xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 
32 static const unsigned int tran_exp[] = {
33 	10000,		100000,		1000000,	10000000,
34 	0,		0,		0,		0
35 };
36 
37 static const unsigned char tran_mant[] = {
38 	0,	10,	12,	13,	15,	20,	25,	30,
39 	35,	40,	45,	50,	55,	60,	70,	80,
40 };
41 
42 static const unsigned int taac_exp[] = {
43 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
44 };
45 
46 static const unsigned int taac_mant[] = {
47 	0,	10,	12,	13,	15,	20,	25,	30,
48 	35,	40,	45,	50,	55,	60,	70,	80,
49 };
50 
51 #define UNSTUFF_BITS(resp,start,size)					\
52 	({								\
53 		const int __size = size;				\
54 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
55 		const int __off = 3 - ((start) / 32);			\
56 		const int __shft = (start) & 31;			\
57 		u32 __res;						\
58 									\
59 		__res = resp[__off] >> __shft;				\
60 		if (__size + __shft > 32)				\
61 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
62 		__res & __mask;						\
63 	})
64 
65 /*
66  * Given the decoded CSD structure, decode the raw CID to our CID structure.
67  */
68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 	u32 *resp = card->raw_cid;
71 
72 	/*
73 	 * The selection of the format here is based upon published
74 	 * specs from sandisk and from what people have reported.
75 	 */
76 	switch (card->csd.mmca_vsn) {
77 	case 0: /* MMC v1.0 - v1.2 */
78 	case 1: /* MMC v1.4 */
79 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
80 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
81 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
82 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
83 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
84 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
85 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
86 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
87 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
88 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
89 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
90 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
91 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
92 		break;
93 
94 	case 2: /* MMC v2.0 - v2.2 */
95 	case 3: /* MMC v3.1 - v3.3 */
96 	case 4: /* MMC v4 */
97 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
98 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
99 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
100 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
101 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
102 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
103 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
104 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
105 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
106 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
107 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
108 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
109 		break;
110 
111 	default:
112 		pr_err("%s: card has unknown MMCA version %d\n",
113 			mmc_hostname(card->host), card->csd.mmca_vsn);
114 		return -EINVAL;
115 	}
116 
117 	return 0;
118 }
119 
120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 	if (card->ext_csd.erase_group_def & 1)
123 		card->erase_size = card->ext_csd.hc_erase_size;
124 	else
125 		card->erase_size = card->csd.erase_size;
126 
127 	mmc_init_erase(card);
128 }
129 
130 /*
131  * Given a 128-bit response, decode to our card CSD structure.
132  */
133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 	struct mmc_csd *csd = &card->csd;
136 	unsigned int e, m, a, b;
137 	u32 *resp = card->raw_csd;
138 
139 	/*
140 	 * We only understand CSD structure v1.1 and v1.2.
141 	 * v1.2 has extra information in bits 15, 11 and 10.
142 	 * We also support eMMC v4.4 & v4.41.
143 	 */
144 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 	if (csd->structure == 0) {
146 		pr_err("%s: unrecognised CSD structure version %d\n",
147 			mmc_hostname(card->host), csd->structure);
148 		return -EINVAL;
149 	}
150 
151 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
152 	m = UNSTUFF_BITS(resp, 115, 4);
153 	e = UNSTUFF_BITS(resp, 112, 3);
154 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
156 
157 	m = UNSTUFF_BITS(resp, 99, 4);
158 	e = UNSTUFF_BITS(resp, 96, 3);
159 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
160 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
161 
162 	e = UNSTUFF_BITS(resp, 47, 3);
163 	m = UNSTUFF_BITS(resp, 62, 12);
164 	csd->capacity	  = (1 + m) << (e + 2);
165 
166 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174 
175 	if (csd->write_blkbits >= 9) {
176 		a = UNSTUFF_BITS(resp, 42, 5);
177 		b = UNSTUFF_BITS(resp, 37, 5);
178 		csd->erase_size = (a + 1) * (b + 1);
179 		csd->erase_size <<= csd->write_blkbits - 9;
180 	}
181 
182 	return 0;
183 }
184 
185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 	struct mmc_host *host = card->host;
188 	u8 card_type = card->ext_csd.raw_card_type;
189 	u32 caps = host->caps, caps2 = host->caps2;
190 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 	unsigned int avail_type = 0;
192 
193 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 	}
198 
199 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 	}
204 
205 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 	}
210 
211 	if (caps & MMC_CAP_1_2V_DDR &&
212 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 	}
216 
217 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 		hs200_max_dtr = MMC_HS200_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 	}
222 
223 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 		hs200_max_dtr = MMC_HS200_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 	}
228 
229 	if (caps2 & MMC_CAP2_HS400_1_8V &&
230 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 		hs200_max_dtr = MMC_HS200_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS400_1_2V &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 	}
240 
241 	if ((caps2 & MMC_CAP2_HS400_ES) &&
242 	    card->ext_csd.strobe_support &&
243 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245 
246 	card->ext_csd.hs_max_dtr = hs_max_dtr;
247 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 	card->mmc_avail_type = avail_type;
249 }
250 
251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
254 
255 	/*
256 	 * Disable these attributes by default
257 	 */
258 	card->ext_csd.enhanced_area_offset = -EINVAL;
259 	card->ext_csd.enhanced_area_size = -EINVAL;
260 
261 	/*
262 	 * Enhanced area feature support -- check whether the eMMC
263 	 * card has the Enhanced area enabled.  If so, export enhanced
264 	 * area offset and size to user by adding sysfs interface.
265 	 */
266 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 		if (card->ext_csd.partition_setting_completed) {
269 			hc_erase_grp_sz =
270 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 			hc_wp_grp_sz =
272 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273 
274 			/*
275 			 * calculate the enhanced data area offset, in bytes
276 			 */
277 			card->ext_csd.enhanced_area_offset =
278 				(((unsigned long long)ext_csd[139]) << 24) +
279 				(((unsigned long long)ext_csd[138]) << 16) +
280 				(((unsigned long long)ext_csd[137]) << 8) +
281 				(((unsigned long long)ext_csd[136]));
282 			if (mmc_card_blockaddr(card))
283 				card->ext_csd.enhanced_area_offset <<= 9;
284 			/*
285 			 * calculate the enhanced data area size, in kilobytes
286 			 */
287 			card->ext_csd.enhanced_area_size =
288 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 				ext_csd[140];
290 			card->ext_csd.enhanced_area_size *=
291 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 			card->ext_csd.enhanced_area_size <<= 9;
293 		} else {
294 			pr_warn("%s: defines enhanced area without partition setting complete\n",
295 				mmc_hostname(card->host));
296 		}
297 	}
298 }
299 
300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 			 unsigned int part_cfg, char *name, int idx, bool ro,
302 			 int area_type)
303 {
304 	card->part[card->nr_parts].size = size;
305 	card->part[card->nr_parts].part_cfg = part_cfg;
306 	sprintf(card->part[card->nr_parts].name, name, idx);
307 	card->part[card->nr_parts].force_ro = ro;
308 	card->part[card->nr_parts].area_type = area_type;
309 	card->nr_parts++;
310 }
311 
312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 	int idx;
315 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 	u64 part_size;
317 
318 	/*
319 	 * General purpose partition feature support --
320 	 * If ext_csd has the size of general purpose partitions,
321 	 * set size, part_cfg, partition name in mmc_part.
322 	 */
323 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 	    EXT_CSD_PART_SUPPORT_PART_EN) {
325 		hc_erase_grp_sz =
326 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 		hc_wp_grp_sz =
328 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329 
330 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 				continue;
335 			if (card->ext_csd.partition_setting_completed == 0) {
336 				pr_warn("%s: has partition size defined without partition complete\n",
337 					mmc_hostname(card->host));
338 				break;
339 			}
340 			part_size =
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 				<< 16) +
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 				<< 8) +
345 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 			mmc_part_add(card, part_size << 19,
348 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 				"gp%d", idx, false,
350 				MMC_BLK_DATA_AREA_GP);
351 		}
352 	}
353 }
354 
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME	300
357 
358 /*
359  * Decode extended CSD.
