xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision c0c74acb)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 
31 #define DEFAULT_CMD6_TIMEOUT_MS	500
32 
33 static const unsigned int tran_exp[] = {
34 	10000,		100000,		1000000,	10000000,
35 	0,		0,		0,		0
36 };
37 
38 static const unsigned char tran_mant[] = {
39 	0,	10,	12,	13,	15,	20,	25,	30,
40 	35,	40,	45,	50,	55,	60,	70,	80,
41 };
42 
43 static const unsigned int tacc_exp[] = {
44 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
45 };
46 
47 static const unsigned int tacc_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 #define UNSTUFF_BITS(resp,start,size)					\
53 	({								\
54 		const int __size = size;				\
55 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
56 		const int __off = 3 - ((start) / 32);			\
57 		const int __shft = (start) & 31;			\
58 		u32 __res;						\
59 									\
60 		__res = resp[__off] >> __shft;				\
61 		if (__size + __shft > 32)				\
62 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
63 		__res & __mask;						\
64 	})
65 
66 /*
67  * Given the decoded CSD structure, decode the raw CID to our CID structure.
68  */
69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 	u32 *resp = card->raw_cid;
72 
73 	/*
74 	 * The selection of the format here is based upon published
75 	 * specs from sandisk and from what people have reported.
76 	 */
77 	switch (card->csd.mmca_vsn) {
78 	case 0: /* MMC v1.0 - v1.2 */
79 	case 1: /* MMC v1.4 */
80 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
81 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
82 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
83 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
84 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
85 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
86 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
87 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
88 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
89 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
90 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
91 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
92 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
93 		break;
94 
95 	case 2: /* MMC v2.0 - v2.2 */
96 	case 3: /* MMC v3.1 - v3.3 */
97 	case 4: /* MMC v4 */
98 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
99 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
100 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
101 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
102 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
103 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
104 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
105 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
106 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
107 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
108 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
109 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
110 		break;
111 
112 	default:
113 		pr_err("%s: card has unknown MMCA version %d\n",
114 			mmc_hostname(card->host), card->csd.mmca_vsn);
115 		return -EINVAL;
116 	}
117 
118 	return 0;
119 }
120 
121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 	if (card->ext_csd.erase_group_def & 1)
124 		card->erase_size = card->ext_csd.hc_erase_size;
125 	else
126 		card->erase_size = card->csd.erase_size;
127 
128 	mmc_init_erase(card);
129 }
130 
131 /*
132  * Given a 128-bit response, decode to our card CSD structure.
133  */
134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 	struct mmc_csd *csd = &card->csd;
137 	unsigned int e, m, a, b;
138 	u32 *resp = card->raw_csd;
139 
140 	/*
141 	 * We only understand CSD structure v1.1 and v1.2.
142 	 * v1.2 has extra information in bits 15, 11 and 10.
143 	 * We also support eMMC v4.4 & v4.41.
144 	 */
145 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 	if (csd->structure == 0) {
147 		pr_err("%s: unrecognised CSD structure version %d\n",
148 			mmc_hostname(card->host), csd->structure);
149 		return -EINVAL;
150 	}
151 
152 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
153 	m = UNSTUFF_BITS(resp, 115, 4);
154 	e = UNSTUFF_BITS(resp, 112, 3);
155 	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
156 	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
157 
158 	m = UNSTUFF_BITS(resp, 99, 4);
159 	e = UNSTUFF_BITS(resp, 96, 3);
160 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
161 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
162 
163 	e = UNSTUFF_BITS(resp, 47, 3);
164 	m = UNSTUFF_BITS(resp, 62, 12);
165 	csd->capacity	  = (1 + m) << (e + 2);
166 
167 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 
176 	if (csd->write_blkbits >= 9) {
177 		a = UNSTUFF_BITS(resp, 42, 5);
178 		b = UNSTUFF_BITS(resp, 37, 5);
179 		csd->erase_size = (a + 1) * (b + 1);
180 		csd->erase_size <<= csd->write_blkbits - 9;
181 	}
182 
183 	return 0;
184 }
185 
186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 	struct mmc_host *host = card->host;
189 	u8 card_type = card->ext_csd.raw_card_type;
190 	u32 caps = host->caps, caps2 = host->caps2;
191 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 	unsigned int avail_type = 0;
193 
194 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 	}
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 	}
205 
206 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 	}
211 
212 	if (caps & MMC_CAP_1_2V_DDR &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 	}
217 
218 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 		hs200_max_dtr = MMC_HS200_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS400_1_8V &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_2V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 	}
241 
242 	if ((caps2 & MMC_CAP2_HS400_ES) &&
243 	    card->ext_csd.strobe_support &&
244 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 
247 	card->ext_csd.hs_max_dtr = hs_max_dtr;
248 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 	card->mmc_avail_type = avail_type;
250 }
251 
252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
255 
256 	/*
257 	 * Disable these attributes by default
258 	 */
259 	card->ext_csd.enhanced_area_offset = -EINVAL;
260 	card->ext_csd.enhanced_area_size = -EINVAL;
261 
262 	/*
263 	 * Enhanced area feature support -- check whether the eMMC
264 	 * card has the Enhanced area enabled.  If so, export enhanced
265 	 * area offset and size to user by adding sysfs interface.
266 	 */
267 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 		if (card->ext_csd.partition_setting_completed) {
270 			hc_erase_grp_sz =
271 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 			hc_wp_grp_sz =
273 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274 
275 			/*
276 			 * calculate the enhanced data area offset, in bytes
277 			 */
278 			card->ext_csd.enhanced_area_offset =
279 				(((unsigned long long)ext_csd[139]) << 24) +
280 				(((unsigned long long)ext_csd[138]) << 16) +
281 				(((unsigned long long)ext_csd[137]) << 8) +
282 				(((unsigned long long)ext_csd[136]));
283 			if (mmc_card_blockaddr(card))
284 				card->ext_csd.enhanced_area_offset <<= 9;
285 			/*
286 			 * calculate the enhanced data area size, in kilobytes
287 			 */
288 			card->ext_csd.enhanced_area_size =
289 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 				ext_csd[140];
291 			card->ext_csd.enhanced_area_size *=
292 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 			card->ext_csd.enhanced_area_size <<= 9;
294 		} else {
295 			pr_warn("%s: defines enhanced area without partition setting complete\n",
296 				mmc_hostname(card->host));
297 		}
298 	}
299 }
300 
301 static void mmc_part_add(struct mmc_card *card, unsigned int size,
302 			 unsigned int part_cfg, char *name, int idx, bool ro,
303 			 int area_type)
304 {
305 	card->part[card->nr_parts].size = size;
306 	card->part[card->nr_parts].part_cfg = part_cfg;
307 	sprintf(card->part[card->nr_parts].name, name, idx);
308 	card->part[card->nr_parts].force_ro = ro;
309 	card->part[card->nr_parts].area_type = area_type;
310 	card->nr_parts++;
311 }
312 
313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 	int idx;
316 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 	unsigned int part_size;
318 
319 	/*
320 	 * General purpose partition feature support --
321 	 * If ext_csd has the size of general purpose partitions,
322 	 * set size, part_cfg, partition name in mmc_part.
323 	 */
324 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 	    EXT_CSD_PART_SUPPORT_PART_EN) {
326 		hc_erase_grp_sz =
327 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 		hc_wp_grp_sz =
329 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 
331 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 				continue;
336 			if (card->ext_csd.partition_setting_completed == 0) {
337 				pr_warn("%s: has partition size defined without partition complete\n",
338 					mmc_hostname(card->host));
339 				break;
340 			}
341 			part_size =
342 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 				<< 16) +
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 				<< 8) +
346 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 			part_size *= (size_t)(hc_erase_grp_sz *
348 				hc_wp_grp_sz);
349 			mmc_part_add(card, part_size << 19,
350 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
351 				"gp%d", idx, false,
352 				MMC_BLK_DATA_AREA_GP);
353 		}
354 	}
355 }
356 
357 /* Minimum partition switch timeout in milliseconds */
358 #define MMC_MIN_PART_SWITCH_TIME	300
359 
360 /*
361  * Decode extended CSD.
