xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
32 
33 static const unsigned int tran_exp[] = {
34 	10000,		100000,		1000000,	10000000,
35 	0,		0,		0,		0
36 };
37 
38 static const unsigned char tran_mant[] = {
39 	0,	10,	12,	13,	15,	20,	25,	30,
40 	35,	40,	45,	50,	55,	60,	70,	80,
41 };
42 
43 static const unsigned int taac_exp[] = {
44 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
45 };
46 
47 static const unsigned int taac_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 #define UNSTUFF_BITS(resp,start,size)					\
53 	({								\
54 		const int __size = size;				\
55 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
56 		const int __off = 3 - ((start) / 32);			\
57 		const int __shft = (start) & 31;			\
58 		u32 __res;						\
59 									\
60 		__res = resp[__off] >> __shft;				\
61 		if (__size + __shft > 32)				\
62 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
63 		__res & __mask;						\
64 	})
65 
66 /*
67  * Given the decoded CSD structure, decode the raw CID to our CID structure.
68  */
69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 	u32 *resp = card->raw_cid;
72 
73 	/*
74 	 * The selection of the format here is based upon published
75 	 * specs from sandisk and from what people have reported.
76 	 */
77 	switch (card->csd.mmca_vsn) {
78 	case 0: /* MMC v1.0 - v1.2 */
79 	case 1: /* MMC v1.4 */
80 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
81 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
82 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
83 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
84 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
85 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
86 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
87 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
88 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
89 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
90 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
91 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
92 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
93 		break;
94 
95 	case 2: /* MMC v2.0 - v2.2 */
96 	case 3: /* MMC v3.1 - v3.3 */
97 	case 4: /* MMC v4 */
98 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
99 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
100 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
101 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
102 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
103 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
104 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
105 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
106 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
107 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
108 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
109 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
110 		break;
111 
112 	default:
113 		pr_err("%s: card has unknown MMCA version %d\n",
114 			mmc_hostname(card->host), card->csd.mmca_vsn);
115 		return -EINVAL;
116 	}
117 
118 	return 0;
119 }
120 
121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 	if (card->ext_csd.erase_group_def & 1)
124 		card->erase_size = card->ext_csd.hc_erase_size;
125 	else
126 		card->erase_size = card->csd.erase_size;
127 
128 	mmc_init_erase(card);
129 }
130 
131 /*
132  * Given a 128-bit response, decode to our card CSD structure.
133  */
134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 	struct mmc_csd *csd = &card->csd;
137 	unsigned int e, m, a, b;
138 	u32 *resp = card->raw_csd;
139 
140 	/*
141 	 * We only understand CSD structure v1.1 and v1.2.
142 	 * v1.2 has extra information in bits 15, 11 and 10.
143 	 * We also support eMMC v4.4 & v4.41.
144 	 */
145 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 	if (csd->structure == 0) {
147 		pr_err("%s: unrecognised CSD structure version %d\n",
148 			mmc_hostname(card->host), csd->structure);
149 		return -EINVAL;
150 	}
151 
152 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
153 	m = UNSTUFF_BITS(resp, 115, 4);
154 	e = UNSTUFF_BITS(resp, 112, 3);
155 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
156 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
157 
158 	m = UNSTUFF_BITS(resp, 99, 4);
159 	e = UNSTUFF_BITS(resp, 96, 3);
160 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
161 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
162 
163 	e = UNSTUFF_BITS(resp, 47, 3);
164 	m = UNSTUFF_BITS(resp, 62, 12);
165 	csd->capacity	  = (1 + m) << (e + 2);
166 
167 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 
176 	if (csd->write_blkbits >= 9) {
177 		a = UNSTUFF_BITS(resp, 42, 5);
178 		b = UNSTUFF_BITS(resp, 37, 5);
179 		csd->erase_size = (a + 1) * (b + 1);
180 		csd->erase_size <<= csd->write_blkbits - 9;
181 	}
182 
183 	return 0;
184 }
185 
186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 	struct mmc_host *host = card->host;
189 	u8 card_type = card->ext_csd.raw_card_type;
190 	u32 caps = host->caps, caps2 = host->caps2;
191 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 	unsigned int avail_type = 0;
193 
194 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 	}
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 	}
205 
206 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 	}
211 
212 	if (caps & MMC_CAP_1_2V_DDR &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 	}
217 
218 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 		hs200_max_dtr = MMC_HS200_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS400_1_8V &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_2V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 	}
241 
242 	if ((caps2 & MMC_CAP2_HS400_ES) &&
243 	    card->ext_csd.strobe_support &&
244 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 
247 	card->ext_csd.hs_max_dtr = hs_max_dtr;
248 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 	card->mmc_avail_type = avail_type;
250 }
251 
252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
255 
256 	/*
257 	 * Disable these attributes by default
258 	 */
259 	card->ext_csd.enhanced_area_offset = -EINVAL;
260 	card->ext_csd.enhanced_area_size = -EINVAL;
261 
262 	/*
263 	 * Enhanced area feature support -- check whether the eMMC
264 	 * card has the Enhanced area enabled.  If so, export enhanced
265 	 * area offset and size to user by adding sysfs interface.
266 	 */
267 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 		if (card->ext_csd.partition_setting_completed) {
270 			hc_erase_grp_sz =
271 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 			hc_wp_grp_sz =
273 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274 
275 			/*
276 			 * calculate the enhanced data area offset, in bytes
277 			 */
278 			card->ext_csd.enhanced_area_offset =
279 				(((unsigned long long)ext_csd[139]) << 24) +
280 				(((unsigned long long)ext_csd[138]) << 16) +
281 				(((unsigned long long)ext_csd[137]) << 8) +
282 				(((unsigned long long)ext_csd[136]));
283 			if (mmc_card_blockaddr(card))
284 				card->ext_csd.enhanced_area_offset <<= 9;
285 			/*
286 			 * calculate the enhanced data area size, in kilobytes
287 			 */
288 			card->ext_csd.enhanced_area_size =
289 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 				ext_csd[140];
291 			card->ext_csd.enhanced_area_size *=
292 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 			card->ext_csd.enhanced_area_size <<= 9;
294 		} else {
295 			pr_warn("%s: defines enhanced area without partition setting complete\n",
296 				mmc_hostname(card->host));
297 		}
298 	}
299 }
300 
301 static void mmc_part_add(struct mmc_card *card, u64 size,
302 			 unsigned int part_cfg, char *name, int idx, bool ro,
303 			 int area_type)
304 {
305 	card->part[card->nr_parts].size = size;
306 	card->part[card->nr_parts].part_cfg = part_cfg;
307 	sprintf(card->part[card->nr_parts].name, name, idx);
308 	card->part[card->nr_parts].force_ro = ro;
309 	card->part[card->nr_parts].area_type = area_type;
310 	card->nr_parts++;
311 }
312 
313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 	int idx;
316 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 	u64 part_size;
318 
319 	/*
320 	 * General purpose partition feature support --
321 	 * If ext_csd has the size of general purpose partitions,
322 	 * set size, part_cfg, partition name in mmc_part.
323 	 */
324 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 	    EXT_CSD_PART_SUPPORT_PART_EN) {
326 		hc_erase_grp_sz =
327 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 		hc_wp_grp_sz =
329 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 
331 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 				continue;
336 			if (card->ext_csd.partition_setting_completed == 0) {
337 				pr_warn("%s: has partition size defined without partition complete\n",
338 					mmc_hostname(card->host));
339 				break;
340 			}
341 			part_size =
342 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 				<< 16) +
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 				<< 8) +
346 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
348 			mmc_part_add(card, part_size << 19,
349 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 				"gp%d", idx, false,
351 				MMC_BLK_DATA_AREA_GP);
352 		}
353 	}
354 }
355 
356 /* Minimum partition switch timeout in milliseconds */
357 #define MMC_MIN_PART_SWITCH_TIME	300
358 
359 /*
360  * Decode extended CSD.