360  */
361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362 {
363 	int err = 0, idx;
364 	u64 part_size;
365 	struct device_node *np;
366 	bool broken_hpi = false;
367 
368 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 	if (card->csd.structure == 3) {
371 		if (card->ext_csd.raw_ext_csd_structure > 2) {
372 			pr_err("%s: unrecognised EXT_CSD structure "
373 				"version %d\n", mmc_hostname(card->host),
374 					card->ext_csd.raw_ext_csd_structure);
375 			err = -EINVAL;
376 			goto out;
377 		}
378 	}
379 
380 	np = mmc_of_find_child_device(card->host, 0);
381 	if (np && of_device_is_compatible(np, "mmc-card"))
382 		broken_hpi = of_property_read_bool(np, "broken-hpi");
383 	of_node_put(np);
384 
385 	/*
386 	 * The EXT_CSD format is meant to be forward compatible. As long
387 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 	 * are authorized, see JEDEC JESD84-B50 section B.8.
389 	 */
390 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391 
392 	/* fixup device after ext_csd revision field is updated */
393 	mmc_fixup_device(card, mmc_ext_csd_fixups);
394 
395 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 	if (card->ext_csd.rev >= 2) {
400 		card->ext_csd.sectors =
401 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405 
406 		/* Cards with density > 2GiB are sector addressed */
407 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 			mmc_card_set_blockaddr(card);
409 	}
410 
411 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 	mmc_select_card_type(card);
414 
415 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 	card->ext_csd.raw_erase_timeout_mult =
417 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 	card->ext_csd.raw_hc_erase_grp_size =
419 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 	if (card->ext_csd.rev >= 3) {
421 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423 
424 		/* EXT_CSD value is in units of 10ms, but we store in ms */
425 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 		/* Some eMMC set the value too low so set a minimum */
427 		if (card->ext_csd.part_time &&
428 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
429 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
430 
431 		/* Sleep / awake timeout in 100ns units */
432 		if (sa_shift > 0 && sa_shift <= 0x17)
433 			card->ext_csd.sa_timeout =
434 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 		card->ext_csd.erase_group_def =
436 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 		card->ext_csd.hc_erase_timeout = 300 *
438 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 		card->ext_csd.hc_erase_size =
440 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441 
442 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443 
444 		/*
445 		 * There are two boot regions of equal size, defined in
446 		 * multiples of 128K.
447 		 */
448 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 				mmc_part_add(card, part_size,
452 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 					"boot%d", idx, true,
454 					MMC_BLK_DATA_AREA_BOOT);
455 			}
456 		}
457 	}
458 
459 	card->ext_csd.raw_hc_erase_gap_size =
460 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 	card->ext_csd.raw_sec_trim_mult =
462 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 	card->ext_csd.raw_sec_erase_mult =
464 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 	card->ext_csd.raw_sec_feature_support =
466 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 	card->ext_csd.raw_trim_mult =
468 		ext_csd[EXT_CSD_TRIM_MULT];
469 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 	if (card->ext_csd.rev >= 4) {
472 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 		    EXT_CSD_PART_SETTING_COMPLETED)
474 			card->ext_csd.partition_setting_completed = 1;
475 		else
476 			card->ext_csd.partition_setting_completed = 0;
477 
478 		mmc_manage_enhanced_area(card, ext_csd);
479 
480 		mmc_manage_gp_partitions(card, ext_csd);
481 
482 		card->ext_csd.sec_trim_mult =
483 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 		card->ext_csd.sec_erase_mult =
485 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 		card->ext_csd.sec_feature_support =
487 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 		card->ext_csd.trim_timeout = 300 *
489 			ext_csd[EXT_CSD_TRIM_MULT];
490 
491 		/*
492 		 * Note that the call to mmc_part_add above defaults to read
493 		 * only. If this default assumption is changed, the call must
494 		 * take into account the value of boot_locked below.
495 		 */
496 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 		card->ext_csd.boot_ro_lockable = true;
498 
499 		/* Save power class values */
500 		card->ext_csd.raw_pwr_cl_52_195 =
501 			ext_csd[EXT_CSD_PWR_CL_52_195];
502 		card->ext_csd.raw_pwr_cl_26_195 =
503 			ext_csd[EXT_CSD_PWR_CL_26_195];
504 		card->ext_csd.raw_pwr_cl_52_360 =
505 			ext_csd[EXT_CSD_PWR_CL_52_360];
506 		card->ext_csd.raw_pwr_cl_26_360 =
507 			ext_csd[EXT_CSD_PWR_CL_26_360];
508 		card->ext_csd.raw_pwr_cl_200_195 =
509 			ext_csd[EXT_CSD_PWR_CL_200_195];
510 		card->ext_csd.raw_pwr_cl_200_360 =
511 			ext_csd[EXT_CSD_PWR_CL_200_360];
512 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 	}
519 
520 	if (card->ext_csd.rev >= 5) {
521 		/* Adjust production date as per JEDEC JESD84-B451 */
522 		if (card->cid.year < 2010)
523 			card->cid.year += 16;
524 
525 		/* check whether the eMMC card supports BKOPS */
526 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 					mmc_hostname(card->host));
536 			card->ext_csd.auto_bkops_en =
537 					(ext_csd[EXT_CSD_BKOPS_EN] &
538 						EXT_CSD_AUTO_BKOPS_MASK);
539 			if (card->ext_csd.auto_bkops_en)
540 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 		}
543 
544 		/* check whether the eMMC card supports HPI */
545 		if (!mmc_card_broken_hpi(card) &&
546 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 			card->ext_csd.hpi = 1;
548 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
550 			else
551 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 			/*
553 			 * Indicate the maximum timeout to close
554 			 * a command interrupted by HPI
555 			 */
556 			card->ext_csd.out_of_int_time =
557 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 		}
559 
560 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562 
563 		/*
564 		 * RPMB regions are defined in multiples of 128K.
565 		 */
566 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 				EXT_CSD_PART_CONFIG_ACC_RPMB,
570 				"rpmb", 0, false,
571 				MMC_BLK_DATA_AREA_RPMB);
572 		}
573 	}
574 
575 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 		card->erased_byte = 0xFF;
578 	else
579 		card->erased_byte = 0x0;
580 
581 	/* eMMC v4.5 or later */
582 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 	if (card->ext_csd.rev >= 6) {
584 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585 
586 		card->ext_csd.generic_cmd6_time = 10 *
587 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 		card->ext_csd.power_off_longtime = 10 *
589 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590 
591 		card->ext_csd.cache_size =
592 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596 
597 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 			card->ext_csd.data_sector_size = 4096;
599 		else
600 			card->ext_csd.data_sector_size = 512;
601 
602 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 			card->ext_csd.data_tag_unit_size =
605 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 			(card->ext_csd.data_sector_size);
607 		} else {
608 			card->ext_csd.data_tag_unit_size = 0;
609 		}
610 
611 		card->ext_csd.max_packed_writes =
612 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 		card->ext_csd.max_packed_reads =
614 			ext_csd[EXT_CSD_MAX_PACKED_READS];
615 	} else {
616 		card->ext_csd.data_sector_size = 512;
617 	}
618 
619 	/* eMMC v5 or later */
620 	if (card->ext_csd.rev >= 7) {
621 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
622 		       MMC_FIRMWARE_LEN);
623 		card->ext_csd.ffu_capable =
624 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
625 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
626 
627 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
628 		card->ext_csd.device_life_time_est_typ_a =
629 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
630 		card->ext_csd.device_life_time_est_typ_b =
631 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
632 	}
633 
634 	/* eMMC v5.1 or later */
635 	if (card->ext_csd.rev >= 8) {
636 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
637 					     EXT_CSD_CMDQ_SUPPORTED;
638 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
639 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
640 		/* Exclude inefficiently small queue depths */
641 		if (card->ext_csd.cmdq_depth <= 2) {
642 			card->ext_csd.cmdq_support = false;
643 			card->ext_csd.cmdq_depth = 0;
644 		}
645 		if (card->ext_csd.cmdq_support) {
646 			pr_debug("%s: Command Queue supported depth %u\n",
647 				 mmc_hostname(card->host),
648 				 card->ext_csd.cmdq_depth);
649 		}
650 	}
651 out:
652 	return err;
653 }
654 
655 static int mmc_read_ext_csd(struct mmc_card *card)
656 {
657 	u8 *ext_csd;
658 	int err;
659 
660 	if (!mmc_can_ext_csd(card))
661 		return 0;
662 
663 	err = mmc_get_ext_csd(card, &ext_csd);
664 	if (err) {
665 		/* If the host or the card can't do the switch,
666 		 * fail more gracefully. */
667 		if ((err != -EINVAL)
668 		 && (err != -ENOSYS)
669 		 && (err != -EFAULT))
670 			return err;
671 
672 		/*
673 		 * High capacity cards should have this "magic" size
674 		 * stored in their CSD.