362  */
363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
364 {
365 	int err = 0, idx;
366 	unsigned int part_size;
367 	struct device_node *np;
368 	bool broken_hpi = false;
369 
370 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
371 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
372 	if (card->csd.structure == 3) {
373 		if (card->ext_csd.raw_ext_csd_structure > 2) {
374 			pr_err("%s: unrecognised EXT_CSD structure "
375 				"version %d\n", mmc_hostname(card->host),
376 					card->ext_csd.raw_ext_csd_structure);
377 			err = -EINVAL;
378 			goto out;
379 		}
380 	}
381 
382 	np = mmc_of_find_child_device(card->host, 0);
383 	if (np && of_device_is_compatible(np, "mmc-card"))
384 		broken_hpi = of_property_read_bool(np, "broken-hpi");
385 	of_node_put(np);
386 
387 	/*
388 	 * The EXT_CSD format is meant to be forward compatible. As long
389 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
390 	 * are authorized, see JEDEC JESD84-B50 section B.8.
391 	 */
392 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
393 
394 	/* fixup device after ext_csd revision field is updated */
395 	mmc_fixup_device(card, mmc_ext_csd_fixups);
396 
397 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
398 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
399 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
400 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
401 	if (card->ext_csd.rev >= 2) {
402 		card->ext_csd.sectors =
403 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
404 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
405 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
406 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
407 
408 		/* Cards with density > 2GiB are sector addressed */
409 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
410 			mmc_card_set_blockaddr(card);
411 	}
412 
413 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
414 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
415 	mmc_select_card_type(card);
416 
417 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
418 	card->ext_csd.raw_erase_timeout_mult =
419 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
420 	card->ext_csd.raw_hc_erase_grp_size =
421 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
422 	if (card->ext_csd.rev >= 3) {
423 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
424 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
425 
426 		/* EXT_CSD value is in units of 10ms, but we store in ms */
427 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
428 		/* Some eMMC set the value too low so set a minimum */
429 		if (card->ext_csd.part_time &&
430 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
431 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
432 
433 		/* Sleep / awake timeout in 100ns units */
434 		if (sa_shift > 0 && sa_shift <= 0x17)
435 			card->ext_csd.sa_timeout =
436 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
437 		card->ext_csd.erase_group_def =
438 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
439 		card->ext_csd.hc_erase_timeout = 300 *
440 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
441 		card->ext_csd.hc_erase_size =
442 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
443 
444 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
445 
446 		/*
447 		 * There are two boot regions of equal size, defined in
448 		 * multiples of 128K.
449 		 */
450 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
451 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
452 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
453 				mmc_part_add(card, part_size,
454 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
455 					"boot%d", idx, true,
456 					MMC_BLK_DATA_AREA_BOOT);
457 			}
458 		}
459 	}
460 
461 	card->ext_csd.raw_hc_erase_gap_size =
462 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
463 	card->ext_csd.raw_sec_trim_mult =
464 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
465 	card->ext_csd.raw_sec_erase_mult =
466 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
467 	card->ext_csd.raw_sec_feature_support =
468 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
469 	card->ext_csd.raw_trim_mult =
470 		ext_csd[EXT_CSD_TRIM_MULT];
471 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
472 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
473 	if (card->ext_csd.rev >= 4) {
474 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
475 		    EXT_CSD_PART_SETTING_COMPLETED)
476 			card->ext_csd.partition_setting_completed = 1;
477 		else
478 			card->ext_csd.partition_setting_completed = 0;
479 
480 		mmc_manage_enhanced_area(card, ext_csd);
481 
482 		mmc_manage_gp_partitions(card, ext_csd);
483 
484 		card->ext_csd.sec_trim_mult =
485 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
486 		card->ext_csd.sec_erase_mult =
487 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
488 		card->ext_csd.sec_feature_support =
489 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
490 		card->ext_csd.trim_timeout = 300 *
491 			ext_csd[EXT_CSD_TRIM_MULT];
492 
493 		/*
494 		 * Note that the call to mmc_part_add above defaults to read
495 		 * only. If this default assumption is changed, the call must
496 		 * take into account the value of boot_locked below.
497 		 */
498 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
499 		card->ext_csd.boot_ro_lockable = true;
500 
501 		/* Save power class values */
502 		card->ext_csd.raw_pwr_cl_52_195 =
503 			ext_csd[EXT_CSD_PWR_CL_52_195];
504 		card->ext_csd.raw_pwr_cl_26_195 =
505 			ext_csd[EXT_CSD_PWR_CL_26_195];
506 		card->ext_csd.raw_pwr_cl_52_360 =
507 			ext_csd[EXT_CSD_PWR_CL_52_360];
508 		card->ext_csd.raw_pwr_cl_26_360 =
509 			ext_csd[EXT_CSD_PWR_CL_26_360];
510 		card->ext_csd.raw_pwr_cl_200_195 =
511 			ext_csd[EXT_CSD_PWR_CL_200_195];
512 		card->ext_csd.raw_pwr_cl_200_360 =
513 			ext_csd[EXT_CSD_PWR_CL_200_360];
514 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
516 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
518 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
519 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
520 	}
521 
522 	if (card->ext_csd.rev >= 5) {
523 		/* Adjust production date as per JEDEC JESD84-B451 */
524 		if (card->cid.year < 2010)
525 			card->cid.year += 16;
526 
527 		/* check whether the eMMC card supports BKOPS */
528 		if (!mmc_card_broken_hpi(card) &&
529 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
530 			card->ext_csd.bkops = 1;
531 			card->ext_csd.man_bkops_en =
532 					(ext_csd[EXT_CSD_BKOPS_EN] &
533 						EXT_CSD_MANUAL_BKOPS_MASK);
534 			card->ext_csd.raw_bkops_status =
535 				ext_csd[EXT_CSD_BKOPS_STATUS];
536 			if (card->ext_csd.man_bkops_en)
537 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
538 					mmc_hostname(card->host));
539 			card->ext_csd.auto_bkops_en =
540 					(ext_csd[EXT_CSD_BKOPS_EN] &
541 						EXT_CSD_AUTO_BKOPS_MASK);
542 			if (card->ext_csd.auto_bkops_en)
543 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
544 					mmc_hostname(card->host));
545 		}
546 
547 		/* check whether the eMMC card supports HPI */
548 		if (!mmc_card_broken_hpi(card) &&
549 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
550 			card->ext_csd.hpi = 1;
551 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
552 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
553 			else
554 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
555 			/*
556 			 * Indicate the maximum timeout to close
557 			 * a command interrupted by HPI
558 			 */
559 			card->ext_csd.out_of_int_time =
560 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
561 		}
562 
563 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
564 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
565 
566 		/*
567 		 * RPMB regions are defined in multiples of 128K.
