1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "quirks.h" 26 #include "sd_ops.h" 27 #include "pwrseq.h" 28 29 #define DEFAULT_CMD6_TIMEOUT_MS 500 30 #define MIN_CACHE_EN_TIMEOUT_MS 1600 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 #define UNSTUFF_BITS(resp,start,size) \ 52 ({ \ 53 const int __size = size; \ 54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 55 const int __off = 3 - ((start) / 32); \ 56 const int __shft = (start) & 31; \ 57 u32 __res; \ 58 \ 59 __res = resp[__off] >> __shft; \ 60 if (__size + __shft > 32) \ 61 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 62 __res & __mask; \ 63 }) 64 65 /* 66 * Given the decoded CSD structure, decode the raw CID to our CID structure. 67 */ 68 static int mmc_decode_cid(struct mmc_card *card) 69 { 70 u32 *resp = card->raw_cid; 71 72 /* 73 * The selection of the format here is based upon published 74 * specs from sandisk and from what people have reported. 75 */ 76 switch (card->csd.mmca_vsn) { 77 case 0: /* MMC v1.0 - v1.2 */ 78 case 1: /* MMC v1.4 */ 79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 90 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 92 break; 93 94 case 2: /* MMC v2.0 - v2.2 */ 95 case 3: /* MMC v3.1 - v3.3 */ 96 case 4: /* MMC v4 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 107 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 109 break; 110 111 default: 112 pr_err("%s: card has unknown MMCA version %d\n", 113 mmc_hostname(card->host), card->csd.mmca_vsn); 114 return -EINVAL; 115 } 116 117 return 0; 118 } 119 120 static void mmc_set_erase_size(struct mmc_card *card) 121 { 122 if (card->ext_csd.erase_group_def & 1) 123 card->erase_size = card->ext_csd.hc_erase_size; 124 else 125 card->erase_size = card->csd.erase_size; 126 127 mmc_init_erase(card); 128 } 129 130 /* 131 * Given a 128-bit response, decode to our card CSD structure. 132 */ 133 static int mmc_decode_csd(struct mmc_card *card) 134 { 135 struct mmc_csd *csd = &card->csd; 136 unsigned int e, m, a, b; 137 u32 *resp = card->raw_csd; 138 139 /* 140 * We only understand CSD structure v1.1 and v1.2. 141 * v1.2 has extra information in bits 15, 11 and 10. 142 * We also support eMMC v4.4 & v4.41. 143 */ 144 csd->structure = UNSTUFF_BITS(resp, 126, 2); 145 if (csd->structure == 0) { 146 pr_err("%s: unrecognised CSD structure version %d\n", 147 mmc_hostname(card->host), csd->structure); 148 return -EINVAL; 149 } 150 151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 152 m = UNSTUFF_BITS(resp, 115, 4); 153 e = UNSTUFF_BITS(resp, 112, 3); 154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 156 157 m = UNSTUFF_BITS(resp, 99, 4); 158 e = UNSTUFF_BITS(resp, 96, 3); 159 csd->max_dtr = tran_exp[e] * tran_mant[m]; 160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 161 162 e = UNSTUFF_BITS(resp, 47, 3); 163 m = UNSTUFF_BITS(resp, 62, 12); 164 csd->capacity = (1 + m) << (e + 2); 165 166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 174 175 if (csd->write_blkbits >= 9) { 176 a = UNSTUFF_BITS(resp, 42, 5); 177 b = UNSTUFF_BITS(resp, 37, 5); 178 csd->erase_size = (a + 1) * (b + 1); 179 csd->erase_size <<= csd->write_blkbits - 9; 180 } 181 182 return 0; 183 } 184 185 static void mmc_select_card_type(struct mmc_card *card) 186 { 187 struct mmc_host *host = card->host; 188 u8 card_type = card->ext_csd.raw_card_type; 189 u32 caps = host->caps, caps2 = host->caps2; 190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 191 unsigned int avail_type = 0; 192 193 if (caps & MMC_CAP_MMC_HIGHSPEED && 194 card_type & EXT_CSD_CARD_TYPE_HS_26) { 195 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 196 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 197 } 198 199 if (caps & MMC_CAP_MMC_HIGHSPEED && 200 card_type & EXT_CSD_CARD_TYPE_HS_52) { 201 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 202 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 203 } 204 205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 209 } 210 211 if (caps & MMC_CAP_1_2V_DDR && 212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 215 } 216 217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 219 hs200_max_dtr = MMC_HS200_MAX_DTR; 220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 221 } 222 223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 225 hs200_max_dtr = MMC_HS200_MAX_DTR; 226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 227 } 228 229 if (caps2 & MMC_CAP2_HS400_1_8V && 230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 231 hs200_max_dtr = MMC_HS200_MAX_DTR; 232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 233 } 234 235 if (caps2 & MMC_CAP2_HS400_1_2V && 236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 237 hs200_max_dtr = MMC_HS200_MAX_DTR; 238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 239 } 240 241 if ((caps2 & MMC_CAP2_HS400_ES) && 242 card->ext_csd.strobe_support && 243 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 245 246 card->ext_csd.hs_max_dtr = hs_max_dtr; 247 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 248 card->mmc_avail_type = avail_type; 249 } 250 251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 252 { 253 u8 hc_erase_grp_sz, hc_wp_grp_sz; 254 255 /* 256 * Disable these attributes by default 257 */ 258 card->ext_csd.enhanced_area_offset = -EINVAL; 259 card->ext_csd.enhanced_area_size = -EINVAL; 260 261 /* 262 * Enhanced area feature support -- check whether the eMMC 263 * card has the Enhanced area enabled. If so, export enhanced 264 * area offset and size to user by adding sysfs interface. 265 */ 266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 268 if (card->ext_csd.partition_setting_completed) { 269 hc_erase_grp_sz = 270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 271 hc_wp_grp_sz = 272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 273 274 /* 275 * calculate the enhanced data area offset, in bytes 276 */ 277 card->ext_csd.enhanced_area_offset = 278 (((unsigned long long)ext_csd[139]) << 24) + 279 (((unsigned long long)ext_csd[138]) << 16) + 280 (((unsigned long long)ext_csd[137]) << 8) + 281 (((unsigned long long)ext_csd[136])); 282 if (mmc_card_blockaddr(card)) 283 card->ext_csd.enhanced_area_offset <<= 9; 284 /* 285 * calculate the enhanced data area size, in kilobytes 286 */ 287 card->ext_csd.enhanced_area_size = 288 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 289 ext_csd[140]; 290 card->ext_csd.enhanced_area_size *= 291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 292 card->ext_csd.enhanced_area_size <<= 9; 293 } else { 294 pr_warn("%s: defines enhanced area without partition setting complete\n", 295 mmc_hostname(card->host)); 296 } 297 } 298 } 299 300 static void mmc_part_add(struct mmc_card *card, unsigned int size, 301 unsigned int part_cfg, char *name, int idx, bool ro, 302 int area_type) 303 { 304 card->part[card->nr_parts].size = size; 305 card->part[card->nr_parts].part_cfg = part_cfg; 306 sprintf(card->part[card->nr_parts].name, name, idx); 307 card->part[card->nr_parts].force_ro = ro; 308 card->part[card->nr_parts].area_type = area_type; 309 card->nr_parts++; 310 } 311 312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 313 { 314 int idx; 315 u8 hc_erase_grp_sz, hc_wp_grp_sz; 316 unsigned int part_size; 317 318 /* 319 * General purpose partition feature support -- 320 * If ext_csd has the size of general purpose partitions, 321 * set size, part_cfg, partition name in mmc_part. 322 */ 323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 324 EXT_CSD_PART_SUPPORT_PART_EN) { 325 hc_erase_grp_sz = 326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 327 hc_wp_grp_sz = 328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 329 330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 334 continue; 335 if (card->ext_csd.partition_setting_completed == 0) { 336 pr_warn("%s: has partition size defined without partition complete\n", 337 mmc_hostname(card->host)); 338 break; 339 } 340 part_size = 341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 342 << 16) + 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 