1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 #include "pwrseq.h" 31 32 #define DEFAULT_CMD6_TIMEOUT_MS 500 33 #define MIN_CACHE_EN_TIMEOUT_MS 1600 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 #define UNSTUFF_BITS(resp,start,size) \ 55 ({ \ 56 const int __size = size; \ 57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 58 const int __off = 3 - ((start) / 32); \ 59 const int __shft = (start) & 31; \ 60 u32 __res; \ 61 \ 62 __res = resp[__off] >> __shft; \ 63 if (__size + __shft > 32) \ 64 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 65 __res & __mask; \ 66 }) 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 static int mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * The selection of the format here is based upon published 77 * specs from sandisk and from what people have reported. 78 */ 79 switch (card->csd.mmca_vsn) { 80 case 0: /* MMC v1.0 - v1.2 */ 81 case 1: /* MMC v1.4 */ 82 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 83 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 84 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 85 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 86 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 87 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 88 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 89 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 90 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 91 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 92 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 93 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 94 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 95 break; 96 97 case 2: /* MMC v2.0 - v2.2 */ 98 case 3: /* MMC v3.1 - v3.3 */ 99 case 4: /* MMC v4 */ 100 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 101 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 102 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 103 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 104 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 105 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 106 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 107 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 108 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 109 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 110 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 111 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 112 break; 113 114 default: 115 pr_err("%s: card has unknown MMCA version %d\n", 116 mmc_hostname(card->host), card->csd.mmca_vsn); 117 return -EINVAL; 118 } 119 120 return 0; 121 } 122 123 static void mmc_set_erase_size(struct mmc_card *card) 124 { 125 if (card->ext_csd.erase_group_def & 1) 126 card->erase_size = card->ext_csd.hc_erase_size; 127 else 128 card->erase_size = card->csd.erase_size; 129 130 mmc_init_erase(card); 131 } 132 133 /* 134 * Given a 128-bit response, decode to our card CSD structure. 135 */ 136 static int mmc_decode_csd(struct mmc_card *card) 137 { 138 struct mmc_csd *csd = &card->csd; 139 unsigned int e, m, a, b; 140 u32 *resp = card->raw_csd; 141 142 /* 143 * We only understand CSD structure v1.1 and v1.2. 144 * v1.2 has extra information in bits 15, 11 and 10. 145 * We also support eMMC v4.4 & v4.41. 146 */ 147 csd->structure = UNSTUFF_BITS(resp, 126, 2); 148 if (csd->structure == 0) { 149 pr_err("%s: unrecognised CSD structure version %d\n", 150 mmc_hostname(card->host), csd->structure); 151 return -EINVAL; 152 } 153 154 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 155 m = UNSTUFF_BITS(resp, 115, 4); 156 e = UNSTUFF_BITS(resp, 112, 3); 157 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 158 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 159 160 m = UNSTUFF_BITS(resp, 99, 4); 161 e = UNSTUFF_BITS(resp, 96, 3); 162 csd->max_dtr = tran_exp[e] * tran_mant[m]; 163 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 164 165 e = UNSTUFF_BITS(resp, 47, 3); 166 m = UNSTUFF_BITS(resp, 62, 12); 167 csd->capacity = (1 + m) << (e + 2); 168 169 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 170 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 171 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 172 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 173 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 174 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 175 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 176 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 177 178 if (csd->write_blkbits >= 9) { 179 a = UNSTUFF_BITS(resp, 42, 5); 180 b = UNSTUFF_BITS(resp, 37, 5); 181 csd->erase_size = (a + 1) * (b + 1); 182 csd->erase_size <<= csd->write_blkbits - 9; 183 } 184 185 return 0; 186 } 187 188 static void mmc_select_card_type(struct mmc_card *card) 189 { 190 struct mmc_host *host = card->host; 191 u8 card_type = card->ext_csd.raw_card_type; 192 u32 caps = host->caps, caps2 = host->caps2; 193 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 194 unsigned int avail_type = 0; 195 196 if (caps & MMC_CAP_MMC_HIGHSPEED && 197 card_type & EXT_CSD_CARD_TYPE_HS_26) { 198 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 199 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 200 } 201 202 if (caps & MMC_CAP_MMC_HIGHSPEED && 203 card_type & EXT_CSD_CARD_TYPE_HS_52) { 204 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 205 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 206 } 207 208 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 209 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 212 } 213 214 if (caps & MMC_CAP_1_2V_DDR && 215 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 218 } 219 220 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 221 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 222 hs200_max_dtr = MMC_HS200_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 224 } 225 226 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 227 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 228 hs200_max_dtr = MMC_HS200_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 230 } 231 232 if (caps2 & MMC_CAP2_HS400_1_8V && 233 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 234 hs200_max_dtr = MMC_HS200_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 236 } 237 238 if (caps2 & MMC_CAP2_HS400_1_2V && 239 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 240 hs200_max_dtr = MMC_HS200_MAX_DTR; 241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 242 } 243 244 if ((caps2 & MMC_CAP2_HS400_ES) && 245 card->ext_csd.strobe_support && 246 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 247 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 248 249 card->ext_csd.hs_max_dtr = hs_max_dtr; 250 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 251 card->mmc_avail_type = avail_type; 252 } 253 254 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 255 { 256 u8 hc_erase_grp_sz, hc_wp_grp_sz; 257 258 /* 259 * Disable these attributes by default 260 */ 261 card->ext_csd.enhanced_area_offset = -EINVAL; 262 card->ext_csd.enhanced_area_size = -EINVAL; 263 264 /* 265 * Enhanced area feature support -- check whether the eMMC 266 * card has the Enhanced area enabled. If so, export enhanced 267 * area offset and size to user by adding sysfs interface. 