xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 
32 static const unsigned int tran_exp[] = {
33 	10000,		100000,		1000000,	10000000,
34 	0,		0,		0,		0
35 };
36 
37 static const unsigned char tran_mant[] = {
38 	0,	10,	12,	13,	15,	20,	25,	30,
39 	35,	40,	45,	50,	55,	60,	70,	80,
40 };
41 
42 static const unsigned int taac_exp[] = {
43 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
44 };
45 
46 static const unsigned int taac_mant[] = {
47 	0,	10,	12,	13,	15,	20,	25,	30,
48 	35,	40,	45,	50,	55,	60,	70,	80,
49 };
50 
51 #define UNSTUFF_BITS(resp,start,size)					\
52 	({								\
53 		const int __size = size;				\
54 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
55 		const int __off = 3 - ((start) / 32);			\
56 		const int __shft = (start) & 31;			\
57 		u32 __res;						\
58 									\
59 		__res = resp[__off] >> __shft;				\
60 		if (__size + __shft > 32)				\
61 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
62 		__res & __mask;						\
63 	})
64 
65 /*
66  * Given the decoded CSD structure, decode the raw CID to our CID structure.
67  */
68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 	u32 *resp = card->raw_cid;
71 
72 	/*
73 	 * The selection of the format here is based upon published
74 	 * specs from sandisk and from what people have reported.
75 	 */
76 	switch (card->csd.mmca_vsn) {
77 	case 0: /* MMC v1.0 - v1.2 */
78 	case 1: /* MMC v1.4 */
79 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
80 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
81 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
82 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
83 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
84 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
85 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
86 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
87 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
88 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
89 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
90 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
91 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
92 		break;
93 
94 	case 2: /* MMC v2.0 - v2.2 */
95 	case 3: /* MMC v3.1 - v3.3 */
96 	case 4: /* MMC v4 */
97 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
98 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
99 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
100 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
101 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
102 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
103 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
104 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
105 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
106 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
107 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
108 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
109 		break;
110 
111 	default:
112 		pr_err("%s: card has unknown MMCA version %d\n",
113 			mmc_hostname(card->host), card->csd.mmca_vsn);
114 		return -EINVAL;
115 	}
116 
117 	return 0;
118 }
119 
120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 	if (card->ext_csd.erase_group_def & 1)
123 		card->erase_size = card->ext_csd.hc_erase_size;
124 	else
125 		card->erase_size = card->csd.erase_size;
126 
127 	mmc_init_erase(card);
128 }
129 
130 /*
131  * Given a 128-bit response, decode to our card CSD structure.
132  */
133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 	struct mmc_csd *csd = &card->csd;
136 	unsigned int e, m, a, b;
137 	u32 *resp = card->raw_csd;
138 
139 	/*
140 	 * We only understand CSD structure v1.1 and v1.2.
141 	 * v1.2 has extra information in bits 15, 11 and 10.
142 	 * We also support eMMC v4.4 & v4.41.
143 	 */
144 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 	if (csd->structure == 0) {
146 		pr_err("%s: unrecognised CSD structure version %d\n",
147 			mmc_hostname(card->host), csd->structure);
148 		return -EINVAL;
149 	}
150 
151 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
152 	m = UNSTUFF_BITS(resp, 115, 4);
153 	e = UNSTUFF_BITS(resp, 112, 3);
154 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
156 
157 	m = UNSTUFF_BITS(resp, 99, 4);
158 	e = UNSTUFF_BITS(resp, 96, 3);
159 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
160 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
161 
162 	e = UNSTUFF_BITS(resp, 47, 3);
163 	m = UNSTUFF_BITS(resp, 62, 12);
164 	csd->capacity	  = (1 + m) << (e + 2);
165 
166 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174 
175 	if (csd->write_blkbits >= 9) {
176 		a = UNSTUFF_BITS(resp, 42, 5);
177 		b = UNSTUFF_BITS(resp, 37, 5);
178 		csd->erase_size = (a + 1) * (b + 1);
179 		csd->erase_size <<= csd->write_blkbits - 9;
180 	}
181 
182 	return 0;
183 }
184 
185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 	struct mmc_host *host = card->host;
188 	u8 card_type = card->ext_csd.raw_card_type;
189 	u32 caps = host->caps, caps2 = host->caps2;
190 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 	unsigned int avail_type = 0;
192 
193 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 	}
198 
199 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 	}
204 
205 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 	}
210 
211 	if (caps & MMC_CAP_1_2V_DDR &&
212 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 	}
216 
217 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 		hs200_max_dtr = MMC_HS200_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 	}
222 
223 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 		hs200_max_dtr = MMC_HS200_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 	}
228 
229 	if (caps2 & MMC_CAP2_HS400_1_8V &&
230 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 		hs200_max_dtr = MMC_HS200_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS400_1_2V &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 	}
240 
241 	if ((caps2 & MMC_CAP2_HS400_ES) &&
242 	    card->ext_csd.strobe_support &&
243 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245 
246 	card->ext_csd.hs_max_dtr = hs_max_dtr;
247 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 	card->mmc_avail_type = avail_type;
249 }
250 
251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
254 
255 	/*
256 	 * Disable these attributes by default
257 	 */
258 	card->ext_csd.enhanced_area_offset = -EINVAL;
259 	card->ext_csd.enhanced_area_size = -EINVAL;
260 
261 	/*
262 	 * Enhanced area feature support -- check whether the eMMC
263 	 * card has the Enhanced area enabled.  If so, export enhanced
264 	 * area offset and size to user by adding sysfs interface.
265 	 */
266 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 		if (card->ext_csd.partition_setting_completed) {
269 			hc_erase_grp_sz =
270 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 			hc_wp_grp_sz =
272 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273 
274 			/*
275 			 * calculate the enhanced data area offset, in bytes
276 			 */
277 			card->ext_csd.enhanced_area_offset =
278 				(((unsigned long long)ext_csd[139]) << 24) +
279 				(((unsigned long long)ext_csd[138]) << 16) +
280 				(((unsigned long long)ext_csd[137]) << 8) +
281 				(((unsigned long long)ext_csd[136]));
282 			if (mmc_card_blockaddr(card))
283 				card->ext_csd.enhanced_area_offset <<= 9;
284 			/*
285 			 * calculate the enhanced data area size, in kilobytes
286 			 */
287 			card->ext_csd.enhanced_area_size =
288 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 				ext_csd[140];
290 			card->ext_csd.enhanced_area_size *=
291 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 			card->ext_csd.enhanced_area_size <<= 9;
293 		} else {
294 			pr_warn("%s: defines enhanced area without partition setting complete\n",
295 				mmc_hostname(card->host));
296 		}
297 	}
298 }
299 
300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 			 unsigned int part_cfg, char *name, int idx, bool ro,
302 			 int area_type)
303 {
304 	card->part[card->nr_parts].size = size;
305 	card->part[card->nr_parts].part_cfg = part_cfg;
306 	sprintf(card->part[card->nr_parts].name, name, idx);
307 	card->part[card->nr_parts].force_ro = ro;
308 	card->part[card->nr_parts].area_type = area_type;
309 	card->nr_parts++;
310 }
311 
312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 	int idx;
315 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 	u64 part_size;
317 
318 	/*
319 	 * General purpose partition feature support --
320 	 * If ext_csd has the size of general purpose partitions,
321 	 * set size, part_cfg, partition name in mmc_part.
322 	 */
323 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 	    EXT_CSD_PART_SUPPORT_PART_EN) {
325 		hc_erase_grp_sz =
326 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 		hc_wp_grp_sz =
328 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329 
330 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 				continue;
335 			if (card->ext_csd.partition_setting_completed == 0) {
336 				pr_warn("%s: has partition size defined without partition complete\n",
337 					mmc_hostname(card->host));
338 				break;
339 			}
340 			part_size =
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 				<< 16) +
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 				<< 8) +
345 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 			mmc_part_add(card, part_size << 19,
348 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 				"gp%d", idx, false,
350 				MMC_BLK_DATA_AREA_GP);
351 		}
352 	}
353 }
354 
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME	300
357 
358 /*
359  * Decode extended CSD.