344 << 8) + 345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 346 part_size *= (size_t)(hc_erase_grp_sz * 347 hc_wp_grp_sz); 348 mmc_part_add(card, part_size << 19, 349 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 350 "gp%d", idx, false, 351 MMC_BLK_DATA_AREA_GP); 352 } 353 } 354 } 355 356 /* Minimum partition switch timeout in milliseconds */ 357 #define MMC_MIN_PART_SWITCH_TIME 300 358 359 /* 360 * Decode extended CSD. 361 */ 362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 363 { 364 int err = 0, idx; 365 unsigned int part_size; 366 struct device_node *np; 367 bool broken_hpi = false; 368 369 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 370 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 371 if (card->csd.structure == 3) { 372 if (card->ext_csd.raw_ext_csd_structure > 2) { 373 pr_err("%s: unrecognised EXT_CSD structure " 374 "version %d\n", mmc_hostname(card->host), 375 card->ext_csd.raw_ext_csd_structure); 376 err = -EINVAL; 377 goto out; 378 } 379 } 380 381 np = mmc_of_find_child_device(card->host, 0); 382 if (np && of_device_is_compatible(np, "mmc-card")) 383 broken_hpi = of_property_read_bool(np, "broken-hpi"); 384 of_node_put(np); 385 386 /* 387 * The EXT_CSD format is meant to be forward compatible. As long 388 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 389 * are authorized, see JEDEC JESD84-B50 section B.8. 390 */ 391 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 392 393 /* fixup device after ext_csd revision field is updated */ 394 mmc_fixup_device(card, mmc_ext_csd_fixups); 395 396 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 397 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 398 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 399 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 400 if (card->ext_csd.rev >= 2) { 401 card->ext_csd.sectors = 402 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 403 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 404 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 405 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 406 407 /* Cards with density > 2GiB are sector addressed */ 408 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 409 mmc_card_set_blockaddr(card); 410 } 411 412 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 413 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 414 mmc_select_card_type(card); 415 416 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 417 card->ext_csd.raw_erase_timeout_mult = 418 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 419 card->ext_csd.raw_hc_erase_grp_size = 420 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 421 if (card->ext_csd.rev >= 3) { 422 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 423 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 424 425 /* EXT_CSD value is in units of 10ms, but we store in ms */ 426 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 427 /* Some eMMC set the value too low so set a minimum */ 428 if (card->ext_csd.part_time && 429 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 430 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 431 432 /* Sleep / awake timeout in 100ns units */ 433 if (sa_shift > 0 && sa_shift <= 0x17) 434 card->ext_csd.sa_timeout = 435 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 436 card->ext_csd.erase_group_def = 437 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 438 card->ext_csd.hc_erase_timeout = 300 * 439 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 440 card->ext_csd.hc_erase_size = 441 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 442 443 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 444 445 /* 446 * There are two boot regions of equal size, defined in 447 * multiples of 128K. 448 */ 449 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 450 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 451 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 452 mmc_part_add(card, part_size, 453 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 454 "boot%d", idx, true, 455 MMC_BLK_DATA_AREA_BOOT); 456 } 457 } 458 } 459 460 card->ext_csd.raw_hc_erase_gap_size = 461 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 462 card->ext_csd.raw_sec_trim_mult = 463 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 464 card->ext_csd.raw_sec_erase_mult = 465 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 466 card->ext_csd.raw_sec_feature_support = 467 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 468 card->ext_csd.raw_trim_mult = 469 ext_csd[EXT_CSD_TRIM_MULT]; 470 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 471 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 472 if (card->ext_csd.rev >= 4) { 473 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 474 EXT_CSD_PART_SETTING_COMPLETED) 475 card->ext_csd.partition_setting_completed = 1; 476 else 477 card->ext_csd.partition_setting_completed = 0; 478 479 mmc_manage_enhanced_area(card, ext_csd); 480 481 mmc_manage_gp_partitions(card, ext_csd); 482 483 card->ext_csd.sec_trim_mult = 484 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 485 card->ext_csd.sec_erase_mult = 486 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 487 card->ext_csd.sec_feature_support = 488 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 489 card->ext_csd.trim_timeout = 300 * 490 ext_csd[EXT_CSD_TRIM_MULT]; 491 492 /* 493 * Note that the call to mmc_part_add above defaults to read 494 * only. If this default assumption is changed, the call must 495 * take into account the value of boot_locked below. 496 */ 497 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 498 card->ext_csd.boot_ro_lockable = true; 499 500 /* Save power class values */ 501 card->ext_csd.raw_pwr_cl_52_195 = 502 ext_csd[EXT_CSD_PWR_CL_52_195]; 503 card->ext_csd.raw_pwr_cl_26_195 = 504 ext_csd[EXT_CSD_PWR_CL_26_195]; 505 card->ext_csd.raw_pwr_cl_52_360 = 506 ext_csd[EXT_CSD_PWR_CL_52_360]; 507 card->ext_csd.raw_pwr_cl_26_360 = 508 ext_csd[EXT_CSD_PWR_CL_26_360]; 509 card->ext_csd.raw_pwr_cl_200_195 = 510 ext_csd[EXT_CSD_PWR_CL_200_195]; 511 card->ext_csd.raw_pwr_cl_200_360 = 512 ext_csd[EXT_CSD_PWR_CL_200_360]; 513 card->ext_csd.raw_pwr_cl_ddr_52_195 = 514 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 515 card->ext_csd.raw_pwr_cl_ddr_52_360 = 516 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 517 card->ext_csd.raw_pwr_cl_ddr_200_360 = 518 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 519 } 520 521 if (card->ext_csd.rev >= 5) { 522 /* Adjust production date as per JEDEC JESD84-B451 */ 523 if (card->cid.year < 2010) 524 card->cid.year += 16; 525 526 /* check whether the eMMC card supports BKOPS */ 527 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 528 card->ext_csd.bkops = 1; 529 card->ext_csd.man_bkops_en = 530 (ext_csd[EXT_CSD_BKOPS_EN] & 531 EXT_CSD_MANUAL_BKOPS_MASK); 532 card->ext_csd.raw_bkops_status = 533 ext_csd[EXT_CSD_BKOPS_STATUS]; 534 if (card->ext_csd.man_bkops_en) 535 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 536 mmc_hostname(card->host)); 537 card->ext_csd.auto_bkops_en = 538 (ext_csd[EXT_CSD_BKOPS_EN] & 539 EXT_CSD_AUTO_BKOPS_MASK); 540 if (card->ext_csd.auto_bkops_en) 541 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 542 mmc_hostname(card->host)); 543 } 544 545 /* check whether the eMMC card supports HPI */ 546 if (!mmc_card_broken_hpi(card) && 547 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 548 card->ext_csd.hpi = 1; 549 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 550 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 551 else 552 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 553 /* 554 * Indicate the maximum timeout to close 555 * a command interrupted by HPI 556 */ 557 card->ext_csd.out_of_int_time = 558 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 559 } 560 561 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 562 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 563 564 /* 565 * RPMB regions are defined in multiples of 128K. 566 */ 567 