268 */ 269 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 270 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 271 if (card->ext_csd.partition_setting_completed) { 272 hc_erase_grp_sz = 273 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 274 hc_wp_grp_sz = 275 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 276 277 /* 278 * calculate the enhanced data area offset, in bytes 279 */ 280 card->ext_csd.enhanced_area_offset = 281 (((unsigned long long)ext_csd[139]) << 24) + 282 (((unsigned long long)ext_csd[138]) << 16) + 283 (((unsigned long long)ext_csd[137]) << 8) + 284 (((unsigned long long)ext_csd[136])); 285 if (mmc_card_blockaddr(card)) 286 card->ext_csd.enhanced_area_offset <<= 9; 287 /* 288 * calculate the enhanced data area size, in kilobytes 289 */ 290 card->ext_csd.enhanced_area_size = 291 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 292 ext_csd[140]; 293 card->ext_csd.enhanced_area_size *= 294 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 295 card->ext_csd.enhanced_area_size <<= 9; 296 } else { 297 pr_warn("%s: defines enhanced area without partition setting complete\n", 298 mmc_hostname(card->host)); 299 } 300 } 301 } 302 303 static void mmc_part_add(struct mmc_card *card, unsigned int size, 304 unsigned int part_cfg, char *name, int idx, bool ro, 305 int area_type) 306 { 307 card->part[card->nr_parts].size = size; 308 card->part[card->nr_parts].part_cfg = part_cfg; 309 sprintf(card->part[card->nr_parts].name, name, idx); 310 card->part[card->nr_parts].force_ro = ro; 311 card->part[card->nr_parts].area_type = area_type; 312 card->nr_parts++; 313 } 314 315 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 316 { 317 int idx; 318 u8 hc_erase_grp_sz, hc_wp_grp_sz; 319 unsigned int part_size; 320 321 /* 322 * General purpose partition feature support -- 323 * If ext_csd has the size of general purpose partitions, 324 * set size, part_cfg, partition name in mmc_part. 325 */ 326 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 327 EXT_CSD_PART_SUPPORT_PART_EN) { 328 hc_erase_grp_sz = 329 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 330 hc_wp_grp_sz = 331 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 332 333 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 334 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 336 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 337 continue; 338 if (card->ext_csd.partition_setting_completed == 0) { 339 pr_warn("%s: has partition size defined without partition complete\n", 340 mmc_hostname(card->host)); 341 break; 342 } 343 part_size = 344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 345 << 16) + 346 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 347 << 8) + 348 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 349 part_size *= (size_t)(hc_erase_grp_sz * 350 hc_wp_grp_sz); 351 mmc_part_add(card, part_size << 19, 352 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 353 "gp%d", idx, false, 354 MMC_BLK_DATA_AREA_GP); 355 } 356 } 357 } 358 359 /* Minimum partition switch timeout in milliseconds */ 360 #define MMC_MIN_PART_SWITCH_TIME 300 361 362 /* 363 * Decode extended CSD. 364 */ 365 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 366 { 367 int err = 0, idx; 368 unsigned int part_size; 369 struct device_node *np; 370 bool broken_hpi = false; 371 372 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 373 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 374 if (card->csd.structure == 3) { 375 if (card->ext_csd.raw_ext_csd_structure > 2) { 376 pr_err("%s: unrecognised EXT_CSD structure " 377 "version %d\n", mmc_hostname(card->host), 378 card->ext_csd.raw_ext_csd_structure); 379 err = -EINVAL; 380 goto out; 381 } 382 } 383 384 np = mmc_of_find_child_device(card->host, 0); 385 if (np && of_device_is_compatible(np, "mmc-card")) 386 broken_hpi = of_property_read_bool(np, "broken-hpi"); 387 of_node_put(np); 388 389 /* 390 * The EXT_CSD format is meant to be forward compatible. As long 391 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 392 * are authorized, see JEDEC JESD84-B50 section B.8. 393 */ 394 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 395 396 /* fixup device after ext_csd revision field is updated */ 397 mmc_fixup_device(card, mmc_ext_csd_fixups); 398 399 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 400 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 401 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 402 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 403 if (card->ext_csd.rev >= 2) { 404 card->ext_csd.sectors = 405 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 406 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 407 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 408 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 409 410 /* Cards with density > 2GiB are sector addressed */ 411 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 412 mmc_card_set_blockaddr(card); 413 } 414 415 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 416 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 417 mmc_select_card_type(card); 418 419 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 420 card->ext_csd.raw_erase_timeout_mult = 421 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 422 card->ext_csd.raw_hc_erase_grp_size = 423 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 424 if (card->ext_csd.rev >= 3) { 425 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 426 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 427 428 /* EXT_CSD value is in units of 10ms, but we store in ms */ 429 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 430 /* Some eMMC set the value too low so set a minimum */ 431 if (card->ext_csd.part_time && 432 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 433 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 434 435 /* Sleep / awake timeout in 100ns units */ 436 if (sa_shift > 0 && sa_shift <= 0x17) 437 card->ext_csd.sa_timeout = 438 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 