675 		 */
676 		if (card->csd.capacity == (4096 * 512)) {
677 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
678 				mmc_hostname(card->host));
679 		} else {
680 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
681 				mmc_hostname(card->host));
682 			err = 0;
683 		}
684 
685 		return err;
686 	}
687 
688 	err = mmc_decode_ext_csd(card, ext_csd);
689 	kfree(ext_csd);
690 	return err;
691 }
692 
693 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
694 {
695 	u8 *bw_ext_csd;
696 	int err;
697 
698 	if (bus_width == MMC_BUS_WIDTH_1)
699 		return 0;
700 
701 	err = mmc_get_ext_csd(card, &bw_ext_csd);
702 	if (err)
703 		return err;
704 
705 	/* only compare read only fields */
706 	err = !((card->ext_csd.raw_partition_support ==
707 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
708 		(card->ext_csd.raw_erased_mem_count ==
709 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
710 		(card->ext_csd.rev ==
711 			bw_ext_csd[EXT_CSD_REV]) &&
712 		(card->ext_csd.raw_ext_csd_structure ==
713 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
714 		(card->ext_csd.raw_card_type ==
715 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
716 		(card->ext_csd.raw_s_a_timeout ==
717 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
718 		(card->ext_csd.raw_hc_erase_gap_size ==
719 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
720 		(card->ext_csd.raw_erase_timeout_mult ==
721 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
722 		(card->ext_csd.raw_hc_erase_grp_size ==
723 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
724 		(card->ext_csd.raw_sec_trim_mult ==
725 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
726 		(card->ext_csd.raw_sec_erase_mult ==
727 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
728 		(card->ext_csd.raw_sec_feature_support ==
729 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
730 		(card->ext_csd.raw_trim_mult ==
731 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
732 		(card->ext_csd.raw_sectors[0] ==
733 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
734 		(card->ext_csd.raw_sectors[1] ==
735 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
736 		(card->ext_csd.raw_sectors[2] ==
737 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
738 		(card->ext_csd.raw_sectors[3] ==
739 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
740 		(card->ext_csd.raw_pwr_cl_52_195 ==
741 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
742 		(card->ext_csd.raw_pwr_cl_26_195 ==
743 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
744 		(card->ext_csd.raw_pwr_cl_52_360 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
746 		(card->ext_csd.raw_pwr_cl_26_360 ==
747 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
748 		(card->ext_csd.raw_pwr_cl_200_195 ==
749 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
750 		(card->ext_csd.raw_pwr_cl_200_360 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
752 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
754 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
756 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
758 
759 	if (err)
760 		err = -EINVAL;
761 
762 	kfree(bw_ext_csd);
763 	return err;
764 }
765 
766 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
767 	card->raw_cid[2], card->raw_cid[3]);
768 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
769 	card->raw_csd[2], card->raw_csd[3]);
770 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
771 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
772 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
773 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
774 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
775 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
776 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
777 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
778 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
779 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
780 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
781 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
782 	card->ext_csd.device_life_time_est_typ_a,
783 	card->ext_csd.device_life_time_est_typ_b);
784 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
785 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
786 		card->ext_csd.enhanced_area_offset);
787 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
788 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
789 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
790 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
791 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
792 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
793 
794 static ssize_t mmc_fwrev_show(struct device *dev,
795 			      struct device_attribute *attr,
796 			      char *buf)
797 {
798 	struct mmc_card *card = mmc_dev_to_card(dev);
799 
800 	if (card->ext_csd.rev < 7) {
801 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
802 	} else {
803 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
804 			       card->ext_csd.fwrev);
805 	}
806 }
807 
808 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
809 
810 static ssize_t mmc_dsr_show(struct device *dev,
811 			    struct device_attribute *attr,
812 			    char *buf)
813 {
814 	struct mmc_card *card = mmc_dev_to_card(dev);
815 	struct mmc_host *host = card->host;
816 
817 	if (card->csd.dsr_imp && host->dsr_req)
818 		return sprintf(buf, "0x%x\n", host->dsr);
819 	else
820 		/* return default DSR value */
821 		return sprintf(buf, "0x%x\n", 0x404);
822 }
823 
824 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
825 
826 static struct attribute *mmc_std_attrs[] = {
827 	&dev_attr_cid.attr,
828 	&dev_attr_csd.attr,
829 	&dev_attr_date.attr,
830 	&dev_attr_erase_size.attr,
831 	&dev_attr_preferred_erase_size.attr,
832 	&dev_attr_fwrev.attr,
833 	&dev_attr_ffu_capable.attr,
834 	&dev_attr_hwrev.attr,
835 	&dev_attr_manfid.attr,
836 	&dev_attr_name.attr,
837 	&dev_attr_oemid.attr,
838 	&dev_attr_prv.attr,
839 	&dev_attr_rev.attr,
840 	&dev_attr_pre_eol_info.attr,
841 	&dev_attr_life_time.attr,
842 	&dev_attr_serial.attr,
843 	&dev_attr_enhanced_area_offset.attr,
844 	&dev_attr_enhanced_area_size.attr,
845 	&dev_attr_raw_rpmb_size_mult.attr,
846 	&dev_attr_rel_sectors.attr,
847 	&dev_attr_ocr.attr,
848 	&dev_attr_rca.attr,
849 	&dev_attr_dsr.attr,
850 	&dev_attr_cmdq_en.attr,
851 	NULL,
852 };
853 ATTRIBUTE_GROUPS(mmc_std);
854 
855 static struct device_type mmc_type = {
856 	.groups = mmc_std_groups,
857 };
858 
859 /*
860  * Select the PowerClass for the current bus width
861  * If power class is defined for 4/8 bit bus in the
862  * extended CSD register, select it by executing the
863  * mmc_switch command.
864  */
865 static int __mmc_select_powerclass(struct mmc_card *card,
866 				   unsigned int bus_width)
867 {
868 	struct mmc_host *host = card->host;
869 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
870 	unsigned int pwrclass_val = 0;
871 	int err = 0;
872 
873 	switch (1 << host->ios.vdd) {
874 	case MMC_VDD_165_195:
875 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
876 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
877 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
878 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
879 				ext_csd->raw_pwr_cl_52_195 :
880 				ext_csd->raw_pwr_cl_ddr_52_195;
881 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
882 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
883 		break;
884 	case MMC_VDD_27_28:
885 	case MMC_VDD_28_29:
886 	case MMC_VDD_29_30:
887 	case MMC_VDD_30_31:
888 	case MMC_VDD_31_32:
889 	case MMC_VDD_32_33:
890 	case MMC_VDD_33_34:
891 	case MMC_VDD_34_35:
892 	case MMC_VDD_35_36:
893 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
894 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
895 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
896 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
897 				ext_csd->raw_pwr_cl_52_360 :
898 				ext_csd->raw_pwr_cl_ddr_52_360;
899 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
900 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
901 				ext_csd->raw_pwr_cl_ddr_200_360 :
902 				ext_csd->raw_pwr_cl_200_360;
903 		break;
904 	default:
905 		pr_warn("%s: Voltage range not supported for power class\n",
906 			mmc_hostname(host));
907 		return -EINVAL;
908 	}
909 
910 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
911 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
912 				EXT_CSD_PWR_CL_8BIT_SHIFT;
913 	else
914 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
915 				EXT_CSD_PWR_CL_4BIT_SHIFT;
916 
917 	/* If the power class is different from the default value */
918 	if (pwrclass_val > 0) {
919 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
920 				 EXT_CSD_POWER_CLASS,
921 				 pwrclass_val,
922 				 card->ext_csd.generic_cmd6_time);
923 	}
924 
925 	return err;
926 }
927 
928 static int mmc_select_powerclass(struct mmc_card *card)
929 {
930 	struct mmc_host *host = card->host;
931 	u32 bus_width, ext_csd_bits;
932 	int err, ddr;
933 
934 	/* Power class selection is supported for versions >= 4.0 */
935 	if (!mmc_can_ext_csd(card))
936 		return 0;
937 
938 	bus_width = host->ios.bus_width;
939 	/* Power class values are defined only for 4/8 bit bus */
940 	if (bus_width == MMC_BUS_WIDTH_1)
941 		return 0;
942 
943 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
944 	if (ddr)
945 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
946 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
947 	else
948 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
949 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
950 
951 	err = __mmc_select_powerclass(card, ext_csd_bits);
952 	if (err)
953 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
954 			mmc_hostname(host), 1 << bus_width, ddr);
955 
956 	return err;
957 }
958 
959 /*
960  * Set the bus speed for the selected speed mode.