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 568 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 569 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 570 EXT_CSD_PART_CONFIG_ACC_RPMB, 571 "rpmb", 0, false, 572 MMC_BLK_DATA_AREA_RPMB); 573 } 574 } 575 576 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 577 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 578 card->erased_byte = 0xFF; 579 else 580 card->erased_byte = 0x0; 581 582 /* eMMC v4.5 or later */ 583 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 584 if (card->ext_csd.rev >= 6) { 585 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 586 587 card->ext_csd.generic_cmd6_time = 10 * 588 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 589 card->ext_csd.power_off_longtime = 10 * 590 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 591 592 card->ext_csd.cache_size = 593 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 594 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 595 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 596 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 597 598 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 599 card->ext_csd.data_sector_size = 4096; 600 else 601 card->ext_csd.data_sector_size = 512; 602 603 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 604 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 605 card->ext_csd.data_tag_unit_size = 606 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 607 (card->ext_csd.data_sector_size); 608 } else { 609 card->ext_csd.data_tag_unit_size = 0; 610 } 611 612 card->ext_csd.max_packed_writes = 613 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 614 card->ext_csd.max_packed_reads = 615 ext_csd[EXT_CSD_MAX_PACKED_READS]; 616 } else { 617 card->ext_csd.data_sector_size = 512; 618 } 619 620 /* eMMC v5 or later */ 621 if (card->ext_csd.rev >= 7) { 622 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 623 MMC_FIRMWARE_LEN); 624 card->ext_csd.ffu_capable = 625 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 626 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 627 628 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 629 card->ext_csd.device_life_time_est_typ_a = 630 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 631 card->ext_csd.device_life_time_est_typ_b = 632 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 633 } 634 635 /* eMMC v5.1 or later */ 636 if (card->ext_csd.rev >= 8) { 637 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 638 EXT_CSD_CMDQ_SUPPORTED; 639 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 640 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 641 /* Exclude inefficiently small queue depths */ 642 if (card->ext_csd.cmdq_depth <= 2) { 643 card->ext_csd.cmdq_support = false; 644 card->ext_csd.cmdq_depth = 0; 645 } 646 if (card->ext_csd.cmdq_support) { 647 pr_debug("%s: Command Queue supported depth %u\n", 648 mmc_hostname(card->host), 649 card->ext_csd.cmdq_depth); 650 } 651 } 652 out: 653 return err; 654 } 655 656 static int mmc_read_ext_csd(struct mmc_card *card) 657 { 658 u8 *ext_csd; 659 int err; 660 661 if (!mmc_can_ext_csd(card)) 662 return 0; 663 664 err = mmc_get_ext_csd(card, &ext_csd); 665 if (err) { 666 /* If the host or the card can't do the switch, 667 * fail more gracefully. */ 668 if ((err != -EINVAL) 669 && (err != -ENOSYS) 670 && (err != -EFAULT)) 671 return err; 672 673 /* 674 * High capacity cards should have this "magic" size 675 * stored in their CSD. 676 */ 677 if (card->csd.capacity == (4096 * 512)) { 678 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 679 mmc_hostname(card->host)); 680 } else { 681 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 682 mmc_hostname(card->host)); 683 err = 0; 684 } 685 686 return err; 687 } 688 689 err = mmc_decode_ext_csd(card, ext_csd); 690 kfree(ext_csd); 691 return err; 692 } 693 694 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 695 { 696 u8 *bw_ext_csd; 697 int err; 698 699 if (bus_width == MMC_BUS_WIDTH_1) 700 return 0; 701 702 err = mmc_get_ext_csd(card, &bw_ext_csd); 703 if (err) 704 return err; 705 706 /* only compare read only fields */ 707 err = !((card->ext_csd.raw_partition_support == 708 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 709 (card->ext_csd.raw_erased_mem_count == 710 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 711 (card->ext_csd.rev == 712 bw_ext_csd[EXT_CSD_REV]) && 713 (card->ext_csd.raw_ext_csd_structure == 714 bw_ext_csd[EXT_CSD_STRUCTURE]) && 715 (card->ext_csd.raw_card_type == 716 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 717 (card->ext_csd.raw_s_a_timeout == 718 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 719 (card->ext_csd.raw_hc_erase_gap_size == 720 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 721 (card->ext_csd.raw_erase_timeout_mult == 722 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 723 (card->ext_csd.raw_hc_erase_grp_size == 724 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 725 (card->ext_csd.raw_sec_trim_mult == 726 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 727 (card->ext_csd.raw_sec_erase_mult == 728 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 729 (card->ext_csd.raw_sec_feature_support == 730 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 731 (card->ext_csd.raw_trim_mult == 732 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 733 (card->ext_csd.raw_sectors[0] == 734 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 735 (card->ext_csd.raw_sectors[1] == 736 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 737 (card->ext_csd.raw_sectors[2] == 738 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 739 (card->ext_csd.raw_sectors[3] == 740 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 741 (card->ext_csd.raw_pwr_cl_52_195 == 742 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 743 (card->ext_csd.raw_pwr_cl_26_195 == 744 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 745 (card->ext_csd.raw_pwr_cl_52_360 == 746 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 747 (card->ext_csd.raw_pwr_cl_26_360 == 748 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 749 (card->ext_csd.raw_pwr_cl_200_195 == 750 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 751 (card->ext_csd.raw_pwr_cl_200_360 == 752 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 753 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 754 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 755 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 756 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 757 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 758 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 759 760 if (err) 761 err = -EINVAL; 762 763 kfree(bw_ext_csd); 764 return err; 765 } 766 767 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 768 card->raw_cid[2], card->raw_cid[3]); 769 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 770 card->raw_csd[2], card->raw_csd[3]); 771 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 772 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 773 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 774 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 775 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 776 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 777 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 778 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 779 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 780 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 781 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 782 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 783 card->ext_csd.device_life_time_est_typ_a, 784 card->ext_csd.device_life_time_est_typ_b); 785 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 786 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 787 card->ext_csd.enhanced_area_offset); 788 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 789 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 790 