the card sleeps. 1916 */ 1917 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1918 mmc_delay(timeout_ms); 1919 1920 out_release: 1921 mmc_retune_release(host); 1922 return err; 1923 } 1924 1925 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1926 { 1927 return card && 1928 mmc_card_mmc(card) && 1929 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1930 } 1931 1932 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1933 { 1934 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1935 int err; 1936 1937 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1938 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1939 timeout = card->ext_csd.power_off_longtime; 1940 1941 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1942 EXT_CSD_POWER_OFF_NOTIFICATION, 1943 notify_type, timeout, 0, true, false, false); 1944 if (err) 1945 pr_err("%s: Power Off Notification timed out, %u\n", 1946 mmc_hostname(card->host), timeout); 1947 1948 /* Disable the power off notification after the switch operation. */ 1949 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1950 1951 return err; 1952 } 1953 1954 /* 1955 * Host is being removed. Free up the current card. 1956 */ 1957 static void mmc_remove(struct mmc_host *host) 1958 { 1959 mmc_remove_card(host->card); 1960 host->card = NULL; 1961 } 1962 1963 /* 1964 * Card detection - card is alive. 1965 */ 1966 static int mmc_alive(struct mmc_host *host) 1967 { 1968 return mmc_send_status(host->card, NULL); 1969 } 1970 1971 /* 1972 * Card detection callback from host. 1973 */ 1974 static void mmc_detect(struct mmc_host *host) 1975 { 1976 int err; 1977 1978 mmc_get_card(host->card, NULL); 1979 1980 /* 1981 * Just check if our card has been removed. 1982 */ 1983 err = _mmc_detect_card_removed(host); 1984 1985 mmc_put_card(host->card, NULL); 1986 1987 if (err) { 1988 mmc_remove(host); 1989 1990 mmc_claim_host(host); 1991 mmc_detach_bus(host); 1992 mmc_power_off(host); 1993 mmc_release_host(host); 1994 } 1995 } 1996 1997 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 1998 { 1999 int err = 0; 2000 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2001 EXT_CSD_POWER_OFF_LONG; 2002 2003 mmc_claim_host(host); 2004 2005 if (mmc_card_suspended(host->card)) 2006 goto out; 2007 2008 if (mmc_card_doing_bkops(host->card)) { 2009 err = mmc_stop_bkops(host->card); 2010 if (err) 2011 goto out; 2012 } 2013 2014 err = mmc_flush_cache(host->card); 2015 if (err) 2016 goto out; 2017 2018 if (mmc_can_poweroff_notify(host->card) && 2019 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 2020 err = mmc_poweroff_notify(host->card, notify_type); 2021 else if (mmc_can_sleep(host->card)) 2022 err = mmc_sleep(host); 2023 else if (!mmc_host_is_spi(host)) 2024 err = mmc_deselect_cards(host); 2025 2026 if (!err) { 2027 mmc_power_off(host); 2028 mmc_card_set_suspended(host->card); 2029 } 2030 out: 2031 mmc_release_host(host); 2032 return err; 2033 } 2034 2035 /* 2036 * Suspend callback 2037 */ 2038 static int mmc_suspend(struct mmc_host *host) 2039 { 2040 int err; 2041 2042 err = _mmc_suspend(host, true); 2043 if (!err) { 2044 pm_runtime_disable(&host->card->dev); 2045 pm_runtime_set_suspended(&host->card->dev); 2046 } 2047 2048 return err; 2049 } 2050 2051 /* 2052 * This function tries to determine if the same card is still present 2053 * and, if so, restore all state to it. 2054 */ 2055 static int _mmc_resume(struct mmc_host *host) 2056 { 2057 int err = 0; 2058 2059 mmc_claim_host(host); 2060 2061 if (!mmc_card_suspended(host->card)) 2062 goto out; 2063 2064 mmc_power_up(host, host->card->ocr); 2065 err = mmc_init_card(host, host->card->ocr, host->card); 2066 mmc_card_clr_suspended(host->card); 2067 2068 out: 2069 mmc_release_host(host); 2070 return err; 2071 } 2072 2073 /* 2074 * Shutdown callback 2075 */ 2076 static int mmc_shutdown(struct mmc_host *host) 2077 { 2078 int err = 0; 2079 2080 /* 2081 * In a specific case for poweroff notify, we need to resume the card 2082 * before we can shutdown it properly. 