961  */
962 static void mmc_set_bus_speed(struct mmc_card *card)
963 {
964 	unsigned int max_dtr = (unsigned int)-1;
965 
966 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
967 	     max_dtr > card->ext_csd.hs200_max_dtr)
968 		max_dtr = card->ext_csd.hs200_max_dtr;
969 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
970 		max_dtr = card->ext_csd.hs_max_dtr;
971 	else if (max_dtr > card->csd.max_dtr)
972 		max_dtr = card->csd.max_dtr;
973 
974 	mmc_set_clock(card->host, max_dtr);
975 }
976 
977 /*
978  * Select the bus width amoung 4-bit and 8-bit(SDR).
979  * If the bus width is changed successfully, return the selected width value.
980  * Zero is returned instead of error value if the wide width is not supported.
981  */
982 static int mmc_select_bus_width(struct mmc_card *card)
983 {
984 	static unsigned ext_csd_bits[] = {
985 		EXT_CSD_BUS_WIDTH_8,
986 		EXT_CSD_BUS_WIDTH_4,
987 	};
988 	static unsigned bus_widths[] = {
989 		MMC_BUS_WIDTH_8,
990 		MMC_BUS_WIDTH_4,
991 	};
992 	struct mmc_host *host = card->host;
993 	unsigned idx, bus_width = 0;
994 	int err = 0;
995 
996 	if (!mmc_can_ext_csd(card) ||
997 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
998 		return 0;
999 
1000 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1001 
1002 	/*
1003 	 * Unlike SD, MMC cards dont have a configuration register to notify
1004 	 * supported bus width. So bus test command should be run to identify
1005 	 * the supported bus width or compare the ext csd values of current
1006 	 * bus width and ext csd values of 1 bit mode read earlier.
1007 	 */
1008 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1009 		/*
1010 		 * Host is capable of 8bit transfer, then switch
1011 		 * the device to work in 8bit transfer mode. If the
1012 		 * mmc switch command returns error then switch to
1013 		 * 4bit transfer mode. On success set the corresponding
1014 		 * bus width on the host.
1015 		 */
1016 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1017 				 EXT_CSD_BUS_WIDTH,
1018 				 ext_csd_bits[idx],
1019 				 card->ext_csd.generic_cmd6_time);
1020 		if (err)
1021 			continue;
1022 
1023 		bus_width = bus_widths[idx];
1024 		mmc_set_bus_width(host, bus_width);
1025 
1026 		/*
1027 		 * If controller can't handle bus width test,
1028 		 * compare ext_csd previously read in 1 bit mode
1029 		 * against ext_csd at new bus width
1030 		 */
1031 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1032 			err = mmc_compare_ext_csds(card, bus_width);
1033 		else
1034 			err = mmc_bus_test(card, bus_width);
1035 
1036 		if (!err) {
1037 			err = bus_width;
1038 			break;
1039 		} else {
1040 			pr_warn("%s: switch to bus width %d failed\n",
1041 				mmc_hostname(host), 1 << bus_width);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /*
1049  * Switch to the high-speed mode
1050  */
1051 static int mmc_select_hs(struct mmc_card *card)
1052 {
1053 	int err;
1054 
1055 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1057 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1058 			   true, true);
1059 	if (err)
1060 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1061 			mmc_hostname(card->host), err);
1062 
1063 	return err;
1064 }
1065 
1066 /*
1067  * Activate wide bus and DDR if supported.
1068  */
1069 static int mmc_select_hs_ddr(struct mmc_card *card)
1070 {
1071 	struct mmc_host *host = card->host;
1072 	u32 bus_width, ext_csd_bits;
1073 	int err = 0;
1074 
1075 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1076 		return 0;
1077 
1078 	bus_width = host->ios.bus_width;
1079 	if (bus_width == MMC_BUS_WIDTH_1)
1080 		return 0;
1081 
1082 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1083 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1084 
1085 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 			   EXT_CSD_BUS_WIDTH,
1087 			   ext_csd_bits,
1088 			   card->ext_csd.generic_cmd6_time,
1089 			   MMC_TIMING_MMC_DDR52,
1090 			   true, true);
1091 	if (err) {
1092 		pr_err("%s: switch to bus width %d ddr failed\n",
1093 			mmc_hostname(host), 1 << bus_width);
1094 		return err;
1095 	}
1096 
1097 	/*
1098 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1099 	 * signaling.
1100 	 *
1101 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1102 	 *
1103 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1104 	 * in the JEDEC spec for DDR.
1105 	 *
1106 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1107 	 * host controller can support this, like some of the SDHCI
1108 	 * controller which connect to an eMMC device. Some of these
1109 	 * host controller still needs to use 1.8v vccq for supporting
1110 	 * DDR mode.
1111 	 *
1112 	 * So the sequence will be:
1113 	 * if (host and device can both support 1.2v IO)
1114 	 *	use 1.2v IO;
1115 	 * else if (host and device can both support 1.8v IO)
1116 	 *	use 1.8v IO;
1117 	 * so if host and device can only support 3.3v IO, this is the
1118 	 * last choice.