439 card->ext_csd.erase_group_def = 440 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 441 card->ext_csd.hc_erase_timeout = 300 * 442 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 443 card->ext_csd.hc_erase_size = 444 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 445 446 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 447 448 /* 449 * There are two boot regions of equal size, defined in 450 * multiples of 128K. 451 */ 452 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 453 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 454 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 455 mmc_part_add(card, part_size, 456 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 457 "boot%d", idx, true, 458 MMC_BLK_DATA_AREA_BOOT); 459 } 460 } 461 } 462 463 card->ext_csd.raw_hc_erase_gap_size = 464 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 465 card->ext_csd.raw_sec_trim_mult = 466 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 467 card->ext_csd.raw_sec_erase_mult = 468 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 469 card->ext_csd.raw_sec_feature_support = 470 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 471 card->ext_csd.raw_trim_mult = 472 ext_csd[EXT_CSD_TRIM_MULT]; 473 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 474 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 475 if (card->ext_csd.rev >= 4) { 476 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 477 EXT_CSD_PART_SETTING_COMPLETED) 478 card->ext_csd.partition_setting_completed = 1; 479 else 480 card->ext_csd.partition_setting_completed = 0; 481 482 mmc_manage_enhanced_area(card, ext_csd); 483 484 mmc_manage_gp_partitions(card, ext_csd); 485 486 card->ext_csd.sec_trim_mult = 487 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 488 card->ext_csd.sec_erase_mult = 489 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 490 card->ext_csd.sec_feature_support = 491 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 492 card->ext_csd.trim_timeout = 300 * 493 ext_csd[EXT_CSD_TRIM_MULT]; 494 495 /* 496 * Note that the call to mmc_part_add above defaults to read 497 * only. If this default assumption is changed, the call must 498 * take into account the value of boot_locked below. 499 */ 500 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 501 card->ext_csd.boot_ro_lockable = true; 502 503 /* Save power class values */ 504 card->ext_csd.raw_pwr_cl_52_195 = 505 ext_csd[EXT_CSD_PWR_CL_52_195]; 506 card->ext_csd.raw_pwr_cl_26_195 = 507 ext_csd[EXT_CSD_PWR_CL_26_195]; 508 card->ext_csd.raw_pwr_cl_52_360 = 509 ext_csd[EXT_CSD_PWR_CL_52_360]; 510 card->ext_csd.raw_pwr_cl_26_360 = 511 ext_csd[EXT_CSD_PWR_CL_26_360]; 512 card->ext_csd.raw_pwr_cl_200_195 = 513 ext_csd[EXT_CSD_PWR_CL_200_195]; 514 card->ext_csd.raw_pwr_cl_200_360 = 515 ext_csd[EXT_CSD_PWR_CL_200_360]; 516 card->ext_csd.raw_pwr_cl_ddr_52_195 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 518 card->ext_csd.raw_pwr_cl_ddr_52_360 = 519 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 520 card->ext_csd.raw_pwr_cl_ddr_200_360 = 521 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 522 } 523 524 if (card->ext_csd.rev >= 5) { 525 /* Adjust production date as per JEDEC JESD84-B451 */ 526 if (card->cid.year < 2010) 527 card->cid.year += 16; 528 529 /* check whether the eMMC card supports BKOPS */ 530 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 531 card->ext_csd.bkops = 1; 532 card->ext_csd.man_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_MANUAL_BKOPS_MASK); 535 card->ext_csd.raw_bkops_status = 536 ext_csd[EXT_CSD_BKOPS_STATUS]; 537 if (card->ext_csd.man_bkops_en) 538 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 539 mmc_hostname(card->host)); 540 card->ext_csd.auto_bkops_en = 541 (ext_csd[EXT_CSD_BKOPS_EN] & 542 EXT_CSD_AUTO_BKOPS_MASK); 543 if (card->ext_csd.auto_bkops_en) 544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 545 mmc_hostname(card->host)); 546 } 547 548 /* check whether the eMMC card supports HPI */ 549 if (!mmc_card_broken_hpi(card) && 550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 551 card->ext_csd.hpi = 1; 552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 554 else 555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 556 /* 557 * Indicate the maximum timeout to close 558 * a command interrupted by HPI 559 */ 560 card->ext_csd.out_of_int_time = 561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 562 } 563 564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 566 567 /* 568 * RPMB regions are defined in multiples of 128K. 569 */ 570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 573 EXT_CSD_PART_CONFIG_ACC_RPMB, 574 "rpmb", 0, false, 575 MMC_BLK_DATA_AREA_RPMB); 576 } 577 } 578 579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 581 card->erased_byte = 0xFF; 582 else 583 card->erased_byte = 0x0; 584 585 /* eMMC v4.5 or later */ 586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 587 if (card->ext_csd.rev >= 6) { 588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 589 590 card->ext_csd.generic_cmd6_time = 10 * 591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 592 card->ext_csd.power_off_longtime = 10 * 593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 594 595 card->ext_csd.cache_size = 596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 600 601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 602 card->ext_csd.data_sector_size = 4096; 603 else 604 card->ext_csd.data_sector_size = 512; 605 606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 608 card->ext_csd.data_tag_unit_size = 609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 610 (card->ext_csd.data_sector_size); 611 } else { 612 card->ext_csd.data_tag_unit_size = 0; 613 } 614 615 card->ext_csd.max_packed_writes = 616 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 617 card->ext_csd.max_packed_reads = 618 ext_csd[EXT_CSD_MAX_PACKED_READS]; 619 } else { 620 card->ext_csd.data_sector_size = 512; 621 } 622 623 /* eMMC v5 or later */ 624 if (card->ext_csd.rev >= 7) { 625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 626 MMC_FIRMWARE_LEN); 627 card->ext_csd.ffu_capable = 628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 630 631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 632 card->ext_csd.device_life_time_est_typ_a = 633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 634 card->ext_csd.device_life_time_est_typ_b = 635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 636 } 637 638 /* eMMC v5.1 or later */ 639 if (card->ext_csd.rev >= 8) { 640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 641 EXT_CSD_CMDQ_SUPPORTED; 