360  */
361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362 {
363 	int err = 0, idx;
364 	u64 part_size;
365 	struct device_node *np;
366 	bool broken_hpi = false;
367 
368 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 	if (card->csd.structure == 3) {
371 		if (card->ext_csd.raw_ext_csd_structure > 2) {
372 			pr_err("%s: unrecognised EXT_CSD structure "
373 				"version %d\n", mmc_hostname(card->host),
374 					card->ext_csd.raw_ext_csd_structure);
375 			err = -EINVAL;
376 			goto out;
377 		}
378 	}
379 
380 	np = mmc_of_find_child_device(card->host, 0);
381 	if (np && of_device_is_compatible(np, "mmc-card"))
382 		broken_hpi = of_property_read_bool(np, "broken-hpi");
383 	of_node_put(np);
384 
385 	/*
386 	 * The EXT_CSD format is meant to be forward compatible. As long
387 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 	 * are authorized, see JEDEC JESD84-B50 section B.8.
389 	 */
390 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391 
392 	/* fixup device after ext_csd revision field is updated */
393 	mmc_fixup_device(card, mmc_ext_csd_fixups);
394 
395 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 	if (card->ext_csd.rev >= 2) {
400 		card->ext_csd.sectors =
401 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405 
406 		/* Cards with density > 2GiB are sector addressed */
407 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 			mmc_card_set_blockaddr(card);
409 	}
410 
411 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 	mmc_select_card_type(card);
414 
415 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 	card->ext_csd.raw_erase_timeout_mult =
417 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 	card->ext_csd.raw_hc_erase_grp_size =
419 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 	if (card->ext_csd.rev >= 3) {
421 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423 
424 		/* EXT_CSD value is in units of 10ms, but we store in ms */
425 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 		/* Some eMMC set the value too low so set a minimum */
427 		if (card->ext_csd.part_time &&
428 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
429 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
430 
431 		/* Sleep / awake timeout in 100ns units */
432 		if (sa_shift > 0 && sa_shift <= 0x17)
433 			card->ext_csd.sa_timeout =
434 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 		card->ext_csd.erase_group_def =
436 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 		card->ext_csd.hc_erase_timeout = 300 *
438 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 		card->ext_csd.hc_erase_size =
440 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441 
442 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443 
444 		/*
445 		 * There are two boot regions of equal size, defined in
446 		 * multiples of 128K.
447 		 */
448 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 				mmc_part_add(card, part_size,
452 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 					"boot%d", idx, true,
454 					MMC_BLK_DATA_AREA_BOOT);
455 			}
456 		}
457 	}
458 
459 	card->ext_csd.raw_hc_erase_gap_size =
460 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 	card->ext_csd.raw_sec_trim_mult =
462 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 	card->ext_csd.raw_sec_erase_mult =
464 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 	card->ext_csd.raw_sec_feature_support =
466 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 	card->ext_csd.raw_trim_mult =
468 		ext_csd[EXT_CSD_TRIM_MULT];
469 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 	if (card->ext_csd.rev >= 4) {
472 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 		    EXT_CSD_PART_SETTING_COMPLETED)
474 			card->ext_csd.partition_setting_completed = 1;
475 		else
476 			card->ext_csd.partition_setting_completed = 0;
477 
478 		mmc_manage_enhanced_area(card, ext_csd);
479 
480 		mmc_manage_gp_partitions(card, ext_csd);
481 
482 		card->ext_csd.sec_trim_mult =
483 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 		card->ext_csd.sec_erase_mult =
485 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 		card->ext_csd.sec_feature_support =
487 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 		card->ext_csd.trim_timeout = 300 *
489 			ext_csd[EXT_CSD_TRIM_MULT];
490 
491 		/*
492 		 * Note that the call to mmc_part_add above defaults to read
493 		 * only. If this default assumption is changed, the call must
494 		 * take into account the value of boot_locked below.
495 		 */
496 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 		card->ext_csd.boot_ro_lockable = true;
498 
499 		/* Save power class values */
500 		card->ext_csd.raw_pwr_cl_52_195 =
501 			ext_csd[EXT_CSD_PWR_CL_52_195];
502 		card->ext_csd.raw_pwr_cl_26_195 =
503 			ext_csd[EXT_CSD_PWR_CL_26_195];
504 		card->ext_csd.raw_pwr_cl_52_360 =
505 			ext_csd[EXT_CSD_PWR_CL_52_360];
506 		card->ext_csd.raw_pwr_cl_26_360 =
507 			ext_csd[EXT_CSD_PWR_CL_26_360];
508 		card->ext_csd.raw_pwr_cl_200_195 =
509 			ext_csd[EXT_CSD_PWR_CL_200_195];
510 		card->ext_csd.raw_pwr_cl_200_360 =
511 			ext_csd[EXT_CSD_PWR_CL_200_360];
512 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 	}
519 
520 	if (card->ext_csd.rev >= 5) {
521 		/* Adjust production date as per JEDEC JESD84-B451 */
522 		if (card->cid.year < 2010)
523 			card->cid.year += 16;
524 
525 		/* check whether the eMMC card supports BKOPS */
526 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 					mmc_hostname(card->host));
536 			card->ext_csd.auto_bkops_en =
537 					(ext_csd[EXT_CSD_BKOPS_EN] &
538 						EXT_CSD_AUTO_BKOPS_MASK);
539 			if (card->ext_csd.auto_bkops_en)
540 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 		}
543 
544 		/* check whether the eMMC card supports HPI */
545 		if (!mmc_card_broken_hpi(card) &&
546 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 			card->ext_csd.hpi = 1;
548 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
550 			else
551 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 			/*
553 			 * Indicate the maximum timeout to close
554 			 * a command interrupted by HPI
555 			 */
556 			card->ext_csd.out_of_int_time =
557 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 		}
559 
560 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562 
563 		/*
564 		 * RPMB regions are defined in multiples of 128K.
565 		 */
566 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 				EXT_CSD_PART_CONFIG_ACC_RPMB,
570 				"rpmb", 0, false,
571 				MMC_BLK_DATA_AREA_RPMB);
572 		}
573 	}
574 
575 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 		card->erased_byte = 0xFF;
578 	else
579 		card->erased_byte = 0x0;
580 
581 	/* eMMC v4.5 or later */
582 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 	if (card->ext_csd.rev >= 6) {
584 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585 
586 		card->ext_csd.generic_cmd6_time = 10 *
587 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 		card->ext_csd.power_off_longtime = 10 *
589 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590 
591 		card->ext_csd.cache_size =
592 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596 
597 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 			card->ext_csd.data_sector_size = 4096;
599 		else
600 			card->ext_csd.data_sector_size = 512;
601 
602 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 			card->ext_csd.data_tag_unit_size =
605 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 			(card->ext_csd.data_sector_size);
607 		} else {
608 			card->ext_csd.data_tag_unit_size = 0;
609 		}
610 
611 		card->ext_csd.max_packed_writes =
612 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 		card->ext_csd.max_packed_reads =
614 			ext_csd[EXT_CSD_MAX_PACKED_READS];
615 	} else {
616 		card->ext_csd.data_sector_size = 512;
617 	}
618 
619 	/* eMMC v5 or later */
620 	if (card->ext_csd.rev >= 7) {
621 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
622 		       MMC_FIRMWARE_LEN);
623 		card->ext_csd.ffu_capable =
624 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
625 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
626 
627 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
628 		card->ext_csd.device_life_time_est_typ_a =
629 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
630 		card->ext_csd.device_life_time_est_typ_b =
631 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
632 	}
633 
634 	/* eMMC v5.1 or later */
635 	if (card->ext_csd.rev >= 8) {
636 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
637 					     EXT_CSD_CMDQ_SUPPORTED;
638 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
639 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
640 		/* Exclude inefficiently small queue depths */
641 		if (card->ext_csd.cmdq_depth <= 2) {
642 			card->ext_csd.cmdq_support = false;
643 			card->ext_csd.cmdq_depth = 0;
644 		}
645 		if (card->ext_csd.cmdq_support) {
646 			pr_debug("%s: Command Queue supported depth %u\n",
647 				 mmc_hostname(card->host),
648 				 card->ext_csd.cmdq_depth);
649 		}
650 		card->ext_csd.enhanced_rpmb_supported =
651 					(card->ext_csd.rel_param &
652 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
653 	}
654 out:
655 	return err;
656 }
657 
658 static int mmc_read_ext_csd(struct mmc_card *card)
659 {
660 	u8 *ext_csd;
661 	int err;
662 
663 	if (!mmc_can_ext_csd(card))
664 		return 0;
665 
666 	err = mmc_get_ext_csd(card, &ext_csd);
667 	if (err) {
668 		/* If the host or the card can't do the switch,
669 		 * fail more gracefully. */
670 		if ((err != -EINVAL)
671 		 && (err != -ENOSYS)
672 		 && (err != -EFAULT))
673 			return err;
674 
675 		/*
676 		 * High capacity cards should have this "magic" size
677 		 * stored in their CSD.