568 		 */
569 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
570 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
571 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
572 				EXT_CSD_PART_CONFIG_ACC_RPMB,
573 				"rpmb", 0, false,
574 				MMC_BLK_DATA_AREA_RPMB);
575 		}
576 	}
577 
578 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
579 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
580 		card->erased_byte = 0xFF;
581 	else
582 		card->erased_byte = 0x0;
583 
584 	/* eMMC v4.5 or later */
585 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
586 	if (card->ext_csd.rev >= 6) {
587 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
588 
589 		card->ext_csd.generic_cmd6_time = 10 *
590 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
591 		card->ext_csd.power_off_longtime = 10 *
592 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
593 
594 		card->ext_csd.cache_size =
595 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
596 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
599 
600 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
601 			card->ext_csd.data_sector_size = 4096;
602 		else
603 			card->ext_csd.data_sector_size = 512;
604 
605 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
606 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
607 			card->ext_csd.data_tag_unit_size =
608 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
609 			(card->ext_csd.data_sector_size);
610 		} else {
611 			card->ext_csd.data_tag_unit_size = 0;
612 		}
613 
614 		card->ext_csd.max_packed_writes =
615 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
616 		card->ext_csd.max_packed_reads =
617 			ext_csd[EXT_CSD_MAX_PACKED_READS];
618 	} else {
619 		card->ext_csd.data_sector_size = 512;
620 	}
621 
622 	/* eMMC v5 or later */
623 	if (card->ext_csd.rev >= 7) {
624 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
625 		       MMC_FIRMWARE_LEN);
626 		card->ext_csd.ffu_capable =
627 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
628 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
629 
630 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
631 		card->ext_csd.device_life_time_est_typ_a =
632 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
633 		card->ext_csd.device_life_time_est_typ_b =
634 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
635 	}
636 
637 	/* eMMC v5.1 or later */
638 	if (card->ext_csd.rev >= 8) {
639 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
640 					     EXT_CSD_CMDQ_SUPPORTED;
641 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
642 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
643 		/* Exclude inefficiently small queue depths */
644 		if (card->ext_csd.cmdq_depth <= 2) {
645 			card->ext_csd.cmdq_support = false;
646 			card->ext_csd.cmdq_depth = 0;
647 		}
648 		if (card->ext_csd.cmdq_support) {
649 			pr_debug("%s: Command Queue supported depth %u\n",
650 				 mmc_hostname(card->host),
651 				 card->ext_csd.cmdq_depth);
652 		}
653 	}
654 out:
655 	return err;
656 }
657 
658 static int mmc_read_ext_csd(struct mmc_card *card)
659 {
660 	u8 *ext_csd;
661 	int err;
662 
663 	if (!mmc_can_ext_csd(card))
664 		return 0;
665 
666 	err = mmc_get_ext_csd(card, &ext_csd);
667 	if (err) {
668 		/* If the host or the card can't do the switch,
669 		 * fail more gracefully. */
670 		if ((err != -EINVAL)
671 		 && (err != -ENOSYS)
672 		 && (err != -EFAULT))
673 			return err;
674 
675 		/*
676 		 * High capacity cards should have this "magic" size
677 		 * stored in their CSD.
678 		 */
679 		if (card->csd.capacity == (4096 * 512)) {
680 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
681 				mmc_hostname(card->host));
682 		} else {
683 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
684 				mmc_hostname(card->host));
685 			err = 0;
686 		}
687 
688 		return err;
689 	}
690 
691 	err = mmc_decode_ext_csd(card, ext_csd);
692 	kfree(ext_csd);
693 	return err;
694 }
695 
696 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
697 {
698 	u8 *bw_ext_csd;
699 	int err;
700 
701 	if (bus_width == MMC_BUS_WIDTH_1)
702 		return 0;
703 
704 	err = mmc_get_ext_csd(card, &bw_ext_csd);
705 	if (err)
706 		return err;
707 
708 	/* only compare read only fields */
709 	err = !((card->ext_csd.raw_partition_support ==
710 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
711 		(card->ext_csd.raw_erased_mem_count ==
712 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
713 		(card->ext_csd.rev ==
714 			bw_ext_csd[EXT_CSD_REV]) &&
715 		(card->ext_csd.raw_ext_csd_structure ==
716 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
717 		(card->ext_csd.raw_card_type ==
718 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
719 		(card->ext_csd.raw_s_a_timeout ==
720 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
721 		(card->ext_csd.raw_hc_erase_gap_size ==
722 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
723 		(card->ext_csd.raw_erase_timeout_mult ==
724 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
725 		(card->ext_csd.raw_hc_erase_grp_size ==
726 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
727 		(card->ext_csd.raw_sec_trim_mult ==
728 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
729 		(card->ext_csd.raw_sec_erase_mult ==
730 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
731 		(card->ext_csd.raw_sec_feature_support ==
732 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
733 		(card->ext_csd.raw_trim_mult ==
734 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
735 		(card->ext_csd.raw_sectors[0] ==
736 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
737 		(card->ext_csd.raw_sectors[1] ==
738 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
739 		(card->ext_csd.raw_sectors[2] ==
740 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
741 		(card->ext_csd.raw_sectors[3] ==
742 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
743 		(card->ext_csd.raw_pwr_cl_52_195 ==
744 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
745 		(card->ext_csd.raw_pwr_cl_26_195 ==
746 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
747 		(card->ext_csd.raw_pwr_cl_52_360 ==
748 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
749 		(card->ext_csd.raw_pwr_cl_26_360 ==
750 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
751 		(card->ext_csd.raw_pwr_cl_200_195 ==
752 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
753 		(card->ext_csd.raw_pwr_cl_200_360 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
755 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
757 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
761 
762 	if (err)
763 		err = -EINVAL;
764 
765 	kfree(bw_ext_csd);
766 	return err;
767 }
768 
769 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
770 	card->raw_cid[2], card->raw_cid[3]);
771 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
772 	card->raw_csd[2], card->raw_csd[3]);
773 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
774 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
775 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
776 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
777 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
778 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
779 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
780 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
781 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
782 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info);
783 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
784 	card->ext_csd.device_life_time_est_typ_a,
785 	card->ext_csd.device_life_time_est_typ_b);
786 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
787 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
788 		card->ext_csd.enhanced_area_offset);
789 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
790 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
791 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
792 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
793 
794 static ssize_t mmc_fwrev_show(struct device *dev,
795 			      struct device_attribute *attr,
796 			      char *buf)
797 {
798 	struct mmc_card *card = mmc_dev_to_card(dev);
799 
800 	if (card->ext_csd.rev < 7) {
801 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
802 	} else {
803 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
804 			       card->ext_csd.fwrev);
805 	}
806 }
807 
808 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
809 
810 static ssize_t mmc_dsr_show(struct device *dev,
811 			    struct device_attribute *attr,
812 			    char *buf)
813 {
814 	struct mmc_card *card = mmc_dev_to_card(dev);
815 	struct mmc_host *host = card->host;
816 
817 	if (card->csd.dsr_imp && host->dsr_req)
818 		return sprintf(buf, "0x%x\n", host->dsr);
819 	else
820 		/* return default DSR value */
821 		return sprintf(buf, "0x%x\n", 0x404);
822 }
823 
824 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
825 
826 static struct attribute *mmc_std_attrs[] = {
827 	&dev_attr_cid.attr,
828 	&dev_attr_csd.attr,
829 	&dev_attr_date.attr,
830 	&dev_attr_erase_size.attr,
831 	&dev_attr_preferred_erase_size.attr,
832 	&dev_attr_fwrev.attr,
833 	&dev_attr_ffu_capable.attr,
834 	&dev_attr_hwrev.attr,
835 	&dev_attr_manfid.attr,
836 	&dev_attr_name.attr,
837 	&dev_attr_oemid.attr,
838 	&dev_attr_prv.attr,
839 	&dev_attr_pre_eol_info.attr,
840 	&dev_attr_life_time.attr,
841 	&dev_attr_serial.attr,
842 	&dev_attr_enhanced_area_offset.attr,
843 	&dev_attr_enhanced_area_size.attr,
844 	&dev_attr_raw_rpmb_size_mult.attr,
845 	&dev_attr_rel_sectors.attr,
846 	&dev_attr_ocr.attr,
847 	&dev_attr_dsr.attr,
848 	NULL,
849 };
850 ATTRIBUTE_GROUPS(mmc_std);
851 
852 static struct device_type mmc_type = {
853 	.groups = mmc_std_groups,
854 };
855 
856 /*
857  * Select the PowerClass for the current bus width
858  * If power class is defined for 4/8 bit bus in the
859  * extended CSD register, select it by executing the
860  * mmc_switch command.