642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 643 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 644 /* Exclude inefficiently small queue depths */ 645 if (card->ext_csd.cmdq_depth <= 2) { 646 card->ext_csd.cmdq_support = false; 647 card->ext_csd.cmdq_depth = 0; 648 } 649 if (card->ext_csd.cmdq_support) { 650 pr_debug("%s: Command Queue supported depth %u\n", 651 mmc_hostname(card->host), 652 card->ext_csd.cmdq_depth); 653 } 654 } 655 out: 656 return err; 657 } 658 659 static int mmc_read_ext_csd(struct mmc_card *card) 660 { 661 u8 *ext_csd; 662 int err; 663 664 if (!mmc_can_ext_csd(card)) 665 return 0; 666 667 err = mmc_get_ext_csd(card, &ext_csd); 668 if (err) { 669 /* If the host or the card can't do the switch, 670 * fail more gracefully. */ 671 if ((err != -EINVAL) 672 && (err != -ENOSYS) 673 && (err != -EFAULT)) 674 return err; 675 676 /* 677 * High capacity cards should have this "magic" size 678 * stored in their CSD. 679 */ 680 if (card->csd.capacity == (4096 * 512)) { 681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 682 mmc_hostname(card->host)); 683 } else { 684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 685 mmc_hostname(card->host)); 686 err = 0; 687 } 688 689 return err; 690 } 691 692 err = mmc_decode_ext_csd(card, ext_csd); 693 kfree(ext_csd); 694 return err; 695 } 696 697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 698 { 699 u8 *bw_ext_csd; 700 int err; 701 702 if (bus_width == MMC_BUS_WIDTH_1) 703 return 0; 704 705 err = mmc_get_ext_csd(card, &bw_ext_csd); 706 if (err) 707 return err; 708 709 /* only compare read only fields */ 710 err = !((card->ext_csd.raw_partition_support == 711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 712 (card->ext_csd.raw_erased_mem_count == 713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 714 (card->ext_csd.rev == 715 bw_ext_csd[EXT_CSD_REV]) && 716 (card->ext_csd.raw_ext_csd_structure == 717 bw_ext_csd[EXT_CSD_STRUCTURE]) && 718 (card->ext_csd.raw_card_type == 719 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 720 (card->ext_csd.raw_s_a_timeout == 721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 722 (card->ext_csd.raw_hc_erase_gap_size == 723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 724 (card->ext_csd.raw_erase_timeout_mult == 725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 726 (card->ext_csd.raw_hc_erase_grp_size == 727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 728 (card->ext_csd.raw_sec_trim_mult == 729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 730 (card->ext_csd.raw_sec_erase_mult == 731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 732 (card->ext_csd.raw_sec_feature_support == 733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 734 (card->ext_csd.raw_trim_mult == 735 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 736 (card->ext_csd.raw_sectors[0] == 737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 738 (card->ext_csd.raw_sectors[1] == 739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 740 (card->ext_csd.raw_sectors[2] == 741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 742 (card->ext_csd.raw_sectors[3] == 743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 744 (card->ext_csd.raw_pwr_cl_52_195 == 745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 746 (card->ext_csd.raw_pwr_cl_26_195 == 747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 748 (card->ext_csd.raw_pwr_cl_52_360 == 749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 750 (card->ext_csd.raw_pwr_cl_26_360 == 751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 752 (card->ext_csd.raw_pwr_cl_200_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 754 (card->ext_csd.raw_pwr_cl_200_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 756 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 758 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 760 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 762 763 if (err) 764 err = -EINVAL; 765 766 kfree(bw_ext_csd); 767 return err; 768 } 769 770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 771 card->raw_cid[2], card->raw_cid[3]); 772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 773 card->raw_csd[2], card->raw_csd[3]); 774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 786 card->ext_csd.device_life_time_est_typ_a, 787 card->ext_csd.device_life_time_est_typ_b); 788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 790 card->ext_csd.enhanced_area_offset); 791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 797 798 static ssize_t mmc_fwrev_show(struct device *dev, 799 struct device_attribute *attr, 800 char *buf) 801 { 802 struct mmc_card *card = mmc_dev_to_card(dev); 803 804 if (card->ext_csd.rev < 7) { 805 return sprintf(buf, "0x%x\n", card->cid.fwrev); 806 } else { 807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 808 card->ext_csd.fwrev); 809 } 810 } 811 812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 813 814 static ssize_t mmc_dsr_show(struct device *dev, 815 struct device_attribute *attr, 816 char *buf) 817 { 818 struct mmc_card *card = mmc_dev_to_card(dev); 819 struct mmc_host *host = card->host; 820 821 if (card->csd.dsr_imp && host->dsr_req) 822 return sprintf(buf, "0x%x\n", host->dsr); 823 else 824 /* return default DSR value */ 825 return sprintf(buf, "0x%x\n", 0x404); 826 } 827 828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 829 830 static struct attribute *mmc_std_attrs[] = { 831 &dev_attr_cid.attr, 832 &dev_attr_csd.attr, 833 &dev_attr_date.attr, 834 &dev_attr_erase_size.attr, 835 &dev_attr_preferred_erase_size.attr, 836 &dev_attr_fwrev.attr, 837 &dev_attr_ffu_capable.attr, 838 &dev_attr_hwrev.attr, 839 &dev_attr_manfid.attr, 840 &dev_attr_name.attr, 841 &dev_attr_oemid.attr, 842 &dev_attr_prv.attr, 843 &dev_attr_rev.attr, 844 &dev_attr_pre_eol_info.attr, 845 &dev_attr_life_time.attr, 846 &dev_attr_serial.attr, 847 &dev_attr_enhanced_area_offset.attr, 848 &dev_attr_enhanced_area_size.attr, 849 &dev_attr_raw_rpmb_size_mult.attr, 850 &dev_attr_rel_sectors.attr, 851 &dev_attr_ocr.attr, 852 &dev_attr_rca.attr, 853 &dev_attr_dsr.attr, 854 &dev_attr_cmdq_en.attr, 855 NULL, 856 }; 857 ATTRIBUTE_GROUPS(mmc_std); 858 859 static struct device_type mmc_type = { 860 .groups = mmc_std_groups, 861 }; 862 863 /* 864 * Select the PowerClass for the current bus width 865 * If power class is defined for 4/8 bit bus in the 866 * extended CSD register, select it by executing the 867 * mmc_switch command. 