xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision c7685190)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 	u32 *resp = card->raw_cid;
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from sandisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
82 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
83 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
84 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
85 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
86 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
87 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
88 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
89 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
90 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
91 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
92 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
93 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
100 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
101 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
102 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
103 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
104 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
105 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
106 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
107 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
108 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
109 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
110 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	return 0;
120 }
121 
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 	if (card->ext_csd.erase_group_def & 1)
125 		card->erase_size = card->ext_csd.hc_erase_size;
126 	else
127 		card->erase_size = card->csd.erase_size;
128 
129 	mmc_init_erase(card);
130 }
131 
132 /*
133  * Given a 128-bit response, decode to our card CSD structure.
134  */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 	struct mmc_csd *csd = &card->csd;
138 	unsigned int e, m, a, b;
139 	u32 *resp = card->raw_csd;
140 
141 	/*
142 	 * We only understand CSD structure v1.1 and v1.2.
143 	 * v1.2 has extra information in bits 15, 11 and 10.
144 	 * We also support eMMC v4.4 & v4.41.
145 	 */
146 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 	if (csd->structure == 0) {
148 		pr_err("%s: unrecognised CSD structure version %d\n",
149 			mmc_hostname(card->host), csd->structure);
150 		return -EINVAL;
151 	}
152 
153 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
154 	m = UNSTUFF_BITS(resp, 115, 4);
155 	e = UNSTUFF_BITS(resp, 112, 3);
156 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
158 
159 	m = UNSTUFF_BITS(resp, 99, 4);
160 	e = UNSTUFF_BITS(resp, 96, 3);
161 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
162 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
163 
164 	e = UNSTUFF_BITS(resp, 47, 3);
165 	m = UNSTUFF_BITS(resp, 62, 12);
166 	csd->capacity	  = (1 + m) << (e + 2);
167 
168 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176 
177 	if (csd->write_blkbits >= 9) {
178 		a = UNSTUFF_BITS(resp, 42, 5);
179 		b = UNSTUFF_BITS(resp, 37, 5);
180 		csd->erase_size = (a + 1) * (b + 1);
181 		csd->erase_size <<= csd->write_blkbits - 9;
182 	}
183 
184 	return 0;
185 }
186 
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 	struct mmc_host *host = card->host;
190 	u8 card_type = card->ext_csd.raw_card_type;
191 	u32 caps = host->caps, caps2 = host->caps2;
192 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 	unsigned int avail_type = 0;
194 
195 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 	}
200 
201 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 	}
206 
207 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 	}
212 
213 	if (caps & MMC_CAP_1_2V_DDR &&
214 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 	}
218 
219 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 		hs200_max_dtr = MMC_HS200_MAX_DTR;
222 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 	}
224 
225 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 		hs200_max_dtr = MMC_HS200_MAX_DTR;
228 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 	}
230 
231 	if (caps2 & MMC_CAP2_HS400_1_8V &&
232 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 		hs200_max_dtr = MMC_HS200_MAX_DTR;
234 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 	}
236 
237 	if (caps2 & MMC_CAP2_HS400_1_2V &&
238 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 		hs200_max_dtr = MMC_HS200_MAX_DTR;
240 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 	}
242 
243 	if ((caps2 & MMC_CAP2_HS400_ES) &&
244 	    card->ext_csd.strobe_support &&
245 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247 
248 	card->ext_csd.hs_max_dtr = hs_max_dtr;
249 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 	card->mmc_avail_type = avail_type;
251 }
252 
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 
257 	/*
258 	 * Disable these attributes by default
259 	 */
260 	card->ext_csd.enhanced_area_offset = -EINVAL;
261 	card->ext_csd.enhanced_area_size = -EINVAL;
262 
263 	/*
264 	 * Enhanced area feature support -- check whether the eMMC
265 	 * card has the Enhanced area enabled.  If so, export enhanced
266 	 * area offset and size to user by adding sysfs interface.
267 	 */
268 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 		if (card->ext_csd.partition_setting_completed) {
271 			hc_erase_grp_sz =
272 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 			hc_wp_grp_sz =
274 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 
276 			/*
277 			 * calculate the enhanced data area offset, in bytes
278 			 */
279 			card->ext_csd.enhanced_area_offset =
280 				(((unsigned long long)ext_csd[139]) << 24) +
281 				(((unsigned long long)ext_csd[138]) << 16) +
282 				(((unsigned long long)ext_csd[137]) << 8) +
283 				(((unsigned long long)ext_csd[136]));
284 			if (mmc_card_blockaddr(card))
285 				card->ext_csd.enhanced_area_offset <<= 9;
286 			/*
287 			 * calculate the enhanced data area size, in kilobytes
288 			 */
289 			card->ext_csd.enhanced_area_size =
290 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 				ext_csd[140];
292 			card->ext_csd.enhanced_area_size *=
293 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 			card->ext_csd.enhanced_area_size <<= 9;
295 		} else {
296 			pr_warn("%s: defines enhanced area without partition setting complete\n",
297 				mmc_hostname(card->host));
298 		}
299 	}
300 }
301 
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 			 unsigned int part_cfg, char *name, int idx, bool ro,
304 			 int area_type)
305 {
306 	card->part[card->nr_parts].size = size;
307 	card->part[card->nr_parts].part_cfg = part_cfg;
308 	sprintf(card->part[card->nr_parts].name, name, idx);
309 	card->part[card->nr_parts].force_ro = ro;
310 	card->part[card->nr_parts].area_type = area_type;
311 	card->nr_parts++;
312 }
313 
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 	int idx;
317 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 	unsigned int part_size;
319 
320 	/*
321 	 * General purpose partition feature support --
322 	 * If ext_csd has the size of general purpose partitions,
323 	 * set size, part_cfg, partition name in mmc_part.
324 	 */
325 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 	    EXT_CSD_PART_SUPPORT_PART_EN) {
327 		hc_erase_grp_sz =
328 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 		hc_wp_grp_sz =
330 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331 
332 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 				continue;
337 			if (card->ext_csd.partition_setting_completed == 0) {
338 				pr_warn("%s: has partition size defined without partition complete\n",
339 					mmc_hostname(card->host));
340 				break;
341 			}
342 			part_size =
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 				<< 16) +
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 				<< 8) +
347 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 			part_size *= (size_t)(hc_erase_grp_sz *
349 				hc_wp_grp_sz);
350 			mmc_part_add(card, part_size << 19,
351 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 				"gp%d", idx, false,
353 				MMC_BLK_DATA_AREA_GP);
354 		}
355 	}
356 }
357 
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME	300
360 
361 /*
362  * Decode extended CSD.
363  */
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365 {
366 	int err = 0, idx;
367 	unsigned int part_size;
368 	struct device_node *np;
369 	bool broken_hpi = false;
370 
371 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 	if (card->csd.structure == 3) {
374 		if (card->ext_csd.raw_ext_csd_structure > 2) {
375 			pr_err("%s: unrecognised EXT_CSD structure "
376 				"version %d\n", mmc_hostname(card->host),
377 					card->ext_csd.raw_ext_csd_structure);
378 			err = -EINVAL;
379 			goto out;
380 		}
381 	}
382 
383 	np = mmc_of_find_child_device(card->host, 0);
384 	if (np && of_device_is_compatible(np, "mmc-card"))
385 		broken_hpi = of_property_read_bool(np, "broken-hpi");
386 	of_node_put(np);
387 
388 	/*
389 	 * The EXT_CSD format is meant to be forward compatible. As long
390 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 	 * are authorized, see JEDEC JESD84-B50 section B.8.