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 791 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 792 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 793 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 794 795 static ssize_t mmc_fwrev_show(struct device *dev, 796 struct device_attribute *attr, 797 char *buf) 798 { 799 struct mmc_card *card = mmc_dev_to_card(dev); 800 801 if (card->ext_csd.rev < 7) { 802 return sprintf(buf, "0x%x\n", card->cid.fwrev); 803 } else { 804 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 805 card->ext_csd.fwrev); 806 } 807 } 808 809 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 810 811 static ssize_t mmc_dsr_show(struct device *dev, 812 struct device_attribute *attr, 813 char *buf) 814 { 815 struct mmc_card *card = mmc_dev_to_card(dev); 816 struct mmc_host *host = card->host; 817 818 if (card->csd.dsr_imp && host->dsr_req) 819 return sprintf(buf, "0x%x\n", host->dsr); 820 else 821 /* return default DSR value */ 822 return sprintf(buf, "0x%x\n", 0x404); 823 } 824 825 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 826 827 static struct attribute *mmc_std_attrs[] = { 828 &dev_attr_cid.attr, 829 &dev_attr_csd.attr, 830 &dev_attr_date.attr, 831 &dev_attr_erase_size.attr, 832 &dev_attr_preferred_erase_size.attr, 833 &dev_attr_fwrev.attr, 834 &dev_attr_ffu_capable.attr, 835 &dev_attr_hwrev.attr, 836 &dev_attr_manfid.attr, 837 &dev_attr_name.attr, 838 &dev_attr_oemid.attr, 839 &dev_attr_prv.attr, 840 &dev_attr_rev.attr, 841 &dev_attr_pre_eol_info.attr, 842 &dev_attr_life_time.attr, 843 &dev_attr_serial.attr, 844 &dev_attr_enhanced_area_offset.attr, 845 &dev_attr_enhanced_area_size.attr, 846 &dev_attr_raw_rpmb_size_mult.attr, 847 &dev_attr_rel_sectors.attr, 848 &dev_attr_ocr.attr, 849 &dev_attr_rca.attr, 850 &dev_attr_dsr.attr, 851 &dev_attr_cmdq_en.attr, 852 NULL, 853 }; 854 ATTRIBUTE_GROUPS(mmc_std); 855 856 static struct device_type mmc_type = { 857 .groups = mmc_std_groups, 858 }; 859 860 /* 861 * Select the PowerClass for the current bus width 862 * If power class is defined for 4/8 bit bus in the 863 * extended CSD register, select it by executing the 864 * mmc_switch command. 865 */ 866 static int __mmc_select_powerclass(struct mmc_card *card, 867 unsigned int bus_width) 868 { 869 struct mmc_host *host = card->host; 870 struct mmc_ext_csd *ext_csd = &card->ext_csd; 871 unsigned int pwrclass_val = 0; 872 int err = 0; 873 874 switch (1 << host->ios.vdd) { 875 case MMC_VDD_165_195: 876 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 877 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 878 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 879 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 880 ext_csd->raw_pwr_cl_52_195 : 881 ext_csd->raw_pwr_cl_ddr_52_195; 882 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 883 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 884 break; 885 case MMC_VDD_27_28: 886 case MMC_VDD_28_29: 887 case MMC_VDD_29_30: 888 case MMC_VDD_30_31: 889 case MMC_VDD_31_32: 890 case MMC_VDD_32_33: 891 case MMC_VDD_33_34: 892 case MMC_VDD_34_35: 893 case MMC_VDD_35_36: 894 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 895 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 896 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 897 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 898 ext_csd->raw_pwr_cl_52_360 : 899 ext_csd->raw_pwr_cl_ddr_52_360; 900 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 901 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 902 ext_csd->raw_pwr_cl_ddr_200_360 : 903 ext_csd->raw_pwr_cl_200_360; 904 break; 905 default: 906 pr_warn("%s: Voltage range not supported for power class\n", 907 mmc_hostname(host)); 908 return -EINVAL; 909 } 910 911 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 912 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 913 EXT_CSD_PWR_CL_8BIT_SHIFT; 914 else 915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 916 EXT_CSD_PWR_CL_4BIT_SHIFT; 917 918 /* If the power class is different from the default value */ 919 if (pwrclass_val > 0) { 920 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 921 EXT_CSD_POWER_CLASS, 922 pwrclass_val, 923 card->ext_csd.generic_cmd6_time); 924 } 925 926 return err; 927 } 928 929 static int mmc_select_powerclass(struct mmc_card *card) 930 { 931 struct mmc_host *host = card->host; 932 u32 bus_width, ext_csd_bits; 933 int err, ddr; 934 935 /* Power class selection is supported for versions >= 4.0 */ 936 if (!mmc_can_ext_csd(card)) 937 return 0; 938 939 bus_width = host->ios.bus_width; 940 /* Power class values are defined only for 4/8 bit bus */ 941 if (bus_width == MMC_BUS_WIDTH_1) 942 return 0; 943 944 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 945 if (ddr) 946 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 947 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 948 else 949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 950 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 951 952 err = __mmc_select_powerclass(card, ext_csd_bits); 953 if (err) 954 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 955 mmc_hostname(host), 1 << bus_width, ddr); 956 957 return err; 958 } 959 960 /* 961 * Set the bus speed for the selected speed mode. 962 */ 963 static void mmc_set_bus_speed(struct mmc_card *card) 964 { 965 unsigned int max_dtr = (unsigned int)-1; 966 967 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 968 max_dtr > card->ext_csd.hs200_max_dtr) 969 max_dtr = card->ext_csd.hs200_max_dtr; 970 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 971 max_dtr = card->ext_csd.hs_max_dtr; 972 else if (max_dtr > card->csd.max_dtr) 973 max_dtr = card->csd.max_dtr; 974 975 mmc_set_clock(card->host, max_dtr); 976 } 977 978 /* 979 * Select the bus width amoung 4-bit and 8-bit(SDR). 980 * If the bus width is changed successfully, return the selected width value. 981 * Zero is returned instead of error value if the wide width is not supported. 982 */ 983 static int mmc_select_bus_width(struct mmc_card *card) 984 { 985 static unsigned ext_csd_bits[] = { 986 EXT_CSD_BUS_WIDTH_8, 987 EXT_CSD_BUS_WIDTH_4, 988 }; 989 static unsigned bus_widths[] = { 990 MMC_BUS_WIDTH_8, 991 MMC_BUS_WIDTH_4, 992 }; 993 struct mmc_host *host = card->host; 994 unsigned idx, bus_width = 0; 995 int err = 0; 996 997 if (!mmc_can_ext_csd(card) || 998 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 999 return 0; 1000 1001 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1002 1003 /* 1004 * Unlike SD, MMC cards dont have a configuration register to notify 1005 * supported bus width. So bus test command should be run to identify 1006 * the supported bus width or compare the ext csd values of current 1007 * bus width and ext csd values of 1 bit mode read earlier. 1008 */ 1009 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1010 /* 1011 * Host is capable of 8bit transfer, then switch 1012 * the device to work in 8bit transfer mode. If the 1013 * mmc switch command returns error then switch to 1014 * 4bit transfer mode. On success set the corresponding 1015 * bus width on the host. 1016 */ 1017 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1018 EXT_CSD_BUS_WIDTH, 1019 ext_csd_bits[idx], 1020 card->ext_csd.generic_cmd6_time); 1021 if (err) 1022 continue; 1023 1024 bus_width = bus_widths[idx]; 1025 mmc_set_bus_width(host, bus_width); 1026 1027 /* 1028 * If controller can't handle bus width test, 1029 * compare ext_csd previously read in 1 bit mode 1030 * against ext_csd at new bus width 1031 */ 1032 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1033 err = mmc_compare_ext_csds(card, bus_width); 1034 else 1035 err = mmc_bus_test(card, bus_width); 1036 1037 if (!err) { 1038 err = bus_width; 1039 break; 1040 } else { 1041 pr_warn("%s: switch to bus width %d failed\n", 1042 mmc_hostname(host), 1 << bus_width); 1043 } 1044 } 1045 1046 return err; 1047 } 1048 1049 /* 1050 * Switch to the high-speed mode 1051 */ 1052 static int mmc_select_hs(struct mmc_card *card) 1053 { 1054 int err; 1055 1056 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1057 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1058 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1059 true, true, true); 1060 if (err) 1061 pr_warn("%s: switch to high-speed failed, err:%d\n", 1062 mmc_hostname(card->host), err); 1063 1064 return err; 1065 } 1066 1067 /* 1068 * Activate wide bus and DDR if supported. 