868 */ 869 static int __mmc_select_powerclass(struct mmc_card *card, 870 unsigned int bus_width) 871 { 872 struct mmc_host *host = card->host; 873 struct mmc_ext_csd *ext_csd = &card->ext_csd; 874 unsigned int pwrclass_val = 0; 875 int err = 0; 876 877 switch (1 << host->ios.vdd) { 878 case MMC_VDD_165_195: 879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 880 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 883 ext_csd->raw_pwr_cl_52_195 : 884 ext_csd->raw_pwr_cl_ddr_52_195; 885 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 886 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 887 break; 888 case MMC_VDD_27_28: 889 case MMC_VDD_28_29: 890 case MMC_VDD_29_30: 891 case MMC_VDD_30_31: 892 case MMC_VDD_31_32: 893 case MMC_VDD_32_33: 894 case MMC_VDD_33_34: 895 case MMC_VDD_34_35: 896 case MMC_VDD_35_36: 897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 898 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 901 ext_csd->raw_pwr_cl_52_360 : 902 ext_csd->raw_pwr_cl_ddr_52_360; 903 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 905 ext_csd->raw_pwr_cl_ddr_200_360 : 906 ext_csd->raw_pwr_cl_200_360; 907 break; 908 default: 909 pr_warn("%s: Voltage range not supported for power class\n", 910 mmc_hostname(host)); 911 return -EINVAL; 912 } 913 914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 916 EXT_CSD_PWR_CL_8BIT_SHIFT; 917 else 918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 919 EXT_CSD_PWR_CL_4BIT_SHIFT; 920 921 /* If the power class is different from the default value */ 922 if (pwrclass_val > 0) { 923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 924 EXT_CSD_POWER_CLASS, 925 pwrclass_val, 926 card->ext_csd.generic_cmd6_time); 927 } 928 929 return err; 930 } 931 932 static int mmc_select_powerclass(struct mmc_card *card) 933 { 934 struct mmc_host *host = card->host; 935 u32 bus_width, ext_csd_bits; 936 int err, ddr; 937 938 /* Power class selection is supported for versions >= 4.0 */ 939 if (!mmc_can_ext_csd(card)) 940 return 0; 941 942 bus_width = host->ios.bus_width; 943 /* Power class values are defined only for 4/8 bit bus */ 944 if (bus_width == MMC_BUS_WIDTH_1) 945 return 0; 946 947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 948 if (ddr) 949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 951 else 952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 954 955 err = __mmc_select_powerclass(card, ext_csd_bits); 956 if (err) 957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 958 mmc_hostname(host), 1 << bus_width, ddr); 959 960 return err; 961 } 962 963 /* 964 * Set the bus speed for the selected speed mode. 965 */ 966 static void mmc_set_bus_speed(struct mmc_card *card) 967 { 968 unsigned int max_dtr = (unsigned int)-1; 969 970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 971 max_dtr > card->ext_csd.hs200_max_dtr) 972 max_dtr = card->ext_csd.hs200_max_dtr; 973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 974 max_dtr = card->ext_csd.hs_max_dtr; 975 else if (max_dtr > card->csd.max_dtr) 976 max_dtr = card->csd.max_dtr; 977 978 mmc_set_clock(card->host, max_dtr); 979 } 980 981 /* 982 * Select the bus width amoung 4-bit and 8-bit(SDR). 983 * If the bus width is changed successfully, return the selected width value. 984 * Zero is returned instead of error value if the wide width is not supported. 985 */ 986 static int mmc_select_bus_width(struct mmc_card *card) 987 { 988 static unsigned ext_csd_bits[] = { 989 EXT_CSD_BUS_WIDTH_8, 990 EXT_CSD_BUS_WIDTH_4, 991 }; 992 static unsigned bus_widths[] = { 993 MMC_BUS_WIDTH_8, 994 MMC_BUS_WIDTH_4, 995 }; 996 struct mmc_host *host = card->host; 997 unsigned idx, bus_width = 0; 998 int err = 0; 999 1000 if (!mmc_can_ext_csd(card) || 1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1002 return 0; 1003 1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1005 1006 /* 1007 * Unlike SD, MMC cards dont have a configuration register to notify 1008 * supported bus width. So bus test command should be run to identify 1009 * the supported bus width or compare the ext csd values of current 1010 * bus width and ext csd values of 1 bit mode read earlier. 1011 */ 1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1013 /* 1014 * Host is capable of 8bit transfer, then switch 1015 * the device to work in 8bit transfer mode. If the 1016 * mmc switch command returns error then switch to 1017 * 4bit transfer mode. On success set the corresponding 1018 * bus width on the host. 1019 */ 1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1021 EXT_CSD_BUS_WIDTH, 1022 ext_csd_bits[idx], 1023 card->ext_csd.generic_cmd6_time); 1024 if (err) 1025 continue; 1026 1027 bus_width = bus_widths[idx]; 1028 mmc_set_bus_width(host, bus_width); 1029 1030 /* 1031 * If controller can't handle bus width test, 1032 * compare ext_csd previously read in 1 bit mode 1033 * against ext_csd at new bus width 1034 */ 1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1036 err = mmc_compare_ext_csds(card, bus_width); 1037 else 1038 err = mmc_bus_test(card, bus_width); 1039 1040 if (!err) { 1041 err = bus_width; 1042 break; 1043 } else { 1044 pr_warn("%s: switch to bus width %d failed\n", 1045 mmc_hostname(host), 1 << bus_width); 1046 } 1047 } 1048 1049 return err; 1050 } 1051 1052 /* 1053 * Switch to the high-speed mode 1054 */ 1055 static int mmc_select_hs(struct mmc_card *card) 1056 { 1057 int err; 1058 1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1062 true, true, true); 1063 if (err) 1064 pr_warn("%s: switch to high-speed failed, err:%d\n", 1065 mmc_hostname(card->host), err); 1066 1067 return err; 1068 } 1069 1070 /* 1071 * Activate wide bus and DDR if supported. 1072 */ 1073 static int mmc_select_hs_ddr(struct mmc_card *card) 1074 { 1075 struct mmc_host *host = card->host; 1076 u32 bus_width, ext_csd_bits; 1077 int err = 0; 1078 1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1080 return 0; 1081 1082 bus_width = host->ios.bus_width; 1083 if (bus_width == MMC_BUS_WIDTH_1) 1084 return 0; 1085 1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1088 1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1090 EXT_CSD_BUS_WIDTH, 1091 ext_csd_bits, 1092 card->ext_csd.generic_cmd6_time, 1093 MMC_TIMING_MMC_DDR52, 1094 true, true, true); 1095 if (err) { 1096 pr_err("%s: switch to bus width %d ddr failed\n", 1097 mmc_hostname(host), 1 << bus_width); 1098 return err; 1099 } 1100 1101 /* 1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1103 * signaling. 1104 * 1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1106 * 1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1108 * in the JEDEC spec for DDR. 1109 * 1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1111 * host controller can support this, like some of the SDHCI 1112 * controller which connect to an eMMC device. Some of these 1113 * host controller still needs to use 1.8v vccq for supporting 1114 * DDR mode. 1115 * 1116 * So the sequence will be: 1117 * if (host and device can both support 1.2v IO) 1118 * use 1.2v IO; 1119 * else if (host and device can both support 1.8v IO) 1120 * use 1.8v IO; 1121 * so if host and device can only support 3.3v IO, this is the 1122 * last choice. 