392 	 */
393 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394 
395 	/* fixup device after ext_csd revision field is updated */
396 	mmc_fixup_device(card, mmc_ext_csd_fixups);
397 
398 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 	if (card->ext_csd.rev >= 2) {
403 		card->ext_csd.sectors =
404 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408 
409 		/* Cards with density > 2GiB are sector addressed */
410 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 			mmc_card_set_blockaddr(card);
412 	}
413 
414 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 	mmc_select_card_type(card);
417 
418 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 	card->ext_csd.raw_erase_timeout_mult =
420 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 	card->ext_csd.raw_hc_erase_grp_size =
422 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 	if (card->ext_csd.rev >= 3) {
424 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426 
427 		/* EXT_CSD value is in units of 10ms, but we store in ms */
428 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 		/* Some eMMC set the value too low so set a minimum */
430 		if (card->ext_csd.part_time &&
431 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433 
434 		/* Sleep / awake timeout in 100ns units */
435 		if (sa_shift > 0 && sa_shift <= 0x17)
436 			card->ext_csd.sa_timeout =
437 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 		card->ext_csd.erase_group_def =
439 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 		card->ext_csd.hc_erase_timeout = 300 *
441 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 		card->ext_csd.hc_erase_size =
443 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444 
445 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446 
447 		/*
448 		 * There are two boot regions of equal size, defined in
449 		 * multiples of 128K.
450 		 */
451 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 				mmc_part_add(card, part_size,
455 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 					"boot%d", idx, true,
457 					MMC_BLK_DATA_AREA_BOOT);
458 			}
459 		}
460 	}
461 
462 	card->ext_csd.raw_hc_erase_gap_size =
463 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 	card->ext_csd.raw_sec_trim_mult =
465 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 	card->ext_csd.raw_sec_erase_mult =
467 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 	card->ext_csd.raw_sec_feature_support =
469 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 	card->ext_csd.raw_trim_mult =
471 		ext_csd[EXT_CSD_TRIM_MULT];
472 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 	if (card->ext_csd.rev >= 4) {
475 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 		    EXT_CSD_PART_SETTING_COMPLETED)
477 			card->ext_csd.partition_setting_completed = 1;
478 		else
479 			card->ext_csd.partition_setting_completed = 0;
480 
481 		mmc_manage_enhanced_area(card, ext_csd);
482 
483 		mmc_manage_gp_partitions(card, ext_csd);
484 
485 		card->ext_csd.sec_trim_mult =
486 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 		card->ext_csd.sec_erase_mult =
488 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 		card->ext_csd.sec_feature_support =
490 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 		card->ext_csd.trim_timeout = 300 *
492 			ext_csd[EXT_CSD_TRIM_MULT];
493 
494 		/*
495 		 * Note that the call to mmc_part_add above defaults to read
496 		 * only. If this default assumption is changed, the call must
497 		 * take into account the value of boot_locked below.
498 		 */
499 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 		card->ext_csd.boot_ro_lockable = true;
501 
502 		/* Save power class values */
503 		card->ext_csd.raw_pwr_cl_52_195 =
504 			ext_csd[EXT_CSD_PWR_CL_52_195];
505 		card->ext_csd.raw_pwr_cl_26_195 =
506 			ext_csd[EXT_CSD_PWR_CL_26_195];
507 		card->ext_csd.raw_pwr_cl_52_360 =
508 			ext_csd[EXT_CSD_PWR_CL_52_360];
509 		card->ext_csd.raw_pwr_cl_26_360 =
510 			ext_csd[EXT_CSD_PWR_CL_26_360];
511 		card->ext_csd.raw_pwr_cl_200_195 =
512 			ext_csd[EXT_CSD_PWR_CL_200_195];
513 		card->ext_csd.raw_pwr_cl_200_360 =
514 			ext_csd[EXT_CSD_PWR_CL_200_360];
515 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 	}
522 
523 	if (card->ext_csd.rev >= 5) {
524 		/* Adjust production date as per JEDEC JESD84-B451 */
525 		if (card->cid.year < 2010)
526 			card->cid.year += 16;
527 
528 		/* check whether the eMMC card supports BKOPS */
529 		if (!mmc_card_broken_hpi(card) &&
530 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 			card->ext_csd.bkops = 1;
532 			card->ext_csd.man_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_MANUAL_BKOPS_MASK);
535 			card->ext_csd.raw_bkops_status =
536 				ext_csd[EXT_CSD_BKOPS_STATUS];
537 			if (card->ext_csd.man_bkops_en)
538 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 					mmc_hostname(card->host));
540 			card->ext_csd.auto_bkops_en =
541 					(ext_csd[EXT_CSD_BKOPS_EN] &
542 						EXT_CSD_AUTO_BKOPS_MASK);
543 			if (card->ext_csd.auto_bkops_en)
544 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 					mmc_hostname(card->host));
546 		}
547 
548 		/* check whether the eMMC card supports HPI */
549 		if (!mmc_card_broken_hpi(card) &&
550 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 			card->ext_csd.hpi = 1;
552 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
554 			else
555 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 			/*
557 			 * Indicate the maximum timeout to close
558 			 * a command interrupted by HPI
559 			 */
560 			card->ext_csd.out_of_int_time =
561 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 		}
563 
564 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566 
567 		/*
568 		 * RPMB regions are defined in multiples of 128K.
569 		 */
570 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 				EXT_CSD_PART_CONFIG_ACC_RPMB,
574 				"rpmb", 0, false,
575 				MMC_BLK_DATA_AREA_RPMB);
576 		}
577 	}
578 
579 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 		card->erased_byte = 0xFF;
582 	else
583 		card->erased_byte = 0x0;
584 
585 	/* eMMC v4.5 or later */
586 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 	if (card->ext_csd.rev >= 6) {
588 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589 
590 		card->ext_csd.generic_cmd6_time = 10 *
591 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 		card->ext_csd.power_off_longtime = 10 *
593 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594 
595 		card->ext_csd.cache_size =
596 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600 
601 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 			card->ext_csd.data_sector_size = 4096;
603 		else
604 			card->ext_csd.data_sector_size = 512;
605 
606 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 			card->ext_csd.data_tag_unit_size =
609 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 			(card->ext_csd.data_sector_size);
611 		} else {
612 			card->ext_csd.data_tag_unit_size = 0;
613 		}
614 
615 		card->ext_csd.max_packed_writes =
616 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 		card->ext_csd.max_packed_reads =
618 			ext_csd[EXT_CSD_MAX_PACKED_READS];
619 	} else {
620 		card->ext_csd.data_sector_size = 512;
621 	}
622 
623 	/* eMMC v5 or later */
624 	if (card->ext_csd.rev >= 7) {
625 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 		       MMC_FIRMWARE_LEN);
627 		card->ext_csd.ffu_capable =
628 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630 
631 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 		card->ext_csd.device_life_time_est_typ_a =
633 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 		card->ext_csd.device_life_time_est_typ_b =
635 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 	}
637 
638 	/* eMMC v5.1 or later */
639 	if (card->ext_csd.rev >= 8) {
640 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 					     EXT_CSD_CMDQ_SUPPORTED;
642 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 		/* Exclude inefficiently small queue depths */
645 		if (card->ext_csd.cmdq_depth <= 2) {
646 			card->ext_csd.cmdq_support = false;
647 			card->ext_csd.cmdq_depth = 0;
648 		}
649 		if (card->ext_csd.cmdq_support) {
650 			pr_debug("%s: Command Queue supported depth %u\n",
651 				 mmc_hostname(card->host),
652 				 card->ext_csd.cmdq_depth);
653 		}
654 	}
655 out:
656 	return err;
657 }
658 
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 	u8 *ext_csd;
662 	int err;
663 
664 	if (!mmc_can_ext_csd(card))
665 		return 0;
666 
667 	err = mmc_get_ext_csd(card, &ext_csd);
668 	if (err) {
669 		/* If the host or the card can't do the switch,
670 		 * fail more gracefully. */
671 		if ((err != -EINVAL)
672 		 && (err != -ENOSYS)
673 		 && (err != -EFAULT))
674 			return err;
675 
676 		/*
677 		 * High capacity cards should have this "magic" size
678 		 * stored in their CSD.