1069 */ 1070 static int mmc_select_hs_ddr(struct mmc_card *card) 1071 { 1072 struct mmc_host *host = card->host; 1073 u32 bus_width, ext_csd_bits; 1074 int err = 0; 1075 1076 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1077 return 0; 1078 1079 bus_width = host->ios.bus_width; 1080 if (bus_width == MMC_BUS_WIDTH_1) 1081 return 0; 1082 1083 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1084 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1085 1086 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1087 EXT_CSD_BUS_WIDTH, 1088 ext_csd_bits, 1089 card->ext_csd.generic_cmd6_time, 1090 MMC_TIMING_MMC_DDR52, 1091 true, true, true); 1092 if (err) { 1093 pr_err("%s: switch to bus width %d ddr failed\n", 1094 mmc_hostname(host), 1 << bus_width); 1095 return err; 1096 } 1097 1098 /* 1099 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1100 * signaling. 1101 * 1102 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1103 * 1104 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1105 * in the JEDEC spec for DDR. 1106 * 1107 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1108 * host controller can support this, like some of the SDHCI 1109 * controller which connect to an eMMC device. Some of these 1110 * host controller still needs to use 1.8v vccq for supporting 1111 * DDR mode. 1112 * 1113 * So the sequence will be: 1114 * if (host and device can both support 1.2v IO) 1115 * use 1.2v IO; 1116 * else if (host and device can both support 1.8v IO) 1117 * use 1.8v IO; 1118 * so if host and device can only support 3.3v IO, this is the 1119 * last choice. 1120 * 1121 * WARNING: eMMC rules are NOT the same as SD DDR 1122 */ 1123 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1124 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1125 if (!err) 1126 return 0; 1127 } 1128 1129 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1130 host->caps & MMC_CAP_1_8V_DDR) 1131 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1132 1133 /* make sure vccq is 3.3v after switching disaster */ 1134 if (err) 1135 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1136 1137 return err; 1138 } 1139 1140 static int mmc_select_hs400(struct mmc_card *card) 1141 { 1142 struct mmc_host *host = card->host; 1143 unsigned int max_dtr; 1144 int err = 0; 1145 u8 val; 1146 1147 /* 1148 * HS400 mode requires 8-bit bus width 1149 */ 1150 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1151 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1152 return 0; 1153 1154 /* Switch card to HS mode */ 1155 val = EXT_CSD_TIMING_HS; 1156 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1157 EXT_CSD_HS_TIMING, val, 1158 card->ext_csd.generic_cmd6_time, 0, 1159 true, false, true); 1160 if (err) { 1161 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1162 mmc_hostname(host), err); 1163 return err; 1164 } 1165 1166 /* Set host controller to HS timing */ 1167 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1168 1169 /* Prepare host to downgrade to HS timing */ 1170 if (host->ops->hs400_downgrade) 1171 host->ops->hs400_downgrade(host); 1172 1173 /* Reduce frequency to HS frequency */ 1174 max_dtr = card->ext_csd.hs_max_dtr; 1175 mmc_set_clock(host, max_dtr); 1176 1177 err = mmc_switch_status(card); 1178 if (err) 1179 goto out_err; 1180 1181 if (host->ops->hs400_prepare_ddr) 1182 host->ops->hs400_prepare_ddr(host); 1183 1184 /* Switch card to DDR */ 1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1186 EXT_CSD_BUS_WIDTH, 1187 EXT_CSD_DDR_BUS_WIDTH_8, 1188 card->ext_csd.generic_cmd6_time); 1189 if (err) { 1190 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1191 mmc_hostname(host), err); 1192 return err; 1193 } 1194 1195 /* Switch card to HS400 */ 1196 val = EXT_CSD_TIMING_HS400 | 1197 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1198 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1199 EXT_CSD_HS_TIMING, val, 1200 card->ext_csd.generic_cmd6_time, 0, 1201 true, false, true); 1202 if (err) { 1203 pr_err("%s: switch to hs400 failed, err:%d\n", 1204 mmc_hostname(host), err); 1205 return err; 1206 } 1207 1208 /* Set host controller to HS400 timing and frequency */ 1209 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1210 mmc_set_bus_speed(card); 1211 1212 if (host->ops->hs400_complete) 1213 host->ops->hs400_complete(host); 1214 1215 err = mmc_switch_status(card); 1216 if (err) 1217 goto out_err; 1218 1219 return 0; 1220 1221 out_err: 1222 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1223 __func__, err); 1224 return err; 1225 } 1226 1227 int mmc_hs200_to_hs400(struct mmc_card *card) 1228 { 1229 return mmc_select_hs400(card); 1230 } 1231 1232 int mmc_hs400_to_hs200(struct mmc_card *card) 1233 { 1234 struct mmc_host *host = card->host; 1235 unsigned int max_dtr; 1236 int err; 1237 u8 val; 1238 1239 /* Reduce frequency to HS */ 1240 max_dtr = card->ext_csd.hs_max_dtr; 1241 mmc_set_clock(host, max_dtr); 1242 1243 /* Switch HS400 to HS DDR */ 1244 val = EXT_CSD_TIMING_HS; 1245 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1246 val, card->ext_csd.generic_cmd6_time, 0, 1247 true, false, true); 1248 if (err) 1249 goto out_err; 1250 1251 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1252 1253 err = mmc_switch_status(card); 1254 if (err) 1255 goto out_err; 1256 1257 /* Switch HS DDR to HS */ 1258 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1259 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1260 0, true, false, true); 1261 if (err) 1262 goto out_err; 1263 1264 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1265 1266 if (host->ops->hs400_downgrade) 1267 host->ops->hs400_downgrade(host); 1268 1269 err = mmc_switch_status(card); 1270 if (err) 1271 goto out_err; 1272 1273 /* Switch HS to HS200 */ 1274 val = EXT_CSD_TIMING_HS200 | 1275 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1276 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1277 val, card->ext_csd.generic_cmd6_time, 0, 1278 true, false, true); 1279 if (err) 1280 goto out_err; 1281 1282 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1283 1284 /* 1285 * For HS200, CRC errors are not a reliable way to know the switch 1286 * failed. If there really is a problem, we would expect tuning will 1287 * fail and the result ends up the same. 1288 */ 1289 err = __mmc_switch_status(card, false); 1290 if (err) 1291 goto out_err; 1292 1293 mmc_set_bus_speed(card); 1294 1295 /* Prepare tuning for HS400 mode. */ 1296 if (host->ops->prepare_hs400_tuning) 1297 host->ops->prepare_hs400_tuning(host, &host->ios); 1298 1299 return 0; 1300 1301 out_err: 1302 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1303 __func__, err); 1304 return err; 1305 } 1306 1307 static void mmc_select_driver_type(struct mmc_card *card) 1308 { 1309 int card_drv_type, drive_strength, drv_type = 0; 1310 int fixed_drv_type = card->host->fixed_drv_type; 1311 1312 card_drv_type = card->ext_csd.raw_driver_strength | 1313 mmc_driver_type_mask(0); 1314 1315 if (fixed_drv_type >= 0) 1316 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1317 ? fixed_drv_type : 0; 1318 else 1319 drive_strength = mmc_select_drive_strength(card, 1320 card->ext_csd.hs200_max_dtr, 1321 card_drv_type, &drv_type); 1322 1323 card->drive_strength = drive_strength; 1324 1325 if (drv_type) 1326 mmc_set_driver_type(card->host, drv_type); 1327 } 1328 1329 static int mmc_select_hs400es(struct mmc_card *card) 1330 { 1331 struct mmc_host *host = card->host; 1332 int err = -EINVAL; 1333 u8 val; 1334 1335 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1336 err = -ENOTSUPP; 1337 goto out_err; 1338 } 1339 1340 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1341 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1342 