1123 * 1124 * WARNING: eMMC rules are NOT the same as SD DDR 1125 */ 1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1128 if (!err) 1129 return 0; 1130 } 1131 1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1133 host->caps & MMC_CAP_1_8V_DDR) 1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1135 1136 /* make sure vccq is 3.3v after switching disaster */ 1137 if (err) 1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1139 1140 return err; 1141 } 1142 1143 static int mmc_select_hs400(struct mmc_card *card) 1144 { 1145 struct mmc_host *host = card->host; 1146 unsigned int max_dtr; 1147 int err = 0; 1148 u8 val; 1149 1150 /* 1151 * HS400 mode requires 8-bit bus width 1152 */ 1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1154 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1155 return 0; 1156 1157 /* Switch card to HS mode */ 1158 val = EXT_CSD_TIMING_HS; 1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1160 EXT_CSD_HS_TIMING, val, 1161 card->ext_csd.generic_cmd6_time, 0, 1162 true, false, true); 1163 if (err) { 1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1165 mmc_hostname(host), err); 1166 return err; 1167 } 1168 1169 /* Set host controller to HS timing */ 1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1171 1172 /* Prepare host to downgrade to HS timing */ 1173 if (host->ops->hs400_downgrade) 1174 host->ops->hs400_downgrade(host); 1175 1176 /* Reduce frequency to HS frequency */ 1177 max_dtr = card->ext_csd.hs_max_dtr; 1178 mmc_set_clock(host, max_dtr); 1179 1180 err = mmc_switch_status(card); 1181 if (err) 1182 goto out_err; 1183 1184 if (host->ops->hs400_prepare_ddr) 1185 host->ops->hs400_prepare_ddr(host); 1186 1187 /* Switch card to DDR */ 1188 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1189 EXT_CSD_BUS_WIDTH, 1190 EXT_CSD_DDR_BUS_WIDTH_8, 1191 card->ext_csd.generic_cmd6_time); 1192 if (err) { 1193 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1194 mmc_hostname(host), err); 1195 return err; 1196 } 1197 1198 /* Switch card to HS400 */ 1199 val = EXT_CSD_TIMING_HS400 | 1200 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1201 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1202 EXT_CSD_HS_TIMING, val, 1203 card->ext_csd.generic_cmd6_time, 0, 1204 true, false, true); 1205 if (err) { 1206 pr_err("%s: switch to hs400 failed, err:%d\n", 1207 mmc_hostname(host), err); 1208 return err; 1209 } 1210 1211 /* Set host controller to HS400 timing and frequency */ 1212 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1213 mmc_set_bus_speed(card); 1214 1215 err = mmc_switch_status(card); 1216 if (err) 1217 goto out_err; 1218 1219 if (host->ops->hs400_complete) 1220 host->ops->hs400_complete(host); 1221 1222 return 0; 1223 1224 out_err: 1225 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1226 __func__, err); 1227 return err; 1228 } 1229 1230 int mmc_hs200_to_hs400(struct mmc_card *card) 1231 { 1232 return mmc_select_hs400(card); 1233 } 1234 1235 int mmc_hs400_to_hs200(struct mmc_card *card) 1236 { 1237 struct mmc_host *host = card->host; 1238 unsigned int max_dtr; 1239 int err; 1240 u8 val; 1241 1242 /* Reduce frequency to HS */ 1243 max_dtr = card->ext_csd.hs_max_dtr; 1244 mmc_set_clock(host, max_dtr); 1245 1246 /* Switch HS400 to HS DDR */ 1247 val = EXT_CSD_TIMING_HS; 1248 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1249 val, card->ext_csd.generic_cmd6_time, 0, 1250 true, false, true); 1251 if (err) 1252 goto out_err; 1253 1254 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1255 1256 err = mmc_switch_status(card); 1257 if (err) 1258 goto out_err; 1259 1260 /* Switch HS DDR to HS */ 1261 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1262 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1263 0, true, false, true); 1264 if (err) 1265 goto out_err; 1266 1267 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1268 1269 if (host->ops->hs400_downgrade) 1270 host->ops->hs400_downgrade(host); 1271 1272 err = mmc_switch_status(card); 1273 if (err) 1274 goto out_err; 1275 1276 /* Switch HS to HS200 */ 1277 val = EXT_CSD_TIMING_HS200 | 1278 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1279 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1280 val, card->ext_csd.generic_cmd6_time, 0, 1281 true, false, true); 1282 if (err) 1283 goto out_err; 1284 1285 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1286 1287 /* 1288 * For HS200, CRC errors are not a reliable way to know the switch 1289 * failed. If there really is a problem, we would expect tuning will 1290 * fail and the result ends up the same. 1291 */ 1292 err = __mmc_switch_status(card, false); 1293 if (err) 1294 goto out_err; 1295 1296 mmc_set_bus_speed(card); 1297 1298 /* Prepare tuning for HS400 mode. */ 1299 if (host->ops->prepare_hs400_tuning) 1300 host->ops->prepare_hs400_tuning(host, &host->ios); 1301 1302 return 0; 1303 1304 out_err: 1305 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1306 __func__, err); 1307 return err; 1308 } 1309 1310 static void mmc_select_driver_type(struct mmc_card *card) 1311 { 1312 int card_drv_type, drive_strength, drv_type = 0; 1313 int fixed_drv_type = card->host->fixed_drv_type; 1314 1315 card_drv_type = card->ext_csd.raw_driver_strength | 1316 mmc_driver_type_mask(0); 1317 1318 if (fixed_drv_type >= 0) 1319 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1320 ? fixed_drv_type : 0; 1321 else 1322 drive_strength = mmc_select_drive_strength(card, 1323 card->ext_csd.hs200_max_dtr, 1324 card_drv_type, &drv_type); 1325 1326 card->drive_strength = drive_strength; 1327 1328 if (drv_type) 1329 mmc_set_driver_type(card->host, drv_type); 1330 } 1331 1332 static int mmc_select_hs400es(struct mmc_card *card) 1333 { 1334 struct mmc_host *host = card->host; 1335 int err = -EINVAL; 1336 u8 val; 1337 1338 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1339 err = -ENOTSUPP; 1340 goto out_err; 1341 } 1342 1343 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1344 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1345 1346 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1347 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1348 1349 /* If fails try again during next card power cycle */ 1350 if (err) 1351 goto out_err; 1352 1353 err = mmc_select_bus_width(card); 1354 if (err != MMC_BUS_WIDTH_8) { 1355 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1356 