861  */
862 static int __mmc_select_powerclass(struct mmc_card *card,
863 				   unsigned int bus_width)
864 {
865 	struct mmc_host *host = card->host;
866 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
867 	unsigned int pwrclass_val = 0;
868 	int err = 0;
869 
870 	switch (1 << host->ios.vdd) {
871 	case MMC_VDD_165_195:
872 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
873 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
874 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
875 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
876 				ext_csd->raw_pwr_cl_52_195 :
877 				ext_csd->raw_pwr_cl_ddr_52_195;
878 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
879 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
880 		break;
881 	case MMC_VDD_27_28:
882 	case MMC_VDD_28_29:
883 	case MMC_VDD_29_30:
884 	case MMC_VDD_30_31:
885 	case MMC_VDD_31_32:
886 	case MMC_VDD_32_33:
887 	case MMC_VDD_33_34:
888 	case MMC_VDD_34_35:
889 	case MMC_VDD_35_36:
890 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
891 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
892 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
893 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
894 				ext_csd->raw_pwr_cl_52_360 :
895 				ext_csd->raw_pwr_cl_ddr_52_360;
896 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
897 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
898 				ext_csd->raw_pwr_cl_ddr_200_360 :
899 				ext_csd->raw_pwr_cl_200_360;
900 		break;
901 	default:
902 		pr_warn("%s: Voltage range not supported for power class\n",
903 			mmc_hostname(host));
904 		return -EINVAL;
905 	}
906 
907 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
908 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
909 				EXT_CSD_PWR_CL_8BIT_SHIFT;
910 	else
911 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
912 				EXT_CSD_PWR_CL_4BIT_SHIFT;
913 
914 	/* If the power class is different from the default value */
915 	if (pwrclass_val > 0) {
916 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
917 				 EXT_CSD_POWER_CLASS,
918 				 pwrclass_val,
919 				 card->ext_csd.generic_cmd6_time);
920 	}
921 
922 	return err;
923 }
924 
925 static int mmc_select_powerclass(struct mmc_card *card)
926 {
927 	struct mmc_host *host = card->host;
928 	u32 bus_width, ext_csd_bits;
929 	int err, ddr;
930 
931 	/* Power class selection is supported for versions >= 4.0 */
932 	if (!mmc_can_ext_csd(card))
933 		return 0;
934 
935 	bus_width = host->ios.bus_width;
936 	/* Power class values are defined only for 4/8 bit bus */
937 	if (bus_width == MMC_BUS_WIDTH_1)
938 		return 0;
939 
940 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
941 	if (ddr)
942 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
943 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
944 	else
945 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
946 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
947 
948 	err = __mmc_select_powerclass(card, ext_csd_bits);
949 	if (err)
950 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
951 			mmc_hostname(host), 1 << bus_width, ddr);
952 
953 	return err;
954 }
955 
956 /*
957  * Set the bus speed for the selected speed mode.
958  */
959 static void mmc_set_bus_speed(struct mmc_card *card)
960 {
961 	unsigned int max_dtr = (unsigned int)-1;
962 
963 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
964 	     max_dtr > card->ext_csd.hs200_max_dtr)
965 		max_dtr = card->ext_csd.hs200_max_dtr;
966 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
967 		max_dtr = card->ext_csd.hs_max_dtr;
968 	else if (max_dtr > card->csd.max_dtr)
969 		max_dtr = card->csd.max_dtr;
970 
971 	mmc_set_clock(card->host, max_dtr);
972 }
973 
974 /*
975  * Select the bus width amoung 4-bit and 8-bit(SDR).
976  * If the bus width is changed successfully, return the selected width value.
977  * Zero is returned instead of error value if the wide width is not supported.
978  */
979 static int mmc_select_bus_width(struct mmc_card *card)
980 {
981 	static unsigned ext_csd_bits[] = {
982 		EXT_CSD_BUS_WIDTH_8,
983 		EXT_CSD_BUS_WIDTH_4,
984 	};
985 	static unsigned bus_widths[] = {
986 		MMC_BUS_WIDTH_8,
987 		MMC_BUS_WIDTH_4,
988 	};
989 	struct mmc_host *host = card->host;
990 	unsigned idx, bus_width = 0;
991 	int err = 0;
992 
993 	if (!mmc_can_ext_csd(card) ||
994 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
995 		return 0;
996 
997 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
998 
999 	/*
1000 	 * Unlike SD, MMC cards dont have a configuration register to notify
1001 	 * supported bus width. So bus test command should be run to identify
1002 	 * the supported bus width or compare the ext csd values of current
1003 	 * bus width and ext csd values of 1 bit mode read earlier.
1004 	 */
1005 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1006 		/*
1007 		 * Host is capable of 8bit transfer, then switch
1008 		 * the device to work in 8bit transfer mode. If the
1009 		 * mmc switch command returns error then switch to
1010 		 * 4bit transfer mode. On success set the corresponding
1011 		 * bus width on the host.
1012 		 */
1013 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1014 				 EXT_CSD_BUS_WIDTH,
1015 				 ext_csd_bits[idx],
1016 				 card->ext_csd.generic_cmd6_time);
1017 		if (err)
1018 			continue;
1019 
1020 		bus_width = bus_widths[idx];
1021 		mmc_set_bus_width(host, bus_width);
1022 
1023 		/*
1024 		 * If controller can't handle bus width test,
1025 		 * compare ext_csd previously read in 1 bit mode
1026 		 * against ext_csd at new bus width
1027 		 */
1028 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1029 			err = mmc_compare_ext_csds(card, bus_width);
1030 		else
1031 			err = mmc_bus_test(card, bus_width);
1032 
1033 		if (!err) {
1034 			err = bus_width;
1035 			break;
1036 		} else {
1037 			pr_warn("%s: switch to bus width %d failed\n",
1038 				mmc_hostname(host), 1 << bus_width);
1039 		}
1040 	}
1041 
1042 	return err;
1043 }
1044 
1045 /*
1046  * Switch to the high-speed mode
1047  */
1048 static int mmc_select_hs(struct mmc_card *card)
1049 {
1050 	int err;
1051 
1052 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1053 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1054 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1055 			   true, true, true);
1056 	if (err)
1057 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1058 			mmc_hostname(card->host), err);
1059 
1060 	return err;
1061 }
1062 
1063 /*
1064  * Activate wide bus and DDR if supported.
1065  */
1066 static int mmc_select_hs_ddr(struct mmc_card *card)
1067 {
1068 	struct mmc_host *host = card->host;
1069 	u32 bus_width, ext_csd_bits;
1070 	int err = 0;
1071 
1072 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1073 		return 0;
1074 
1075 	bus_width = host->ios.bus_width;
1076 	if (bus_width == MMC_BUS_WIDTH_1)
1077 		return 0;
1078 
1079 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1080 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1081 
1082 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1083 			   EXT_CSD_BUS_WIDTH,
1084 			   ext_csd_bits,
1085 			   card->ext_csd.generic_cmd6_time,
1086 			   MMC_TIMING_MMC_DDR52,
1087 			   true, true, true);
1088 	if (err) {
1089 		pr_err("%s: switch to bus width %d ddr failed\n",
1090 			mmc_hostname(host), 1 << bus_width);
1091 		return err;
1092 	}
1093 
1094 	/*
1095 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1096 	 * signaling.
1097 	 *
1098 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1099 	 *
1100 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1101 	 * in the JEDEC spec for DDR.
1102 	 *
1103 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1104 	 * host controller can support this, like some of the SDHCI
1105 	 * controller which connect to an eMMC device. Some of these
1106 	 * host controller still needs to use 1.8v vccq for supporting
1107 	 * DDR mode.
1108 	 *
1109 	 * So the sequence will be:
1110 	 * if (host and device can both support 1.2v IO)
1111 	 *	use 1.2v IO;
1112 	 * else if (host and device can both support 1.8v IO)
1113 	 *	use 1.8v IO;
1114 	 * so if host and device can only support 3.3v IO, this is the
1115 	 * last choice.