679 		 */
680 		if (card->csd.capacity == (4096 * 512)) {
681 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 				mmc_hostname(card->host));
683 		} else {
684 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 				mmc_hostname(card->host));
686 			err = 0;
687 		}
688 
689 		return err;
690 	}
691 
692 	err = mmc_decode_ext_csd(card, ext_csd);
693 	kfree(ext_csd);
694 	return err;
695 }
696 
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 	u8 *bw_ext_csd;
700 	int err;
701 
702 	if (bus_width == MMC_BUS_WIDTH_1)
703 		return 0;
704 
705 	err = mmc_get_ext_csd(card, &bw_ext_csd);
706 	if (err)
707 		return err;
708 
709 	/* only compare read only fields */
710 	err = !((card->ext_csd.raw_partition_support ==
711 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 		(card->ext_csd.raw_erased_mem_count ==
713 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 		(card->ext_csd.rev ==
715 			bw_ext_csd[EXT_CSD_REV]) &&
716 		(card->ext_csd.raw_ext_csd_structure ==
717 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 		(card->ext_csd.raw_card_type ==
719 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 		(card->ext_csd.raw_s_a_timeout ==
721 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 		(card->ext_csd.raw_hc_erase_gap_size ==
723 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 		(card->ext_csd.raw_erase_timeout_mult ==
725 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 		(card->ext_csd.raw_hc_erase_grp_size ==
727 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 		(card->ext_csd.raw_sec_trim_mult ==
729 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 		(card->ext_csd.raw_sec_erase_mult ==
731 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 		(card->ext_csd.raw_sec_feature_support ==
733 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 		(card->ext_csd.raw_trim_mult ==
735 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sectors[0] ==
737 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 		(card->ext_csd.raw_sectors[1] ==
739 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 		(card->ext_csd.raw_sectors[2] ==
741 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 		(card->ext_csd.raw_sectors[3] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 		(card->ext_csd.raw_pwr_cl_52_195 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 		(card->ext_csd.raw_pwr_cl_26_195 ==
747 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 		(card->ext_csd.raw_pwr_cl_52_360 ==
749 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 		(card->ext_csd.raw_pwr_cl_26_360 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 		(card->ext_csd.raw_pwr_cl_200_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 		(card->ext_csd.raw_pwr_cl_200_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762 
763 	if (err)
764 		err = -EINVAL;
765 
766 	kfree(bw_ext_csd);
767 	return err;
768 }
769 
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 	card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 	card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 	card->ext_csd.device_life_time_est_typ_a,
787 	card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 		card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
796 
797 static ssize_t mmc_fwrev_show(struct device *dev,
798 			      struct device_attribute *attr,
799 			      char *buf)
800 {
801 	struct mmc_card *card = mmc_dev_to_card(dev);
802 
803 	if (card->ext_csd.rev < 7) {
804 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
805 	} else {
806 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
807 			       card->ext_csd.fwrev);
808 	}
809 }
810 
811 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
812 
813 static ssize_t mmc_dsr_show(struct device *dev,
814 			    struct device_attribute *attr,
815 			    char *buf)
816 {
817 	struct mmc_card *card = mmc_dev_to_card(dev);
818 	struct mmc_host *host = card->host;
819 
820 	if (card->csd.dsr_imp && host->dsr_req)
821 		return sprintf(buf, "0x%x\n", host->dsr);
822 	else
823 		/* return default DSR value */
824 		return sprintf(buf, "0x%x\n", 0x404);
825 }
826 
827 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
828 
829 static struct attribute *mmc_std_attrs[] = {
830 	&dev_attr_cid.attr,
831 	&dev_attr_csd.attr,
832 	&dev_attr_date.attr,
833 	&dev_attr_erase_size.attr,
834 	&dev_attr_preferred_erase_size.attr,
835 	&dev_attr_fwrev.attr,
836 	&dev_attr_ffu_capable.attr,
837 	&dev_attr_hwrev.attr,
838 	&dev_attr_manfid.attr,
839 	&dev_attr_name.attr,
840 	&dev_attr_oemid.attr,
841 	&dev_attr_prv.attr,
842 	&dev_attr_rev.attr,
843 	&dev_attr_pre_eol_info.attr,
844 	&dev_attr_life_time.attr,
845 	&dev_attr_serial.attr,
846 	&dev_attr_enhanced_area_offset.attr,
847 	&dev_attr_enhanced_area_size.attr,
848 	&dev_attr_raw_rpmb_size_mult.attr,
849 	&dev_attr_rel_sectors.attr,
850 	&dev_attr_ocr.attr,
851 	&dev_attr_dsr.attr,
852 	&dev_attr_cmdq_en.attr,
853 	NULL,
854 };
855 ATTRIBUTE_GROUPS(mmc_std);
856 
857 static struct device_type mmc_type = {
858 	.groups = mmc_std_groups,
859 };
860 
861 /*
862  * Select the PowerClass for the current bus width
863  * If power class is defined for 4/8 bit bus in the
864  * extended CSD register, select it by executing the
865  * mmc_switch command.
866  */
867 static int __mmc_select_powerclass(struct mmc_card *card,
868 				   unsigned int bus_width)
869 {
870 	struct mmc_host *host = card->host;
871 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
872 	unsigned int pwrclass_val = 0;
873 	int err = 0;
874 
875 	switch (1 << host->ios.vdd) {
876 	case MMC_VDD_165_195:
877 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
878 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
879 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
880 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
881 				ext_csd->raw_pwr_cl_52_195 :
882 				ext_csd->raw_pwr_cl_ddr_52_195;
883 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
884 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
885 		break;
886 	case MMC_VDD_27_28:
887 	case MMC_VDD_28_29:
888 	case MMC_VDD_29_30:
889 	case MMC_VDD_30_31:
890 	case MMC_VDD_31_32:
891 	case MMC_VDD_32_33:
892 	case MMC_VDD_33_34:
893 	case MMC_VDD_34_35:
894 	case MMC_VDD_35_36:
895 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
896 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
897 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
898 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
899 				ext_csd->raw_pwr_cl_52_360 :
900 				ext_csd->raw_pwr_cl_ddr_52_360;
901 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
902 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
903 				ext_csd->raw_pwr_cl_ddr_200_360 :
904 				ext_csd->raw_pwr_cl_200_360;
905 		break;
906 	default:
907 		pr_warn("%s: Voltage range not supported for power class\n",
908 			mmc_hostname(host));
909 		return -EINVAL;
910 	}
911 
912 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
913 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
914 				EXT_CSD_PWR_CL_8BIT_SHIFT;
915 	else
916 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
917 				EXT_CSD_PWR_CL_4BIT_SHIFT;
918 
919 	/* If the power class is different from the default value */
920 	if (pwrclass_val > 0) {
921 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
922 				 EXT_CSD_POWER_CLASS,
923 				 pwrclass_val,
924 				 card->ext_csd.generic_cmd6_time);
925 	}
926 
927 	return err;
928 }
929 
930 static int mmc_select_powerclass(struct mmc_card *card)
931 {
932 	struct mmc_host *host = card->host;
933 	u32 bus_width, ext_csd_bits;
934 	int err, ddr;
935 
936 	/* Power class selection is supported for versions >= 4.0 */
937 	if (!mmc_can_ext_csd(card))
938 		return 0;
939 
940 	bus_width = host->ios.bus_width;
941 	/* Power class values are defined only for 4/8 bit bus */
942 	if (bus_width == MMC_BUS_WIDTH_1)
943 		return 0;
944 
945 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
946 	if (ddr)
947 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
948 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
949 	else
950 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
951 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
952 
953 	err = __mmc_select_powerclass(card, ext_csd_bits);
954 	if (err)
955 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
956 			mmc_hostname(host), 1 << bus_width, ddr);
957 
958 	return err;
959 }
960 
961 /*
962  * Set the bus speed for the selected speed mode.