678 		 */
679 		if (card->csd.capacity == (4096 * 512)) {
680 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
681 				mmc_hostname(card->host));
682 		} else {
683 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
684 				mmc_hostname(card->host));
685 			err = 0;
686 		}
687 
688 		return err;
689 	}
690 
691 	err = mmc_decode_ext_csd(card, ext_csd);
692 	kfree(ext_csd);
693 	return err;
694 }
695 
696 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
697 {
698 	u8 *bw_ext_csd;
699 	int err;
700 
701 	if (bus_width == MMC_BUS_WIDTH_1)
702 		return 0;
703 
704 	err = mmc_get_ext_csd(card, &bw_ext_csd);
705 	if (err)
706 		return err;
707 
708 	/* only compare read only fields */
709 	err = !((card->ext_csd.raw_partition_support ==
710 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
711 		(card->ext_csd.raw_erased_mem_count ==
712 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
713 		(card->ext_csd.rev ==
714 			bw_ext_csd[EXT_CSD_REV]) &&
715 		(card->ext_csd.raw_ext_csd_structure ==
716 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
717 		(card->ext_csd.raw_card_type ==
718 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
719 		(card->ext_csd.raw_s_a_timeout ==
720 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
721 		(card->ext_csd.raw_hc_erase_gap_size ==
722 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
723 		(card->ext_csd.raw_erase_timeout_mult ==
724 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
725 		(card->ext_csd.raw_hc_erase_grp_size ==
726 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
727 		(card->ext_csd.raw_sec_trim_mult ==
728 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
729 		(card->ext_csd.raw_sec_erase_mult ==
730 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
731 		(card->ext_csd.raw_sec_feature_support ==
732 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
733 		(card->ext_csd.raw_trim_mult ==
734 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
735 		(card->ext_csd.raw_sectors[0] ==
736 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
737 		(card->ext_csd.raw_sectors[1] ==
738 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
739 		(card->ext_csd.raw_sectors[2] ==
740 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
741 		(card->ext_csd.raw_sectors[3] ==
742 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
743 		(card->ext_csd.raw_pwr_cl_52_195 ==
744 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
745 		(card->ext_csd.raw_pwr_cl_26_195 ==
746 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
747 		(card->ext_csd.raw_pwr_cl_52_360 ==
748 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
749 		(card->ext_csd.raw_pwr_cl_26_360 ==
750 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
751 		(card->ext_csd.raw_pwr_cl_200_195 ==
752 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
753 		(card->ext_csd.raw_pwr_cl_200_360 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
755 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
757 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
761 
762 	if (err)
763 		err = -EINVAL;
764 
765 	kfree(bw_ext_csd);
766 	return err;
767 }
768 
769 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
770 	card->raw_cid[2], card->raw_cid[3]);
771 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
772 	card->raw_csd[2], card->raw_csd[3]);
773 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
774 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
775 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
776 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
777 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
778 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
779 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
780 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
781 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
782 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
783 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
784 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
785 	card->ext_csd.device_life_time_est_typ_a,
786 	card->ext_csd.device_life_time_est_typ_b);
787 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
788 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
789 		card->ext_csd.enhanced_area_offset);
790 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
791 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
792 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
793 	card->ext_csd.enhanced_rpmb_supported);
794 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
795 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
796 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
797 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
798 
799 static ssize_t mmc_fwrev_show(struct device *dev,
800 			      struct device_attribute *attr,
801 			      char *buf)
802 {
803 	struct mmc_card *card = mmc_dev_to_card(dev);
804 
805 	if (card->ext_csd.rev < 7) {
806 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
807 	} else {
808 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
809 			       card->ext_csd.fwrev);
810 	}
811 }
812 
813 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
814 
815 static ssize_t mmc_dsr_show(struct device *dev,
816 			    struct device_attribute *attr,
817 			    char *buf)
818 {
819 	struct mmc_card *card = mmc_dev_to_card(dev);
820 	struct mmc_host *host = card->host;
821 
822 	if (card->csd.dsr_imp && host->dsr_req)
823 		return sprintf(buf, "0x%x\n", host->dsr);
824 	else
825 		/* return default DSR value */
826 		return sprintf(buf, "0x%x\n", 0x404);
827 }
828 
829 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
830 
831 static struct attribute *mmc_std_attrs[] = {
832 	&dev_attr_cid.attr,
833 	&dev_attr_csd.attr,
834 	&dev_attr_date.attr,
835 	&dev_attr_erase_size.attr,
836 	&dev_attr_preferred_erase_size.attr,
837 	&dev_attr_fwrev.attr,
838 	&dev_attr_ffu_capable.attr,
839 	&dev_attr_hwrev.attr,
840 	&dev_attr_manfid.attr,
841 	&dev_attr_name.attr,
842 	&dev_attr_oemid.attr,
843 	&dev_attr_prv.attr,
844 	&dev_attr_rev.attr,
845 	&dev_attr_pre_eol_info.attr,
846 	&dev_attr_life_time.attr,
847 	&dev_attr_serial.attr,
848 	&dev_attr_enhanced_area_offset.attr,
849 	&dev_attr_enhanced_area_size.attr,
850 	&dev_attr_raw_rpmb_size_mult.attr,
851 	&dev_attr_enhanced_rpmb_supported.attr,
852 	&dev_attr_rel_sectors.attr,
853 	&dev_attr_ocr.attr,
854 	&dev_attr_rca.attr,
855 	&dev_attr_dsr.attr,
856 	&dev_attr_cmdq_en.attr,
857 	NULL,
858 };
859 ATTRIBUTE_GROUPS(mmc_std);
860 
861 static struct device_type mmc_type = {
862 	.groups = mmc_std_groups,
863 };
864 
865 /*
866  * Select the PowerClass for the current bus width
867  * If power class is defined for 4/8 bit bus in the
868  * extended CSD register, select it by executing the
869  * mmc_switch command.
870  */
871 static int __mmc_select_powerclass(struct mmc_card *card,
872 				   unsigned int bus_width)
873 {
874 	struct mmc_host *host = card->host;
875 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
876 	unsigned int pwrclass_val = 0;
877 	int err = 0;
878 
879 	switch (1 << host->ios.vdd) {
880 	case MMC_VDD_165_195:
881 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
882 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
883 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
884 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
885 				ext_csd->raw_pwr_cl_52_195 :
886 				ext_csd->raw_pwr_cl_ddr_52_195;
887 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
888 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
889 		break;
890 	case MMC_VDD_27_28:
891 	case MMC_VDD_28_29:
892 	case MMC_VDD_29_30:
893 	case MMC_VDD_30_31:
894 	case MMC_VDD_31_32:
895 	case MMC_VDD_32_33:
896 	case MMC_VDD_33_34:
897 	case MMC_VDD_34_35:
898 	case MMC_VDD_35_36:
899 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
900 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
901 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
902 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
903 				ext_csd->raw_pwr_cl_52_360 :
904 				ext_csd->raw_pwr_cl_ddr_52_360;
905 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
906 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
907 				ext_csd->raw_pwr_cl_ddr_200_360 :
908 				ext_csd->raw_pwr_cl_200_360;
909 		break;
910 	default:
911 		pr_warn("%s: Voltage range not supported for power class\n",
912 			mmc_hostname(host));
913 		return -EINVAL;
914 	}
915 
916 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
917 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
918 				EXT_CSD_PWR_CL_8BIT_SHIFT;
919 	else
920 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
921 				EXT_CSD_PWR_CL_4BIT_SHIFT;
922 
923 	/* If the power class is different from the default value */
924 	if (pwrclass_val > 0) {
925 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
926 				 EXT_CSD_POWER_CLASS,
927 				 pwrclass_val,
928 				 card->ext_csd.generic_cmd6_time);
929 	}
930 
931 	return err;
932 }
933 
934 static int mmc_select_powerclass(struct mmc_card *card)
935 {
936 	struct mmc_host *host = card->host;
937 	u32 bus_width, ext_csd_bits;
938 	int err, ddr;
939 
940 	/* Power class selection is supported for versions >= 4.0 */
941 	if (!mmc_can_ext_csd(card))
942 		return 0;
943 
944 	bus_width = host->ios.bus_width;
945 	/* Power class values are defined only for 4/8 bit bus */
946 	if (bus_width == MMC_BUS_WIDTH_1)
947 		return 0;
948 
949 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
950 	if (ddr)
951 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
952 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
953 	else
954 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
955 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
956 
957 	err = __mmc_select_powerclass(card, ext_csd_bits);
958 	if (err)
959 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
960 			mmc_hostname(host), 1 << bus_width, ddr);
961 
962 	return err;
963 }
964 
965 /*
966  * Set the bus speed for the selected speed mode.