1343 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1344 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1345 1346 /* If fails try again during next card power cycle */ 1347 if (err) 1348 goto out_err; 1349 1350 err = mmc_select_bus_width(card); 1351 if (err != MMC_BUS_WIDTH_8) { 1352 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1353 mmc_hostname(host), err); 1354 err = err < 0 ? err : -ENOTSUPP; 1355 goto out_err; 1356 } 1357 1358 /* Switch card to HS mode */ 1359 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1360 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1361 card->ext_csd.generic_cmd6_time, 0, 1362 true, false, true); 1363 if (err) { 1364 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1365 mmc_hostname(host), err); 1366 goto out_err; 1367 } 1368 1369 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1370 err = mmc_switch_status(card); 1371 if (err) 1372 goto out_err; 1373 1374 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1375 1376 /* Switch card to DDR with strobe bit */ 1377 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1378 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1379 EXT_CSD_BUS_WIDTH, 1380 val, 1381 card->ext_csd.generic_cmd6_time); 1382 if (err) { 1383 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1384 mmc_hostname(host), err); 1385 goto out_err; 1386 } 1387 1388 mmc_select_driver_type(card); 1389 1390 /* Switch card to HS400 */ 1391 val = EXT_CSD_TIMING_HS400 | 1392 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1393 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1394 EXT_CSD_HS_TIMING, val, 1395 card->ext_csd.generic_cmd6_time, 0, 1396 true, false, true); 1397 if (err) { 1398 pr_err("%s: switch to hs400es failed, err:%d\n", 1399 mmc_hostname(host), err); 1400 goto out_err; 1401 } 1402 1403 /* Set host controller to HS400 timing and frequency */ 1404 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1405 1406 /* Controller enable enhanced strobe function */ 1407 host->ios.enhanced_strobe = true; 1408 if (host->ops->hs400_enhanced_strobe) 1409 host->ops->hs400_enhanced_strobe(host, &host->ios); 1410 1411 err = mmc_switch_status(card); 1412 if (err) 1413 goto out_err; 1414 1415 return 0; 1416 1417 out_err: 1418 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1419 __func__, err); 1420 return err; 1421 } 1422 1423 /* 1424 * For device supporting HS200 mode, the following sequence 1425 * should be done before executing the tuning process. 1426 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1427 * 2. switch to HS200 mode 1428 * 3. set the clock to > 52Mhz and <=200MHz 1429 */ 1430 static int mmc_select_hs200(struct mmc_card *card) 1431 { 1432 struct mmc_host *host = card->host; 1433 unsigned int old_timing, old_signal_voltage; 1434 int err = -EINVAL; 1435 u8 val; 1436 1437 old_signal_voltage = host->ios.signal_voltage; 1438 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1439 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1440 1441 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1442 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1443 1444 /* If fails try again during next card power cycle */ 1445 if (err) 1446 return err; 1447 1448 mmc_select_driver_type(card); 1449 1450 /* 1451 * Set the bus width(4 or 8) with host's support and 1452 * switch to HS200 mode if bus width is set successfully. 1453 */ 1454 err = mmc_select_bus_width(card); 1455 if (err > 0) { 1456 val = EXT_CSD_TIMING_HS200 | 1457 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1458 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1459 EXT_CSD_HS_TIMING, val, 1460 card->ext_csd.generic_cmd6_time, 0, 1461 true, false, true); 1462 if (err) 1463 goto err; 1464 old_timing = host->ios.timing; 1465 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1466 1467 /* 1468 * For HS200, CRC errors are not a reliable way to know the 1469 * switch failed. If there really is a problem, we would expect 1470 * tuning will fail and the result ends up the same. 1471 */ 1472 err = __mmc_switch_status(card, false); 1473 1474 /* 1475 * mmc_select_timing() assumes timing has not changed if 1476 * it is a switch error. 1477 */ 1478 if (err == -EBADMSG) 1479 mmc_set_timing(host, old_timing); 1480 } 1481 err: 1482 if (err) { 1483 /* fall back to the old signal voltage, if fails report error */ 1484 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1485 err = -EIO; 1486 1487 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1488 __func__, err); 1489 } 1490 return err; 1491 } 1492 1493 /* 1494 * Activate High Speed, HS200 or HS400ES mode if supported. 1495 */ 1496 static int mmc_select_timing(struct mmc_card *card) 1497 { 1498 int err = 0; 1499 1500 if (!mmc_can_ext_csd(card)) 1501 goto bus_speed; 1502 1503 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1504 err = mmc_select_hs400es(card); 1505 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1506 err = mmc_select_hs200(card); 1507 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1508 err = mmc_select_hs(card); 1509 1510 if (err && err != -EBADMSG) 1511 return err; 1512 1513 bus_speed: 1514 /* 1515 * Set the bus speed to the selected bus timing. 1516 * If timing is not selected, backward compatible is the default. 1517 */ 1518 mmc_set_bus_speed(card); 1519 return 0; 1520 } 1521 1522 /* 1523 * Execute tuning sequence to seek the proper bus operating 1524 * conditions for HS200 and HS400, which sends CMD21 to the device. 1525 */ 1526 static int mmc_hs200_tuning(struct mmc_card *card) 1527 { 1528 struct mmc_host *host = card->host; 1529 1530 /* 1531 * Timing should be adjusted to the HS400 target 1532 * operation frequency for tuning process 1533 */ 1534 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1535 host->ios.bus_width == MMC_BUS_WIDTH_8) 1536 if (host->ops->prepare_hs400_tuning) 1537 host->ops->prepare_hs400_tuning(host, &host->ios); 1538 1539 return mmc_execute_tuning(card); 1540 } 1541 1542 /* 1543 * Handle the detection and initialisation of a card. 1544 * 1545 * In the case of a resume, "oldcard" will contain the card 1546 * we're trying to reinitialise. 1547 */ 1548 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1549 struct mmc_card *oldcard) 1550 { 1551 struct mmc_card *card; 1552 int err; 1553 u32 cid[4]; 1554 u32 rocr; 1555 1556 WARN_ON(!host->claimed); 1557 1558 /* Set correct bus mode for MMC before attempting init */ 1559 if (!mmc_host_is_spi(host)) 1560 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1561 1562 /* 1563 * Since we're changing the OCR value, we seem to 1564 * need to tell some cards to go back to the idle 1565 * state. We wait 1ms to give cards time to 1566 * respond. 1567 * mmc_go_idle is needed for eMMC that are asleep 1568 */ 1569 mmc_go_idle(host); 1570 1571 /* The extra bit indicates that we support high capacity */ 1572 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1573 if (err) 1574 goto err; 1575 1576 /* 1577 * For SPI, enable CRC as appropriate. 1578 */ 1579 if (mmc_host_is_spi(host)) { 1580 err = mmc_spi_set_crc(host, use_spi_crc); 1581 if (err) 1582 goto err; 1583 } 1584 1585 /* 1586 * Fetch CID from card. 1587 */ 1588 err = mmc_send_cid(host, cid); 1589 if (err) 1590 goto err; 1591 1592 if (oldcard) { 1593 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1594 pr_debug("%s: Perhaps the card was replaced\n", 1595 mmc_hostname(host)); 1596 err = -ENOENT; 1597 goto err; 1598 } 1599 1600 card = oldcard; 1601 } else { 1602 /* 1603 * Allocate card structure. 1604 */ 1605 card = mmc_alloc_card(host, &mmc_type); 1606 if (IS_ERR(card)) { 1607 err = PTR_ERR(card); 1608 goto err; 1609 } 1610 1611 card->ocr = ocr; 1612 card->type = MMC_TYPE_MMC; 1613 card->rca = 1; 1614 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1615 } 1616 1617 /* 1618 * Call the optional HC's init_card function to handle quirks. 