361  */
362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 {
364 	int err = 0, idx;
365 	u64 part_size;
366 	struct device_node *np;
367 	bool broken_hpi = false;
368 
369 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 	if (card->csd.structure == 3) {
372 		if (card->ext_csd.raw_ext_csd_structure > 2) {
373 			pr_err("%s: unrecognised EXT_CSD structure "
374 				"version %d\n", mmc_hostname(card->host),
375 					card->ext_csd.raw_ext_csd_structure);
376 			err = -EINVAL;
377 			goto out;
378 		}
379 	}
380 
381 	np = mmc_of_find_child_device(card->host, 0);
382 	if (np && of_device_is_compatible(np, "mmc-card"))
383 		broken_hpi = of_property_read_bool(np, "broken-hpi");
384 	of_node_put(np);
385 
386 	/*
387 	 * The EXT_CSD format is meant to be forward compatible. As long
388 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 	 * are authorized, see JEDEC JESD84-B50 section B.8.
390 	 */
391 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392 
393 	/* fixup device after ext_csd revision field is updated */
394 	mmc_fixup_device(card, mmc_ext_csd_fixups);
395 
396 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 	if (card->ext_csd.rev >= 2) {
401 		card->ext_csd.sectors =
402 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406 
407 		/* Cards with density > 2GiB are sector addressed */
408 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 			mmc_card_set_blockaddr(card);
410 	}
411 
412 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 	mmc_select_card_type(card);
415 
416 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 	card->ext_csd.raw_erase_timeout_mult =
418 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 	card->ext_csd.raw_hc_erase_grp_size =
420 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 	if (card->ext_csd.rev >= 3) {
422 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
423 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
424 
425 		/* EXT_CSD value is in units of 10ms, but we store in ms */
426 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
427 
428 		/* Sleep / awake timeout in 100ns units */
429 		if (sa_shift > 0 && sa_shift <= 0x17)
430 			card->ext_csd.sa_timeout =
431 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
432 		card->ext_csd.erase_group_def =
433 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
434 		card->ext_csd.hc_erase_timeout = 300 *
435 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
436 		card->ext_csd.hc_erase_size =
437 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
438 
439 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
440 
441 		/*
442 		 * There are two boot regions of equal size, defined in
443 		 * multiples of 128K.
444 		 */
445 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
446 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
447 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
448 				mmc_part_add(card, part_size,
449 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
450 					"boot%d", idx, true,
451 					MMC_BLK_DATA_AREA_BOOT);
452 			}
453 		}
454 	}
455 
456 	card->ext_csd.raw_hc_erase_gap_size =
457 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
458 	card->ext_csd.raw_sec_trim_mult =
459 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
460 	card->ext_csd.raw_sec_erase_mult =
461 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
462 	card->ext_csd.raw_sec_feature_support =
463 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
464 	card->ext_csd.raw_trim_mult =
465 		ext_csd[EXT_CSD_TRIM_MULT];
466 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
467 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
468 	if (card->ext_csd.rev >= 4) {
469 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
470 		    EXT_CSD_PART_SETTING_COMPLETED)
471 			card->ext_csd.partition_setting_completed = 1;
472 		else
473 			card->ext_csd.partition_setting_completed = 0;
474 
475 		mmc_manage_enhanced_area(card, ext_csd);
476 
477 		mmc_manage_gp_partitions(card, ext_csd);
478 
479 		card->ext_csd.sec_trim_mult =
480 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
481 		card->ext_csd.sec_erase_mult =
482 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
483 		card->ext_csd.sec_feature_support =
484 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
485 		card->ext_csd.trim_timeout = 300 *
486 			ext_csd[EXT_CSD_TRIM_MULT];
487 
488 		/*
489 		 * Note that the call to mmc_part_add above defaults to read
490 		 * only. If this default assumption is changed, the call must
491 		 * take into account the value of boot_locked below.
492 		 */
493 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
494 		card->ext_csd.boot_ro_lockable = true;
495 
496 		/* Save power class values */
497 		card->ext_csd.raw_pwr_cl_52_195 =
498 			ext_csd[EXT_CSD_PWR_CL_52_195];
499 		card->ext_csd.raw_pwr_cl_26_195 =
500 			ext_csd[EXT_CSD_PWR_CL_26_195];
501 		card->ext_csd.raw_pwr_cl_52_360 =
502 			ext_csd[EXT_CSD_PWR_CL_52_360];
503 		card->ext_csd.raw_pwr_cl_26_360 =
504 			ext_csd[EXT_CSD_PWR_CL_26_360];
505 		card->ext_csd.raw_pwr_cl_200_195 =
506 			ext_csd[EXT_CSD_PWR_CL_200_195];
507 		card->ext_csd.raw_pwr_cl_200_360 =
508 			ext_csd[EXT_CSD_PWR_CL_200_360];
509 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
510 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
511 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
512 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
513 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
514 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
515 	}
516 
517 	if (card->ext_csd.rev >= 5) {
518 		/* Adjust production date as per JEDEC JESD84-B451 */
519 		if (card->cid.year < 2010)
520 			card->cid.year += 16;
521 
522 		/* check whether the eMMC card supports BKOPS */
523 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
524 			card->ext_csd.bkops = 1;
525 			card->ext_csd.man_bkops_en =
526 					(ext_csd[EXT_CSD_BKOPS_EN] &
527 						EXT_CSD_MANUAL_BKOPS_MASK);
528 			card->ext_csd.raw_bkops_status =
529 				ext_csd[EXT_CSD_BKOPS_STATUS];
530 			if (card->ext_csd.man_bkops_en)
531 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
532 					mmc_hostname(card->host));
533 			card->ext_csd.auto_bkops_en =
534 					(ext_csd[EXT_CSD_BKOPS_EN] &
535 						EXT_CSD_AUTO_BKOPS_MASK);
536 			if (card->ext_csd.auto_bkops_en)
537 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
538 					mmc_hostname(card->host));
539 		}
540 
541 		/* check whether the eMMC card supports HPI */
542 		if (!mmc_card_broken_hpi(card) &&
543 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
544 			card->ext_csd.hpi = 1;
545 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
546 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
547 			else
548 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
549 			/*
550 			 * Indicate the maximum timeout to close
551 			 * a command interrupted by HPI
552 			 */
553 			card->ext_csd.out_of_int_time =
554 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
555 		}
556 
557 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
558 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
559 
560 		/*
561 		 * RPMB regions are defined in multiples of 128K.
562 		 */
563 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
564 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
565 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
566 				EXT_CSD_PART_CONFIG_ACC_RPMB,
567 				"rpmb", 0, false,
568 				MMC_BLK_DATA_AREA_RPMB);
569 		}
570 	}
571 
572 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
573 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
574 		card->erased_byte = 0xFF;
575 	else
576 		card->erased_byte = 0x0;
577 
578 	/* eMMC v4.5 or later */
579 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
580 	if (card->ext_csd.rev >= 6) {
581 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
582 
583 		card->ext_csd.generic_cmd6_time = 10 *
584 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
585 		card->ext_csd.power_off_longtime = 10 *
586 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
587 
588 		card->ext_csd.cache_size =
589 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
590 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
591 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
592 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
593 
594 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
595 			card->ext_csd.data_sector_size = 4096;
596 		else
597 			card->ext_csd.data_sector_size = 512;
598 
599 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
600 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
601 			card->ext_csd.data_tag_unit_size =
602 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
603 			(card->ext_csd.data_sector_size);
604 		} else {
605 			card->ext_csd.data_tag_unit_size = 0;
606 		}
607 
608 		card->ext_csd.max_packed_writes =
609 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
610 		card->ext_csd.max_packed_reads =
611 			ext_csd[EXT_CSD_MAX_PACKED_READS];
612 	} else {
613 		card->ext_csd.data_sector_size = 512;
614 	}
615 
616 	/*
617 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
618 	 * when accessing a specific field", so use it here if there is no
619 	 * PARTITION_SWITCH_TIME.