967  */
968 static void mmc_set_bus_speed(struct mmc_card *card)
969 {
970 	unsigned int max_dtr = (unsigned int)-1;
971 
972 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
973 	     max_dtr > card->ext_csd.hs200_max_dtr)
974 		max_dtr = card->ext_csd.hs200_max_dtr;
975 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
976 		max_dtr = card->ext_csd.hs_max_dtr;
977 	else if (max_dtr > card->csd.max_dtr)
978 		max_dtr = card->csd.max_dtr;
979 
980 	mmc_set_clock(card->host, max_dtr);
981 }
982 
983 /*
984  * Select the bus width amoung 4-bit and 8-bit(SDR).
985  * If the bus width is changed successfully, return the selected width value.
986  * Zero is returned instead of error value if the wide width is not supported.
987  */
988 static int mmc_select_bus_width(struct mmc_card *card)
989 {
990 	static unsigned ext_csd_bits[] = {
991 		EXT_CSD_BUS_WIDTH_8,
992 		EXT_CSD_BUS_WIDTH_4,
993 	};
994 	static unsigned bus_widths[] = {
995 		MMC_BUS_WIDTH_8,
996 		MMC_BUS_WIDTH_4,
997 	};
998 	struct mmc_host *host = card->host;
999 	unsigned idx, bus_width = 0;
1000 	int err = 0;
1001 
1002 	if (!mmc_can_ext_csd(card) ||
1003 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1004 		return 0;
1005 
1006 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1007 
1008 	/*
1009 	 * Unlike SD, MMC cards dont have a configuration register to notify
1010 	 * supported bus width. So bus test command should be run to identify
1011 	 * the supported bus width or compare the ext csd values of current
1012 	 * bus width and ext csd values of 1 bit mode read earlier.
1013 	 */
1014 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1015 		/*
1016 		 * Host is capable of 8bit transfer, then switch
1017 		 * the device to work in 8bit transfer mode. If the
1018 		 * mmc switch command returns error then switch to
1019 		 * 4bit transfer mode. On success set the corresponding
1020 		 * bus width on the host.
1021 		 */
1022 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1023 				 EXT_CSD_BUS_WIDTH,
1024 				 ext_csd_bits[idx],
1025 				 card->ext_csd.generic_cmd6_time);
1026 		if (err)
1027 			continue;
1028 
1029 		bus_width = bus_widths[idx];
1030 		mmc_set_bus_width(host, bus_width);
1031 
1032 		/*
1033 		 * If controller can't handle bus width test,
1034 		 * compare ext_csd previously read in 1 bit mode
1035 		 * against ext_csd at new bus width
1036 		 */
1037 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1038 			err = mmc_compare_ext_csds(card, bus_width);
1039 		else
1040 			err = mmc_bus_test(card, bus_width);
1041 
1042 		if (!err) {
1043 			err = bus_width;
1044 			break;
1045 		} else {
1046 			pr_warn("%s: switch to bus width %d failed\n",
1047 				mmc_hostname(host), 1 << bus_width);
1048 		}
1049 	}
1050 
1051 	return err;
1052 }
1053 
1054 /*
1055  * Switch to the high-speed mode
1056  */
1057 static int mmc_select_hs(struct mmc_card *card)
1058 {
1059 	int err;
1060 
1061 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1062 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1063 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1064 			   true, true);
1065 	if (err)
1066 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1067 			mmc_hostname(card->host), err);
1068 
1069 	return err;
1070 }
1071 
1072 /*
1073  * Activate wide bus and DDR if supported.
1074  */
1075 static int mmc_select_hs_ddr(struct mmc_card *card)
1076 {
1077 	struct mmc_host *host = card->host;
1078 	u32 bus_width, ext_csd_bits;
1079 	int err = 0;
1080 
1081 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1082 		return 0;
1083 
1084 	bus_width = host->ios.bus_width;
1085 	if (bus_width == MMC_BUS_WIDTH_1)
1086 		return 0;
1087 
1088 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1089 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1090 
1091 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1092 			   EXT_CSD_BUS_WIDTH,
1093 			   ext_csd_bits,
1094 			   card->ext_csd.generic_cmd6_time,
1095 			   MMC_TIMING_MMC_DDR52,
1096 			   true, true);
1097 	if (err) {
1098 		pr_err("%s: switch to bus width %d ddr failed\n",
1099 			mmc_hostname(host), 1 << bus_width);
1100 		return err;
1101 	}
1102 
1103 	/*
1104 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1105 	 * signaling.
1106 	 *
1107 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1108 	 *
1109 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1110 	 * in the JEDEC spec for DDR.
1111 	 *
1112 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1113 	 * host controller can support this, like some of the SDHCI
1114 	 * controller which connect to an eMMC device. Some of these
1115 	 * host controller still needs to use 1.8v vccq for supporting
1116 	 * DDR mode.
1117 	 *
1118 	 * So the sequence will be:
1119 	 * if (host and device can both support 1.2v IO)
1120 	 *	use 1.2v IO;
1121 	 * else if (host and device can both support 1.8v IO)
1122 	 *	use 1.8v IO;
1123 	 * so if host and device can only support 3.3v IO, this is the
1124 	 * last choice.