1619 */ 1620 if (host->ops->init_card) 1621 host->ops->init_card(host, card); 1622 1623 /* 1624 * For native busses: set card RCA and quit open drain mode. 1625 */ 1626 if (!mmc_host_is_spi(host)) { 1627 err = mmc_set_relative_addr(card); 1628 if (err) 1629 goto free_card; 1630 1631 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1632 } 1633 1634 if (!oldcard) { 1635 /* 1636 * Fetch CSD from card. 1637 */ 1638 err = mmc_send_csd(card, card->raw_csd); 1639 if (err) 1640 goto free_card; 1641 1642 err = mmc_decode_csd(card); 1643 if (err) 1644 goto free_card; 1645 err = mmc_decode_cid(card); 1646 if (err) 1647 goto free_card; 1648 } 1649 1650 /* 1651 * handling only for cards supporting DSR and hosts requesting 1652 * DSR configuration 1653 */ 1654 if (card->csd.dsr_imp && host->dsr_req) 1655 mmc_set_dsr(host); 1656 1657 /* 1658 * Select card, as all following commands rely on that. 1659 */ 1660 if (!mmc_host_is_spi(host)) { 1661 err = mmc_select_card(card); 1662 if (err) 1663 goto free_card; 1664 } 1665 1666 if (!oldcard) { 1667 /* Read extended CSD. */ 1668 err = mmc_read_ext_csd(card); 1669 if (err) 1670 goto free_card; 1671 1672 /* 1673 * If doing byte addressing, check if required to do sector 1674 * addressing. Handle the case of <2GB cards needing sector 1675 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1676 * ocr register has bit 30 set for sector addressing. 1677 */ 1678 if (rocr & BIT(30)) 1679 mmc_card_set_blockaddr(card); 1680 1681 /* Erase size depends on CSD and Extended CSD */ 1682 mmc_set_erase_size(card); 1683 } 1684 1685 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1686 if (card->ext_csd.rev >= 3) { 1687 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1688 EXT_CSD_ERASE_GROUP_DEF, 1, 1689 card->ext_csd.generic_cmd6_time); 1690 1691 if (err && err != -EBADMSG) 1692 goto free_card; 1693 1694 if (err) { 1695 err = 0; 1696 /* 1697 * Just disable enhanced area off & sz 1698 * will try to enable ERASE_GROUP_DEF 1699 * during next time reinit 1700 */ 1701 card->ext_csd.enhanced_area_offset = -EINVAL; 1702 card->ext_csd.enhanced_area_size = -EINVAL; 1703 } else { 1704 card->ext_csd.erase_group_def = 1; 1705 /* 1706 * enable ERASE_GRP_DEF successfully. 1707 * This will affect the erase size, so 1708 * here need to reset erase size 1709 */ 1710 mmc_set_erase_size(card); 1711 } 1712 } 1713 1714 /* 1715 * Ensure eMMC user default partition is enabled 1716 */ 1717 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1718 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1719 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1720 card->ext_csd.part_config, 1721 card->ext_csd.part_time); 1722 if (err && err != -EBADMSG) 1723 goto free_card; 1724 } 1725 1726 /* 1727 * Enable power_off_notification byte in the ext_csd register 1728 */ 1729 if (card->ext_csd.rev >= 6) { 1730 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1731 EXT_CSD_POWER_OFF_NOTIFICATION, 1732 EXT_CSD_POWER_ON, 1733 card->ext_csd.generic_cmd6_time); 1734 if (err && err != -EBADMSG) 1735 goto free_card; 1736 1737 /* 1738 * The err can be -EBADMSG or 0, 1739 * so check for success and update the flag 1740 */ 1741 if (!err) 1742 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1743 } 1744 1745 /* set erase_arg */ 1746 if (mmc_can_discard(card)) 1747 card->erase_arg = MMC_DISCARD_ARG; 1748 else if (mmc_can_trim(card)) 1749 card->erase_arg = MMC_TRIM_ARG; 1750 else 1751 card->erase_arg = MMC_ERASE_ARG; 1752 1753 /* 1754 * Select timing interface 1755 */ 1756 err = mmc_select_timing(card); 1757 if (err) 1758 goto free_card; 1759 1760 if (mmc_card_hs200(card)) { 1761 err = mmc_hs200_tuning(card); 1762 if (err) 1763 goto free_card; 1764 1765 err = mmc_select_hs400(card); 1766 if (err) 1767 goto free_card; 1768 } else if (!mmc_card_hs400es(card)) { 1769 /* Select the desired bus width optionally */ 1770 err = mmc_select_bus_width(card); 1771 if (err > 0 && mmc_card_hs(card)) { 1772 err = mmc_select_hs_ddr(card); 1773 if (err) 1774 goto free_card; 1775 } 1776 } 1777 1778 /* 1779 * Choose the power class with selected bus interface 1780 */ 1781 mmc_select_powerclass(card); 1782 1783 /* 1784 * Enable HPI feature (if supported) 1785 */ 1786 if (card->ext_csd.hpi) { 1787 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1788 EXT_CSD_HPI_MGMT, 1, 1789 card->ext_csd.generic_cmd6_time); 1790 if (err && err != -EBADMSG) 1791 goto free_card; 1792 if (err) { 1793 pr_warn("%s: Enabling HPI failed\n", 1794 mmc_hostname(card->host)); 1795 card->ext_csd.hpi_en = 0; 1796 err = 0; 1797 } else { 1798 card->ext_csd.hpi_en = 1; 1799 } 1800 } 1801 1802 /* 1803 * If cache size is higher than 0, this indicates the existence of cache 1804 * and it can be turned on. Note that some eMMCs from Micron has been 1805 * reported to need ~800 ms timeout, while enabling the cache after 1806 * sudden power failure tests. Let's extend the timeout to a minimum of 1807 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1808 */ 1809 if (card->ext_csd.cache_size > 0) { 1810 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1811 1812 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1813 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1814 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1815 if (err && err != -EBADMSG) 1816 goto free_card; 1817 1818 /* 1819 * Only if no error, cache is turned on successfully. 1820 */ 1821 if (err) { 1822 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1823 mmc_hostname(card->host), err); 1824 card->ext_csd.cache_ctrl = 0; 1825 err = 0; 1826 } else { 1827 card->ext_csd.cache_ctrl = 1; 1828 } 1829 } 1830 1831 /* 1832 * Enable Command Queue if supported. Note that Packed Commands cannot 1833 * be used with Command Queue. 1834 */ 1835 card->ext_csd.cmdq_en = false; 1836 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1837 err = mmc_cmdq_enable(card); 1838 if (err && err != -EBADMSG) 1839 goto free_card; 1840 if (err) { 1841 pr_warn("%s: Enabling CMDQ failed\n", 1842 mmc_hostname(card->host)); 1843 card->ext_csd.cmdq_support = false; 1844 card->ext_csd.cmdq_depth = 0; 1845 err = 0; 1846 } 1847 } 1848 /* 1849 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1850 * disabled for a time, so a flag is needed to indicate to re-enable the 1851 * Command Queue. 1852 */ 1853 card->reenable_cmdq = card->ext_csd.cmdq_en; 1854 1855 if (card->ext_csd.cmdq_en && !host->cqe_enabled) { 1856 err = host->cqe_ops->cqe_enable(host, card); 1857 if (err) { 1858 pr_err("%s: Failed to enable CQE, error %d\n", 1859 mmc_hostname(host), err); 1860 } else { 1861 host->cqe_enabled = true; 1862 pr_info("%s: Command Queue Engine enabled\n", 1863 mmc_hostname(host)); 1864 } 1865 } 1866 1867 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1868 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1869 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1870 mmc_hostname(host)); 1871 err = -EINVAL; 1872 goto free_card; 1873 } 1874 1875 if (!oldcard) 1876 host->card = card; 1877 1878 return 0; 1879 1880 free_card: 1881 if (!oldcard) 1882 mmc_remove_card(card); 1883 err: 1884 return err; 1885 } 1886 1887 static int mmc_can_sleep(struct mmc_card *card) 1888 { 1889 return (card && card->ext_csd.rev >= 3); 1890 } 1891 1892 static int mmc_sleep(struct mmc_host *host) 1893 { 1894 struct mmc_command cmd = {}; 1895 struct mmc_card *card = host->card; 1896 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1897 int err; 1898 1899 /* Re-tuning can't be done once the card is deselected */ 1900 mmc_retune_hold(host); 1901 1902 err = mmc_deselect_cards(host); 1903 if (err) 1904 goto out_release; 1905 1906 cmd.opcode = MMC_SLEEP_AWAKE; 1907 cmd.arg = card->rca << 16; 1908 cmd.arg |= 1 << 15; 1909 1910 /* 1911 * If the max_busy_timeout of the host is specified, validate it against 1912 * the sleep cmd timeout. A failure means we need to prevent the host 1913 * from doing hw busy detection, which is done by converting to a R1 1914 * response instead of a R1B. 1915 */ 1916 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1917 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1918 } else { 1919 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1920 cmd.busy_timeout = timeout_ms; 1921 } 1922 1923 err = mmc_wait_for_cmd(host, &cmd, 0); 1924 if (err) 1925 goto out_release; 1926 1927 /* 1928 * If the host does not wait while the card signals busy, then we will 1929 * will have to wait the sleep/awake timeout. Note, we cannot use the 1930 * SEND_STATUS command to poll the status because that command (and most 1931 * others) is invalid while the card sleeps. 