1119 	 *
1120 	 * WARNING: eMMC rules are NOT the same as SD DDR
1121 	 */
1122 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1123 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1124 		if (!err)
1125 			return 0;
1126 	}
1127 
1128 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1129 	    host->caps & MMC_CAP_1_8V_DDR)
1130 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1131 
1132 	/* make sure vccq is 3.3v after switching disaster */
1133 	if (err)
1134 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1135 
1136 	return err;
1137 }
1138 
1139 static int mmc_select_hs400(struct mmc_card *card)
1140 {
1141 	struct mmc_host *host = card->host;
1142 	unsigned int max_dtr;
1143 	int err = 0;
1144 	u8 val;
1145 
1146 	/*
1147 	 * HS400 mode requires 8-bit bus width
1148 	 */
1149 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1150 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1151 		return 0;
1152 
1153 	/* Switch card to HS mode */
1154 	val = EXT_CSD_TIMING_HS;
1155 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1156 			   EXT_CSD_HS_TIMING, val,
1157 			   card->ext_csd.generic_cmd6_time, 0,
1158 			   false, true);
1159 	if (err) {
1160 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1161 			mmc_hostname(host), err);
1162 		return err;
1163 	}
1164 
1165 	/* Set host controller to HS timing */
1166 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1167 
1168 	/* Prepare host to downgrade to HS timing */
1169 	if (host->ops->hs400_downgrade)
1170 		host->ops->hs400_downgrade(host);
1171 
1172 	/* Reduce frequency to HS frequency */
1173 	max_dtr = card->ext_csd.hs_max_dtr;
1174 	mmc_set_clock(host, max_dtr);
1175 
1176 	err = mmc_switch_status(card, true);
1177 	if (err)
1178 		goto out_err;
1179 
1180 	if (host->ops->hs400_prepare_ddr)
1181 		host->ops->hs400_prepare_ddr(host);
1182 
1183 	/* Switch card to DDR */
1184 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1185 			 EXT_CSD_BUS_WIDTH,
1186 			 EXT_CSD_DDR_BUS_WIDTH_8,
1187 			 card->ext_csd.generic_cmd6_time);
1188 	if (err) {
1189 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1190 			mmc_hostname(host), err);
1191 		return err;
1192 	}
1193 
1194 	/* Switch card to HS400 */
1195 	val = EXT_CSD_TIMING_HS400 |
1196 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1197 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1198 			   EXT_CSD_HS_TIMING, val,
1199 			   card->ext_csd.generic_cmd6_time, 0,
1200 			   false, true);
1201 	if (err) {
1202 		pr_err("%s: switch to hs400 failed, err:%d\n",
1203 			 mmc_hostname(host), err);
1204 		return err;
1205 	}
1206 
1207 	/* Set host controller to HS400 timing and frequency */
1208 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1209 	mmc_set_bus_speed(card);
1210 
1211 	if (host->ops->hs400_complete)
1212 		host->ops->hs400_complete(host);
1213 
1214 	err = mmc_switch_status(card, true);
1215 	if (err)
1216 		goto out_err;
1217 
1218 	return 0;
1219 
1220 out_err:
1221 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1222 	       __func__, err);
1223 	return err;
1224 }
1225 
1226 int mmc_hs200_to_hs400(struct mmc_card *card)
1227 {
1228 	return mmc_select_hs400(card);
1229 }
1230 
1231 int mmc_hs400_to_hs200(struct mmc_card *card)
1232 {
1233 	struct mmc_host *host = card->host;
1234 	unsigned int max_dtr;
1235 	int err;
1236 	u8 val;
1237 
1238 	/* Reduce frequency to HS */
1239 	max_dtr = card->ext_csd.hs_max_dtr;
1240 	mmc_set_clock(host, max_dtr);
1241 
1242 	/* Switch HS400 to HS DDR */
1243 	val = EXT_CSD_TIMING_HS;
1244 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1245 			   val, card->ext_csd.generic_cmd6_time, 0,
1246 			   false, true);
1247 	if (err)
1248 		goto out_err;
1249 
1250 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1251 
1252 	err = mmc_switch_status(card, true);
1253 	if (err)
1254 		goto out_err;
1255 
1256 	/* Switch HS DDR to HS */
1257 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1258 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1259 			   0, false, true);
1260 	if (err)
1261 		goto out_err;
1262 
1263 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1264 
1265 	if (host->ops->hs400_downgrade)
1266 		host->ops->hs400_downgrade(host);
1267 
1268 	err = mmc_switch_status(card, true);
1269 	if (err)
1270 		goto out_err;
1271 
1272 	/* Switch HS to HS200 */
1273 	val = EXT_CSD_TIMING_HS200 |
1274 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1275 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276 			   val, card->ext_csd.generic_cmd6_time, 0,
1277 			   false, true);
1278 	if (err)
1279 		goto out_err;
1280 
1281 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1282 
1283 	/*
1284 	 * For HS200, CRC errors are not a reliable way to know the switch
1285 	 * failed. If there really is a problem, we would expect tuning will
1286 	 * fail and the result ends up the same.
1287 	 */
1288 	err = mmc_switch_status(card, false);
1289 	if (err)
1290 		goto out_err;
1291 
1292 	mmc_set_bus_speed(card);
1293 
1294 	/* Prepare tuning for HS400 mode. */
1295 	if (host->ops->prepare_hs400_tuning)
1296 		host->ops->prepare_hs400_tuning(host, &host->ios);
1297 
1298 	return 0;
1299 
1300 out_err:
1301 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1302 	       __func__, err);
1303 	return err;
1304 }
1305 
1306 static void mmc_select_driver_type(struct mmc_card *card)
1307 {
1308 	int card_drv_type, drive_strength, drv_type = 0;
1309 	int fixed_drv_type = card->host->fixed_drv_type;
1310 
1311 	card_drv_type = card->ext_csd.raw_driver_strength |
1312 			mmc_driver_type_mask(0);
1313 
1314 	if (fixed_drv_type >= 0)
1315 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1316 				 ? fixed_drv_type : 0;
1317 	else
1318 		drive_strength = mmc_select_drive_strength(card,
1319 							   card->ext_csd.hs200_max_dtr,
1320 							   card_drv_type, &drv_type);
1321 
1322 	card->drive_strength = drive_strength;
1323 
1324 	if (drv_type)
1325 		mmc_set_driver_type(card->host, drv_type);
1326 }
1327 
1328 static int mmc_select_hs400es(struct mmc_card *card)
1329 {
1330 	struct mmc_host *host = card->host;
1331 	int err = -EINVAL;
1332 	u8 val;
1333 
1334 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1335 		err = -ENOTSUPP;
1336 		goto out_err;
1337 	}
1338 
1339 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1340 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1341 
1342 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1343 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1344 
1345 	/* If fails try again during next card power cycle */
1346 	if (err)
1347 		goto out_err;
1348 
1349 	err = mmc_select_bus_width(card);
1350 	if (err != MMC_BUS_WIDTH_8) {
1351 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1352 			mmc_hostname(host), err);
1353 		err = err < 0 ? err : -ENOTSUPP;
1354 		goto out_err;
1355 	}
1356 
1357 	/* Switch card to HS mode */
1358 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1359 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1360 			   card->ext_csd.generic_cmd6_time, 0,
1361 			   false, true);
1362 	if (err) {
1363 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1364 			mmc_hostname(host), err);
1365 		goto out_err;
1366 	}
1367 
1368 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1369 	err = mmc_switch_status(card, true);
1370 	if (err)
1371 		goto out_err;
1372 
1373 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1374 
1375 	/* Switch card to DDR with strobe bit */
1376 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1377 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 			 EXT_CSD_BUS_WIDTH,
1379 			 val,
1380 			 card->ext_csd.generic_cmd6_time);
1381 	if (err) {
1382 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1383 			mmc_hostname(host), err);
1384 		goto out_err;
1385 	}
1386 
1387 	mmc_select_driver_type(card);
1388 
1389 	/* Switch card to HS400 */
1390 	val = EXT_CSD_TIMING_HS400 |
1391 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1392 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1393 			   EXT_CSD_HS_TIMING, val,
1394 			   card->ext_csd.generic_cmd6_time, 0,
1395 			   false, true);
1396 	if (err) {
1397 		pr_err("%s: switch to hs400es failed, err:%d\n",
1398 			mmc_hostname(host), err);
1399 		goto out_err;
1400 	}
1401 
1402 	/* Set host controller to HS400 timing and frequency */
1403 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1404 
1405 	/* Controller enable enhanced strobe function */
1406 	host->ios.enhanced_strobe = true;
1407 	if (host->ops->hs400_enhanced_strobe)
1408 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1409 
1410 	err = mmc_switch_status(card, true);
1411 	if (err)
1412 		goto out_err;
1413 
1414 	return 0;
1415 
1416 out_err:
1417 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1418 	       __func__, err);
1419 	return err;
1420 }
1421 
1422 /*
1423  * For device supporting HS200 mode, the following sequence
1424  * should be done before executing the tuning process.
1425  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1426  * 2. switch to HS200 mode
1427  * 3. set the clock to > 52Mhz and <=200MHz
1428  */
1429 static int mmc_select_hs200(struct mmc_card *card)
1430 {
1431 	struct mmc_host *host = card->host;
1432 	unsigned int old_timing, old_signal_voltage;
1433 	int err = -EINVAL;
1434 	u8 val;
1435 
1436 	old_signal_voltage = host->ios.signal_voltage;
1437 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1438 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1439 
1440 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1441 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1442 
1443 	/* If fails try again during next card power cycle */
1444 	if (err)
1445 		return err;
1446 
1447 	mmc_select_driver_type(card);
1448 
1449 	/*
1450 	 * Set the bus width(4 or 8) with host's support and
1451 	 * switch to HS200 mode if bus width is set successfully.