620 	 */
621 	if (!card->ext_csd.part_time)
622 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
623 	/* Some eMMC set the value too low so set a minimum */
624 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
625 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
626 
627 	/* eMMC v5 or later */
628 	if (card->ext_csd.rev >= 7) {
629 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
630 		       MMC_FIRMWARE_LEN);
631 		card->ext_csd.ffu_capable =
632 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
633 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
634 
635 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
636 		card->ext_csd.device_life_time_est_typ_a =
637 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
638 		card->ext_csd.device_life_time_est_typ_b =
639 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
640 	}
641 
642 	/* eMMC v5.1 or later */
643 	if (card->ext_csd.rev >= 8) {
644 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
645 					     EXT_CSD_CMDQ_SUPPORTED;
646 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
647 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
648 		/* Exclude inefficiently small queue depths */
649 		if (card->ext_csd.cmdq_depth <= 2) {
650 			card->ext_csd.cmdq_support = false;
651 			card->ext_csd.cmdq_depth = 0;
652 		}
653 		if (card->ext_csd.cmdq_support) {
654 			pr_debug("%s: Command Queue supported depth %u\n",
655 				 mmc_hostname(card->host),
656 				 card->ext_csd.cmdq_depth);
657 		}
658 		card->ext_csd.enhanced_rpmb_supported =
659 					(card->ext_csd.rel_param &
660 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
661 	}
662 out:
663 	return err;
664 }
665 
666 static int mmc_read_ext_csd(struct mmc_card *card)
667 {
668 	u8 *ext_csd;
669 	int err;
670 
671 	if (!mmc_can_ext_csd(card))
672 		return 0;
673 
674 	err = mmc_get_ext_csd(card, &ext_csd);
675 	if (err) {
676 		/* If the host or the card can't do the switch,
677 		 * fail more gracefully. */
678 		if ((err != -EINVAL)
679 		 && (err != -ENOSYS)
680 		 && (err != -EFAULT))
681 			return err;
682 
683 		/*
684 		 * High capacity cards should have this "magic" size
685 		 * stored in their CSD.
686 		 */
687 		if (card->csd.capacity == (4096 * 512)) {
688 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
689 				mmc_hostname(card->host));
690 		} else {
691 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
692 				mmc_hostname(card->host));
693 			err = 0;
694 		}
695 
696 		return err;
697 	}
698 
699 	err = mmc_decode_ext_csd(card, ext_csd);
700 	kfree(ext_csd);
701 	return err;
702 }
703 
704 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
705 {
706 	u8 *bw_ext_csd;
707 	int err;
708 
709 	if (bus_width == MMC_BUS_WIDTH_1)
710 		return 0;
711 
712 	err = mmc_get_ext_csd(card, &bw_ext_csd);
713 	if (err)
714 		return err;
715 
716 	/* only compare read only fields */
717 	err = !((card->ext_csd.raw_partition_support ==
718 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
719 		(card->ext_csd.raw_erased_mem_count ==
720 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
721 		(card->ext_csd.rev ==
722 			bw_ext_csd[EXT_CSD_REV]) &&
723 		(card->ext_csd.raw_ext_csd_structure ==
724 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
725 		(card->ext_csd.raw_card_type ==
726 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
727 		(card->ext_csd.raw_s_a_timeout ==
728 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
729 		(card->ext_csd.raw_hc_erase_gap_size ==
730 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
731 		(card->ext_csd.raw_erase_timeout_mult ==
732 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
733 		(card->ext_csd.raw_hc_erase_grp_size ==
734 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
735 		(card->ext_csd.raw_sec_trim_mult ==
736 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
737 		(card->ext_csd.raw_sec_erase_mult ==
738 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
739 		(card->ext_csd.raw_sec_feature_support ==
740 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
741 		(card->ext_csd.raw_trim_mult ==
742 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
743 		(card->ext_csd.raw_sectors[0] ==
744 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
745 		(card->ext_csd.raw_sectors[1] ==
746 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
747 		(card->ext_csd.raw_sectors[2] ==
748 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
749 		(card->ext_csd.raw_sectors[3] ==
750 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
751 		(card->ext_csd.raw_pwr_cl_52_195 ==
752 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
753 		(card->ext_csd.raw_pwr_cl_26_195 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
755 		(card->ext_csd.raw_pwr_cl_52_360 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
757 		(card->ext_csd.raw_pwr_cl_26_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
759 		(card->ext_csd.raw_pwr_cl_200_195 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
761 		(card->ext_csd.raw_pwr_cl_200_360 ==
762 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
763 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
764 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
765 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
766 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
767 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
768 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
769 
770 	if (err)
771 		err = -EINVAL;
772 
773 	kfree(bw_ext_csd);
774 	return err;
775 }
776 
777 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
778 	card->raw_cid[2], card->raw_cid[3]);
779 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
780 	card->raw_csd[2], card->raw_csd[3]);
781 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
782 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
783 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
784 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
785 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
786 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
787 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
788 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
789 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
790 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
791 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
792 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
793 	card->ext_csd.device_life_time_est_typ_a,
794 	card->ext_csd.device_life_time_est_typ_b);
795 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
796 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
797 		card->ext_csd.enhanced_area_offset);
798 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
799 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
800 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
801 	card->ext_csd.enhanced_rpmb_supported);
802 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
803 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
804 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
805 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
806 
807 static ssize_t mmc_fwrev_show(struct device *dev,
808 			      struct device_attribute *attr,
809 			      char *buf)
810 {
811 	struct mmc_card *card = mmc_dev_to_card(dev);
812 
813 	if (card->ext_csd.rev < 7) {
814 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
815 	} else {
816 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
817 			       card->ext_csd.fwrev);
818 	}
819 }
820 
821 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
822 
823 static ssize_t mmc_dsr_show(struct device *dev,
824 			    struct device_attribute *attr,
825 			    char *buf)
826 {
827 	struct mmc_card *card = mmc_dev_to_card(dev);
828 	struct mmc_host *host = card->host;
829 
830 	if (card->csd.dsr_imp && host->dsr_req)
831 		return sprintf(buf, "0x%x\n", host->dsr);
832 	else
833 		/* return default DSR value */
834 		return sprintf(buf, "0x%x\n", 0x404);
835 }
836 
837 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
838 
839 static struct attribute *mmc_std_attrs[] = {
840 	&dev_attr_cid.attr,
841 	&dev_attr_csd.attr,
842 	&dev_attr_date.attr,
843 	&dev_attr_erase_size.attr,
844 	&dev_attr_preferred_erase_size.attr,
845 	&dev_attr_fwrev.attr,
846 	&dev_attr_ffu_capable.attr,
847 	&dev_attr_hwrev.attr,
848 	&dev_attr_manfid.attr,
849 	&dev_attr_name.attr,
850 	&dev_attr_oemid.attr,
851 	&dev_attr_prv.attr,
852 	&dev_attr_rev.attr,
853 	&dev_attr_pre_eol_info.attr,
854 	&dev_attr_life_time.attr,
855 	&dev_attr_serial.attr,
856 	&dev_attr_enhanced_area_offset.attr,
857 	&dev_attr_enhanced_area_size.attr,
858 	&dev_attr_raw_rpmb_size_mult.attr,
859 	&dev_attr_enhanced_rpmb_supported.attr,
860 	&dev_attr_rel_sectors.attr,
861 	&dev_attr_ocr.attr,
862 	&dev_attr_rca.attr,
863 	&dev_attr_dsr.attr,
864 	&dev_attr_cmdq_en.attr,
865 	NULL,
866 };
867 ATTRIBUTE_GROUPS(mmc_std);
868 
869 static struct device_type mmc_type = {
870 	.groups = mmc_std_groups,
871 };
872 
873 /*
874  * Select the PowerClass for the current bus width
875  * If power class is defined for 4/8 bit bus in the
876  * extended CSD register, select it by executing the
877  * mmc_switch command.