1125 	 *
1126 	 * WARNING: eMMC rules are NOT the same as SD DDR
1127 	 */
1128 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1129 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1130 		if (!err)
1131 			return 0;
1132 	}
1133 
1134 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1135 	    host->caps & MMC_CAP_1_8V_DDR)
1136 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1137 
1138 	/* make sure vccq is 3.3v after switching disaster */
1139 	if (err)
1140 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1141 
1142 	return err;
1143 }
1144 
1145 static int mmc_select_hs400(struct mmc_card *card)
1146 {
1147 	struct mmc_host *host = card->host;
1148 	unsigned int max_dtr;
1149 	int err = 0;
1150 	u8 val;
1151 
1152 	/*
1153 	 * HS400 mode requires 8-bit bus width
1154 	 */
1155 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1156 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1157 		return 0;
1158 
1159 	/* Switch card to HS mode */
1160 	val = EXT_CSD_TIMING_HS;
1161 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1162 			   EXT_CSD_HS_TIMING, val,
1163 			   card->ext_csd.generic_cmd6_time, 0,
1164 			   false, true);
1165 	if (err) {
1166 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1167 			mmc_hostname(host), err);
1168 		return err;
1169 	}
1170 
1171 	/* Prepare host to downgrade to HS timing */
1172 	if (host->ops->hs400_downgrade)
1173 		host->ops->hs400_downgrade(host);
1174 
1175 	/* Set host controller to HS timing */
1176 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1177 
1178 	/* Reduce frequency to HS frequency */
1179 	max_dtr = card->ext_csd.hs_max_dtr;
1180 	mmc_set_clock(host, max_dtr);
1181 
1182 	err = mmc_switch_status(card, true);
1183 	if (err)
1184 		goto out_err;
1185 
1186 	if (host->ops->hs400_prepare_ddr)
1187 		host->ops->hs400_prepare_ddr(host);
1188 
1189 	/* Switch card to DDR */
1190 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 			 EXT_CSD_BUS_WIDTH,
1192 			 EXT_CSD_DDR_BUS_WIDTH_8,
1193 			 card->ext_csd.generic_cmd6_time);
1194 	if (err) {
1195 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1196 			mmc_hostname(host), err);
1197 		return err;
1198 	}
1199 
1200 	/* Switch card to HS400 */
1201 	val = EXT_CSD_TIMING_HS400 |
1202 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1203 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1204 			   EXT_CSD_HS_TIMING, val,
1205 			   card->ext_csd.generic_cmd6_time, 0,
1206 			   false, true);
1207 	if (err) {
1208 		pr_err("%s: switch to hs400 failed, err:%d\n",
1209 			 mmc_hostname(host), err);
1210 		return err;
1211 	}
1212 
1213 	/* Set host controller to HS400 timing and frequency */
1214 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1215 	mmc_set_bus_speed(card);
1216 
1217 	if (host->ops->hs400_complete)
1218 		host->ops->hs400_complete(host);
1219 
1220 	err = mmc_switch_status(card, true);
1221 	if (err)
1222 		goto out_err;
1223 
1224 	return 0;
1225 
1226 out_err:
1227 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1228 	       __func__, err);
1229 	return err;
1230 }
1231 
1232 int mmc_hs200_to_hs400(struct mmc_card *card)
1233 {
1234 	return mmc_select_hs400(card);
1235 }
1236 
1237 int mmc_hs400_to_hs200(struct mmc_card *card)
1238 {
1239 	struct mmc_host *host = card->host;
1240 	unsigned int max_dtr;
1241 	int err;
1242 	u8 val;
1243 
1244 	/* Reduce frequency to HS */
1245 	max_dtr = card->ext_csd.hs_max_dtr;
1246 	mmc_set_clock(host, max_dtr);
1247 
1248 	/* Switch HS400 to HS DDR */
1249 	val = EXT_CSD_TIMING_HS;
1250 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1251 			   val, card->ext_csd.generic_cmd6_time, 0,
1252 			   false, true);
1253 	if (err)
1254 		goto out_err;
1255 
1256 	if (host->ops->hs400_downgrade)
1257 		host->ops->hs400_downgrade(host);
1258 
1259 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1260 
1261 	err = mmc_switch_status(card, true);
1262 	if (err)
1263 		goto out_err;
1264 
1265 	/* Switch HS DDR to HS */
1266 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1267 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1268 			   0, false, true);
1269 	if (err)
1270 		goto out_err;
1271 
1272 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1273 
1274 	err = mmc_switch_status(card, true);
1275 	if (err)
1276 		goto out_err;
1277 
1278 	/* Switch HS to HS200 */
1279 	val = EXT_CSD_TIMING_HS200 |
1280 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1281 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1282 			   val, card->ext_csd.generic_cmd6_time, 0,
1283 			   false, true);
1284 	if (err)
1285 		goto out_err;
1286 
1287 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1288 
1289 	/*
1290 	 * For HS200, CRC errors are not a reliable way to know the switch
1291 	 * failed. If there really is a problem, we would expect tuning will
1292 	 * fail and the result ends up the same.
1293 	 */
1294 	err = mmc_switch_status(card, false);
1295 	if (err)
1296 		goto out_err;
1297 
1298 	mmc_set_bus_speed(card);
1299 
1300 	/* Prepare tuning for HS400 mode. */
1301 	if (host->ops->prepare_hs400_tuning)
1302 		host->ops->prepare_hs400_tuning(host, &host->ios);
1303 
1304 	return 0;
1305 
1306 out_err:
1307 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1308 	       __func__, err);
1309 	return err;
1310 }
1311 
1312 static void mmc_select_driver_type(struct mmc_card *card)
1313 {
1314 	int card_drv_type, drive_strength, drv_type = 0;
1315 	int fixed_drv_type = card->host->fixed_drv_type;
1316 
1317 	card_drv_type = card->ext_csd.raw_driver_strength |
1318 			mmc_driver_type_mask(0);
1319 
1320 	if (fixed_drv_type >= 0)
1321 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1322 				 ? fixed_drv_type : 0;
1323 	else
1324 		drive_strength = mmc_select_drive_strength(card,
1325 							   card->ext_csd.hs200_max_dtr,
1326 							   card_drv_type, &drv_type);
1327 
1328 	card->drive_strength = drive_strength;
1329 
1330 	if (drv_type)
1331 		mmc_set_driver_type(card->host, drv_type);
1332 }
1333 
1334 static int mmc_select_hs400es(struct mmc_card *card)
1335 {
1336 	struct mmc_host *host = card->host;
1337 	int err = -EINVAL;
1338 	u8 val;
1339 
1340 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1341 		err = -ENOTSUPP;
1342 		goto out_err;
1343 	}
1344 
1345 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1346 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1347 
1348 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1349 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1350 
1351 	/* If fails try again during next card power cycle */
1352 	if (err)
1353 		goto out_err;
1354 
1355 	err = mmc_select_bus_width(card);
1356 	if (err != MMC_BUS_WIDTH_8) {
1357 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1358 			mmc_hostname(host), err);
1359 		err = err < 0 ? err : -ENOTSUPP;
1360 		goto out_err;
1361 	}
1362 
1363 	/* Switch card to HS mode */
1364 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1365 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1366 			   card->ext_csd.generic_cmd6_time, 0,
1367 			   false, true);
1368 	if (err) {
1369 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1370 			mmc_hostname(host), err);
1371 		goto out_err;
1372 	}
1373 
1374 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1375 	err = mmc_switch_status(card, true);
1376 	if (err)
1377 		goto out_err;
1378 
1379 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1380 
1381 	/* Switch card to DDR with strobe bit */
1382 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1383 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1384 			 EXT_CSD_BUS_WIDTH,
1385 			 val,
1386 			 card->ext_csd.generic_cmd6_time);
1387 	if (err) {
1388 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1389 			mmc_hostname(host), err);
1390 		goto out_err;
1391 	}
1392 
1393 	mmc_select_driver_type(card);
1394 
1395 	/* Switch card to HS400 */
1396 	val = EXT_CSD_TIMING_HS400 |
1397 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1398 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1399 			   EXT_CSD_HS_TIMING, val,
1400 			   card->ext_csd.generic_cmd6_time, 0,
1401 			   false, true);
1402 	if (err) {
1403 		pr_err("%s: switch to hs400es failed, err:%d\n",
1404 			mmc_hostname(host), err);
1405 		goto out_err;
1406 	}
1407 
1408 	/* Set host controller to HS400 timing and frequency */
1409 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1410 
1411 	/* Controller enable enhanced strobe function */
1412 	host->ios.enhanced_strobe = true;
1413 	if (host->ops->hs400_enhanced_strobe)
1414 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1415 
1416 	err = mmc_switch_status(card, true);
1417 	if (err)
1418 		goto out_err;
1419 
1420 	return 0;
1421 
1422 out_err:
1423 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1424 	       __func__, err);
1425 	return err;
1426 }
1427 
1428 /*
1429  * For device supporting HS200 mode, the following sequence
1430  * should be done before executing the tuning process.
1431  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1432  * 2. switch to HS200 mode
1433  * 3. set the clock to > 52Mhz and <=200MHz
1434  */
1435 static int mmc_select_hs200(struct mmc_card *card)
1436 {
1437 	struct mmc_host *host = card->host;
1438 	unsigned int old_timing, old_signal_voltage;
1439 	int err = -EINVAL;
1440 	u8 val;
1441 
1442 	old_signal_voltage = host->ios.signal_voltage;
1443 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1444 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1445 
1446 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1447 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1448 
1449 	/* If fails try again during next card power cycle */
1450 	if (err)
1451 		return err;
1452 
1453 	mmc_select_driver_type(card);
1454 
1455 	/*
1456 	 * Set the bus width(4 or 8) with host's support and
1457 	 * switch to HS200 mode if bus width is set successfully.