1452 	 */
1453 	err = mmc_select_bus_width(card);
1454 	if (err > 0) {
1455 		val = EXT_CSD_TIMING_HS200 |
1456 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1457 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1458 				   EXT_CSD_HS_TIMING, val,
1459 				   card->ext_csd.generic_cmd6_time, 0,
1460 				   false, true);
1461 		if (err)
1462 			goto err;
1463 		old_timing = host->ios.timing;
1464 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1465 
1466 		/*
1467 		 * For HS200, CRC errors are not a reliable way to know the
1468 		 * switch failed. If there really is a problem, we would expect
1469 		 * tuning will fail and the result ends up the same.
1470 		 */
1471 		err = mmc_switch_status(card, false);
1472 
1473 		/*
1474 		 * mmc_select_timing() assumes timing has not changed if
1475 		 * it is a switch error.
1476 		 */
1477 		if (err == -EBADMSG)
1478 			mmc_set_timing(host, old_timing);
1479 	}
1480 err:
1481 	if (err) {
1482 		/* fall back to the old signal voltage, if fails report error */
1483 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1484 			err = -EIO;
1485 
1486 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1487 		       __func__, err);
1488 	}
1489 	return err;
1490 }
1491 
1492 /*
1493  * Activate High Speed, HS200 or HS400ES mode if supported.
1494  */
1495 static int mmc_select_timing(struct mmc_card *card)
1496 {
1497 	int err = 0;
1498 
1499 	if (!mmc_can_ext_csd(card))
1500 		goto bus_speed;
1501 
1502 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1503 		err = mmc_select_hs400es(card);
1504 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1505 		err = mmc_select_hs200(card);
1506 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1507 		err = mmc_select_hs(card);
1508 
1509 	if (err && err != -EBADMSG)
1510 		return err;
1511 
1512 bus_speed:
1513 	/*
1514 	 * Set the bus speed to the selected bus timing.
1515 	 * If timing is not selected, backward compatible is the default.
1516 	 */
1517 	mmc_set_bus_speed(card);
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Execute tuning sequence to seek the proper bus operating
1523  * conditions for HS200 and HS400, which sends CMD21 to the device.
1524  */
1525 static int mmc_hs200_tuning(struct mmc_card *card)
1526 {
1527 	struct mmc_host *host = card->host;
1528 
1529 	/*
1530 	 * Timing should be adjusted to the HS400 target
1531 	 * operation frequency for tuning process
1532 	 */
1533 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1534 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1535 		if (host->ops->prepare_hs400_tuning)
1536 			host->ops->prepare_hs400_tuning(host, &host->ios);
1537 
1538 	return mmc_execute_tuning(card);
1539 }
1540 
1541 /*
1542  * Handle the detection and initialisation of a card.
1543  *
1544  * In the case of a resume, "oldcard" will contain the card
1545  * we're trying to reinitialise.
1546  */
1547 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1548 	struct mmc_card *oldcard)
1549 {
1550 	struct mmc_card *card;
1551 	int err;
1552 	u32 cid[4];
1553 	u32 rocr;
1554 
1555 	WARN_ON(!host->claimed);
1556 
1557 	/* Set correct bus mode for MMC before attempting init */
1558 	if (!mmc_host_is_spi(host))
1559 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1560 
1561 	/*
1562 	 * Since we're changing the OCR value, we seem to
1563 	 * need to tell some cards to go back to the idle
1564 	 * state.  We wait 1ms to give cards time to
1565 	 * respond.
1566 	 * mmc_go_idle is needed for eMMC that are asleep
1567 	 */
1568 	mmc_go_idle(host);
1569 
1570 	/* The extra bit indicates that we support high capacity */
1571 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1572 	if (err)
1573 		goto err;
1574 
1575 	/*
1576 	 * For SPI, enable CRC as appropriate.
1577 	 */
1578 	if (mmc_host_is_spi(host)) {
1579 		err = mmc_spi_set_crc(host, use_spi_crc);
1580 		if (err)
1581 			goto err;
1582 	}
1583 
1584 	/*
1585 	 * Fetch CID from card.
1586 	 */
1587 	err = mmc_send_cid(host, cid);
1588 	if (err)
1589 		goto err;
1590 
1591 	if (oldcard) {
1592 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1593 			pr_debug("%s: Perhaps the card was replaced\n",
1594 				mmc_hostname(host));
1595 			err = -ENOENT;
1596 			goto err;
1597 		}
1598 
1599 		card = oldcard;
1600 	} else {
1601 		/*
1602 		 * Allocate card structure.
1603 		 */
1604 		card = mmc_alloc_card(host, &mmc_type);
1605 		if (IS_ERR(card)) {
1606 			err = PTR_ERR(card);
1607 			goto err;
1608 		}
1609 
1610 		card->ocr = ocr;
1611 		card->type = MMC_TYPE_MMC;
1612 		card->rca = 1;
1613 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1614 	}
1615 
1616 	/*
1617 	 * Call the optional HC's init_card function to handle quirks.
1618 	 */
1619 	if (host->ops->init_card)
1620 		host->ops->init_card(host, card);
1621 
1622 	/*
1623 	 * For native busses:  set card RCA and quit open drain mode.
1624 	 */
1625 	if (!mmc_host_is_spi(host)) {
1626 		err = mmc_set_relative_addr(card);
1627 		if (err)
1628 			goto free_card;
1629 
1630 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1631 	}
1632 
1633 	if (!oldcard) {
1634 		/*
1635 		 * Fetch CSD from card.
1636 		 */
1637 		err = mmc_send_csd(card, card->raw_csd);
1638 		if (err)
1639 			goto free_card;
1640 
1641 		err = mmc_decode_csd(card);
1642 		if (err)
1643 			goto free_card;
1644 		err = mmc_decode_cid(card);
1645 		if (err)
1646 			goto free_card;
1647 	}
1648 
1649 	/*
1650 	 * handling only for cards supporting DSR and hosts requesting
1651 	 * DSR configuration
1652 	 */
1653 	if (card->csd.dsr_imp && host->dsr_req)
1654 		mmc_set_dsr(host);
1655 
1656 	/*
1657 	 * Select card, as all following commands rely on that.
1658 	 */
1659 	if (!mmc_host_is_spi(host)) {
1660 		err = mmc_select_card(card);
1661 		if (err)
1662 			goto free_card;
1663 	}
1664 
1665 	if (!oldcard) {
1666 		/* Read extended CSD. */
1667 		err = mmc_read_ext_csd(card);
1668 		if (err)
1669 			goto free_card;
1670 
1671 		/*
1672 		 * If doing byte addressing, check if required to do sector
1673 		 * addressing.  Handle the case of <2GB cards needing sector
1674 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1675 		 * ocr register has bit 30 set for sector addressing.
1676 		 */
1677 		if (rocr & BIT(30))
1678 			mmc_card_set_blockaddr(card);
1679 
1680 		/* Erase size depends on CSD and Extended CSD */
1681 		mmc_set_erase_size(card);
1682 	}
1683 
1684 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1685 	if (card->ext_csd.rev >= 3) {
1686 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1687 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1688 				 card->ext_csd.generic_cmd6_time);
1689 
1690 		if (err && err != -EBADMSG)
1691 			goto free_card;
1692 
1693 		if (err) {
1694 			err = 0;
1695 			/*
1696 			 * Just disable enhanced area off & sz
1697 			 * will try to enable ERASE_GROUP_DEF
1698 			 * during next time reinit
1699 			 */
1700 			card->ext_csd.enhanced_area_offset = -EINVAL;
1701 			card->ext_csd.enhanced_area_size = -EINVAL;
1702 		} else {
1703 			card->ext_csd.erase_group_def = 1;
1704 			/*
1705 			 * enable ERASE_GRP_DEF successfully.