878  */
879 static int __mmc_select_powerclass(struct mmc_card *card,
880 				   unsigned int bus_width)
881 {
882 	struct mmc_host *host = card->host;
883 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
884 	unsigned int pwrclass_val = 0;
885 	int err = 0;
886 
887 	switch (1 << host->ios.vdd) {
888 	case MMC_VDD_165_195:
889 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
890 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
891 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
892 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
893 				ext_csd->raw_pwr_cl_52_195 :
894 				ext_csd->raw_pwr_cl_ddr_52_195;
895 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
896 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
897 		break;
898 	case MMC_VDD_27_28:
899 	case MMC_VDD_28_29:
900 	case MMC_VDD_29_30:
901 	case MMC_VDD_30_31:
902 	case MMC_VDD_31_32:
903 	case MMC_VDD_32_33:
904 	case MMC_VDD_33_34:
905 	case MMC_VDD_34_35:
906 	case MMC_VDD_35_36:
907 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
908 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
909 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
910 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
911 				ext_csd->raw_pwr_cl_52_360 :
912 				ext_csd->raw_pwr_cl_ddr_52_360;
913 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
914 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
915 				ext_csd->raw_pwr_cl_ddr_200_360 :
916 				ext_csd->raw_pwr_cl_200_360;
917 		break;
918 	default:
919 		pr_warn("%s: Voltage range not supported for power class\n",
920 			mmc_hostname(host));
921 		return -EINVAL;
922 	}
923 
924 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
925 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
926 				EXT_CSD_PWR_CL_8BIT_SHIFT;
927 	else
928 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
929 				EXT_CSD_PWR_CL_4BIT_SHIFT;
930 
931 	/* If the power class is different from the default value */
932 	if (pwrclass_val > 0) {
933 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
934 				 EXT_CSD_POWER_CLASS,
935 				 pwrclass_val,
936 				 card->ext_csd.generic_cmd6_time);
937 	}
938 
939 	return err;
940 }
941 
942 static int mmc_select_powerclass(struct mmc_card *card)
943 {
944 	struct mmc_host *host = card->host;
945 	u32 bus_width, ext_csd_bits;
946 	int err, ddr;
947 
948 	/* Power class selection is supported for versions >= 4.0 */
949 	if (!mmc_can_ext_csd(card))
950 		return 0;
951 
952 	bus_width = host->ios.bus_width;
953 	/* Power class values are defined only for 4/8 bit bus */
954 	if (bus_width == MMC_BUS_WIDTH_1)
955 		return 0;
956 
957 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
958 	if (ddr)
959 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
960 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
961 	else
962 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
963 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
964 
965 	err = __mmc_select_powerclass(card, ext_csd_bits);
966 	if (err)
967 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
968 			mmc_hostname(host), 1 << bus_width, ddr);
969 
970 	return err;
971 }
972 
973 /*
974  * Set the bus speed for the selected speed mode.
975  */
976 static void mmc_set_bus_speed(struct mmc_card *card)
977 {
978 	unsigned int max_dtr = (unsigned int)-1;
979 
980 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
981 	     max_dtr > card->ext_csd.hs200_max_dtr)
982 		max_dtr = card->ext_csd.hs200_max_dtr;
983 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
984 		max_dtr = card->ext_csd.hs_max_dtr;
985 	else if (max_dtr > card->csd.max_dtr)
986 		max_dtr = card->csd.max_dtr;
987 
988 	mmc_set_clock(card->host, max_dtr);
989 }
990 
991 /*
992  * Select the bus width amoung 4-bit and 8-bit(SDR).
993  * If the bus width is changed successfully, return the selected width value.
994  * Zero is returned instead of error value if the wide width is not supported.
995  */
996 static int mmc_select_bus_width(struct mmc_card *card)
997 {
998 	static unsigned ext_csd_bits[] = {
999 		EXT_CSD_BUS_WIDTH_8,
1000 		EXT_CSD_BUS_WIDTH_4,
1001 	};
1002 	static unsigned bus_widths[] = {
1003 		MMC_BUS_WIDTH_8,
1004 		MMC_BUS_WIDTH_4,
1005 	};
1006 	struct mmc_host *host = card->host;
1007 	unsigned idx, bus_width = 0;
1008 	int err = 0;
1009 
1010 	if (!mmc_can_ext_csd(card) ||
1011 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1012 		return 0;
1013 
1014 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1015 
1016 	/*
1017 	 * Unlike SD, MMC cards dont have a configuration register to notify
1018 	 * supported bus width. So bus test command should be run to identify
1019 	 * the supported bus width or compare the ext csd values of current
1020 	 * bus width and ext csd values of 1 bit mode read earlier.
1021 	 */
1022 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1023 		/*
1024 		 * Host is capable of 8bit transfer, then switch
1025 		 * the device to work in 8bit transfer mode. If the
1026 		 * mmc switch command returns error then switch to
1027 		 * 4bit transfer mode. On success set the corresponding
1028 		 * bus width on the host.
1029 		 */
1030 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1031 				 EXT_CSD_BUS_WIDTH,
1032 				 ext_csd_bits[idx],
1033 				 card->ext_csd.generic_cmd6_time);
1034 		if (err)
1035 			continue;
1036 
1037 		bus_width = bus_widths[idx];
1038 		mmc_set_bus_width(host, bus_width);
1039 
1040 		/*
1041 		 * If controller can't handle bus width test,
1042 		 * compare ext_csd previously read in 1 bit mode
1043 		 * against ext_csd at new bus width
1044 		 */
1045 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1046 			err = mmc_compare_ext_csds(card, bus_width);
1047 		else
1048 			err = mmc_bus_test(card, bus_width);
1049 
1050 		if (!err) {
1051 			err = bus_width;
1052 			break;
1053 		} else {
1054 			pr_warn("%s: switch to bus width %d failed\n",
1055 				mmc_hostname(host), 1 << bus_width);
1056 		}
1057 	}
1058 
1059 	return err;
1060 }
1061 
1062 /*
1063  * Switch to the high-speed mode
1064  */
1065 static int mmc_select_hs(struct mmc_card *card)
1066 {
1067 	int err;
1068 
1069 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1070 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1071 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1072 			   true, true, MMC_CMD_RETRIES);
1073 	if (err)
1074 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1075 			mmc_hostname(card->host), err);
1076 
1077 	return err;
1078 }
1079 
1080 /*
1081  * Activate wide bus and DDR if supported.
1082  */
1083 static int mmc_select_hs_ddr(struct mmc_card *card)
1084 {
1085 	struct mmc_host *host = card->host;
1086 	u32 bus_width, ext_csd_bits;
1087 	int err = 0;
1088 
1089 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1090 		return 0;
1091 
1092 	bus_width = host->ios.bus_width;
1093 	if (bus_width == MMC_BUS_WIDTH_1)
1094 		return 0;
1095 
1096 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1097 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1098 
1099 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1100 			   EXT_CSD_BUS_WIDTH,
1101 			   ext_csd_bits,
1102 			   card->ext_csd.generic_cmd6_time,
1103 			   MMC_TIMING_MMC_DDR52,
1104 			   true, true, MMC_CMD_RETRIES);
1105 	if (err) {
1106 		pr_err("%s: switch to bus width %d ddr failed\n",
1107 			mmc_hostname(host), 1 << bus_width);
1108 		return err;
1109 	}
1110 
1111 	/*
1112 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1113 	 * signaling.
1114 	 *
1115 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1116 	 *
1117 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1118 	 * in the JEDEC spec for DDR.
1119 	 *
1120 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1121 	 * host controller can support this, like some of the SDHCI
1122 	 * controller which connect to an eMMC device. Some of these
1123 	 * host controller still needs to use 1.8v vccq for supporting
1124 	 * DDR mode.
1125 	 *
1126 	 * So the sequence will be:
1127 	 * if (host and device can both support 1.2v IO)
1128 	 *	use 1.2v IO;
1129 	 * else if (host and device can both support 1.8v IO)
1130 	 *	use 1.8v IO;
1131 	 * so if host and device can only support 3.3v IO, this is the
1132 	 * last choice.