963  */
964 static void mmc_set_bus_speed(struct mmc_card *card)
965 {
966 	unsigned int max_dtr = (unsigned int)-1;
967 
968 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
969 	     max_dtr > card->ext_csd.hs200_max_dtr)
970 		max_dtr = card->ext_csd.hs200_max_dtr;
971 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
972 		max_dtr = card->ext_csd.hs_max_dtr;
973 	else if (max_dtr > card->csd.max_dtr)
974 		max_dtr = card->csd.max_dtr;
975 
976 	mmc_set_clock(card->host, max_dtr);
977 }
978 
979 /*
980  * Select the bus width amoung 4-bit and 8-bit(SDR).
981  * If the bus width is changed successfully, return the selected width value.
982  * Zero is returned instead of error value if the wide width is not supported.
983  */
984 static int mmc_select_bus_width(struct mmc_card *card)
985 {
986 	static unsigned ext_csd_bits[] = {
987 		EXT_CSD_BUS_WIDTH_8,
988 		EXT_CSD_BUS_WIDTH_4,
989 	};
990 	static unsigned bus_widths[] = {
991 		MMC_BUS_WIDTH_8,
992 		MMC_BUS_WIDTH_4,
993 	};
994 	struct mmc_host *host = card->host;
995 	unsigned idx, bus_width = 0;
996 	int err = 0;
997 
998 	if (!mmc_can_ext_csd(card) ||
999 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1000 		return 0;
1001 
1002 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1003 
1004 	/*
1005 	 * Unlike SD, MMC cards dont have a configuration register to notify
1006 	 * supported bus width. So bus test command should be run to identify
1007 	 * the supported bus width or compare the ext csd values of current
1008 	 * bus width and ext csd values of 1 bit mode read earlier.
1009 	 */
1010 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1011 		/*
1012 		 * Host is capable of 8bit transfer, then switch
1013 		 * the device to work in 8bit transfer mode. If the
1014 		 * mmc switch command returns error then switch to
1015 		 * 4bit transfer mode. On success set the corresponding
1016 		 * bus width on the host.
1017 		 */
1018 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1019 				 EXT_CSD_BUS_WIDTH,
1020 				 ext_csd_bits[idx],
1021 				 card->ext_csd.generic_cmd6_time);
1022 		if (err)
1023 			continue;
1024 
1025 		bus_width = bus_widths[idx];
1026 		mmc_set_bus_width(host, bus_width);
1027 
1028 		/*
1029 		 * If controller can't handle bus width test,
1030 		 * compare ext_csd previously read in 1 bit mode
1031 		 * against ext_csd at new bus width
1032 		 */
1033 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1034 			err = mmc_compare_ext_csds(card, bus_width);
1035 		else
1036 			err = mmc_bus_test(card, bus_width);
1037 
1038 		if (!err) {
1039 			err = bus_width;
1040 			break;
1041 		} else {
1042 			pr_warn("%s: switch to bus width %d failed\n",
1043 				mmc_hostname(host), 1 << bus_width);
1044 		}
1045 	}
1046 
1047 	return err;
1048 }
1049 
1050 /*
1051  * Switch to the high-speed mode
1052  */
1053 static int mmc_select_hs(struct mmc_card *card)
1054 {
1055 	int err;
1056 
1057 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1058 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1059 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1060 			   true, true, true);
1061 	if (err)
1062 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1063 			mmc_hostname(card->host), err);
1064 
1065 	return err;
1066 }
1067 
1068 /*
1069  * Activate wide bus and DDR if supported.
1070  */
1071 static int mmc_select_hs_ddr(struct mmc_card *card)
1072 {
1073 	struct mmc_host *host = card->host;
1074 	u32 bus_width, ext_csd_bits;
1075 	int err = 0;
1076 
1077 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1078 		return 0;
1079 
1080 	bus_width = host->ios.bus_width;
1081 	if (bus_width == MMC_BUS_WIDTH_1)
1082 		return 0;
1083 
1084 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1085 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1086 
1087 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1088 			   EXT_CSD_BUS_WIDTH,
1089 			   ext_csd_bits,
1090 			   card->ext_csd.generic_cmd6_time,
1091 			   MMC_TIMING_MMC_DDR52,
1092 			   true, true, true);
1093 	if (err) {
1094 		pr_err("%s: switch to bus width %d ddr failed\n",
1095 			mmc_hostname(host), 1 << bus_width);
1096 		return err;
1097 	}
1098 
1099 	/*
1100 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1101 	 * signaling.
1102 	 *
1103 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1104 	 *
1105 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1106 	 * in the JEDEC spec for DDR.
1107 	 *
1108 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1109 	 * host controller can support this, like some of the SDHCI
1110 	 * controller which connect to an eMMC device. Some of these
1111 	 * host controller still needs to use 1.8v vccq for supporting
1112 	 * DDR mode.
1113 	 *
1114 	 * So the sequence will be:
1115 	 * if (host and device can both support 1.2v IO)
1116 	 *	use 1.2v IO;
1117 	 * else if (host and device can both support 1.8v IO)
1118 	 *	use 1.8v IO;
1119 	 * so if host and device can only support 3.3v IO, this is the
1120 	 * last choice.