1706 			 * This will affect the erase size, so
1707 			 * here need to reset erase size
1708 			 */
1709 			mmc_set_erase_size(card);
1710 		}
1711 	}
1712 
1713 	/*
1714 	 * Ensure eMMC user default partition is enabled
1715 	 */
1716 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1717 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1718 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1719 				 card->ext_csd.part_config,
1720 				 card->ext_csd.part_time);
1721 		if (err && err != -EBADMSG)
1722 			goto free_card;
1723 	}
1724 
1725 	/*
1726 	 * Enable power_off_notification byte in the ext_csd register
1727 	 */
1728 	if (card->ext_csd.rev >= 6) {
1729 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1730 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1731 				 EXT_CSD_POWER_ON,
1732 				 card->ext_csd.generic_cmd6_time);
1733 		if (err && err != -EBADMSG)
1734 			goto free_card;
1735 
1736 		/*
1737 		 * The err can be -EBADMSG or 0,
1738 		 * so check for success and update the flag
1739 		 */
1740 		if (!err)
1741 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1742 	}
1743 
1744 	/* set erase_arg */
1745 	if (mmc_can_discard(card))
1746 		card->erase_arg = MMC_DISCARD_ARG;
1747 	else if (mmc_can_trim(card))
1748 		card->erase_arg = MMC_TRIM_ARG;
1749 	else
1750 		card->erase_arg = MMC_ERASE_ARG;
1751 
1752 	/*
1753 	 * Select timing interface
1754 	 */
1755 	err = mmc_select_timing(card);
1756 	if (err)
1757 		goto free_card;
1758 
1759 	if (mmc_card_hs200(card)) {
1760 		err = mmc_hs200_tuning(card);
1761 		if (err)
1762 			goto free_card;
1763 
1764 		err = mmc_select_hs400(card);
1765 		if (err)
1766 			goto free_card;
1767 	} else if (!mmc_card_hs400es(card)) {
1768 		/* Select the desired bus width optionally */
1769 		err = mmc_select_bus_width(card);
1770 		if (err > 0 && mmc_card_hs(card)) {
1771 			err = mmc_select_hs_ddr(card);
1772 			if (err)
1773 				goto free_card;
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * Choose the power class with selected bus interface
1779 	 */
1780 	mmc_select_powerclass(card);
1781 
1782 	/*
1783 	 * Enable HPI feature (if supported)
1784 	 */
1785 	if (card->ext_csd.hpi) {
1786 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1787 				EXT_CSD_HPI_MGMT, 1,
1788 				card->ext_csd.generic_cmd6_time);
1789 		if (err && err != -EBADMSG)
1790 			goto free_card;
1791 		if (err) {
1792 			pr_warn("%s: Enabling HPI failed\n",
1793 				mmc_hostname(card->host));
1794 			card->ext_csd.hpi_en = 0;
1795 			err = 0;
1796 		} else {
1797 			card->ext_csd.hpi_en = 1;
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * If cache size is higher than 0, this indicates the existence of cache
1803 	 * and it can be turned on. Note that some eMMCs from Micron has been
1804 	 * reported to need ~800 ms timeout, while enabling the cache after
1805 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1806 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1807 	 */
1808 	if (card->ext_csd.cache_size > 0) {
1809 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1810 
1811 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1812 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1813 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1814 		if (err && err != -EBADMSG)
1815 			goto free_card;
1816 
1817 		/*
1818 		 * Only if no error, cache is turned on successfully.
1819 		 */
1820 		if (err) {
1821 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1822 				mmc_hostname(card->host), err);
1823 			card->ext_csd.cache_ctrl = 0;
1824 			err = 0;
1825 		} else {
1826 			card->ext_csd.cache_ctrl = 1;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1832 	 * be used with Command Queue.
1833 	 */
1834 	card->ext_csd.cmdq_en = false;
1835 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1836 		err = mmc_cmdq_enable(card);
1837 		if (err && err != -EBADMSG)
1838 			goto free_card;
1839 		if (err) {
1840 			pr_warn("%s: Enabling CMDQ failed\n",
1841 				mmc_hostname(card->host));
1842 			card->ext_csd.cmdq_support = false;
1843 			card->ext_csd.cmdq_depth = 0;
1844 			err = 0;
1845 		}
1846 	}
1847 	/*
1848 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1849 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1850 	 * Command Queue.
1851 	 */
1852 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1853 
1854 	if (host->cqe_ops && !host->cqe_enabled) {
1855 		err = host->cqe_ops->cqe_enable(host, card);
1856 		if (!err) {
1857 			host->cqe_enabled = true;
1858 
1859 			if (card->ext_csd.cmdq_en) {
1860 				pr_info("%s: Command Queue Engine enabled\n",
1861 					mmc_hostname(host));
1862 			} else {
1863 				host->hsq_enabled = true;
1864 				pr_info("%s: Host Software Queue enabled\n",
1865 					mmc_hostname(host));
1866 			}
1867 		}
1868 	}
1869 
1870 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1871 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1872 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1873 			mmc_hostname(host));
1874 		err = -EINVAL;
1875 		goto free_card;
1876 	}
1877 
1878 	if (!oldcard)
1879 		host->card = card;
1880 
1881 	return 0;
1882 
1883 free_card:
1884 	if (!oldcard)
1885 		mmc_remove_card(card);
1886 err:
1887 	return err;
1888 }
1889 
1890 static int mmc_can_sleep(struct mmc_card *card)
1891 {
1892 	return (card && card->ext_csd.rev >= 3);
1893 }
1894 
1895 static int mmc_sleep(struct mmc_host *host)
1896 {
1897 	struct mmc_command cmd = {};
1898 	struct mmc_card *card = host->card;
1899 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1900 	int err;
1901 
1902 	/* Re-tuning can't be done once the card is deselected */
1903 	mmc_retune_hold(host);
1904 
1905 	err = mmc_deselect_cards(host);
1906 	if (err)
1907 		goto out_release;
1908 
1909 	cmd.opcode = MMC_SLEEP_AWAKE;
1910 	cmd.arg = card->rca << 16;
1911 	cmd.arg |= 1 << 15;
1912 
1913 	/*
1914 	 * If the max_busy_timeout of the host is specified, validate it against
1915 	 * the sleep cmd timeout. A failure means we need to prevent the host
1916 	 * from doing hw busy detection, which is done by converting to a R1
1917 	 * response instead of a R1B. Note, some hosts requires R1B, which also
1918 	 * means they are on their own when it comes to deal with the busy
1919 	 * timeout.
1920 	 */
1921 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1922 	    (timeout_ms > host->max_busy_timeout)) {
1923 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1924 	} else {
1925 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1926 		cmd.busy_timeout = timeout_ms;
1927 	}
1928 
1929 	err = mmc_wait_for_cmd(host, &cmd, 0);
1930 	if (err)
1931 		goto out_release;
1932 
1933 	/*
1934 	 * If the host does not wait while the card signals busy, then we will
1935 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1936 	 * SEND_STATUS command to poll the status because that command (and most
1937 	 * others) is invalid while the card sleeps.
1938 	 */
1939 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1940 		mmc_delay(timeout_ms);
1941 
1942 out_release:
1943 	mmc_retune_release(host);
1944 	return err;
1945 }
1946 
1947 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1948 {
1949 	return card &&
1950 		mmc_card_mmc(card) &&
1951 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1952 }
1953 
1954 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1955 {
1956 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1957 	int err;
1958 
1959 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1960 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1961 		timeout = card->ext_csd.power_off_longtime;
1962 
1963 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1964 			EXT_CSD_POWER_OFF_NOTIFICATION,
1965 			notify_type, timeout, 0, false, false);
1966 	if (err)
1967 		pr_err("%s: Power Off Notification timed out, %u\n",
1968 		       mmc_hostname(card->host), timeout);
1969 
1970 	/* Disable the power off notification after the switch operation. */
1971 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1972 
1973 	return err;
1974 }
1975 
1976 /*
1977  * Host is being removed. Free up the current card.
1978  */
1979 static void mmc_remove(struct mmc_host *host)
1980 {
1981 	mmc_remove_card(host->card);
1982 	host->card = NULL;
1983 }
1984 
1985 /*
1986  * Card detection - card is alive.
1987  */
1988 static int mmc_alive(struct mmc_host *host)
1989 {
1990 	return mmc_send_status(host->card, NULL);
1991 }
1992 
1993 /*
1994  * Card detection callback from host.