1116 	 *
1117 	 * WARNING: eMMC rules are NOT the same as SD DDR
1118 	 */
1119 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1120 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1121 		if (!err)
1122 			return 0;
1123 	}
1124 
1125 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1126 	    host->caps & MMC_CAP_1_8V_DDR)
1127 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1128 
1129 	/* make sure vccq is 3.3v after switching disaster */
1130 	if (err)
1131 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1132 
1133 	return err;
1134 }
1135 
1136 static int mmc_select_hs400(struct mmc_card *card)
1137 {
1138 	struct mmc_host *host = card->host;
1139 	unsigned int max_dtr;
1140 	int err = 0;
1141 	u8 val;
1142 
1143 	/*
1144 	 * HS400 mode requires 8-bit bus width
1145 	 */
1146 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1147 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1148 		return 0;
1149 
1150 	/* Switch card to HS mode */
1151 	val = EXT_CSD_TIMING_HS;
1152 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1153 			   EXT_CSD_HS_TIMING, val,
1154 			   card->ext_csd.generic_cmd6_time, 0,
1155 			   true, false, true);
1156 	if (err) {
1157 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1158 			mmc_hostname(host), err);
1159 		return err;
1160 	}
1161 
1162 	/* Set host controller to HS timing */
1163 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1164 
1165 	/* Reduce frequency to HS frequency */
1166 	max_dtr = card->ext_csd.hs_max_dtr;
1167 	mmc_set_clock(host, max_dtr);
1168 
1169 	err = mmc_switch_status(card);
1170 	if (err)
1171 		goto out_err;
1172 
1173 	/* Switch card to DDR */
1174 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1175 			 EXT_CSD_BUS_WIDTH,
1176 			 EXT_CSD_DDR_BUS_WIDTH_8,
1177 			 card->ext_csd.generic_cmd6_time);
1178 	if (err) {
1179 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1180 			mmc_hostname(host), err);
1181 		return err;
1182 	}
1183 
1184 	/* Switch card to HS400 */
1185 	val = EXT_CSD_TIMING_HS400 |
1186 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1187 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1188 			   EXT_CSD_HS_TIMING, val,
1189 			   card->ext_csd.generic_cmd6_time, 0,
1190 			   true, false, true);
1191 	if (err) {
1192 		pr_err("%s: switch to hs400 failed, err:%d\n",
1193 			 mmc_hostname(host), err);
1194 		return err;
1195 	}
1196 
1197 	/* Set host controller to HS400 timing and frequency */
1198 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1199 	mmc_set_bus_speed(card);
1200 
1201 	err = mmc_switch_status(card);
1202 	if (err)
1203 		goto out_err;
1204 
1205 	return 0;
1206 
1207 out_err:
1208 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1209 	       __func__, err);
1210 	return err;
1211 }
1212 
1213 int mmc_hs200_to_hs400(struct mmc_card *card)
1214 {
1215 	return mmc_select_hs400(card);
1216 }
1217 
1218 int mmc_hs400_to_hs200(struct mmc_card *card)
1219 {
1220 	struct mmc_host *host = card->host;
1221 	unsigned int max_dtr;
1222 	int err;
1223 	u8 val;
1224 
1225 	/* Reduce frequency to HS */
1226 	max_dtr = card->ext_csd.hs_max_dtr;
1227 	mmc_set_clock(host, max_dtr);
1228 
1229 	/* Switch HS400 to HS DDR */
1230 	val = EXT_CSD_TIMING_HS;
1231 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1232 			   val, card->ext_csd.generic_cmd6_time, 0,
1233 			   true, false, true);
1234 	if (err)
1235 		goto out_err;
1236 
1237 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1238 
1239 	err = mmc_switch_status(card);
1240 	if (err)
1241 		goto out_err;
1242 
1243 	/* Switch HS DDR to HS */
1244 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1245 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1246 			   0, true, false, true);
1247 	if (err)
1248 		goto out_err;
1249 
1250 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1251 
1252 	err = mmc_switch_status(card);
1253 	if (err)
1254 		goto out_err;
1255 
1256 	/* Switch HS to HS200 */
1257 	val = EXT_CSD_TIMING_HS200 |
1258 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1259 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1260 			   val, card->ext_csd.generic_cmd6_time, 0,
1261 			   true, false, true);
1262 	if (err)
1263 		goto out_err;
1264 
1265 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1266 
1267 	/*
1268 	 * For HS200, CRC errors are not a reliable way to know the switch
1269 	 * failed. If there really is a problem, we would expect tuning will
1270 	 * fail and the result ends up the same.
1271 	 */
1272 	err = __mmc_switch_status(card, false);
1273 	if (err)
1274 		goto out_err;
1275 
1276 	mmc_set_bus_speed(card);
1277 
1278 	return 0;
1279 
1280 out_err:
1281 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1282 	       __func__, err);
1283 	return err;
1284 }
1285 
1286 static int mmc_select_hs400es(struct mmc_card *card)
1287 {
1288 	struct mmc_host *host = card->host;
1289 	int err = 0;
1290 	u8 val;
1291 
1292 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1293 		err = -ENOTSUPP;
1294 		goto out_err;
1295 	}
1296 
1297 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1298 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1299 
1300 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1301 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1302 
1303 	/* If fails try again during next card power cycle */
1304 	if (err)
1305 		goto out_err;
1306 
1307 	err = mmc_select_bus_width(card);
1308 	if (err < 0)
1309 		goto out_err;
1310 
1311 	/* Switch card to HS mode */
1312 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1313 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1314 			   card->ext_csd.generic_cmd6_time, 0,
1315 			   true, false, true);
1316 	if (err) {
1317 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1318 			mmc_hostname(host), err);
1319 		goto out_err;
1320 	}
1321 
1322 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1323 	err = mmc_switch_status(card);
1324 	if (err)
1325 		goto out_err;
1326 
1327 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1328 
1329 	/* Switch card to DDR with strobe bit */
1330 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1331 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1332 			 EXT_CSD_BUS_WIDTH,
1333 			 val,
1334 			 card->ext_csd.generic_cmd6_time);
1335 	if (err) {
1336 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1337 			mmc_hostname(host), err);
1338 		goto out_err;
1339 	}
1340 
1341 	/* Switch card to HS400 */
1342 	val = EXT_CSD_TIMING_HS400 |
1343 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1344 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1345 			   EXT_CSD_HS_TIMING, val,
1346 			   card->ext_csd.generic_cmd6_time, 0,
1347 			   true, false, true);
1348 	if (err) {
1349 		pr_err("%s: switch to hs400es failed, err:%d\n",
1350 			mmc_hostname(host), err);
1351 		goto out_err;
1352 	}
1353 
1354 	/* Set host controller to HS400 timing and frequency */
1355 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1356 
1357 	/* Controller enable enhanced strobe function */
1358 	host->ios.enhanced_strobe = true;
1359 	if (host->ops->hs400_enhanced_strobe)
1360 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1361 
1362 	err = mmc_switch_status(card);
1363 	if (err)
1364 		goto out_err;
1365 
1366 	return 0;
1367 
1368 out_err:
1369 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1370 	       __func__, err);
1371 	return err;
1372 }
1373 
1374 static void mmc_select_driver_type(struct mmc_card *card)
1375 {
1376 	int card_drv_type, drive_strength, drv_type;
1377 
1378 	card_drv_type = card->ext_csd.raw_driver_strength |
1379 			mmc_driver_type_mask(0);
1380 
1381 	drive_strength = mmc_select_drive_strength(card,
1382 						   card->ext_csd.hs200_max_dtr,
1383 						   card_drv_type, &drv_type);
1384 
1385 	card->drive_strength = drive_strength;
1386 
1387 	if (drv_type)
1388 		mmc_set_driver_type(card->host, drv_type);
1389 }
1390 
1391 /*
1392  * For device supporting HS200 mode, the following sequence
1393  * should be done before executing the tuning process.
1394  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1395  * 2. switch to HS200 mode
1396  * 3. set the clock to > 52Mhz and <=200MHz
1397  */
1398 static int mmc_select_hs200(struct mmc_card *card)
1399 {
1400 	struct mmc_host *host = card->host;
1401 	unsigned int old_timing, old_signal_voltage;
1402 	int err = -EINVAL;
1403 	u8 val;
1404 
1405 	old_signal_voltage = host->ios.signal_voltage;
1406 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1407 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1408 
1409 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1410 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1411 
1412 	/* If fails try again during next card power cycle */
1413 	if (err)
1414 		return err;
1415 
1416 	mmc_select_driver_type(card);
1417 
1418 	/*
1419 	 * Set the bus width(4 or 8) with host's support and
1420 	 * switch to HS200 mode if bus width is set successfully.