1458 	 */
1459 	err = mmc_select_bus_width(card);
1460 	if (err > 0) {
1461 		val = EXT_CSD_TIMING_HS200 |
1462 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1463 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1464 				   EXT_CSD_HS_TIMING, val,
1465 				   card->ext_csd.generic_cmd6_time, 0,
1466 				   false, true);
1467 		if (err)
1468 			goto err;
1469 		old_timing = host->ios.timing;
1470 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1471 
1472 		/*
1473 		 * For HS200, CRC errors are not a reliable way to know the
1474 		 * switch failed. If there really is a problem, we would expect
1475 		 * tuning will fail and the result ends up the same.
1476 		 */
1477 		err = mmc_switch_status(card, false);
1478 
1479 		/*
1480 		 * mmc_select_timing() assumes timing has not changed if
1481 		 * it is a switch error.
1482 		 */
1483 		if (err == -EBADMSG)
1484 			mmc_set_timing(host, old_timing);
1485 	}
1486 err:
1487 	if (err) {
1488 		/* fall back to the old signal voltage, if fails report error */
1489 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1490 			err = -EIO;
1491 
1492 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1493 		       __func__, err);
1494 	}
1495 	return err;
1496 }
1497 
1498 /*
1499  * Activate High Speed, HS200 or HS400ES mode if supported.
1500  */
1501 static int mmc_select_timing(struct mmc_card *card)
1502 {
1503 	int err = 0;
1504 
1505 	if (!mmc_can_ext_csd(card))
1506 		goto bus_speed;
1507 
1508 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1509 		err = mmc_select_hs400es(card);
1510 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1511 		err = mmc_select_hs200(card);
1512 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1513 		err = mmc_select_hs(card);
1514 
1515 	if (err && err != -EBADMSG)
1516 		return err;
1517 
1518 bus_speed:
1519 	/*
1520 	 * Set the bus speed to the selected bus timing.
1521 	 * If timing is not selected, backward compatible is the default.
1522 	 */
1523 	mmc_set_bus_speed(card);
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Execute tuning sequence to seek the proper bus operating
1529  * conditions for HS200 and HS400, which sends CMD21 to the device.
1530  */
1531 static int mmc_hs200_tuning(struct mmc_card *card)
1532 {
1533 	struct mmc_host *host = card->host;
1534 
1535 	/*
1536 	 * Timing should be adjusted to the HS400 target
1537 	 * operation frequency for tuning process
1538 	 */
1539 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1540 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1541 		if (host->ops->prepare_hs400_tuning)
1542 			host->ops->prepare_hs400_tuning(host, &host->ios);
1543 
1544 	return mmc_execute_tuning(card);
1545 }
1546 
1547 /*
1548  * Handle the detection and initialisation of a card.
1549  *
1550  * In the case of a resume, "oldcard" will contain the card
1551  * we're trying to reinitialise.
1552  */
1553 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1554 	struct mmc_card *oldcard)
1555 {
1556 	struct mmc_card *card;
1557 	int err;
1558 	u32 cid[4];
1559 	u32 rocr;
1560 
1561 	WARN_ON(!host->claimed);
1562 
1563 	/* Set correct bus mode for MMC before attempting init */
1564 	if (!mmc_host_is_spi(host))
1565 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1566 
1567 	/*
1568 	 * Since we're changing the OCR value, we seem to
1569 	 * need to tell some cards to go back to the idle
1570 	 * state.  We wait 1ms to give cards time to
1571 	 * respond.
1572 	 * mmc_go_idle is needed for eMMC that are asleep
1573 	 */
1574 	mmc_go_idle(host);
1575 
1576 	/* The extra bit indicates that we support high capacity */
1577 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1578 	if (err)
1579 		goto err;
1580 
1581 	/*
1582 	 * For SPI, enable CRC as appropriate.
1583 	 */
1584 	if (mmc_host_is_spi(host)) {
1585 		err = mmc_spi_set_crc(host, use_spi_crc);
1586 		if (err)
1587 			goto err;
1588 	}
1589 
1590 	/*
1591 	 * Fetch CID from card.
1592 	 */
1593 	err = mmc_send_cid(host, cid);
1594 	if (err)
1595 		goto err;
1596 
1597 	if (oldcard) {
1598 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1599 			pr_debug("%s: Perhaps the card was replaced\n",
1600 				mmc_hostname(host));
1601 			err = -ENOENT;
1602 			goto err;
1603 		}
1604 
1605 		card = oldcard;
1606 	} else {
1607 		/*
1608 		 * Allocate card structure.
1609 		 */
1610 		card = mmc_alloc_card(host, &mmc_type);
1611 		if (IS_ERR(card)) {
1612 			err = PTR_ERR(card);
1613 			goto err;
1614 		}
1615 
1616 		card->ocr = ocr;
1617 		card->type = MMC_TYPE_MMC;
1618 		card->rca = 1;
1619 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1620 	}
1621 
1622 	/*
1623 	 * Call the optional HC's init_card function to handle quirks.
1624 	 */
1625 	if (host->ops->init_card)
1626 		host->ops->init_card(host, card);
1627 
1628 	/*
1629 	 * For native busses:  set card RCA and quit open drain mode.
1630 	 */
1631 	if (!mmc_host_is_spi(host)) {
1632 		err = mmc_set_relative_addr(card);
1633 		if (err)
1634 			goto free_card;
1635 
1636 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1637 	}
1638 
1639 	if (!oldcard) {
1640 		/*
1641 		 * Fetch CSD from card.
1642 		 */
1643 		err = mmc_send_csd(card, card->raw_csd);
1644 		if (err)
1645 			goto free_card;
1646 
1647 		err = mmc_decode_csd(card);
1648 		if (err)
1649 			goto free_card;
1650 		err = mmc_decode_cid(card);
1651 		if (err)
1652 			goto free_card;
1653 	}
1654 
1655 	/*
1656 	 * handling only for cards supporting DSR and hosts requesting
1657 	 * DSR configuration
1658 	 */
1659 	if (card->csd.dsr_imp && host->dsr_req)
1660 		mmc_set_dsr(host);
1661 
1662 	/*
1663 	 * Select card, as all following commands rely on that.
1664 	 */
1665 	if (!mmc_host_is_spi(host)) {
1666 		err = mmc_select_card(card);
1667 		if (err)
1668 			goto free_card;
1669 	}
1670 
1671 	if (!oldcard) {
1672 		/* Read extended CSD. */
1673 		err = mmc_read_ext_csd(card);
1674 		if (err)
1675 			goto free_card;
1676 
1677 		/*
1678 		 * If doing byte addressing, check if required to do sector
1679 		 * addressing.  Handle the case of <2GB cards needing sector
1680 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1681 		 * ocr register has bit 30 set for sector addressing.
1682 		 */
1683 		if (rocr & BIT(30))
1684 			mmc_card_set_blockaddr(card);
1685 
1686 		/* Erase size depends on CSD and Extended CSD */
1687 		mmc_set_erase_size(card);
1688 	}
1689 
1690 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1691 	if (card->ext_csd.rev >= 3) {
1692 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1693 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1694 				 card->ext_csd.generic_cmd6_time);
1695 
1696 		if (err && err != -EBADMSG)
1697 			goto free_card;
1698 
1699 		if (err) {
1700 			/*
1701 			 * Just disable enhanced area off & sz
1702 			 * will try to enable ERASE_GROUP_DEF
1703 			 * during next time reinit
1704 			 */
1705 			card->ext_csd.enhanced_area_offset = -EINVAL;
1706 			card->ext_csd.enhanced_area_size = -EINVAL;
1707 		} else {
1708 			card->ext_csd.erase_group_def = 1;
1709 			/*
1710 			 * enable ERASE_GRP_DEF successfully.