1995  */
1996 static void mmc_detect(struct mmc_host *host)
1997 {
1998 	int err;
1999 
2000 	mmc_get_card(host->card, NULL);
2001 
2002 	/*
2003 	 * Just check if our card has been removed.
2004 	 */
2005 	err = _mmc_detect_card_removed(host);
2006 
2007 	mmc_put_card(host->card, NULL);
2008 
2009 	if (err) {
2010 		mmc_remove(host);
2011 
2012 		mmc_claim_host(host);
2013 		mmc_detach_bus(host);
2014 		mmc_power_off(host);
2015 		mmc_release_host(host);
2016 	}
2017 }
2018 
2019 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2020 {
2021 	int err = 0;
2022 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2023 					EXT_CSD_POWER_OFF_LONG;
2024 
2025 	mmc_claim_host(host);
2026 
2027 	if (mmc_card_suspended(host->card))
2028 		goto out;
2029 
2030 	err = mmc_flush_cache(host->card);
2031 	if (err)
2032 		goto out;
2033 
2034 	if (mmc_can_poweroff_notify(host->card) &&
2035 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2036 		err = mmc_poweroff_notify(host->card, notify_type);
2037 	else if (mmc_can_sleep(host->card))
2038 		err = mmc_sleep(host);
2039 	else if (!mmc_host_is_spi(host))
2040 		err = mmc_deselect_cards(host);
2041 
2042 	if (!err) {
2043 		mmc_power_off(host);
2044 		mmc_card_set_suspended(host->card);
2045 	}
2046 out:
2047 	mmc_release_host(host);
2048 	return err;
2049 }
2050 
2051 /*
2052  * Suspend callback
2053  */
2054 static int mmc_suspend(struct mmc_host *host)
2055 {
2056 	int err;
2057 
2058 	err = _mmc_suspend(host, true);
2059 	if (!err) {
2060 		pm_runtime_disable(&host->card->dev);
2061 		pm_runtime_set_suspended(&host->card->dev);
2062 	}
2063 
2064 	return err;
2065 }
2066 
2067 /*
2068  * This function tries to determine if the same card is still present
2069  * and, if so, restore all state to it.
2070  */
2071 static int _mmc_resume(struct mmc_host *host)
2072 {
2073 	int err = 0;
2074 
2075 	mmc_claim_host(host);
2076 
2077 	if (!mmc_card_suspended(host->card))
2078 		goto out;
2079 
2080 	mmc_power_up(host, host->card->ocr);
2081 	err = mmc_init_card(host, host->card->ocr, host->card);
2082 	mmc_card_clr_suspended(host->card);
2083 
2084 out:
2085 	mmc_release_host(host);
2086 	return err;
2087 }
2088 
2089 /*
2090  * Shutdown callback
2091  */
2092 static int mmc_shutdown(struct mmc_host *host)
2093 {
2094 	int err = 0;
2095 
2096 	/*
2097 	 * In a specific case for poweroff notify, we need to resume the card
2098 	 * before we can shutdown it properly.
2099 	 */
2100 	if (mmc_can_poweroff_notify(host->card) &&
2101 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2102 		err = _mmc_resume(host);
2103 
2104 	if (!err)
2105 		err = _mmc_suspend(host, false);
2106 
2107 	return err;
2108 }
2109 
2110 /*
2111  * Callback for resume.
2112  */
2113 static int mmc_resume(struct mmc_host *host)
2114 {
2115 	pm_runtime_enable(&host->card->dev);
2116 	return 0;
2117 }
2118 
2119 /*
2120  * Callback for runtime_suspend.
2121  */
2122 static int mmc_runtime_suspend(struct mmc_host *host)
2123 {
2124 	int err;
2125 
2126 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2127 		return 0;
2128 
2129 	err = _mmc_suspend(host, true);
2130 	if (err)
2131 		pr_err("%s: error %d doing aggressive suspend\n",
2132 			mmc_hostname(host), err);
2133 
2134 	return err;
2135 }
2136 
2137 /*
2138  * Callback for runtime_resume.
2139  */
2140 static int mmc_runtime_resume(struct mmc_host *host)
2141 {
2142 	int err;
2143 
2144 	err = _mmc_resume(host);
2145 	if (err && err != -ENOMEDIUM)
2146 		pr_err("%s: error %d doing runtime resume\n",
2147 			mmc_hostname(host), err);
2148 
2149 	return 0;
2150 }
2151 
2152 static int mmc_can_reset(struct mmc_card *card)
2153 {
2154 	u8 rst_n_function;
2155 
2156 	rst_n_function = card->ext_csd.rst_n_function;
2157 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2158 		return 0;
2159 	return 1;
2160 }
2161 
2162 static int _mmc_hw_reset(struct mmc_host *host)
2163 {
2164 	struct mmc_card *card = host->card;
2165 
2166 	/*
2167 	 * In the case of recovery, we can't expect flushing the cache to work
2168 	 * always, but we have a go and ignore errors.
2169 	 */
2170 	mmc_flush_cache(host->card);
2171 
2172 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2173 	     mmc_can_reset(card)) {
2174 		/* If the card accept RST_n signal, send it. */
2175 		mmc_set_clock(host, host->f_init);
2176 		host->ops->hw_reset(host);
2177 		/* Set initial state and call mmc_set_ios */
2178 		mmc_set_initial_state(host);
2179 	} else {
2180 		/* Do a brute force power cycle */
2181 		mmc_power_cycle(host, card->ocr);
2182 		mmc_pwrseq_reset(host);
2183 	}
2184 	return mmc_init_card(host, card->ocr, card);
2185 }
2186 
2187 static const struct mmc_bus_ops mmc_ops = {
2188 	.remove = mmc_remove,
2189 	.detect = mmc_detect,
2190 	.suspend = mmc_suspend,
2191 	.resume = mmc_resume,
2192 	.runtime_suspend = mmc_runtime_suspend,
2193 	.runtime_resume = mmc_runtime_resume,
2194 	.alive = mmc_alive,
2195 	.shutdown = mmc_shutdown,
2196 	.hw_reset = _mmc_hw_reset,
2197 };
2198 
2199 /*
2200  * Starting point for MMC card init.
2201  */
2202 int mmc_attach_mmc(struct mmc_host *host)
2203 {
2204 	int err;
2205 	u32 ocr, rocr;
2206 
2207 	WARN_ON(!host->claimed);
2208 
2209 	/* Set correct bus mode for MMC before attempting attach */
2210 	if (!mmc_host_is_spi(host))
2211 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2212 
2213 	err = mmc_send_op_cond(host, 0, &ocr);
2214 	if (err)
2215 		return err;
2216 
2217 	mmc_attach_bus(host, &mmc_ops);
2218 	if (host->ocr_avail_mmc)
2219 		host->ocr_avail = host->ocr_avail_mmc;
2220 
2221 	/*
2222 	 * We need to get OCR a different way for SPI.
2223 	 */
2224 	if (mmc_host_is_spi(host)) {
2225 		err = mmc_spi_read_ocr(host, 1, &ocr);
2226 		if (err)
2227 			goto err;
2228 	}
2229 
2230 	rocr = mmc_select_voltage(host, ocr);
2231 
2232 	/*
2233 	 * Can we support the voltage of the card?
2234 	 */
2235 	if (!rocr) {
2236 		err = -EINVAL;
2237 		goto err;
2238 	}
2239 
2240 	/*
2241 	 * Detect and init the card.
2242 	 */
2243 	err = mmc_init_card(host, rocr, NULL);
2244 	if (err)
2245 		goto err;
2246 
2247 	mmc_release_host(host);
2248 	err = mmc_add_card(host->card);
2249 	if (err)
2250 		goto remove_card;
2251 
2252 	mmc_claim_host(host);
2253 	return 0;
2254 
2255 remove_card:
2256 	mmc_remove_card(host->card);
2257 	mmc_claim_host(host);
2258 	host->card = NULL;
2259 err:
2260 	mmc_detach_bus(host);
2261 
2262 	pr_err("%s: error %d whilst initialising MMC card\n",
2263 		mmc_hostname(host), err);
2264 
2265 	return err;
2266 }
2267