mmc_hostname(host), err); 1357 err = err < 0 ? err : -ENOTSUPP; 1358 goto out_err; 1359 } 1360 1361 /* Switch card to HS mode */ 1362 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1363 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1364 card->ext_csd.generic_cmd6_time, 0, 1365 true, false, true); 1366 if (err) { 1367 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1368 mmc_hostname(host), err); 1369 goto out_err; 1370 } 1371 1372 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1373 err = mmc_switch_status(card); 1374 if (err) 1375 goto out_err; 1376 1377 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1378 1379 /* Switch card to DDR with strobe bit */ 1380 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1381 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1382 EXT_CSD_BUS_WIDTH, 1383 val, 1384 card->ext_csd.generic_cmd6_time); 1385 if (err) { 1386 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1387 mmc_hostname(host), err); 1388 goto out_err; 1389 } 1390 1391 mmc_select_driver_type(card); 1392 1393 /* Switch card to HS400 */ 1394 val = EXT_CSD_TIMING_HS400 | 1395 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1396 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1397 EXT_CSD_HS_TIMING, val, 1398 card->ext_csd.generic_cmd6_time, 0, 1399 true, false, true); 1400 if (err) { 1401 pr_err("%s: switch to hs400es failed, err:%d\n", 1402 mmc_hostname(host), err); 1403 goto out_err; 1404 } 1405 1406 /* Set host controller to HS400 timing and frequency */ 1407 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1408 1409 /* Controller enable enhanced strobe function */ 1410 host->ios.enhanced_strobe = true; 1411 if (host->ops->hs400_enhanced_strobe) 1412 host->ops->hs400_enhanced_strobe(host, &host->ios); 1413 1414 err = mmc_switch_status(card); 1415 if (err) 1416 goto out_err; 1417 1418 return 0; 1419 1420 out_err: 1421 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1422 __func__, err); 1423 return err; 1424 } 1425 1426 /* 1427 * For device supporting HS200 mode, the following sequence 1428 * should be done before executing the tuning process. 1429 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1430 * 2. switch to HS200 mode 1431 * 3. set the clock to > 52Mhz and <=200MHz 1432 */ 1433 static int mmc_select_hs200(struct mmc_card *card) 1434 { 1435 struct mmc_host *host = card->host; 1436 unsigned int old_timing, old_signal_voltage; 1437 int err = -EINVAL; 1438 u8 val; 1439 1440 old_signal_voltage = host->ios.signal_voltage; 1441 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1442 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1443 1444 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1445 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1446 1447 /* If fails try again during next card power cycle */ 1448 if (err) 1449 return err; 1450 1451 mmc_select_driver_type(card); 1452 1453 /* 1454 * Set the bus width(4 or 8) with host's support and 1455 * switch to HS200 mode if bus width is set successfully. 1456 */ 1457 err = mmc_select_bus_width(card); 1458 if (err > 0) { 1459 val = EXT_CSD_TIMING_HS200 | 1460 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1461 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1462 EXT_CSD_HS_TIMING, val, 1463 card->ext_csd.generic_cmd6_time, 0, 1464 true, false, true); 1465 if (err) 1466 goto err; 1467 old_timing = host->ios.timing; 1468 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1469 1470 /* 1471 * For HS200, CRC errors are not a reliable way to know the 1472 * switch failed. If there really is a problem, we would expect 1473 * tuning will fail and the result ends up the same. 1474 */ 1475 err = __mmc_switch_status(card, false); 1476 1477 /* 1478 * mmc_select_timing() assumes timing has not changed if 1479 * it is a switch error. 1480 */ 1481 if (err == -EBADMSG) 1482 mmc_set_timing(host, old_timing); 1483 } 1484 err: 1485 if (err) { 1486 /* fall back to the old signal voltage, if fails report error */ 1487 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1488 err = -EIO; 1489 1490 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1491 __func__, err); 1492 } 1493 return err; 1494 } 1495 1496 /* 1497 * Activate High Speed, HS200 or HS400ES mode if supported. 1498 */ 1499 static int mmc_select_timing(struct mmc_card *card) 1500 { 1501 int err = 0; 1502 1503 if (!mmc_can_ext_csd(card)) 1504 goto bus_speed; 1505 1506 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1507 err = mmc_select_hs400es(card); 1508 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1509 err = mmc_select_hs200(card); 1510 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1511 err = mmc_select_hs(card); 1512 1513 if (err && err != -EBADMSG) 1514 return err; 1515 1516 bus_speed: 1517 /* 1518 * Set the bus speed to the selected bus timing. 1519 * If timing is not selected, backward compatible is the default. 1520 */ 1521 mmc_set_bus_speed(card); 1522 return 0; 1523 } 1524 1525 /* 1526 * Execute tuning sequence to seek the proper bus operating 1527 * conditions for HS200 and HS400, which sends CMD21 to the device. 1528 */ 1529 static int mmc_hs200_tuning(struct mmc_card *card) 1530 { 1531 struct mmc_host *host = card->host; 1532 1533 /* 1534 * Timing should be adjusted to the HS400 target 1535 * operation frequency for tuning process 1536 */ 1537 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1538 host->ios.bus_width == MMC_BUS_WIDTH_8) 1539 if (host->ops->prepare_hs400_tuning) 1540 host->ops->prepare_hs400_tuning(host, &host->ios); 1541 1542 return mmc_execute_tuning(card); 1543 } 1544 1545 /* 1546 * Handle the detection and initialisation of a card. 1547 * 1548 * In the case of a resume, "oldcard" will contain the card 1549 * we're trying to reinitialise. 1550 */ 1551 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1552 struct mmc_card *oldcard) 1553 { 1554 struct mmc_card *card; 1555 int err; 1556 u32 cid[4]; 1557 u32 rocr; 1558 1559 WARN_ON(!host->claimed); 1560 1561 /* Set correct bus mode for MMC before attempting init */ 1562 if (!mmc_host_is_spi(host)) 1563 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1564 1565 /* 1566 * Since we're changing the OCR value, we seem to 1567 * need to tell some cards to go back to the idle 1568 * state. We wait 1ms to give cards time to 1569 * respond. 1570 * mmc_go_idle is needed for eMMC that are asleep 1571 */ 1572 mmc_go_idle(host); 1573 1574 /* The extra bit indicates that we support high capacity */ 1575 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1576 if (err) 1577 goto err; 1578 1579 /* 1580 * For SPI, enable CRC as appropriate. 