1133 	 *
1134 	 * WARNING: eMMC rules are NOT the same as SD DDR
1135 	 */
1136 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1137 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1138 		if (!err)
1139 			return 0;
1140 	}
1141 
1142 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1143 	    host->caps & MMC_CAP_1_8V_DDR)
1144 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1145 
1146 	/* make sure vccq is 3.3v after switching disaster */
1147 	if (err)
1148 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1149 
1150 	return err;
1151 }
1152 
1153 static int mmc_select_hs400(struct mmc_card *card)
1154 {
1155 	struct mmc_host *host = card->host;
1156 	unsigned int max_dtr;
1157 	int err = 0;
1158 	u8 val;
1159 
1160 	/*
1161 	 * HS400 mode requires 8-bit bus width
1162 	 */
1163 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1164 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1165 		return 0;
1166 
1167 	/* Switch card to HS mode */
1168 	val = EXT_CSD_TIMING_HS;
1169 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 			   EXT_CSD_HS_TIMING, val,
1171 			   card->ext_csd.generic_cmd6_time, 0,
1172 			   false, true, MMC_CMD_RETRIES);
1173 	if (err) {
1174 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1175 			mmc_hostname(host), err);
1176 		return err;
1177 	}
1178 
1179 	/* Prepare host to downgrade to HS timing */
1180 	if (host->ops->hs400_downgrade)
1181 		host->ops->hs400_downgrade(host);
1182 
1183 	/* Set host controller to HS timing */
1184 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185 
1186 	/* Reduce frequency to HS frequency */
1187 	max_dtr = card->ext_csd.hs_max_dtr;
1188 	mmc_set_clock(host, max_dtr);
1189 
1190 	err = mmc_switch_status(card, true);
1191 	if (err)
1192 		goto out_err;
1193 
1194 	if (host->ops->hs400_prepare_ddr)
1195 		host->ops->hs400_prepare_ddr(host);
1196 
1197 	/* Switch card to DDR */
1198 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 			 EXT_CSD_BUS_WIDTH,
1200 			 EXT_CSD_DDR_BUS_WIDTH_8,
1201 			 card->ext_csd.generic_cmd6_time);
1202 	if (err) {
1203 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1204 			mmc_hostname(host), err);
1205 		return err;
1206 	}
1207 
1208 	/* Switch card to HS400 */
1209 	val = EXT_CSD_TIMING_HS400 |
1210 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1211 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1212 			   EXT_CSD_HS_TIMING, val,
1213 			   card->ext_csd.generic_cmd6_time, 0,
1214 			   false, true, MMC_CMD_RETRIES);
1215 	if (err) {
1216 		pr_err("%s: switch to hs400 failed, err:%d\n",
1217 			 mmc_hostname(host), err);
1218 		return err;
1219 	}
1220 
1221 	/* Set host controller to HS400 timing and frequency */
1222 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1223 	mmc_set_bus_speed(card);
1224 
1225 	if (host->ops->hs400_complete)
1226 		host->ops->hs400_complete(host);
1227 
1228 	err = mmc_switch_status(card, true);
1229 	if (err)
1230 		goto out_err;
1231 
1232 	return 0;
1233 
1234 out_err:
1235 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1236 	       __func__, err);
1237 	return err;
1238 }
1239 
1240 int mmc_hs200_to_hs400(struct mmc_card *card)
1241 {
1242 	return mmc_select_hs400(card);
1243 }
1244 
1245 int mmc_hs400_to_hs200(struct mmc_card *card)
1246 {
1247 	struct mmc_host *host = card->host;
1248 	unsigned int max_dtr;
1249 	int err;
1250 	u8 val;
1251 
1252 	/* Reduce frequency to HS */
1253 	max_dtr = card->ext_csd.hs_max_dtr;
1254 	mmc_set_clock(host, max_dtr);
1255 
1256 	/* Switch HS400 to HS DDR */
1257 	val = EXT_CSD_TIMING_HS;
1258 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1259 			   val, card->ext_csd.generic_cmd6_time, 0,
1260 			   false, true, MMC_CMD_RETRIES);
1261 	if (err)
1262 		goto out_err;
1263 
1264 	if (host->ops->hs400_downgrade)
1265 		host->ops->hs400_downgrade(host);
1266 
1267 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1268 
1269 	err = mmc_switch_status(card, true);
1270 	if (err)
1271 		goto out_err;
1272 
1273 	/* Switch HS DDR to HS */
1274 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1275 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1276 			   0, false, true, MMC_CMD_RETRIES);
1277 	if (err)
1278 		goto out_err;
1279 
1280 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1281 
1282 	err = mmc_switch_status(card, true);
1283 	if (err)
1284 		goto out_err;
1285 
1286 	/* Switch HS to HS200 */
1287 	val = EXT_CSD_TIMING_HS200 |
1288 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1289 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1290 			   val, card->ext_csd.generic_cmd6_time, 0,
1291 			   false, true, MMC_CMD_RETRIES);
1292 	if (err)
1293 		goto out_err;
1294 
1295 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1296 
1297 	/*
1298 	 * For HS200, CRC errors are not a reliable way to know the switch
1299 	 * failed. If there really is a problem, we would expect tuning will
1300 	 * fail and the result ends up the same.
1301 	 */
1302 	err = mmc_switch_status(card, false);
1303 	if (err)
1304 		goto out_err;
1305 
1306 	mmc_set_bus_speed(card);
1307 
1308 	/* Prepare tuning for HS400 mode. */
1309 	if (host->ops->prepare_hs400_tuning)
1310 		host->ops->prepare_hs400_tuning(host, &host->ios);
1311 
1312 	return 0;
1313 
1314 out_err:
1315 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1316 	       __func__, err);
1317 	return err;
1318 }
1319 
1320 static void mmc_select_driver_type(struct mmc_card *card)
1321 {
1322 	int card_drv_type, drive_strength, drv_type = 0;
1323 	int fixed_drv_type = card->host->fixed_drv_type;
1324 
1325 	card_drv_type = card->ext_csd.raw_driver_strength |
1326 			mmc_driver_type_mask(0);
1327 
1328 	if (fixed_drv_type >= 0)
1329 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1330 				 ? fixed_drv_type : 0;
1331 	else
1332 		drive_strength = mmc_select_drive_strength(card,
1333 							   card->ext_csd.hs200_max_dtr,
1334 							   card_drv_type, &drv_type);
1335 
1336 	card->drive_strength = drive_strength;
1337 
1338 	if (drv_type)
1339 		mmc_set_driver_type(card->host, drv_type);
1340 }
1341 
1342 static int mmc_select_hs400es(struct mmc_card *card)
1343 {
1344 	struct mmc_host *host = card->host;
1345 	int err = -EINVAL;
1346 	u8 val;
1347 
1348 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1349 		err = -ENOTSUPP;
1350 		goto out_err;
1351 	}
1352 
1353 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1354 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1355 
1356 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1357 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1358 
1359 	/* If fails try again during next card power cycle */
1360 	if (err)
1361 		goto out_err;
1362 
1363 	err = mmc_select_bus_width(card);
1364 	if (err != MMC_BUS_WIDTH_8) {
1365 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1366 			mmc_hostname(host), err);
1367 		err = err < 0 ? err : -ENOTSUPP;
1368 		goto out_err;
1369 	}
1370 
1371 	/* Switch card to HS mode */
1372 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1373 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1374 			   card->ext_csd.generic_cmd6_time, 0,
1375 			   false, true, MMC_CMD_RETRIES);
1376 	if (err) {
1377 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1378 			mmc_hostname(host), err);
1379 		goto out_err;
1380 	}
1381 
1382 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1383 	err = mmc_switch_status(card, true);
1384 	if (err)
1385 		goto out_err;
1386 
1387 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1388 
1389 	/* Switch card to DDR with strobe bit */
1390 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1391 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1392 			 EXT_CSD_BUS_WIDTH,
1393 			 val,
1394 			 card->ext_csd.generic_cmd6_time);
1395 	if (err) {
1396 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1397 			mmc_hostname(host), err);
1398 		goto out_err;
1399 	}
1400 
1401 	mmc_select_driver_type(card);
1402 
1403 	/* Switch card to HS400 */
1404 	val = EXT_CSD_TIMING_HS400 |
1405 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1406 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1407 			   EXT_CSD_HS_TIMING, val,
1408 			   card->ext_csd.generic_cmd6_time, 0,
1409 			   false, true, MMC_CMD_RETRIES);
1410 	if (err) {
1411 		pr_err("%s: switch to hs400es failed, err:%d\n",
1412 			mmc_hostname(host), err);
1413 		goto out_err;
1414 	}
1415 
1416 	/* Set host controller to HS400 timing and frequency */
1417 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1418 
1419 	/* Controller enable enhanced strobe function */
1420 	host->ios.enhanced_strobe = true;
1421 	if (host->ops->hs400_enhanced_strobe)
1422 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1423 
1424 	err = mmc_switch_status(card, true);
1425 	if (err)
1426 		goto out_err;
1427 
1428 	return 0;
1429 
1430 out_err:
1431 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1432 	       __func__, err);
1433 	return err;
1434 }
1435 
1436 /*
1437  * For device supporting HS200 mode, the following sequence
1438  * should be done before executing the tuning process.
1439  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1440  * 2. switch to HS200 mode
1441  * 3. set the clock to > 52Mhz and <=200MHz
1442  */
1443 static int mmc_select_hs200(struct mmc_card *card)
1444 {
1445 	struct mmc_host *host = card->host;
1446 	unsigned int old_timing, old_signal_voltage;
1447 	int err = -EINVAL;
1448 	u8 val;
1449 
1450 	old_signal_voltage = host->ios.signal_voltage;
1451 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1452 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1453 
1454 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1455 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1456 
1457 	/* If fails try again during next card power cycle */
1458 	if (err)
1459 		return err;
1460 
1461 	mmc_select_driver_type(card);
1462 
1463 	/*
1464 	 * Set the bus width(4 or 8) with host's support and
1465 	 * switch to HS200 mode if bus width is set successfully.