1421 	 */
1422 	err = mmc_select_bus_width(card);
1423 	if (err > 0) {
1424 		val = EXT_CSD_TIMING_HS200 |
1425 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1426 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1427 				   EXT_CSD_HS_TIMING, val,
1428 				   card->ext_csd.generic_cmd6_time, 0,
1429 				   true, false, true);
1430 		if (err)
1431 			goto err;
1432 		old_timing = host->ios.timing;
1433 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1434 
1435 		/*
1436 		 * For HS200, CRC errors are not a reliable way to know the
1437 		 * switch failed. If there really is a problem, we would expect
1438 		 * tuning will fail and the result ends up the same.
1439 		 */
1440 		err = __mmc_switch_status(card, false);
1441 
1442 		/*
1443 		 * mmc_select_timing() assumes timing has not changed if
1444 		 * it is a switch error.
1445 		 */
1446 		if (err == -EBADMSG)
1447 			mmc_set_timing(host, old_timing);
1448 	}
1449 err:
1450 	if (err) {
1451 		/* fall back to the old signal voltage, if fails report error */
1452 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1453 			err = -EIO;
1454 
1455 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1456 		       __func__, err);
1457 	}
1458 	return err;
1459 }
1460 
1461 /*
1462  * Activate High Speed, HS200 or HS400ES mode if supported.
1463  */
1464 static int mmc_select_timing(struct mmc_card *card)
1465 {
1466 	int err = 0;
1467 
1468 	if (!mmc_can_ext_csd(card))
1469 		goto bus_speed;
1470 
1471 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1472 		err = mmc_select_hs400es(card);
1473 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1474 		err = mmc_select_hs200(card);
1475 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1476 		err = mmc_select_hs(card);
1477 
1478 	if (err && err != -EBADMSG)
1479 		return err;
1480 
1481 bus_speed:
1482 	/*
1483 	 * Set the bus speed to the selected bus timing.
1484 	 * If timing is not selected, backward compatible is the default.
1485 	 */
1486 	mmc_set_bus_speed(card);
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Execute tuning sequence to seek the proper bus operating
1492  * conditions for HS200 and HS400, which sends CMD21 to the device.
1493  */
1494 static int mmc_hs200_tuning(struct mmc_card *card)
1495 {
1496 	struct mmc_host *host = card->host;
1497 
1498 	/*
1499 	 * Timing should be adjusted to the HS400 target
1500 	 * operation frequency for tuning process
1501 	 */
1502 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1503 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1504 		if (host->ops->prepare_hs400_tuning)
1505 			host->ops->prepare_hs400_tuning(host, &host->ios);
1506 
1507 	return mmc_execute_tuning(card);
1508 }
1509 
1510 /*
1511  * Handle the detection and initialisation of a card.
1512  *
1513  * In the case of a resume, "oldcard" will contain the card
1514  * we're trying to reinitialise.
1515  */
1516 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1517 	struct mmc_card *oldcard)
1518 {
1519 	struct mmc_card *card;
1520 	int err;
1521 	u32 cid[4];
1522 	u32 rocr;
1523 
1524 	WARN_ON(!host->claimed);
1525 
1526 	/* Set correct bus mode for MMC before attempting init */
1527 	if (!mmc_host_is_spi(host))
1528 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1529 
1530 	/*
1531 	 * Since we're changing the OCR value, we seem to
1532 	 * need to tell some cards to go back to the idle
1533 	 * state.  We wait 1ms to give cards time to
1534 	 * respond.
1535 	 * mmc_go_idle is needed for eMMC that are asleep
1536 	 */
1537 	mmc_go_idle(host);
1538 
1539 	/* The extra bit indicates that we support high capacity */
1540 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1541 	if (err)
1542 		goto err;
1543 
1544 	/*
1545 	 * For SPI, enable CRC as appropriate.
1546 	 */
1547 	if (mmc_host_is_spi(host)) {
1548 		err = mmc_spi_set_crc(host, use_spi_crc);
1549 		if (err)
1550 			goto err;
1551 	}
1552 
1553 	/*
1554 	 * Fetch CID from card.
1555 	 */
1556 	if (mmc_host_is_spi(host))
1557 		err = mmc_send_cid(host, cid);
1558 	else
1559 		err = mmc_all_send_cid(host, cid);
1560 	if (err)
1561 		goto err;
1562 
1563 	if (oldcard) {
1564 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1565 			err = -ENOENT;
1566 			goto err;
1567 		}
1568 
1569 		card = oldcard;
1570 	} else {
1571 		/*
1572 		 * Allocate card structure.
1573 		 */
1574 		card = mmc_alloc_card(host, &mmc_type);
1575 		if (IS_ERR(card)) {
1576 			err = PTR_ERR(card);
1577 			goto err;
1578 		}
1579 
1580 		card->ocr = ocr;
1581 		card->type = MMC_TYPE_MMC;
1582 		card->rca = 1;
1583 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1584 	}
1585 
1586 	/*
1587 	 * Call the optional HC's init_card function to handle quirks.
1588 	 */
1589 	if (host->ops->init_card)
1590 		host->ops->init_card(host, card);
1591 
1592 	/*
1593 	 * For native busses:  set card RCA and quit open drain mode.
1594 	 */
1595 	if (!mmc_host_is_spi(host)) {
1596 		err = mmc_set_relative_addr(card);
1597 		if (err)
1598 			goto free_card;
1599 
1600 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1601 	}
1602 
1603 	if (!oldcard) {
1604 		/*
1605 		 * Fetch CSD from card.
1606 		 */
1607 		err = mmc_send_csd(card, card->raw_csd);
1608 		if (err)
1609 			goto free_card;
1610 
1611 		err = mmc_decode_csd(card);
1612 		if (err)
1613 			goto free_card;
1614 		err = mmc_decode_cid(card);
1615 		if (err)
1616 			goto free_card;
1617 	}
1618 
1619 	/*
1620 	 * handling only for cards supporting DSR and hosts requesting
1621 	 * DSR configuration
1622 	 */
1623 	if (card->csd.dsr_imp && host->dsr_req)
1624 		mmc_set_dsr(host);
1625 
1626 	/*
1627 	 * Select card, as all following commands rely on that.
1628 	 */
1629 	if (!mmc_host_is_spi(host)) {
1630 		err = mmc_select_card(card);
1631 		if (err)
1632 			goto free_card;
1633 	}
1634 
1635 	if (!oldcard) {
1636 		/* Read extended CSD. */
1637 		err = mmc_read_ext_csd(card);
1638 		if (err)
1639 			goto free_card;
1640 
1641 		/*
1642 		 * If doing byte addressing, check if required to do sector
1643 		 * addressing.  Handle the case of <2GB cards needing sector
1644 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1645 		 * ocr register has bit 30 set for sector addressing.
1646 		 */
1647 		if (rocr & BIT(30))
1648 			mmc_card_set_blockaddr(card);
1649 
1650 		/* Erase size depends on CSD and Extended CSD */
1651 		mmc_set_erase_size(card);
1652 	}
1653 
1654 	/*
1655 	 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1656 	 * bit.  This bit will be lost every time after a reset or power off.
1657 	 */
1658 	if (card->ext_csd.partition_setting_completed ||
1659 	    (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1660 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1661 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1662 				 card->ext_csd.generic_cmd6_time);
1663 
1664 		if (err && err != -EBADMSG)
1665 			goto free_card;
1666 
1667 		if (err) {
1668 			err = 0;
1669 			/*
1670 			 * Just disable enhanced area off & sz
1671 			 * will try to enable ERASE_GROUP_DEF
1672 			 * during next time reinit
1673 			 */
1674 			card->ext_csd.enhanced_area_offset = -EINVAL;
1675 			card->ext_csd.enhanced_area_size = -EINVAL;
1676 		} else {
1677 			card->ext_csd.erase_group_def = 1;
1678 			/*
1679 			 * enable ERASE_GRP_DEF successfully.