1121 	 *
1122 	 * WARNING: eMMC rules are NOT the same as SD DDR
1123 	 */
1124 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1125 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1126 		if (!err)
1127 			return 0;
1128 	}
1129 
1130 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1131 	    host->caps & MMC_CAP_1_8V_DDR)
1132 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1133 
1134 	/* make sure vccq is 3.3v after switching disaster */
1135 	if (err)
1136 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1137 
1138 	return err;
1139 }
1140 
1141 static int mmc_select_hs400(struct mmc_card *card)
1142 {
1143 	struct mmc_host *host = card->host;
1144 	unsigned int max_dtr;
1145 	int err = 0;
1146 	u8 val;
1147 
1148 	/*
1149 	 * HS400 mode requires 8-bit bus width
1150 	 */
1151 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1152 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1153 		return 0;
1154 
1155 	/* Switch card to HS mode */
1156 	val = EXT_CSD_TIMING_HS;
1157 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1158 			   EXT_CSD_HS_TIMING, val,
1159 			   card->ext_csd.generic_cmd6_time, 0,
1160 			   true, false, true);
1161 	if (err) {
1162 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1163 			mmc_hostname(host), err);
1164 		return err;
1165 	}
1166 
1167 	/* Set host controller to HS timing */
1168 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1169 
1170 	/* Reduce frequency to HS frequency */
1171 	max_dtr = card->ext_csd.hs_max_dtr;
1172 	mmc_set_clock(host, max_dtr);
1173 
1174 	err = mmc_switch_status(card);
1175 	if (err)
1176 		goto out_err;
1177 
1178 	/* Switch card to DDR */
1179 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1180 			 EXT_CSD_BUS_WIDTH,
1181 			 EXT_CSD_DDR_BUS_WIDTH_8,
1182 			 card->ext_csd.generic_cmd6_time);
1183 	if (err) {
1184 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1185 			mmc_hostname(host), err);
1186 		return err;
1187 	}
1188 
1189 	/* Switch card to HS400 */
1190 	val = EXT_CSD_TIMING_HS400 |
1191 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1192 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1193 			   EXT_CSD_HS_TIMING, val,
1194 			   card->ext_csd.generic_cmd6_time, 0,
1195 			   true, false, true);
1196 	if (err) {
1197 		pr_err("%s: switch to hs400 failed, err:%d\n",
1198 			 mmc_hostname(host), err);
1199 		return err;
1200 	}
1201 
1202 	/* Set host controller to HS400 timing and frequency */
1203 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1204 	mmc_set_bus_speed(card);
1205 
1206 	err = mmc_switch_status(card);
1207 	if (err)
1208 		goto out_err;
1209 
1210 	return 0;
1211 
1212 out_err:
1213 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1214 	       __func__, err);
1215 	return err;
1216 }
1217 
1218 int mmc_hs200_to_hs400(struct mmc_card *card)
1219 {
1220 	return mmc_select_hs400(card);
1221 }
1222 
1223 int mmc_hs400_to_hs200(struct mmc_card *card)
1224 {
1225 	struct mmc_host *host = card->host;
1226 	unsigned int max_dtr;
1227 	int err;
1228 	u8 val;
1229 
1230 	/* Reduce frequency to HS */
1231 	max_dtr = card->ext_csd.hs_max_dtr;
1232 	mmc_set_clock(host, max_dtr);
1233 
1234 	/* Switch HS400 to HS DDR */
1235 	val = EXT_CSD_TIMING_HS;
1236 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1237 			   val, card->ext_csd.generic_cmd6_time, 0,
1238 			   true, false, true);
1239 	if (err)
1240 		goto out_err;
1241 
1242 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1243 
1244 	err = mmc_switch_status(card);
1245 	if (err)
1246 		goto out_err;
1247 
1248 	/* Switch HS DDR to HS */
1249 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1250 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1251 			   0, true, false, true);
1252 	if (err)
1253 		goto out_err;
1254 
1255 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1256 
1257 	err = mmc_switch_status(card);
1258 	if (err)
1259 		goto out_err;
1260 
1261 	/* Switch HS to HS200 */
1262 	val = EXT_CSD_TIMING_HS200 |
1263 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1264 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1265 			   val, card->ext_csd.generic_cmd6_time, 0,
1266 			   true, false, true);
1267 	if (err)
1268 		goto out_err;
1269 
1270 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1271 
1272 	/*
1273 	 * For HS200, CRC errors are not a reliable way to know the switch
1274 	 * failed. If there really is a problem, we would expect tuning will
1275 	 * fail and the result ends up the same.
1276 	 */
1277 	err = __mmc_switch_status(card, false);
1278 	if (err)
1279 		goto out_err;
1280 
1281 	mmc_set_bus_speed(card);
1282 
1283 	return 0;
1284 
1285 out_err:
1286 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1287 	       __func__, err);
1288 	return err;
1289 }
1290 
1291 static void mmc_select_driver_type(struct mmc_card *card)
1292 {
1293 	int card_drv_type, drive_strength, drv_type = 0;
1294 	int fixed_drv_type = card->host->fixed_drv_type;
1295 
1296 	card_drv_type = card->ext_csd.raw_driver_strength |
1297 			mmc_driver_type_mask(0);
1298 
1299 	if (fixed_drv_type >= 0)
1300 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1301 				 ? fixed_drv_type : 0;
1302 	else
1303 		drive_strength = mmc_select_drive_strength(card,
1304 							   card->ext_csd.hs200_max_dtr,
1305 							   card_drv_type, &drv_type);
1306 
1307 	card->drive_strength = drive_strength;
1308 
1309 	if (drv_type)
1310 		mmc_set_driver_type(card->host, drv_type);
1311 }
1312 
1313 static int mmc_select_hs400es(struct mmc_card *card)
1314 {
1315 	struct mmc_host *host = card->host;
1316 	int err = -EINVAL;
1317 	u8 val;
1318 
1319 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1320 		err = -ENOTSUPP;
1321 		goto out_err;
1322 	}
1323 
1324 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1325 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1326 
1327 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1328 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1329 
1330 	/* If fails try again during next card power cycle */
1331 	if (err)
1332 		goto out_err;
1333 
1334 	err = mmc_select_bus_width(card);
1335 	if (err < 0)
1336 		goto out_err;
1337 
1338 	/* Switch card to HS mode */
1339 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1340 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1341 			   card->ext_csd.generic_cmd6_time, 0,
1342 			   true, false, true);
1343 	if (err) {
1344 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1345 			mmc_hostname(host), err);
1346 		goto out_err;
1347 	}
1348 
1349 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1350 	err = mmc_switch_status(card);
1351 	if (err)
1352 		goto out_err;
1353 
1354 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1355 
1356 	/* Switch card to DDR with strobe bit */
1357 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1358 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1359 			 EXT_CSD_BUS_WIDTH,
1360 			 val,
1361 			 card->ext_csd.generic_cmd6_time);
1362 	if (err) {
1363 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1364 			mmc_hostname(host), err);
1365 		goto out_err;
1366 	}
1367 
1368 	mmc_select_driver_type(card);
1369 
1370 	/* Switch card to HS400 */
1371 	val = EXT_CSD_TIMING_HS400 |
1372 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1373 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1374 			   EXT_CSD_HS_TIMING, val,
1375 			   card->ext_csd.generic_cmd6_time, 0,
1376 			   true, false, true);
1377 	if (err) {
1378 		pr_err("%s: switch to hs400es failed, err:%d\n",
1379 			mmc_hostname(host), err);
1380 		goto out_err;
1381 	}
1382 
1383 	/* Set host controller to HS400 timing and frequency */
1384 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1385 
1386 	/* Controller enable enhanced strobe function */
1387 	host->ios.enhanced_strobe = true;
1388 	if (host->ops->hs400_enhanced_strobe)
1389 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1390 
1391 	err = mmc_switch_status(card);
1392 	if (err)
1393 		goto out_err;
1394 
1395 	return 0;
1396 
1397 out_err:
1398 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1399 	       __func__, err);
1400 	return err;
1401 }
1402 
1403 /*
1404  * For device supporting HS200 mode, the following sequence
1405  * should be done before executing the tuning process.
1406  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1407  * 2. switch to HS200 mode
1408  * 3. set the clock to > 52Mhz and <=200MHz
1409  */
1410 static int mmc_select_hs200(struct mmc_card *card)
1411 {
1412 	struct mmc_host *host = card->host;
1413 	unsigned int old_timing, old_signal_voltage;
1414 	int err = -EINVAL;
1415 	u8 val;
1416 
1417 	old_signal_voltage = host->ios.signal_voltage;
1418 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1419 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1420 
1421 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1422 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1423 
1424 	/* If fails try again during next card power cycle */
1425 	if (err)
1426 		return err;
1427 
1428 	mmc_select_driver_type(card);
1429 
1430 	/*
1431 	 * Set the bus width(4 or 8) with host's support and
1432 	 * switch to HS200 mode if bus width is set successfully.
1433 	 */
1434 	err = mmc_select_bus_width(card);
1435 	if (err > 0) {
1436 		val = EXT_CSD_TIMING_HS200 |
1437 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1438 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1439 				   EXT_CSD_HS_TIMING, val,
1440 				   card->ext_csd.generic_cmd6_time, 0,
1441 				   true, false, true);
1442 		if (err)
1443 			goto err;
1444 		old_timing = host->ios.timing;
1445 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1446 
1447 		/*
1448 		 * For HS200, CRC errors are not a reliable way to know the
1449 		 * switch failed. If there really is a problem, we would expect
1450 		 * tuning will fail and the result ends up the same.