2083 */ 2084 if (mmc_can_poweroff_notify(host->card) && 2085 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2086 err = _mmc_resume(host); 2087 2088 if (!err) 2089 err = _mmc_suspend(host, false); 2090 2091 return err; 2092 } 2093 2094 /* 2095 * Callback for resume. 2096 */ 2097 static int mmc_resume(struct mmc_host *host) 2098 { 2099 pm_runtime_enable(&host->card->dev); 2100 return 0; 2101 } 2102 2103 /* 2104 * Callback for runtime_suspend. 2105 */ 2106 static int mmc_runtime_suspend(struct mmc_host *host) 2107 { 2108 int err; 2109 2110 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2111 return 0; 2112 2113 err = _mmc_suspend(host, true); 2114 if (err) 2115 pr_err("%s: error %d doing aggressive suspend\n", 2116 mmc_hostname(host), err); 2117 2118 return err; 2119 } 2120 2121 /* 2122 * Callback for runtime_resume. 2123 */ 2124 static int mmc_runtime_resume(struct mmc_host *host) 2125 { 2126 int err; 2127 2128 err = _mmc_resume(host); 2129 if (err && err != -ENOMEDIUM) 2130 pr_err("%s: error %d doing runtime resume\n", 2131 mmc_hostname(host), err); 2132 2133 return 0; 2134 } 2135 2136 static int mmc_can_reset(struct mmc_card *card) 2137 { 2138 u8 rst_n_function; 2139 2140 rst_n_function = card->ext_csd.rst_n_function; 2141 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2142 return 0; 2143 return 1; 2144 } 2145 2146 static int _mmc_hw_reset(struct mmc_host *host) 2147 { 2148 struct mmc_card *card = host->card; 2149 2150 /* 2151 * In the case of recovery, we can't expect flushing the cache to work 2152 * always, but we have a go and ignore errors. 2153 */ 2154 mmc_flush_cache(host->card); 2155 2156 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2157 mmc_can_reset(card)) { 2158 /* If the card accept RST_n signal, send it. */ 2159 mmc_set_clock(host, host->f_init); 2160 host->ops->hw_reset(host); 2161 /* Set initial state and call mmc_set_ios */ 2162 mmc_set_initial_state(host); 2163 } else { 2164 /* Do a brute force power cycle */ 2165 mmc_power_cycle(host, card->ocr); 2166 mmc_pwrseq_reset(host); 2167 } 2168 return mmc_init_card(host, card->ocr, card); 2169 } 2170 2171 static const struct mmc_bus_ops mmc_ops = { 2172 .remove = mmc_remove, 2173 .detect = mmc_detect, 2174 .suspend = mmc_suspend, 2175 .resume = mmc_resume, 2176 .runtime_suspend = mmc_runtime_suspend, 2177 .runtime_resume = mmc_runtime_resume, 2178 .alive = mmc_alive, 2179 .shutdown = mmc_shutdown, 2180 .hw_reset = _mmc_hw_reset, 2181 }; 2182 2183 /* 2184 * Starting point for MMC card init. 2185 */ 2186 int mmc_attach_mmc(struct mmc_host *host) 2187 { 2188 int err; 2189 u32 ocr, rocr; 2190 2191 WARN_ON(!host->claimed); 2192 2193 /* Set correct bus mode for MMC before attempting attach */ 2194 if (!mmc_host_is_spi(host)) 2195 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2196 2197 err = mmc_send_op_cond(host, 0, &ocr); 2198 if (err) 2199 return err; 2200 2201 mmc_attach_bus(host, &mmc_ops); 2202 if (host->ocr_avail_mmc) 2203 host->ocr_avail = host->ocr_avail_mmc; 2204 2205 /* 2206 * We need to get OCR a different way for SPI. 2207 */ 2208 if (mmc_host_is_spi(host)) { 2209 err = mmc_spi_read_ocr(host, 1, &ocr); 2210 if (err) 2211 goto err; 2212 } 2213 2214 rocr = mmc_select_voltage(host, ocr); 2215 2216 /* 2217 * Can we support the voltage of the card? 2218 */ 2219 if (!rocr) { 2220 err = -EINVAL; 2221 goto err; 2222 } 2223 2224 /* 2225 * Detect and init the card. 2226 */ 2227 err = mmc_init_card(host, rocr, NULL); 2228 if (err) 2229 goto err; 2230 2231 mmc_release_host(host); 2232 err = mmc_add_card(host->card); 2233 if (err) 2234 goto remove_card; 2235 2236 mmc_claim_host(host); 2237 return 0; 2238 2239 remove_card: 2240 mmc_remove_card(host->card); 2241 mmc_claim_host(host); 2242 host->card = NULL; 2243 err: 2244 mmc_detach_bus(host); 2245 2246 pr_err("%s: error %d whilst initialising MMC card\n", 2247 mmc_hostname(host), err); 2248 2249 return err; 2250 } 2251