1466 	 */
1467 	err = mmc_select_bus_width(card);
1468 	if (err > 0) {
1469 		val = EXT_CSD_TIMING_HS200 |
1470 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1471 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1472 				   EXT_CSD_HS_TIMING, val,
1473 				   card->ext_csd.generic_cmd6_time, 0,
1474 				   false, true, MMC_CMD_RETRIES);
1475 		if (err)
1476 			goto err;
1477 		old_timing = host->ios.timing;
1478 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1479 
1480 		/*
1481 		 * For HS200, CRC errors are not a reliable way to know the
1482 		 * switch failed. If there really is a problem, we would expect
1483 		 * tuning will fail and the result ends up the same.
1484 		 */
1485 		err = mmc_switch_status(card, false);
1486 
1487 		/*
1488 		 * mmc_select_timing() assumes timing has not changed if
1489 		 * it is a switch error.
1490 		 */
1491 		if (err == -EBADMSG)
1492 			mmc_set_timing(host, old_timing);
1493 	}
1494 err:
1495 	if (err) {
1496 		/* fall back to the old signal voltage, if fails report error */
1497 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1498 			err = -EIO;
1499 
1500 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1501 		       __func__, err);
1502 	}
1503 	return err;
1504 }
1505 
1506 /*
1507  * Activate High Speed, HS200 or HS400ES mode if supported.
1508  */
1509 static int mmc_select_timing(struct mmc_card *card)
1510 {
1511 	int err = 0;
1512 
1513 	if (!mmc_can_ext_csd(card))
1514 		goto bus_speed;
1515 
1516 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1517 		err = mmc_select_hs400es(card);
1518 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1519 		err = mmc_select_hs200(card);
1520 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1521 		err = mmc_select_hs(card);
1522 
1523 	if (err && err != -EBADMSG)
1524 		return err;
1525 
1526 bus_speed:
1527 	/*
1528 	 * Set the bus speed to the selected bus timing.
1529 	 * If timing is not selected, backward compatible is the default.
1530 	 */
1531 	mmc_set_bus_speed(card);
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Execute tuning sequence to seek the proper bus operating
1537  * conditions for HS200 and HS400, which sends CMD21 to the device.
1538  */
1539 static int mmc_hs200_tuning(struct mmc_card *card)
1540 {
1541 	struct mmc_host *host = card->host;
1542 
1543 	/*
1544 	 * Timing should be adjusted to the HS400 target
1545 	 * operation frequency for tuning process
1546 	 */
1547 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1548 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1549 		if (host->ops->prepare_hs400_tuning)
1550 			host->ops->prepare_hs400_tuning(host, &host->ios);
1551 
1552 	return mmc_execute_tuning(card);
1553 }
1554 
1555 /*
1556  * Handle the detection and initialisation of a card.
1557  *
1558  * In the case of a resume, "oldcard" will contain the card
1559  * we're trying to reinitialise.
1560  */
1561 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1562 	struct mmc_card *oldcard)
1563 {
1564 	struct mmc_card *card;
1565 	int err;
1566 	u32 cid[4];
1567 	u32 rocr;
1568 
1569 	WARN_ON(!host->claimed);
1570 
1571 	/* Set correct bus mode for MMC before attempting init */
1572 	if (!mmc_host_is_spi(host))
1573 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1574 
1575 	/*
1576 	 * Since we're changing the OCR value, we seem to
1577 	 * need to tell some cards to go back to the idle
1578 	 * state.  We wait 1ms to give cards time to
1579 	 * respond.
1580 	 * mmc_go_idle is needed for eMMC that are asleep
1581 	 */
1582 	mmc_go_idle(host);
1583 
1584 	/* The extra bit indicates that we support high capacity */
1585 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1586 	if (err)
1587 		goto err;
1588 
1589 	/*
1590 	 * For SPI, enable CRC as appropriate.
1591 	 */
1592 	if (mmc_host_is_spi(host)) {
1593 		err = mmc_spi_set_crc(host, use_spi_crc);
1594 		if (err)
1595 			goto err;
1596 	}
1597 
1598 	/*
1599 	 * Fetch CID from card.
1600 	 */
1601 	err = mmc_send_cid(host, cid);
1602 	if (err)
1603 		goto err;
1604 
1605 	if (oldcard) {
1606 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1607 			pr_debug("%s: Perhaps the card was replaced\n",
1608 				mmc_hostname(host));
1609 			err = -ENOENT;
1610 			goto err;
1611 		}
1612 
1613 		card = oldcard;
1614 	} else {
1615 		/*
1616 		 * Allocate card structure.
1617 		 */
1618 		card = mmc_alloc_card(host, &mmc_type);
1619 		if (IS_ERR(card)) {
1620 			err = PTR_ERR(card);
1621 			goto err;
1622 		}
1623 
1624 		card->ocr = ocr;
1625 		card->type = MMC_TYPE_MMC;
1626 		card->rca = 1;
1627 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1628 	}
1629 
1630 	/*
1631 	 * Call the optional HC's init_card function to handle quirks.
1632 	 */
1633 	if (host->ops->init_card)
1634 		host->ops->init_card(host, card);
1635 
1636 	/*
1637 	 * For native busses:  set card RCA and quit open drain mode.
1638 	 */
1639 	if (!mmc_host_is_spi(host)) {
1640 		err = mmc_set_relative_addr(card);
1641 		if (err)
1642 			goto free_card;
1643 
1644 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1645 	}
1646 
1647 	if (!oldcard) {
1648 		/*
1649 		 * Fetch CSD from card.
1650 		 */
1651 		err = mmc_send_csd(card, card->raw_csd);
1652 		if (err)
1653 			goto free_card;
1654 
1655 		err = mmc_decode_csd(card);
1656 		if (err)
1657 			goto free_card;
1658 		err = mmc_decode_cid(card);
1659 		if (err)
1660 			goto free_card;
1661 	}
1662 
1663 	/*
1664 	 * handling only for cards supporting DSR and hosts requesting
1665 	 * DSR configuration
1666 	 */
1667 	if (card->csd.dsr_imp && host->dsr_req)
1668 		mmc_set_dsr(host);
1669 
1670 	/*
1671 	 * Select card, as all following commands rely on that.
1672 	 */
1673 	if (!mmc_host_is_spi(host)) {
1674 		err = mmc_select_card(card);
1675 		if (err)
1676 			goto free_card;
1677 	}
1678 
1679 	if (!oldcard) {
1680 		/* Read extended CSD. */
1681 		err = mmc_read_ext_csd(card);
1682 		if (err)
1683 			goto free_card;
1684 
1685 		/*
1686 		 * If doing byte addressing, check if required to do sector
1687 		 * addressing.  Handle the case of <2GB cards needing sector
1688 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1689 		 * ocr register has bit 30 set for sector addressing.
1690 		 */
1691 		if (rocr & BIT(30))
1692 			mmc_card_set_blockaddr(card);
1693 
1694 		/* Erase size depends on CSD and Extended CSD */
1695 		mmc_set_erase_size(card);
1696 	}
1697 
1698 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1699 	if (card->ext_csd.rev >= 3) {
1700 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1701 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1702 				 card->ext_csd.generic_cmd6_time);
1703 
1704 		if (err && err != -EBADMSG)
1705 			goto free_card;
1706 
1707 		if (err) {
1708 			/*
1709 			 * Just disable enhanced area off & sz
1710 			 * will try to enable ERASE_GROUP_DEF
1711 			 * during next time reinit
1712 			 */
1713 			card->ext_csd.enhanced_area_offset = -EINVAL;
1714 			card->ext_csd.enhanced_area_size = -EINVAL;
1715 		} else {
1716 			card->ext_csd.erase_group_def = 1;
1717 			/*
1718 			 * enable ERASE_GRP_DEF successfully.