1451 		 */
1452 		err = __mmc_switch_status(card, false);
1453 
1454 		/*
1455 		 * mmc_select_timing() assumes timing has not changed if
1456 		 * it is a switch error.
1457 		 */
1458 		if (err == -EBADMSG)
1459 			mmc_set_timing(host, old_timing);
1460 	}
1461 err:
1462 	if (err) {
1463 		/* fall back to the old signal voltage, if fails report error */
1464 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1465 			err = -EIO;
1466 
1467 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1468 		       __func__, err);
1469 	}
1470 	return err;
1471 }
1472 
1473 /*
1474  * Activate High Speed, HS200 or HS400ES mode if supported.
1475  */
1476 static int mmc_select_timing(struct mmc_card *card)
1477 {
1478 	int err = 0;
1479 
1480 	if (!mmc_can_ext_csd(card))
1481 		goto bus_speed;
1482 
1483 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1484 		err = mmc_select_hs400es(card);
1485 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1486 		err = mmc_select_hs200(card);
1487 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1488 		err = mmc_select_hs(card);
1489 
1490 	if (err && err != -EBADMSG)
1491 		return err;
1492 
1493 bus_speed:
1494 	/*
1495 	 * Set the bus speed to the selected bus timing.
1496 	 * If timing is not selected, backward compatible is the default.
1497 	 */
1498 	mmc_set_bus_speed(card);
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Execute tuning sequence to seek the proper bus operating
1504  * conditions for HS200 and HS400, which sends CMD21 to the device.
1505  */
1506 static int mmc_hs200_tuning(struct mmc_card *card)
1507 {
1508 	struct mmc_host *host = card->host;
1509 
1510 	/*
1511 	 * Timing should be adjusted to the HS400 target
1512 	 * operation frequency for tuning process
1513 	 */
1514 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1515 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1516 		if (host->ops->prepare_hs400_tuning)
1517 			host->ops->prepare_hs400_tuning(host, &host->ios);
1518 
1519 	return mmc_execute_tuning(card);
1520 }
1521 
1522 /*
1523  * Handle the detection and initialisation of a card.
1524  *
1525  * In the case of a resume, "oldcard" will contain the card
1526  * we're trying to reinitialise.
1527  */
1528 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1529 	struct mmc_card *oldcard)
1530 {
1531 	struct mmc_card *card;
1532 	int err;
1533 	u32 cid[4];
1534 	u32 rocr;
1535 
1536 	WARN_ON(!host->claimed);
1537 
1538 	/* Set correct bus mode for MMC before attempting init */
1539 	if (!mmc_host_is_spi(host))
1540 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1541 
1542 	/*
1543 	 * Since we're changing the OCR value, we seem to
1544 	 * need to tell some cards to go back to the idle
1545 	 * state.  We wait 1ms to give cards time to
1546 	 * respond.
1547 	 * mmc_go_idle is needed for eMMC that are asleep
1548 	 */
1549 	mmc_go_idle(host);
1550 
1551 	/* The extra bit indicates that we support high capacity */
1552 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1553 	if (err)
1554 		goto err;
1555 
1556 	/*
1557 	 * For SPI, enable CRC as appropriate.
1558 	 */
1559 	if (mmc_host_is_spi(host)) {
1560 		err = mmc_spi_set_crc(host, use_spi_crc);
1561 		if (err)
1562 			goto err;
1563 	}
1564 
1565 	/*
1566 	 * Fetch CID from card.
1567 	 */
1568 	err = mmc_send_cid(host, cid);
1569 	if (err)
1570 		goto err;
1571 
1572 	if (oldcard) {
1573 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1574 			err = -ENOENT;
1575 			goto err;
1576 		}
1577 
1578 		card = oldcard;
1579 	} else {
1580 		/*
1581 		 * Allocate card structure.
1582 		 */
1583 		card = mmc_alloc_card(host, &mmc_type);
1584 		if (IS_ERR(card)) {
1585 			err = PTR_ERR(card);
1586 			goto err;
1587 		}
1588 
1589 		card->ocr = ocr;
1590 		card->type = MMC_TYPE_MMC;
1591 		card->rca = 1;
1592 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1593 	}
1594 
1595 	/*
1596 	 * Call the optional HC's init_card function to handle quirks.
1597 	 */
1598 	if (host->ops->init_card)
1599 		host->ops->init_card(host, card);
1600 
1601 	/*
1602 	 * For native busses:  set card RCA and quit open drain mode.
1603 	 */
1604 	if (!mmc_host_is_spi(host)) {
1605 		err = mmc_set_relative_addr(card);
1606 		if (err)
1607 			goto free_card;
1608 
1609 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1610 	}
1611 
1612 	if (!oldcard) {
1613 		/*
1614 		 * Fetch CSD from card.
1615 		 */
1616 		err = mmc_send_csd(card, card->raw_csd);
1617 		if (err)
1618 			goto free_card;
1619 
1620 		err = mmc_decode_csd(card);
1621 		if (err)
1622 			goto free_card;
1623 		err = mmc_decode_cid(card);
1624 		if (err)
1625 			goto free_card;
1626 	}
1627 
1628 	/*
1629 	 * handling only for cards supporting DSR and hosts requesting
1630 	 * DSR configuration
1631 	 */
1632 	if (card->csd.dsr_imp && host->dsr_req)
1633 		mmc_set_dsr(host);
1634 
1635 	/*
1636 	 * Select card, as all following commands rely on that.
1637 	 */
1638 	if (!mmc_host_is_spi(host)) {
1639 		err = mmc_select_card(card);
1640 		if (err)
1641 			goto free_card;
1642 	}
1643 
1644 	if (!oldcard) {
1645 		/* Read extended CSD. */
1646 		err = mmc_read_ext_csd(card);
1647 		if (err)
1648 			goto free_card;
1649 
1650 		/*
1651 		 * If doing byte addressing, check if required to do sector
1652 		 * addressing.  Handle the case of <2GB cards needing sector
1653 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1654 		 * ocr register has bit 30 set for sector addressing.
1655 		 */
1656 		if (rocr & BIT(30))
1657 			mmc_card_set_blockaddr(card);
1658 
1659 		/* Erase size depends on CSD and Extended CSD */
1660 		mmc_set_erase_size(card);
1661 	}
1662 
1663 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1664 	if (card->ext_csd.rev >= 3) {
1665 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1666 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1667 				 card->ext_csd.generic_cmd6_time);
1668 
1669 		if (err && err != -EBADMSG)
1670 			goto free_card;
1671 
1672 		if (err) {
1673 			err = 0;
1674 			/*
1675 			 * Just disable enhanced area off & sz
1676 			 * will try to enable ERASE_GROUP_DEF
1677 			 * during next time reinit
1678 			 */
1679 			card->ext_csd.enhanced_area_offset = -EINVAL;
1680 			card->ext_csd.enhanced_area_size = -EINVAL;
1681 		} else {
1682 			card->ext_csd.erase_group_def = 1;
1683 			/*
1684 			 * enable ERASE_GRP_DEF successfully.