1711 			 * This will affect the erase size, so
1712 			 * here need to reset erase size
1713 			 */
1714 			mmc_set_erase_size(card);
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Ensure eMMC user default partition is enabled
1720 	 */
1721 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1722 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1723 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1724 				 card->ext_csd.part_config,
1725 				 card->ext_csd.part_time);
1726 		if (err && err != -EBADMSG)
1727 			goto free_card;
1728 	}
1729 
1730 	/*
1731 	 * Enable power_off_notification byte in the ext_csd register
1732 	 */
1733 	if (card->ext_csd.rev >= 6) {
1734 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1735 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1736 				 EXT_CSD_POWER_ON,
1737 				 card->ext_csd.generic_cmd6_time);
1738 		if (err && err != -EBADMSG)
1739 			goto free_card;
1740 
1741 		/*
1742 		 * The err can be -EBADMSG or 0,
1743 		 * so check for success and update the flag
1744 		 */
1745 		if (!err)
1746 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1747 	}
1748 
1749 	/* set erase_arg */
1750 	if (mmc_can_discard(card))
1751 		card->erase_arg = MMC_DISCARD_ARG;
1752 	else if (mmc_can_trim(card))
1753 		card->erase_arg = MMC_TRIM_ARG;
1754 	else
1755 		card->erase_arg = MMC_ERASE_ARG;
1756 
1757 	/*
1758 	 * Select timing interface
1759 	 */
1760 	err = mmc_select_timing(card);
1761 	if (err)
1762 		goto free_card;
1763 
1764 	if (mmc_card_hs200(card)) {
1765 		host->doing_init_tune = 1;
1766 
1767 		err = mmc_hs200_tuning(card);
1768 		if (!err)
1769 			err = mmc_select_hs400(card);
1770 
1771 		host->doing_init_tune = 0;
1772 
1773 		if (err)
1774 			goto free_card;
1775 
1776 	} else if (!mmc_card_hs400es(card)) {
1777 		/* Select the desired bus width optionally */
1778 		err = mmc_select_bus_width(card);
1779 		if (err > 0 && mmc_card_hs(card)) {
1780 			err = mmc_select_hs_ddr(card);
1781 			if (err)
1782 				goto free_card;
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * Choose the power class with selected bus interface
1788 	 */
1789 	mmc_select_powerclass(card);
1790 
1791 	/*
1792 	 * Enable HPI feature (if supported)
1793 	 */
1794 	if (card->ext_csd.hpi) {
1795 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1796 				EXT_CSD_HPI_MGMT, 1,
1797 				card->ext_csd.generic_cmd6_time);
1798 		if (err && err != -EBADMSG)
1799 			goto free_card;
1800 		if (err) {
1801 			pr_warn("%s: Enabling HPI failed\n",
1802 				mmc_hostname(card->host));
1803 			card->ext_csd.hpi_en = 0;
1804 		} else {
1805 			card->ext_csd.hpi_en = 1;
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * If cache size is higher than 0, this indicates the existence of cache
1811 	 * and it can be turned on. Note that some eMMCs from Micron has been
1812 	 * reported to need ~800 ms timeout, while enabling the cache after
1813 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1814 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1815 	 */
1816 	if (card->ext_csd.cache_size > 0) {
1817 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1818 
1819 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1820 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1821 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1822 		if (err && err != -EBADMSG)
1823 			goto free_card;
1824 
1825 		/*
1826 		 * Only if no error, cache is turned on successfully.
1827 		 */
1828 		if (err) {
1829 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1830 				mmc_hostname(card->host), err);
1831 			card->ext_csd.cache_ctrl = 0;
1832 		} else {
1833 			card->ext_csd.cache_ctrl = 1;
1834 		}
1835 	}
1836 
1837 	/*
1838 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1839 	 * be used with Command Queue.
1840 	 */
1841 	card->ext_csd.cmdq_en = false;
1842 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1843 		err = mmc_cmdq_enable(card);
1844 		if (err && err != -EBADMSG)
1845 			goto free_card;
1846 		if (err) {
1847 			pr_warn("%s: Enabling CMDQ failed\n",
1848 				mmc_hostname(card->host));
1849 			card->ext_csd.cmdq_support = false;
1850 			card->ext_csd.cmdq_depth = 0;
1851 		}
1852 	}
1853 	/*
1854 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1855 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1856 	 * Command Queue.
1857 	 */
1858 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1859 
1860 	if (host->cqe_ops && !host->cqe_enabled) {
1861 		err = host->cqe_ops->cqe_enable(host, card);
1862 		if (!err) {
1863 			host->cqe_enabled = true;
1864 
1865 			if (card->ext_csd.cmdq_en) {
1866 				pr_info("%s: Command Queue Engine enabled\n",
1867 					mmc_hostname(host));
1868 			} else {
1869 				host->hsq_enabled = true;
1870 				pr_info("%s: Host Software Queue enabled\n",
1871 					mmc_hostname(host));
1872 			}
1873 		}
1874 	}
1875 
1876 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1877 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1878 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1879 			mmc_hostname(host));
1880 		err = -EINVAL;
1881 		goto free_card;
1882 	}
1883 
1884 	if (!oldcard)
1885 		host->card = card;
1886 
1887 	return 0;
1888 
1889 free_card:
1890 	if (!oldcard)
1891 		mmc_remove_card(card);
1892 err:
1893 	return err;
1894 }
1895 
1896 static int mmc_can_sleep(struct mmc_card *card)
1897 {
1898 	return card->ext_csd.rev >= 3;
1899 }
1900 
1901 static int mmc_sleep(struct mmc_host *host)
1902 {
1903 	struct mmc_command cmd = {};
1904 	struct mmc_card *card = host->card;
1905 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1906 	int err;
1907 
1908 	/* Re-tuning can't be done once the card is deselected */
1909 	mmc_retune_hold(host);
1910 
1911 	err = mmc_deselect_cards(host);
1912 	if (err)
1913 		goto out_release;
1914 
1915 	cmd.opcode = MMC_SLEEP_AWAKE;
1916 	cmd.arg = card->rca << 16;
1917 	cmd.arg |= 1 << 15;
1918 
1919 	/*
1920 	 * If the max_busy_timeout of the host is specified, validate it against
1921 	 * the sleep cmd timeout. A failure means we need to prevent the host
1922 	 * from doing hw busy detection, which is done by converting to a R1
1923 	 * response instead of a R1B. Note, some hosts requires R1B, which also
1924 	 * means they are on their own when it comes to deal with the busy
1925 	 * timeout.
1926 	 */
1927 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1928 	    (timeout_ms > host->max_busy_timeout)) {
1929 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1930 	} else {
1931 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1932 		cmd.busy_timeout = timeout_ms;
1933 	}
1934 
1935 	err = mmc_wait_for_cmd(host, &cmd, 0);
1936 	if (err)
1937 		goto out_release;
1938 
1939 	/*
1940 	 * If the host does not wait while the card signals busy, then we will
1941 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1942 	 * SEND_STATUS command to poll the status because that command (and most
1943 	 * others) is invalid while the card sleeps.
1944 	 */
1945 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1946 		mmc_delay(timeout_ms);
1947 
1948 out_release:
1949 	mmc_retune_release(host);
1950 	return err;
1951 }
1952 
1953 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1954 {
1955 	return card &&
1956 		mmc_card_mmc(card) &&
1957 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1958 }
1959 
1960 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1961 {
1962 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1963 	int err;
1964 
1965 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1966 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1967 		timeout = card->ext_csd.power_off_longtime;
1968 
1969 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1970 			EXT_CSD_POWER_OFF_NOTIFICATION,
1971 			notify_type, timeout, 0, false, false);
1972 	if (err)
1973 		pr_err("%s: Power Off Notification timed out, %u\n",
1974 		       mmc_hostname(card->host), timeout);
1975 
1976 	/* Disable the power off notification after the switch operation. */
1977 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1978 
1979 	return err;
1980 }
1981 
1982 /*
1983  * Host is being removed. Free up the current card.
1984  */
1985 static void mmc_remove(struct mmc_host *host)
1986 {
1987 	mmc_remove_card(host->card);
1988 	host->card = NULL;
1989 }
1990 
1991 /*
1992  * Card detection - card is alive.
1993  */
1994 static int mmc_alive(struct mmc_host *host)
1995 {
1996 	return mmc_send_status(host->card, NULL);
1997 }
1998 
1999 /*
2000  * Card detection callback from host.