1680 			 * This will affect the erase size, so
1681 			 * here need to reset erase size
1682 			 */
1683 			mmc_set_erase_size(card);
1684 		}
1685 	}
1686 
1687 	/*
1688 	 * Ensure eMMC user default partition is enabled
1689 	 */
1690 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1691 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1692 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1693 				 card->ext_csd.part_config,
1694 				 card->ext_csd.part_time);
1695 		if (err && err != -EBADMSG)
1696 			goto free_card;
1697 	}
1698 
1699 	/*
1700 	 * Enable power_off_notification byte in the ext_csd register
1701 	 */
1702 	if (card->ext_csd.rev >= 6) {
1703 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1704 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1705 				 EXT_CSD_POWER_ON,
1706 				 card->ext_csd.generic_cmd6_time);
1707 		if (err && err != -EBADMSG)
1708 			goto free_card;
1709 
1710 		/*
1711 		 * The err can be -EBADMSG or 0,
1712 		 * so check for success and update the flag
1713 		 */
1714 		if (!err)
1715 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1716 	}
1717 
1718 	/*
1719 	 * Select timing interface
1720 	 */
1721 	err = mmc_select_timing(card);
1722 	if (err)
1723 		goto free_card;
1724 
1725 	if (mmc_card_hs200(card)) {
1726 		err = mmc_hs200_tuning(card);
1727 		if (err)
1728 			goto free_card;
1729 
1730 		err = mmc_select_hs400(card);
1731 		if (err)
1732 			goto free_card;
1733 	} else if (!mmc_card_hs400es(card)) {
1734 		/* Select the desired bus width optionally */
1735 		err = mmc_select_bus_width(card);
1736 		if (err > 0 && mmc_card_hs(card)) {
1737 			err = mmc_select_hs_ddr(card);
1738 			if (err)
1739 				goto free_card;
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * Choose the power class with selected bus interface
1745 	 */
1746 	mmc_select_powerclass(card);
1747 
1748 	/*
1749 	 * Enable HPI feature (if supported)
1750 	 */
1751 	if (card->ext_csd.hpi) {
1752 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1753 				EXT_CSD_HPI_MGMT, 1,
1754 				card->ext_csd.generic_cmd6_time);
1755 		if (err && err != -EBADMSG)
1756 			goto free_card;
1757 		if (err) {
1758 			pr_warn("%s: Enabling HPI failed\n",
1759 				mmc_hostname(card->host));
1760 			err = 0;
1761 		} else
1762 			card->ext_csd.hpi_en = 1;
1763 	}
1764 
1765 	/*
1766 	 * If cache size is higher than 0, this indicates
1767 	 * the existence of cache and it can be turned on.
1768 	 */
1769 	if (!mmc_card_broken_hpi(card) &&
1770 	    card->ext_csd.cache_size > 0) {
1771 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1772 				EXT_CSD_CACHE_CTRL, 1,
1773 				card->ext_csd.generic_cmd6_time);
1774 		if (err && err != -EBADMSG)
1775 			goto free_card;
1776 
1777 		/*
1778 		 * Only if no error, cache is turned on successfully.
1779 		 */
1780 		if (err) {
1781 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1782 				mmc_hostname(card->host), err);
1783 			card->ext_csd.cache_ctrl = 0;
1784 			err = 0;
1785 		} else {
1786 			card->ext_csd.cache_ctrl = 1;
1787 		}
1788 	}
1789 
1790 	/*
1791 	 * The mandatory minimum values are defined for packed command.
1792 	 * read: 5, write: 3
1793 	 */
1794 	if (card->ext_csd.max_packed_writes >= 3 &&
1795 	    card->ext_csd.max_packed_reads >= 5 &&
1796 	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1797 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1798 				EXT_CSD_EXP_EVENTS_CTRL,
1799 				EXT_CSD_PACKED_EVENT_EN,
1800 				card->ext_csd.generic_cmd6_time);
1801 		if (err && err != -EBADMSG)
1802 			goto free_card;
1803 		if (err) {
1804 			pr_warn("%s: Enabling packed event failed\n",
1805 				mmc_hostname(card->host));
1806 			card->ext_csd.packed_event_en = 0;
1807 			err = 0;
1808 		} else {
1809 			card->ext_csd.packed_event_en = 1;
1810 		}
1811 	}
1812 
1813 	if (!oldcard)
1814 		host->card = card;
1815 
1816 	return 0;
1817 
1818 free_card:
1819 	if (!oldcard)
1820 		mmc_remove_card(card);
1821 err:
1822 	return err;
1823 }
1824 
1825 static int mmc_can_sleep(struct mmc_card *card)
1826 {
1827 	return (card && card->ext_csd.rev >= 3);
1828 }
1829 
1830 static int mmc_sleep(struct mmc_host *host)
1831 {
1832 	struct mmc_command cmd = {};
1833 	struct mmc_card *card = host->card;
1834 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1835 	int err;
1836 
1837 	/* Re-tuning can't be done once the card is deselected */
1838 	mmc_retune_hold(host);
1839 
1840 	err = mmc_deselect_cards(host);
1841 	if (err)
1842 		goto out_release;
1843 
1844 	cmd.opcode = MMC_SLEEP_AWAKE;
1845 	cmd.arg = card->rca << 16;
1846 	cmd.arg |= 1 << 15;
1847 
1848 	/*
1849 	 * If the max_busy_timeout of the host is specified, validate it against
1850 	 * the sleep cmd timeout. A failure means we need to prevent the host
1851 	 * from doing hw busy detection, which is done by converting to a R1
1852 	 * response instead of a R1B.
1853 	 */
1854 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1855 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1856 	} else {
1857 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1858 		cmd.busy_timeout = timeout_ms;
1859 	}
1860 
1861 	err = mmc_wait_for_cmd(host, &cmd, 0);
1862 	if (err)
1863 		goto out_release;
1864 
1865 	/*
1866 	 * If the host does not wait while the card signals busy, then we will
1867 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1868 	 * SEND_STATUS command to poll the status because that command (and most
1869 	 * others) is invalid while the card sleeps.
1870 	 */
1871 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1872 		mmc_delay(timeout_ms);
1873 
1874 out_release:
1875 	mmc_retune_release(host);
1876 	return err;
1877 }
1878 
1879 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1880 {
1881 	return card &&
1882 		mmc_card_mmc(card) &&
1883 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1884 }
1885 
1886 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1887 {
1888 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1889 	int err;
1890 
1891 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1892 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1893 		timeout = card->ext_csd.power_off_longtime;
1894 
1895 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1896 			EXT_CSD_POWER_OFF_NOTIFICATION,
1897 			notify_type, timeout, 0, true, false, false);
1898 	if (err)
1899 		pr_err("%s: Power Off Notification timed out, %u\n",
1900 		       mmc_hostname(card->host), timeout);
1901 
1902 	/* Disable the power off notification after the switch operation. */
1903 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1904 
1905 	return err;
1906 }
1907 
1908 /*
1909  * Host is being removed. Free up the current card.
1910  */
1911 static void mmc_remove(struct mmc_host *host)
1912 {
1913 	mmc_remove_card(host->card);
1914 	host->card = NULL;
1915 }
1916 
1917 /*
1918  * Card detection - card is alive.
1919  */
1920 static int mmc_alive(struct mmc_host *host)
1921 {
1922 	return mmc_send_status(host->card, NULL);
1923 }
1924 
1925 /*
1926  * Card detection callback from host.
1927  */
1928 static void mmc_detect(struct mmc_host *host)
1929 {
1930 	int err;
1931 
1932 	mmc_get_card(host->card);
1933 
1934 	/*
1935 	 * Just check if our card has been removed.