1685 			 * This will affect the erase size, so
1686 			 * here need to reset erase size
1687 			 */
1688 			mmc_set_erase_size(card);
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * Ensure eMMC user default partition is enabled
1694 	 */
1695 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1696 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1697 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1698 				 card->ext_csd.part_config,
1699 				 card->ext_csd.part_time);
1700 		if (err && err != -EBADMSG)
1701 			goto free_card;
1702 	}
1703 
1704 	/*
1705 	 * Enable power_off_notification byte in the ext_csd register
1706 	 */
1707 	if (card->ext_csd.rev >= 6) {
1708 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1709 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1710 				 EXT_CSD_POWER_ON,
1711 				 card->ext_csd.generic_cmd6_time);
1712 		if (err && err != -EBADMSG)
1713 			goto free_card;
1714 
1715 		/*
1716 		 * The err can be -EBADMSG or 0,
1717 		 * so check for success and update the flag
1718 		 */
1719 		if (!err)
1720 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1721 	}
1722 
1723 	/*
1724 	 * Select timing interface
1725 	 */
1726 	err = mmc_select_timing(card);
1727 	if (err)
1728 		goto free_card;
1729 
1730 	if (mmc_card_hs200(card)) {
1731 		err = mmc_hs200_tuning(card);
1732 		if (err)
1733 			goto free_card;
1734 
1735 		err = mmc_select_hs400(card);
1736 		if (err)
1737 			goto free_card;
1738 	} else if (!mmc_card_hs400es(card)) {
1739 		/* Select the desired bus width optionally */
1740 		err = mmc_select_bus_width(card);
1741 		if (err > 0 && mmc_card_hs(card)) {
1742 			err = mmc_select_hs_ddr(card);
1743 			if (err)
1744 				goto free_card;
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * Choose the power class with selected bus interface
1750 	 */
1751 	mmc_select_powerclass(card);
1752 
1753 	/*
1754 	 * Enable HPI feature (if supported)
1755 	 */
1756 	if (card->ext_csd.hpi) {
1757 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1758 				EXT_CSD_HPI_MGMT, 1,
1759 				card->ext_csd.generic_cmd6_time);
1760 		if (err && err != -EBADMSG)
1761 			goto free_card;
1762 		if (err) {
1763 			pr_warn("%s: Enabling HPI failed\n",
1764 				mmc_hostname(card->host));
1765 			err = 0;
1766 		} else
1767 			card->ext_csd.hpi_en = 1;
1768 	}
1769 
1770 	/*
1771 	 * If cache size is higher than 0, this indicates
1772 	 * the existence of cache and it can be turned on.
1773 	 */
1774 	if (!mmc_card_broken_hpi(card) &&
1775 	    card->ext_csd.cache_size > 0) {
1776 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1777 				EXT_CSD_CACHE_CTRL, 1,
1778 				card->ext_csd.generic_cmd6_time);
1779 		if (err && err != -EBADMSG)
1780 			goto free_card;
1781 
1782 		/*
1783 		 * Only if no error, cache is turned on successfully.
1784 		 */
1785 		if (err) {
1786 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1787 				mmc_hostname(card->host), err);
1788 			card->ext_csd.cache_ctrl = 0;
1789 			err = 0;
1790 		} else {
1791 			card->ext_csd.cache_ctrl = 1;
1792 		}
1793 	}
1794 
1795 	/*
1796 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1797 	 * be used with Command Queue.
1798 	 */
1799 	card->ext_csd.cmdq_en = false;
1800 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1801 		err = mmc_cmdq_enable(card);
1802 		if (err && err != -EBADMSG)
1803 			goto free_card;
1804 		if (err) {
1805 			pr_warn("%s: Enabling CMDQ failed\n",
1806 				mmc_hostname(card->host));
1807 			card->ext_csd.cmdq_support = false;
1808 			card->ext_csd.cmdq_depth = 0;
1809 			err = 0;
1810 		}
1811 	}
1812 	/*
1813 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1814 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1815 	 * Command Queue.
1816 	 */
1817 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1818 
1819 	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1820 		err = host->cqe_ops->cqe_enable(host, card);
1821 		if (err) {
1822 			pr_err("%s: Failed to enable CQE, error %d\n",
1823 				mmc_hostname(host), err);
1824 		} else {
1825 			host->cqe_enabled = true;
1826 			pr_info("%s: Command Queue Engine enabled\n",
1827 				mmc_hostname(host));
1828 		}
1829 	}
1830 
1831 	if (!oldcard)
1832 		host->card = card;
1833 
1834 	return 0;
1835 
1836 free_card:
1837 	if (!oldcard)
1838 		mmc_remove_card(card);
1839 err:
1840 	return err;
1841 }
1842 
1843 static int mmc_can_sleep(struct mmc_card *card)
1844 {
1845 	return (card && card->ext_csd.rev >= 3);
1846 }
1847 
1848 static int mmc_sleep(struct mmc_host *host)
1849 {
1850 	struct mmc_command cmd = {};
1851 	struct mmc_card *card = host->card;
1852 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1853 	int err;
1854 
1855 	/* Re-tuning can't be done once the card is deselected */
1856 	mmc_retune_hold(host);
1857 
1858 	err = mmc_deselect_cards(host);
1859 	if (err)
1860 		goto out_release;
1861 
1862 	cmd.opcode = MMC_SLEEP_AWAKE;
1863 	cmd.arg = card->rca << 16;
1864 	cmd.arg |= 1 << 15;
1865 
1866 	/*
1867 	 * If the max_busy_timeout of the host is specified, validate it against
1868 	 * the sleep cmd timeout. A failure means we need to prevent the host
1869 	 * from doing hw busy detection, which is done by converting to a R1
1870 	 * response instead of a R1B.
1871 	 */
1872 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1873 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1874 	} else {
1875 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1876 		cmd.busy_timeout = timeout_ms;
1877 	}
1878 
1879 	err = mmc_wait_for_cmd(host, &cmd, 0);
1880 	if (err)
1881 		goto out_release;
1882 
1883 	/*
1884 	 * If the host does not wait while the card signals busy, then we will
1885 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1886 	 * SEND_STATUS command to poll the status because that command (and most
1887 	 * others) is invalid while the card sleeps.
1888 	 */
1889 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1890 		mmc_delay(timeout_ms);
1891 
1892 out_release:
1893 	mmc_retune_release(host);
1894 	return err;
1895 }
1896 
1897 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1898 {
1899 	return card &&
1900 		mmc_card_mmc(card) &&
1901 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1902 }
1903 
1904 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1905 {
1906 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1907 	int err;
1908 
1909 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1910 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1911 		timeout = card->ext_csd.power_off_longtime;
1912 
1913 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1914 			EXT_CSD_POWER_OFF_NOTIFICATION,
1915 			notify_type, timeout, 0, true, false, false);
1916 	if (err)
1917 		pr_err("%s: Power Off Notification timed out, %u\n",
1918 		       mmc_hostname(card->host), timeout);
1919 
1920 	/* Disable the power off notification after the switch operation. */
1921 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1922 
1923 	return err;
1924 }
1925 
1926 /*
1927  * Host is being removed. Free up the current card.
1928  */
1929 static void mmc_remove(struct mmc_host *host)
1930 {
1931 	mmc_remove_card(host->card);
1932 	host->card = NULL;
1933 }
1934 
1935 /*
1936  * Card detection - card is alive.
1937  */
1938 static int mmc_alive(struct mmc_host *host)
1939 {
1940 	return mmc_send_status(host->card, NULL);
1941 }
1942 
1943 /*
1944  * Card detection callback from host.
1945  */
1946 static void mmc_detect(struct mmc_host *host)
1947 {
1948 	int err;
1949 
1950 	mmc_get_card(host->card, NULL);
1951 
1952 	/*
1953 	 * Just check if our card has been removed.