1719 			 * This will affect the erase size, so
1720 			 * here need to reset erase size
1721 			 */
1722 			mmc_set_erase_size(card);
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * Ensure eMMC user default partition is enabled
1728 	 */
1729 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1730 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1731 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1732 				 card->ext_csd.part_config,
1733 				 card->ext_csd.part_time);
1734 		if (err && err != -EBADMSG)
1735 			goto free_card;
1736 	}
1737 
1738 	/*
1739 	 * Enable power_off_notification byte in the ext_csd register
1740 	 */
1741 	if (card->ext_csd.rev >= 6) {
1742 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1743 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1744 				 EXT_CSD_POWER_ON,
1745 				 card->ext_csd.generic_cmd6_time);
1746 		if (err && err != -EBADMSG)
1747 			goto free_card;
1748 
1749 		/*
1750 		 * The err can be -EBADMSG or 0,
1751 		 * so check for success and update the flag
1752 		 */
1753 		if (!err)
1754 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1755 	}
1756 
1757 	/* set erase_arg */
1758 	if (mmc_can_discard(card))
1759 		card->erase_arg = MMC_DISCARD_ARG;
1760 	else if (mmc_can_trim(card))
1761 		card->erase_arg = MMC_TRIM_ARG;
1762 	else
1763 		card->erase_arg = MMC_ERASE_ARG;
1764 
1765 	/*
1766 	 * Select timing interface
1767 	 */
1768 	err = mmc_select_timing(card);
1769 	if (err)
1770 		goto free_card;
1771 
1772 	if (mmc_card_hs200(card)) {
1773 		host->doing_init_tune = 1;
1774 
1775 		err = mmc_hs200_tuning(card);
1776 		if (!err)
1777 			err = mmc_select_hs400(card);
1778 
1779 		host->doing_init_tune = 0;
1780 
1781 		if (err)
1782 			goto free_card;
1783 
1784 	} else if (!mmc_card_hs400es(card)) {
1785 		/* Select the desired bus width optionally */
1786 		err = mmc_select_bus_width(card);
1787 		if (err > 0 && mmc_card_hs(card)) {
1788 			err = mmc_select_hs_ddr(card);
1789 			if (err)
1790 				goto free_card;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * Choose the power class with selected bus interface
1796 	 */
1797 	mmc_select_powerclass(card);
1798 
1799 	/*
1800 	 * Enable HPI feature (if supported)
1801 	 */
1802 	if (card->ext_csd.hpi) {
1803 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1804 				EXT_CSD_HPI_MGMT, 1,
1805 				card->ext_csd.generic_cmd6_time);
1806 		if (err && err != -EBADMSG)
1807 			goto free_card;
1808 		if (err) {
1809 			pr_warn("%s: Enabling HPI failed\n",
1810 				mmc_hostname(card->host));
1811 			card->ext_csd.hpi_en = 0;
1812 		} else {
1813 			card->ext_csd.hpi_en = 1;
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * If cache size is higher than 0, this indicates the existence of cache
1819 	 * and it can be turned on. Note that some eMMCs from Micron has been
1820 	 * reported to need ~800 ms timeout, while enabling the cache after
1821 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1822 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1823 	 */
1824 	if (card->ext_csd.cache_size > 0) {
1825 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1826 
1827 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1828 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1829 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1830 		if (err && err != -EBADMSG)
1831 			goto free_card;
1832 
1833 		/*
1834 		 * Only if no error, cache is turned on successfully.
1835 		 */
1836 		if (err) {
1837 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1838 				mmc_hostname(card->host), err);
1839 			card->ext_csd.cache_ctrl = 0;
1840 		} else {
1841 			card->ext_csd.cache_ctrl = 1;
1842 		}
1843 	}
1844 
1845 	/*
1846 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1847 	 * be used with Command Queue.
1848 	 */
1849 	card->ext_csd.cmdq_en = false;
1850 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1851 		err = mmc_cmdq_enable(card);
1852 		if (err && err != -EBADMSG)
1853 			goto free_card;
1854 		if (err) {
1855 			pr_warn("%s: Enabling CMDQ failed\n",
1856 				mmc_hostname(card->host));
1857 			card->ext_csd.cmdq_support = false;
1858 			card->ext_csd.cmdq_depth = 0;
1859 		}
1860 	}
1861 	/*
1862 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1863 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1864 	 * Command Queue.
1865 	 */
1866 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1867 
1868 	if (host->cqe_ops && !host->cqe_enabled) {
1869 		err = host->cqe_ops->cqe_enable(host, card);
1870 		if (!err) {
1871 			host->cqe_enabled = true;
1872 
1873 			if (card->ext_csd.cmdq_en) {
1874 				pr_info("%s: Command Queue Engine enabled\n",
1875 					mmc_hostname(host));
1876 			} else {
1877 				host->hsq_enabled = true;
1878 				pr_info("%s: Host Software Queue enabled\n",
1879 					mmc_hostname(host));
1880 			}
1881 		}
1882 	}
1883 
1884 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1885 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1886 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1887 			mmc_hostname(host));
1888 		err = -EINVAL;
1889 		goto free_card;
1890 	}
1891 
1892 	if (!oldcard)
1893 		host->card = card;
1894 
1895 	return 0;
1896 
1897 free_card:
1898 	if (!oldcard)
1899 		mmc_remove_card(card);
1900 err:
1901 	return err;
1902 }
1903 
1904 static int mmc_can_sleep(struct mmc_card *card)
1905 {
1906 	return card->ext_csd.rev >= 3;
1907 }
1908 
1909 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1910 {
1911 	struct mmc_host *host = cb_data;
1912 
1913 	*busy = host->ops->card_busy(host);
1914 	return 0;
1915 }
1916 
1917 static int mmc_sleep(struct mmc_host *host)
1918 {
1919 	struct mmc_command cmd = {};
1920 	struct mmc_card *card = host->card;
1921 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1922 	bool use_r1b_resp;
1923 	int err;
1924 
1925 	/* Re-tuning can't be done once the card is deselected */
1926 	mmc_retune_hold(host);
1927 
1928 	err = mmc_deselect_cards(host);
1929 	if (err)
1930 		goto out_release;
1931 
1932 	cmd.opcode = MMC_SLEEP_AWAKE;
1933 	cmd.arg = card->rca << 16;
1934 	cmd.arg |= 1 << 15;
1935 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1936 
1937 	err = mmc_wait_for_cmd(host, &cmd, 0);
1938 	if (err)
1939 		goto out_release;
1940 
1941 	/*
1942 	 * If the host does not wait while the card signals busy, then we can
1943 	 * try to poll, but only if the host supports HW polling, as the
1944 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1945 	 * to wait the sleep/awake timeout.
1946 	 */
1947 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1948 		goto out_release;
1949 
1950 	if (!host->ops->card_busy) {
1951 		mmc_delay(timeout_ms);
1952 		goto out_release;
1953 	}
1954 
1955 	err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host);
1956 
1957 out_release:
1958 	mmc_retune_release(host);
1959 	return err;
1960 }
1961 
1962 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1963 {
1964 	return card &&
1965 		mmc_card_mmc(card) &&
1966 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1967 }
1968 
1969 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1970 {
1971 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1972 	int err;
1973 
1974 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1975 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1976 		timeout = card->ext_csd.power_off_longtime;
1977 
1978 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1979 			EXT_CSD_POWER_OFF_NOTIFICATION,
1980 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1981 	if (err)
1982 		pr_err("%s: Power Off Notification timed out, %u\n",
1983 		       mmc_hostname(card->host), timeout);
1984 
1985 	/* Disable the power off notification after the switch operation. */
1986 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1987 
1988 	return err;
1989 }
1990 
1991 /*
1992  * Host is being removed. Free up the current card.
1993  */
1994 static void mmc_remove(struct mmc_host *host)
1995 {
1996 	mmc_remove_card(host->card);
1997 	host->card = NULL;
1998 }
1999 
2000 /*
2001  * Card detection - card is alive.
2002  */
2003 static int mmc_alive(struct mmc_host *host)
2004 {
2005 	return mmc_send_status(host->card, NULL);
2006 }
2007 
2008 /*
2009  * Card detection callback from host.
2010  */
2011 static void mmc_detect(struct mmc_host *host)
2012 {
2013 	int err;
2014 
2015 	mmc_get_card(host->card, NULL);
2016 
2017 	/*
2018 	 * Just check if our card has been removed.
2019 	 */
2020 	err = _mmc_detect_card_removed(host);
2021 
2022 	mmc_put_card(host->card, NULL);
2023 
2024 	if (err) {
2025 		mmc_remove(host);
2026 
2027 		mmc_claim_host(host);
2028 		mmc_detach_bus(host);
2029 		mmc_power_off(host);
2030 		mmc_release_host(host);
2031 	}
2032 }
2033 
2034 static bool _mmc_cache_enabled(struct mmc_host *host)
2035 {
2036 	return host->card->ext_csd.cache_size > 0 &&
2037 	       host->card->ext_csd.cache_ctrl & 1;
2038 }
2039 
2040 /*
2041  * Flush the internal cache of the eMMC to non-volatile storage.