1932 */ 1933 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1934 mmc_delay(timeout_ms); 1935 1936 out_release: 1937 mmc_retune_release(host); 1938 return err; 1939 } 1940 1941 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1942 { 1943 return card && 1944 mmc_card_mmc(card) && 1945 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1946 } 1947 1948 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1949 { 1950 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1951 int err; 1952 1953 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1954 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1955 timeout = card->ext_csd.power_off_longtime; 1956 1957 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1958 EXT_CSD_POWER_OFF_NOTIFICATION, 1959 notify_type, timeout, 0, true, false, false); 1960 if (err) 1961 pr_err("%s: Power Off Notification timed out, %u\n", 1962 mmc_hostname(card->host), timeout); 1963 1964 /* Disable the power off notification after the switch operation. */ 1965 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1966 1967 return err; 1968 } 1969 1970 /* 1971 * Host is being removed. Free up the current card. 1972 */ 1973 static void mmc_remove(struct mmc_host *host) 1974 { 1975 mmc_remove_card(host->card); 1976 host->card = NULL; 1977 } 1978 1979 /* 1980 * Card detection - card is alive. 1981 */ 1982 static int mmc_alive(struct mmc_host *host) 1983 { 1984 return mmc_send_status(host->card, NULL); 1985 } 1986 1987 /* 1988 * Card detection callback from host. 1989 */ 1990 static void mmc_detect(struct mmc_host *host) 1991 { 1992 int err; 1993 1994 mmc_get_card(host->card, NULL); 1995 1996 /* 1997 * Just check if our card has been removed. 1998 */ 1999 err = _mmc_detect_card_removed(host); 2000 2001 mmc_put_card(host->card, NULL); 2002 2003 if (err) { 2004 mmc_remove(host); 2005 2006 mmc_claim_host(host); 2007 mmc_detach_bus(host); 2008 mmc_power_off(host); 2009 mmc_release_host(host); 2010 } 2011 } 2012 2013 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2014 { 2015 int err = 0; 2016 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2017 EXT_CSD_POWER_OFF_LONG; 2018 2019 mmc_claim_host(host); 2020 2021 if (mmc_card_suspended(host->card)) 2022 goto out; 2023 2024 err = mmc_flush_cache(host->card); 2025 if (err) 2026 goto out; 2027 2028 if (mmc_can_poweroff_notify(host->card) && 2029 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 2030 err = mmc_poweroff_notify(host->card, notify_type); 2031 else if (mmc_can_sleep(host->card)) 2032 err = mmc_sleep(host); 2033 else if (!mmc_host_is_spi(host)) 2034 err = mmc_deselect_cards(host); 2035 2036 if (!err) { 2037 mmc_power_off(host); 2038 mmc_card_set_suspended(host->card); 2039 } 2040 out: 2041 mmc_release_host(host); 2042 return err; 2043 } 2044 2045 /* 2046 * Suspend callback 2047 */ 2048 static int mmc_suspend(struct mmc_host *host) 2049 { 2050 int err; 2051 2052 err = _mmc_suspend(host, true); 2053 if (!err) { 2054 pm_runtime_disable(&host->card->dev); 2055 pm_runtime_set_suspended(&host->card->dev); 2056 } 2057 2058 return err; 2059 } 2060 2061 /* 2062 * This function tries to determine if the same card is still present 2063 * and, if so, restore all state to it. 2064 */ 2065 static int _mmc_resume(struct mmc_host *host) 2066 { 2067 int err = 0; 2068 2069 mmc_claim_host(host); 2070 2071 if (!mmc_card_suspended(host->card)) 2072 goto out; 2073 2074 mmc_power_up(host, host->card->ocr); 2075 err = mmc_init_card(host, host->card->ocr, host->card); 2076 mmc_card_clr_suspended(host->card); 2077 2078 out: 2079 mmc_release_host(host); 2080 return err; 2081 } 2082 2083 /* 2084 * Shutdown callback 2085 */ 2086 static int mmc_shutdown(struct mmc_host *host) 2087 { 2088 int err = 0; 2089 2090 /* 2091 * In a specific case for poweroff notify, we need to resume the card 2092 * before we can shutdown it properly. 2093 */ 2094 if (mmc_can_poweroff_notify(host->card) && 2095 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2096 err = _mmc_resume(host); 2097 2098 if (!err) 2099 err = _mmc_suspend(host, false); 2100 2101 return err; 2102 } 2103 2104 /* 2105 * Callback for resume. 2106 */ 2107 static int mmc_resume(struct mmc_host *host) 2108 { 2109 pm_runtime_enable(&host->card->dev); 2110 return 0; 2111 } 2112 2113 /* 2114 * Callback for runtime_suspend. 2115 */ 2116 static int mmc_runtime_suspend(struct mmc_host *host) 2117 { 2118 int err; 2119 2120 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2121 return 0; 2122 2123 err = _mmc_suspend(host, true); 2124 if (err) 2125 pr_err("%s: error %d doing aggressive suspend\n", 2126 mmc_hostname(host), err); 2127 2128 return err; 2129 } 2130 2131 /* 2132 * Callback for runtime_resume. 2133 */ 2134 static int mmc_runtime_resume(struct mmc_host *host) 2135 { 2136 int err; 2137 2138 err = _mmc_resume(host); 2139 if (err && err != -ENOMEDIUM) 2140 pr_err("%s: error %d doing runtime resume\n", 2141 mmc_hostname(host), err); 2142 2143 return 0; 2144 } 2145 2146 static int mmc_can_reset(struct mmc_card *card) 2147 { 2148 u8 rst_n_function; 2149 2150 rst_n_function = card->ext_csd.rst_n_function; 2151 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2152 return 0; 2153 return 1; 2154 } 2155 2156 static int _mmc_hw_reset(struct mmc_host *host) 2157 { 2158 struct mmc_card *card = host->card; 2159 2160 /* 2161 * In the case of recovery, we can't expect flushing the cache to work 2162 * always, but we have a go and ignore errors. 2163 */ 2164 mmc_flush_cache(host->card); 2165 2166 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2167 mmc_can_reset(card)) { 2168 /* If the card accept RST_n signal, send it. */ 2169 mmc_set_clock(host, host->f_init); 2170 host->ops->hw_reset(host); 2171 /* Set initial state and call mmc_set_ios */ 2172 mmc_set_initial_state(host); 2173 } else { 2174 /* Do a brute force power cycle */ 2175 mmc_power_cycle(host, card->ocr); 2176 mmc_pwrseq_reset(host); 2177 } 2178 return mmc_init_card(host, card->ocr, card); 2179 } 2180 2181 static const struct mmc_bus_ops mmc_ops = { 2182 .remove = mmc_remove, 2183 .detect = mmc_detect, 2184 .suspend = mmc_suspend, 2185 .resume = mmc_resume, 2186 .runtime_suspend = mmc_runtime_suspend, 2187 .runtime_resume = mmc_runtime_resume, 2188 .alive = mmc_alive, 2189 .shutdown = mmc_shutdown, 2190 .hw_reset = _mmc_hw_reset, 2191 }; 2192 2193 /* 2194 * Starting point for MMC card init. 2195 */ 2196 int mmc_attach_mmc(struct mmc_host *host) 2197 { 2198 int err; 2199 u32 ocr, rocr; 2200 2201 WARN_ON(!host->claimed); 2202 2203 /* Set correct bus mode for MMC before attempting attach */ 2204 if (!mmc_host_is_spi(host)) 2205 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2206 2207 err = mmc_send_op_cond(host, 0, &ocr); 2208 if (err) 2209 return err; 2210 2211 mmc_attach_bus(host, &mmc_ops); 2212 if (host->ocr_avail_mmc) 2213 host->ocr_avail = host->ocr_avail_mmc; 2214 2215 /* 2216 * We need to get OCR a different way for SPI. 2217 */ 2218 if (mmc_host_is_spi(host)) { 2219 err = mmc_spi_read_ocr(host, 1, &ocr); 2220 if (err) 2221 goto err; 2222 } 2223 2224 rocr = mmc_select_voltage(host, ocr); 2225 2226 /* 2227 * Can we support the voltage of the card? 2228 */ 2229 if (!rocr) { 2230 err = -EINVAL; 2231 goto err; 2232 } 2233 2234 /* 2235 * Detect and init the card. 2236 */ 2237 err = mmc_init_card(host, rocr, NULL); 2238 if (err) 2239 goto err; 2240 2241 mmc_release_host(host); 2242 err = mmc_add_card(host->card); 2243 if (err) 2244 goto remove_card; 2245 2246 mmc_claim_host(host); 2247 return 0; 2248 2249 remove_card: 2250 mmc_remove_card(host->card); 2251 mmc_claim_host(host); 2252 host->card = NULL; 2253 err: 2254 mmc_detach_bus(host); 2255 2256 pr_err("%s: error %d whilst initialising MMC card\n", 2257 mmc_hostname(host), err); 2258 2259 return err; 2260 } 2261