1954 	 */
1955 	err = _mmc_detect_card_removed(host);
1956 
1957 	mmc_put_card(host->card, NULL);
1958 
1959 	if (err) {
1960 		mmc_remove(host);
1961 
1962 		mmc_claim_host(host);
1963 		mmc_detach_bus(host);
1964 		mmc_power_off(host);
1965 		mmc_release_host(host);
1966 	}
1967 }
1968 
1969 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1970 {
1971 	int err = 0;
1972 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1973 					EXT_CSD_POWER_OFF_LONG;
1974 
1975 	mmc_claim_host(host);
1976 
1977 	if (mmc_card_suspended(host->card))
1978 		goto out;
1979 
1980 	if (mmc_card_doing_bkops(host->card)) {
1981 		err = mmc_stop_bkops(host->card);
1982 		if (err)
1983 			goto out;
1984 	}
1985 
1986 	err = mmc_flush_cache(host->card);
1987 	if (err)
1988 		goto out;
1989 
1990 	if (mmc_can_poweroff_notify(host->card) &&
1991 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1992 		err = mmc_poweroff_notify(host->card, notify_type);
1993 	else if (mmc_can_sleep(host->card))
1994 		err = mmc_sleep(host);
1995 	else if (!mmc_host_is_spi(host))
1996 		err = mmc_deselect_cards(host);
1997 
1998 	if (!err) {
1999 		mmc_power_off(host);
2000 		mmc_card_set_suspended(host->card);
2001 	}
2002 out:
2003 	mmc_release_host(host);
2004 	return err;
2005 }
2006 
2007 /*
2008  * Suspend callback
2009  */
2010 static int mmc_suspend(struct mmc_host *host)
2011 {
2012 	int err;
2013 
2014 	err = _mmc_suspend(host, true);
2015 	if (!err) {
2016 		pm_runtime_disable(&host->card->dev);
2017 		pm_runtime_set_suspended(&host->card->dev);
2018 	}
2019 
2020 	return err;
2021 }
2022 
2023 /*
2024  * This function tries to determine if the same card is still present
2025  * and, if so, restore all state to it.
2026  */
2027 static int _mmc_resume(struct mmc_host *host)
2028 {
2029 	int err = 0;
2030 
2031 	mmc_claim_host(host);
2032 
2033 	if (!mmc_card_suspended(host->card))
2034 		goto out;
2035 
2036 	mmc_power_up(host, host->card->ocr);
2037 	err = mmc_init_card(host, host->card->ocr, host->card);
2038 	mmc_card_clr_suspended(host->card);
2039 
2040 out:
2041 	mmc_release_host(host);
2042 	return err;
2043 }
2044 
2045 /*
2046  * Shutdown callback
2047  */
2048 static int mmc_shutdown(struct mmc_host *host)
2049 {
2050 	int err = 0;
2051 
2052 	/*
2053 	 * In a specific case for poweroff notify, we need to resume the card
2054 	 * before we can shutdown it properly.
2055 	 */
2056 	if (mmc_can_poweroff_notify(host->card) &&
2057 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2058 		err = _mmc_resume(host);
2059 
2060 	if (!err)
2061 		err = _mmc_suspend(host, false);
2062 
2063 	return err;
2064 }
2065 
2066 /*
2067  * Callback for resume.
2068  */
2069 static int mmc_resume(struct mmc_host *host)
2070 {
2071 	pm_runtime_enable(&host->card->dev);
2072 	return 0;
2073 }
2074 
2075 /*
2076  * Callback for runtime_suspend.
2077  */
2078 static int mmc_runtime_suspend(struct mmc_host *host)
2079 {
2080 	int err;
2081 
2082 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2083 		return 0;
2084 
2085 	err = _mmc_suspend(host, true);
2086 	if (err)
2087 		pr_err("%s: error %d doing aggressive suspend\n",
2088 			mmc_hostname(host), err);
2089 
2090 	return err;
2091 }
2092 
2093 /*
2094  * Callback for runtime_resume.
2095  */
2096 static int mmc_runtime_resume(struct mmc_host *host)
2097 {
2098 	int err;
2099 
2100 	err = _mmc_resume(host);
2101 	if (err && err != -ENOMEDIUM)
2102 		pr_err("%s: error %d doing runtime resume\n",
2103 			mmc_hostname(host), err);
2104 
2105 	return 0;
2106 }
2107 
2108 static int mmc_can_reset(struct mmc_card *card)
2109 {
2110 	u8 rst_n_function;
2111 
2112 	rst_n_function = card->ext_csd.rst_n_function;
2113 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2114 		return 0;
2115 	return 1;
2116 }
2117 
2118 static int mmc_reset(struct mmc_host *host)
2119 {
2120 	struct mmc_card *card = host->card;
2121 
2122 	/*
2123 	 * In the case of recovery, we can't expect flushing the cache to work
2124 	 * always, but we have a go and ignore errors.
2125 	 */
2126 	mmc_flush_cache(host->card);
2127 
2128 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2129 	     mmc_can_reset(card)) {
2130 		/* If the card accept RST_n signal, send it. */
2131 		mmc_set_clock(host, host->f_init);
2132 		host->ops->hw_reset(host);
2133 		/* Set initial state and call mmc_set_ios */
2134 		mmc_set_initial_state(host);
2135 	} else {
2136 		/* Do a brute force power cycle */
2137 		mmc_power_cycle(host, card->ocr);
2138 		mmc_pwrseq_reset(host);
2139 	}
2140 	return mmc_init_card(host, card->ocr, card);
2141 }
2142 
2143 static const struct mmc_bus_ops mmc_ops = {
2144 	.remove = mmc_remove,
2145 	.detect = mmc_detect,
2146 	.suspend = mmc_suspend,
2147 	.resume = mmc_resume,
2148 	.runtime_suspend = mmc_runtime_suspend,
2149 	.runtime_resume = mmc_runtime_resume,
2150 	.alive = mmc_alive,
2151 	.shutdown = mmc_shutdown,
2152 	.reset = mmc_reset,
2153 };
2154 
2155 /*
2156  * Starting point for MMC card init.
2157  */
2158 int mmc_attach_mmc(struct mmc_host *host)
2159 {
2160 	int err;
2161 	u32 ocr, rocr;
2162 
2163 	WARN_ON(!host->claimed);
2164 
2165 	/* Set correct bus mode for MMC before attempting attach */
2166 	if (!mmc_host_is_spi(host))
2167 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2168 
2169 	err = mmc_send_op_cond(host, 0, &ocr);
2170 	if (err)
2171 		return err;
2172 
2173 	mmc_attach_bus(host, &mmc_ops);
2174 	if (host->ocr_avail_mmc)
2175 		host->ocr_avail = host->ocr_avail_mmc;
2176 
2177 	/*
2178 	 * We need to get OCR a different way for SPI.
2179 	 */
2180 	if (mmc_host_is_spi(host)) {
2181 		err = mmc_spi_read_ocr(host, 1, &ocr);
2182 		if (err)
2183 			goto err;
2184 	}
2185 
2186 	rocr = mmc_select_voltage(host, ocr);
2187 
2188 	/*
2189 	 * Can we support the voltage of the card?
2190 	 */
2191 	if (!rocr) {
2192 		err = -EINVAL;
2193 		goto err;
2194 	}
2195 
2196 	/*
2197 	 * Detect and init the card.
2198 	 */
2199 	err = mmc_init_card(host, rocr, NULL);
2200 	if (err)
2201 		goto err;
2202 
2203 	mmc_release_host(host);
2204 	err = mmc_add_card(host->card);
2205 	if (err)
2206 		goto remove_card;
2207 
2208 	mmc_claim_host(host);
2209 	return 0;
2210 
2211 remove_card:
2212 	mmc_remove_card(host->card);
2213 	mmc_claim_host(host);
2214 	host->card = NULL;
2215 err:
2216 	mmc_detach_bus(host);
2217 
2218 	pr_err("%s: error %d whilst initialising MMC card\n",
2219 		mmc_hostname(host), err);
2220 
2221 	return err;
2222 }
2223