1936 	 */
1937 	err = _mmc_detect_card_removed(host);
1938 
1939 	mmc_put_card(host->card);
1940 
1941 	if (err) {
1942 		mmc_remove(host);
1943 
1944 		mmc_claim_host(host);
1945 		mmc_detach_bus(host);
1946 		mmc_power_off(host);
1947 		mmc_release_host(host);
1948 	}
1949 }
1950 
1951 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1952 {
1953 	int err = 0;
1954 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1955 					EXT_CSD_POWER_OFF_LONG;
1956 
1957 	mmc_claim_host(host);
1958 
1959 	if (mmc_card_suspended(host->card))
1960 		goto out;
1961 
1962 	if (mmc_card_doing_bkops(host->card)) {
1963 		err = mmc_stop_bkops(host->card);
1964 		if (err)
1965 			goto out;
1966 	}
1967 
1968 	err = mmc_flush_cache(host->card);
1969 	if (err)
1970 		goto out;
1971 
1972 	if (mmc_can_poweroff_notify(host->card) &&
1973 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1974 		err = mmc_poweroff_notify(host->card, notify_type);
1975 	else if (mmc_can_sleep(host->card))
1976 		err = mmc_sleep(host);
1977 	else if (!mmc_host_is_spi(host))
1978 		err = mmc_deselect_cards(host);
1979 
1980 	if (!err) {
1981 		mmc_power_off(host);
1982 		mmc_card_set_suspended(host->card);
1983 	}
1984 out:
1985 	mmc_release_host(host);
1986 	return err;
1987 }
1988 
1989 /*
1990  * Suspend callback
1991  */
1992 static int mmc_suspend(struct mmc_host *host)
1993 {
1994 	int err;
1995 
1996 	err = _mmc_suspend(host, true);
1997 	if (!err) {
1998 		pm_runtime_disable(&host->card->dev);
1999 		pm_runtime_set_suspended(&host->card->dev);
2000 	}
2001 
2002 	return err;
2003 }
2004 
2005 /*
2006  * This function tries to determine if the same card is still present
2007  * and, if so, restore all state to it.
2008  */
2009 static int _mmc_resume(struct mmc_host *host)
2010 {
2011 	int err = 0;
2012 
2013 	mmc_claim_host(host);
2014 
2015 	if (!mmc_card_suspended(host->card))
2016 		goto out;
2017 
2018 	mmc_power_up(host, host->card->ocr);
2019 	err = mmc_init_card(host, host->card->ocr, host->card);
2020 	mmc_card_clr_suspended(host->card);
2021 
2022 out:
2023 	mmc_release_host(host);
2024 	return err;
2025 }
2026 
2027 /*
2028  * Shutdown callback
2029  */
2030 static int mmc_shutdown(struct mmc_host *host)
2031 {
2032 	int err = 0;
2033 
2034 	/*
2035 	 * In a specific case for poweroff notify, we need to resume the card
2036 	 * before we can shutdown it properly.
2037 	 */
2038 	if (mmc_can_poweroff_notify(host->card) &&
2039 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2040 		err = _mmc_resume(host);
2041 
2042 	if (!err)
2043 		err = _mmc_suspend(host, false);
2044 
2045 	return err;
2046 }
2047 
2048 /*
2049  * Callback for resume.
2050  */
2051 static int mmc_resume(struct mmc_host *host)
2052 {
2053 	pm_runtime_enable(&host->card->dev);
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Callback for runtime_suspend.
2059  */
2060 static int mmc_runtime_suspend(struct mmc_host *host)
2061 {
2062 	int err;
2063 
2064 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2065 		return 0;
2066 
2067 	err = _mmc_suspend(host, true);
2068 	if (err)
2069 		pr_err("%s: error %d doing aggressive suspend\n",
2070 			mmc_hostname(host), err);
2071 
2072 	return err;
2073 }
2074 
2075 /*
2076  * Callback for runtime_resume.
2077  */
2078 static int mmc_runtime_resume(struct mmc_host *host)
2079 {
2080 	int err;
2081 
2082 	err = _mmc_resume(host);
2083 	if (err && err != -ENOMEDIUM)
2084 		pr_err("%s: error %d doing runtime resume\n",
2085 			mmc_hostname(host), err);
2086 
2087 	return 0;
2088 }
2089 
2090 int mmc_can_reset(struct mmc_card *card)
2091 {
2092 	u8 rst_n_function;
2093 
2094 	rst_n_function = card->ext_csd.rst_n_function;
2095 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2096 		return 0;
2097 	return 1;
2098 }
2099 EXPORT_SYMBOL(mmc_can_reset);
2100 
2101 static int mmc_reset(struct mmc_host *host)
2102 {
2103 	struct mmc_card *card = host->card;
2104 
2105 	/*
2106 	 * In the case of recovery, we can't expect flushing the cache to work
2107 	 * always, but we have a go and ignore errors.
2108 	 */
2109 	mmc_flush_cache(host->card);
2110 
2111 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2112 	     mmc_can_reset(card)) {
2113 		/* If the card accept RST_n signal, send it. */
2114 		mmc_set_clock(host, host->f_init);
2115 		host->ops->hw_reset(host);
2116 		/* Set initial state and call mmc_set_ios */
2117 		mmc_set_initial_state(host);
2118 	} else {
2119 		/* Do a brute force power cycle */
2120 		mmc_power_cycle(host, card->ocr);
2121 	}
2122 	return mmc_init_card(host, card->ocr, card);
2123 }
2124 
2125 static const struct mmc_bus_ops mmc_ops = {
2126 	.remove = mmc_remove,
2127 	.detect = mmc_detect,
2128 	.suspend = mmc_suspend,
2129 	.resume = mmc_resume,
2130 	.runtime_suspend = mmc_runtime_suspend,
2131 	.runtime_resume = mmc_runtime_resume,
2132 	.alive = mmc_alive,
2133 	.shutdown = mmc_shutdown,
2134 	.reset = mmc_reset,
2135 };
2136 
2137 /*
2138  * Starting point for MMC card init.
2139  */
2140 int mmc_attach_mmc(struct mmc_host *host)
2141 {
2142 	int err;
2143 	u32 ocr, rocr;
2144 
2145 	WARN_ON(!host->claimed);
2146 
2147 	/* Set correct bus mode for MMC before attempting attach */
2148 	if (!mmc_host_is_spi(host))
2149 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2150 
2151 	err = mmc_send_op_cond(host, 0, &ocr);
2152 	if (err)
2153 		return err;
2154 
2155 	mmc_attach_bus(host, &mmc_ops);
2156 	if (host->ocr_avail_mmc)
2157 		host->ocr_avail = host->ocr_avail_mmc;
2158 
2159 	/*
2160 	 * We need to get OCR a different way for SPI.
2161 	 */
2162 	if (mmc_host_is_spi(host)) {
2163 		err = mmc_spi_read_ocr(host, 1, &ocr);
2164 		if (err)
2165 			goto err;
2166 	}
2167 
2168 	rocr = mmc_select_voltage(host, ocr);
2169 
2170 	/*
2171 	 * Can we support the voltage of the card?
2172 	 */
2173 	if (!rocr) {
2174 		err = -EINVAL;
2175 		goto err;
2176 	}
2177 
2178 	/*
2179 	 * Detect and init the card.
2180 	 */
2181 	err = mmc_init_card(host, rocr, NULL);
2182 	if (err)
2183 		goto err;
2184 
2185 	mmc_release_host(host);
2186 	err = mmc_add_card(host->card);
2187 	if (err)
2188 		goto remove_card;
2189 
2190 	mmc_claim_host(host);
2191 	return 0;
2192 
2193 remove_card:
2194 	mmc_remove_card(host->card);
2195 	mmc_claim_host(host);
2196 	host->card = NULL;
2197 err:
2198 	mmc_detach_bus(host);
2199 
2200 	pr_err("%s: error %d whilst initialising MMC card\n",
2201 		mmc_hostname(host), err);
2202 
2203 	return err;
2204 }
2205