2042  */
2043 static int _mmc_flush_cache(struct mmc_host *host)
2044 {
2045 	int err = 0;
2046 
2047 	if (_mmc_cache_enabled(host)) {
2048 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2049 				 EXT_CSD_FLUSH_CACHE, 1,
2050 				 CACHE_FLUSH_TIMEOUT_MS);
2051 		if (err)
2052 			pr_err("%s: cache flush error %d\n",
2053 			       mmc_hostname(host), err);
2054 	}
2055 
2056 	return err;
2057 }
2058 
2059 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2060 {
2061 	int err = 0;
2062 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2063 					EXT_CSD_POWER_OFF_LONG;
2064 
2065 	mmc_claim_host(host);
2066 
2067 	if (mmc_card_suspended(host->card))
2068 		goto out;
2069 
2070 	err = _mmc_flush_cache(host);
2071 	if (err)
2072 		goto out;
2073 
2074 	if (mmc_can_poweroff_notify(host->card) &&
2075 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2076 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2077 		err = mmc_poweroff_notify(host->card, notify_type);
2078 	else if (mmc_can_sleep(host->card))
2079 		err = mmc_sleep(host);
2080 	else if (!mmc_host_is_spi(host))
2081 		err = mmc_deselect_cards(host);
2082 
2083 	if (!err) {
2084 		mmc_power_off(host);
2085 		mmc_card_set_suspended(host->card);
2086 	}
2087 out:
2088 	mmc_release_host(host);
2089 	return err;
2090 }
2091 
2092 /*
2093  * Suspend callback
2094  */
2095 static int mmc_suspend(struct mmc_host *host)
2096 {
2097 	int err;
2098 
2099 	err = _mmc_suspend(host, true);
2100 	if (!err) {
2101 		pm_runtime_disable(&host->card->dev);
2102 		pm_runtime_set_suspended(&host->card->dev);
2103 	}
2104 
2105 	return err;
2106 }
2107 
2108 /*
2109  * This function tries to determine if the same card is still present
2110  * and, if so, restore all state to it.
2111  */
2112 static int _mmc_resume(struct mmc_host *host)
2113 {
2114 	int err = 0;
2115 
2116 	mmc_claim_host(host);
2117 
2118 	if (!mmc_card_suspended(host->card))
2119 		goto out;
2120 
2121 	mmc_power_up(host, host->card->ocr);
2122 	err = mmc_init_card(host, host->card->ocr, host->card);
2123 	mmc_card_clr_suspended(host->card);
2124 
2125 out:
2126 	mmc_release_host(host);
2127 	return err;
2128 }
2129 
2130 /*
2131  * Shutdown callback
2132  */
2133 static int mmc_shutdown(struct mmc_host *host)
2134 {
2135 	int err = 0;
2136 
2137 	/*
2138 	 * In a specific case for poweroff notify, we need to resume the card
2139 	 * before we can shutdown it properly.
2140 	 */
2141 	if (mmc_can_poweroff_notify(host->card) &&
2142 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2143 		err = _mmc_resume(host);
2144 
2145 	if (!err)
2146 		err = _mmc_suspend(host, false);
2147 
2148 	return err;
2149 }
2150 
2151 /*
2152  * Callback for resume.
2153  */
2154 static int mmc_resume(struct mmc_host *host)
2155 {
2156 	pm_runtime_enable(&host->card->dev);
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Callback for runtime_suspend.
2162  */
2163 static int mmc_runtime_suspend(struct mmc_host *host)
2164 {
2165 	int err;
2166 
2167 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2168 		return 0;
2169 
2170 	err = _mmc_suspend(host, true);
2171 	if (err)
2172 		pr_err("%s: error %d doing aggressive suspend\n",
2173 			mmc_hostname(host), err);
2174 
2175 	return err;
2176 }
2177 
2178 /*
2179  * Callback for runtime_resume.
2180  */
2181 static int mmc_runtime_resume(struct mmc_host *host)
2182 {
2183 	int err;
2184 
2185 	err = _mmc_resume(host);
2186 	if (err && err != -ENOMEDIUM)
2187 		pr_err("%s: error %d doing runtime resume\n",
2188 			mmc_hostname(host), err);
2189 
2190 	return 0;
2191 }
2192 
2193 static int mmc_can_reset(struct mmc_card *card)
2194 {
2195 	u8 rst_n_function;
2196 
2197 	rst_n_function = card->ext_csd.rst_n_function;
2198 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2199 		return 0;
2200 	return 1;
2201 }
2202 
2203 static int _mmc_hw_reset(struct mmc_host *host)
2204 {
2205 	struct mmc_card *card = host->card;
2206 
2207 	/*
2208 	 * In the case of recovery, we can't expect flushing the cache to work
2209 	 * always, but we have a go and ignore errors.
2210 	 */
2211 	_mmc_flush_cache(host);
2212 
2213 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2214 	     mmc_can_reset(card)) {
2215 		/* If the card accept RST_n signal, send it. */
2216 		mmc_set_clock(host, host->f_init);
2217 		host->ops->hw_reset(host);
2218 		/* Set initial state and call mmc_set_ios */
2219 		mmc_set_initial_state(host);
2220 	} else {
2221 		/* Do a brute force power cycle */
2222 		mmc_power_cycle(host, card->ocr);
2223 		mmc_pwrseq_reset(host);
2224 	}
2225 	return mmc_init_card(host, card->ocr, card);
2226 }
2227 
2228 static const struct mmc_bus_ops mmc_ops = {
2229 	.remove = mmc_remove,
2230 	.detect = mmc_detect,
2231 	.suspend = mmc_suspend,
2232 	.resume = mmc_resume,
2233 	.runtime_suspend = mmc_runtime_suspend,
2234 	.runtime_resume = mmc_runtime_resume,
2235 	.alive = mmc_alive,
2236 	.shutdown = mmc_shutdown,
2237 	.hw_reset = _mmc_hw_reset,
2238 	.cache_enabled = _mmc_cache_enabled,
2239 	.flush_cache = _mmc_flush_cache,
2240 };
2241 
2242 /*
2243  * Starting point for MMC card init.
2244  */
2245 int mmc_attach_mmc(struct mmc_host *host)
2246 {
2247 	int err;
2248 	u32 ocr, rocr;
2249 
2250 	WARN_ON(!host->claimed);
2251 
2252 	/* Set correct bus mode for MMC before attempting attach */
2253 	if (!mmc_host_is_spi(host))
2254 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2255 
2256 	err = mmc_send_op_cond(host, 0, &ocr);
2257 	if (err)
2258 		return err;
2259 
2260 	mmc_attach_bus(host, &mmc_ops);
2261 	if (host->ocr_avail_mmc)
2262 		host->ocr_avail = host->ocr_avail_mmc;
2263 
2264 	/*
2265 	 * We need to get OCR a different way for SPI.
2266 	 */
2267 	if (mmc_host_is_spi(host)) {
2268 		err = mmc_spi_read_ocr(host, 1, &ocr);
2269 		if (err)
2270 			goto err;
2271 	}
2272 
2273 	rocr = mmc_select_voltage(host, ocr);
2274 
2275 	/*
2276 	 * Can we support the voltage of the card?
2277 	 */
2278 	if (!rocr) {
2279 		err = -EINVAL;
2280 		goto err;
2281 	}
2282 
2283 	/*
2284 	 * Detect and init the card.
2285 	 */
2286 	err = mmc_init_card(host, rocr, NULL);
2287 	if (err)
2288 		goto err;
2289 
2290 	mmc_release_host(host);
2291 	err = mmc_add_card(host->card);
2292 	if (err)
2293 		goto remove_card;
2294 
2295 	mmc_claim_host(host);
2296 	return 0;
2297 
2298 remove_card:
2299 	mmc_remove_card(host->card);
2300 	mmc_claim_host(host);
2301 	host->card = NULL;
2302 err:
2303 	mmc_detach_bus(host);
2304 
2305 	pr_err("%s: error %d whilst initialising MMC card\n",
2306 		mmc_hostname(host), err);
2307 
2308 	return err;
2309 }
2310