2001  */
2002 static void mmc_detect(struct mmc_host *host)
2003 {
2004 	int err;
2005 
2006 	mmc_get_card(host->card, NULL);
2007 
2008 	/*
2009 	 * Just check if our card has been removed.
2010 	 */
2011 	err = _mmc_detect_card_removed(host);
2012 
2013 	mmc_put_card(host->card, NULL);
2014 
2015 	if (err) {
2016 		mmc_remove(host);
2017 
2018 		mmc_claim_host(host);
2019 		mmc_detach_bus(host);
2020 		mmc_power_off(host);
2021 		mmc_release_host(host);
2022 	}
2023 }
2024 
2025 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2026 {
2027 	int err = 0;
2028 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2029 					EXT_CSD_POWER_OFF_LONG;
2030 
2031 	mmc_claim_host(host);
2032 
2033 	if (mmc_card_suspended(host->card))
2034 		goto out;
2035 
2036 	err = mmc_flush_cache(host->card);
2037 	if (err)
2038 		goto out;
2039 
2040 	if (mmc_can_poweroff_notify(host->card) &&
2041 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2042 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2043 		err = mmc_poweroff_notify(host->card, notify_type);
2044 	else if (mmc_can_sleep(host->card))
2045 		err = mmc_sleep(host);
2046 	else if (!mmc_host_is_spi(host))
2047 		err = mmc_deselect_cards(host);
2048 
2049 	if (!err) {
2050 		mmc_power_off(host);
2051 		mmc_card_set_suspended(host->card);
2052 	}
2053 out:
2054 	mmc_release_host(host);
2055 	return err;
2056 }
2057 
2058 /*
2059  * Suspend callback
2060  */
2061 static int mmc_suspend(struct mmc_host *host)
2062 {
2063 	int err;
2064 
2065 	err = _mmc_suspend(host, true);
2066 	if (!err) {
2067 		pm_runtime_disable(&host->card->dev);
2068 		pm_runtime_set_suspended(&host->card->dev);
2069 	}
2070 
2071 	return err;
2072 }
2073 
2074 /*
2075  * This function tries to determine if the same card is still present
2076  * and, if so, restore all state to it.
2077  */
2078 static int _mmc_resume(struct mmc_host *host)
2079 {
2080 	int err = 0;
2081 
2082 	mmc_claim_host(host);
2083 
2084 	if (!mmc_card_suspended(host->card))
2085 		goto out;
2086 
2087 	mmc_power_up(host, host->card->ocr);
2088 	err = mmc_init_card(host, host->card->ocr, host->card);
2089 	mmc_card_clr_suspended(host->card);
2090 
2091 out:
2092 	mmc_release_host(host);
2093 	return err;
2094 }
2095 
2096 /*
2097  * Shutdown callback
2098  */
2099 static int mmc_shutdown(struct mmc_host *host)
2100 {
2101 	int err = 0;
2102 
2103 	/*
2104 	 * In a specific case for poweroff notify, we need to resume the card
2105 	 * before we can shutdown it properly.
2106 	 */
2107 	if (mmc_can_poweroff_notify(host->card) &&
2108 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2109 		err = _mmc_resume(host);
2110 
2111 	if (!err)
2112 		err = _mmc_suspend(host, false);
2113 
2114 	return err;
2115 }
2116 
2117 /*
2118  * Callback for resume.
2119  */
2120 static int mmc_resume(struct mmc_host *host)
2121 {
2122 	pm_runtime_enable(&host->card->dev);
2123 	return 0;
2124 }
2125 
2126 /*
2127  * Callback for runtime_suspend.
2128  */
2129 static int mmc_runtime_suspend(struct mmc_host *host)
2130 {
2131 	int err;
2132 
2133 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2134 		return 0;
2135 
2136 	err = _mmc_suspend(host, true);
2137 	if (err)
2138 		pr_err("%s: error %d doing aggressive suspend\n",
2139 			mmc_hostname(host), err);
2140 
2141 	return err;
2142 }
2143 
2144 /*
2145  * Callback for runtime_resume.
2146  */
2147 static int mmc_runtime_resume(struct mmc_host *host)
2148 {
2149 	int err;
2150 
2151 	err = _mmc_resume(host);
2152 	if (err && err != -ENOMEDIUM)
2153 		pr_err("%s: error %d doing runtime resume\n",
2154 			mmc_hostname(host), err);
2155 
2156 	return 0;
2157 }
2158 
2159 static int mmc_can_reset(struct mmc_card *card)
2160 {
2161 	u8 rst_n_function;
2162 
2163 	rst_n_function = card->ext_csd.rst_n_function;
2164 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2165 		return 0;
2166 	return 1;
2167 }
2168 
2169 static int _mmc_hw_reset(struct mmc_host *host)
2170 {
2171 	struct mmc_card *card = host->card;
2172 
2173 	/*
2174 	 * In the case of recovery, we can't expect flushing the cache to work
2175 	 * always, but we have a go and ignore errors.
2176 	 */
2177 	mmc_flush_cache(host->card);
2178 
2179 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2180 	     mmc_can_reset(card)) {
2181 		/* If the card accept RST_n signal, send it. */
2182 		mmc_set_clock(host, host->f_init);
2183 		host->ops->hw_reset(host);
2184 		/* Set initial state and call mmc_set_ios */
2185 		mmc_set_initial_state(host);
2186 	} else {
2187 		/* Do a brute force power cycle */
2188 		mmc_power_cycle(host, card->ocr);
2189 		mmc_pwrseq_reset(host);
2190 	}
2191 	return mmc_init_card(host, card->ocr, card);
2192 }
2193 
2194 static const struct mmc_bus_ops mmc_ops = {
2195 	.remove = mmc_remove,
2196 	.detect = mmc_detect,
2197 	.suspend = mmc_suspend,
2198 	.resume = mmc_resume,
2199 	.runtime_suspend = mmc_runtime_suspend,
2200 	.runtime_resume = mmc_runtime_resume,
2201 	.alive = mmc_alive,
2202 	.shutdown = mmc_shutdown,
2203 	.hw_reset = _mmc_hw_reset,
2204 };
2205 
2206 /*
2207  * Starting point for MMC card init.
2208  */
2209 int mmc_attach_mmc(struct mmc_host *host)
2210 {
2211 	int err;
2212 	u32 ocr, rocr;
2213 
2214 	WARN_ON(!host->claimed);
2215 
2216 	/* Set correct bus mode for MMC before attempting attach */
2217 	if (!mmc_host_is_spi(host))
2218 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2219 
2220 	err = mmc_send_op_cond(host, 0, &ocr);
2221 	if (err)
2222 		return err;
2223 
2224 	mmc_attach_bus(host, &mmc_ops);
2225 	if (host->ocr_avail_mmc)
2226 		host->ocr_avail = host->ocr_avail_mmc;
2227 
2228 	/*
2229 	 * We need to get OCR a different way for SPI.
2230 	 */
2231 	if (mmc_host_is_spi(host)) {
2232 		err = mmc_spi_read_ocr(host, 1, &ocr);
2233 		if (err)
2234 			goto err;
2235 	}
2236 
2237 	rocr = mmc_select_voltage(host, ocr);
2238 
2239 	/*
2240 	 * Can we support the voltage of the card?
2241 	 */
2242 	if (!rocr) {
2243 		err = -EINVAL;
2244 		goto err;
2245 	}
2246 
2247 	/*
2248 	 * Detect and init the card.
2249 	 */
2250 	err = mmc_init_card(host, rocr, NULL);
2251 	if (err)
2252 		goto err;
2253 
2254 	mmc_release_host(host);
2255 	err = mmc_add_card(host->card);
2256 	if (err)
2257 		goto remove_card;
2258 
2259 	mmc_claim_host(host);
2260 	return 0;
2261 
2262 remove_card:
2263 	mmc_remove_card(host->card);
2264 	mmc_claim_host(host);
2265 	host->card = NULL;
2266 err:
2267 	mmc_detach_bus(host);
2268 
2269 	pr_err("%s: error %d whilst initialising MMC card\n",
2270 		mmc_hostname(host), err);
2271 
2272 	return err;
2273 }
2274