1581 */ 1582 if (mmc_host_is_spi(host)) { 1583 err = mmc_spi_set_crc(host, use_spi_crc); 1584 if (err) 1585 goto err; 1586 } 1587 1588 /* 1589 * Fetch CID from card. 1590 */ 1591 err = mmc_send_cid(host, cid); 1592 if (err) 1593 goto err; 1594 1595 if (oldcard) { 1596 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1597 pr_debug("%s: Perhaps the card was replaced\n", 1598 mmc_hostname(host)); 1599 err = -ENOENT; 1600 goto err; 1601 } 1602 1603 card = oldcard; 1604 } else { 1605 /* 1606 * Allocate card structure. 1607 */ 1608 card = mmc_alloc_card(host, &mmc_type); 1609 if (IS_ERR(card)) { 1610 err = PTR_ERR(card); 1611 goto err; 1612 } 1613 1614 card->ocr = ocr; 1615 card->type = MMC_TYPE_MMC; 1616 card->rca = 1; 1617 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1618 } 1619 1620 /* 1621 * Call the optional HC's init_card function to handle quirks. 1622 */ 1623 if (host->ops->init_card) 1624 host->ops->init_card(host, card); 1625 1626 /* 1627 * For native busses: set card RCA and quit open drain mode. 1628 */ 1629 if (!mmc_host_is_spi(host)) { 1630 err = mmc_set_relative_addr(card); 1631 if (err) 1632 goto free_card; 1633 1634 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1635 } 1636 1637 if (!oldcard) { 1638 /* 1639 * Fetch CSD from card. 1640 */ 1641 err = mmc_send_csd(card, card->raw_csd); 1642 if (err) 1643 goto free_card; 1644 1645 err = mmc_decode_csd(card); 1646 if (err) 1647 goto free_card; 1648 err = mmc_decode_cid(card); 1649 if (err) 1650 goto free_card; 1651 } 1652 1653 /* 1654 * handling only for cards supporting DSR and hosts requesting 1655 * DSR configuration 1656 */ 1657 if (card->csd.dsr_imp && host->dsr_req) 1658 mmc_set_dsr(host); 1659 1660 /* 1661 * Select card, as all following commands rely on that. 1662 */ 1663 if (!mmc_host_is_spi(host)) { 1664 err = mmc_select_card(card); 1665 if (err) 1666 goto free_card; 1667 } 1668 1669 if (!oldcard) { 1670 /* Read extended CSD. */ 1671 err = mmc_read_ext_csd(card); 1672 if (err) 1673 goto free_card; 1674 1675 /* 1676 * If doing byte addressing, check if required to do sector 1677 * addressing. Handle the case of <2GB cards needing sector 1678 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1679 * ocr register has bit 30 set for sector addressing. 1680 */ 1681 if (rocr & BIT(30)) 1682 mmc_card_set_blockaddr(card); 1683 1684 /* Erase size depends on CSD and Extended CSD */ 1685 mmc_set_erase_size(card); 1686 } 1687 1688 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1689 if (card->ext_csd.rev >= 3) { 1690 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1691 EXT_CSD_ERASE_GROUP_DEF, 1, 1692 card->ext_csd.generic_cmd6_time); 1693 1694 if (err && err != -EBADMSG) 1695 goto free_card; 1696 1697 if (err) { 1698 err = 0; 1699 /* 1700 * Just disable enhanced area off & sz 1701 * will try to enable ERASE_GROUP_DEF 1702 * during next time reinit 1703 */ 1704 card->ext_csd.enhanced_area_offset = -EINVAL; 1705 card->ext_csd.enhanced_area_size = -EINVAL; 1706 } else { 1707 card->ext_csd.erase_group_def = 1; 1708 /* 1709 * enable ERASE_GRP_DEF successfully. 1710 * This will affect the erase size, so 1711 * here need to reset erase size 1712 */ 1713 mmc_set_erase_size(card); 1714 } 1715 } 1716 1717 /* 1718 * Ensure eMMC user default partition is enabled 1719 */ 1720 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1721 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1722 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1723 card->ext_csd.part_config, 1724 card->ext_csd.part_time); 1725 if (err && err != -EBADMSG) 1726 goto free_card; 1727 } 1728 1729 /* 1730 * Enable power_off_notification byte in the ext_csd register 1731 */ 1732 if (card->ext_csd.rev >= 6) { 1733 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1734 EXT_CSD_POWER_OFF_NOTIFICATION, 1735 EXT_CSD_POWER_ON, 1736 card->ext_csd.generic_cmd6_time); 1737 if (err && err != -EBADMSG) 1738 goto free_card; 1739 1740 /* 1741 * The err can be -EBADMSG or 0, 1742 * so check for success and update the flag 1743 */ 1744 if (!err) 1745 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1746 } 1747 1748 /* set erase_arg */ 1749 if (mmc_can_discard(card)) 1750 card->erase_arg = MMC_DISCARD_ARG; 1751 else if (mmc_can_trim(card)) 1752 card->erase_arg = MMC_TRIM_ARG; 1753 else 1754 card->erase_arg = MMC_ERASE_ARG; 1755 1756 /* 1757 * Select timing interface 1758 */ 1759 err = mmc_select_timing(card); 1760 if (err) 1761 goto free_card; 1762 1763 if (mmc_card_hs200(card)) { 1764 err = mmc_hs200_tuning(card); 1765 if (err) 1766 goto free_card; 1767 1768 err = mmc_select_hs400(card); 1769 if (err) 1770 goto free_card; 1771 } else if (!mmc_card_hs400es(card)) { 1772 /* Select the desired bus width optionally */ 1773 err = mmc_select_bus_width(card); 1774 if (err > 0 && mmc_card_hs(card)) { 1775 err = mmc_select_hs_ddr(card); 1776 if (err) 1777 goto free_card; 1778 } 1779 } 1780 1781 /* 1782 * Choose the power class with selected bus interface 1783 */ 1784 mmc_select_powerclass(card); 1785 1786 /* 1787 * Enable HPI feature (if supported) 1788 */ 1789 if (card->ext_csd.hpi) { 1790 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1791 EXT_CSD_HPI_MGMT, 1, 1792 card->ext_csd.generic_cmd6_time); 1793 if (err && err != -EBADMSG) 1794 goto free_card; 1795 if (err) { 1796 pr_warn("%s: Enabling HPI failed\n", 1797 mmc_hostname(card->host)); 1798 card->ext_csd.hpi_en = 0; 1799 err = 0; 1800 } else { 1801 card->ext_csd.hpi_en = 1; 1802 } 1803 } 1804 1805 /* 1806 * If cache size is higher than 0, this indicates the existence of cache 1807 * and it can be turned on. Note that some eMMCs from Micron has been 1808 * reported to need ~800 ms timeout, while enabling the cache after 1809 * sudden power failure tests. Let's extend the timeout to a minimum of 1810 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1811 */ 1812 if (card->ext_csd.cache_size > 0) { 1813 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1814 1815 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1816 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1817 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1818 if (err && err != -EBADMSG) 1819 goto free_card; 1820 1821 /* 1822 * Only if no error, cache is turned on successfully. 1823 */ 1824 if (err) { 1825 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1826 mmc_hostname(card->host), err); 1827 card->ext_csd.cache_ctrl = 0; 1828 err = 0; 1829 } else { 1830 card->ext_csd.cache_ctrl = 1; 1831 } 1832 } 1833 1834 /* 1835 * Enable Command Queue if supported. Note that Packed Commands cannot 1836 * be used with Command Queue. 1837 */ 1838 card->ext_csd.cmdq_en = false; 1839 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1840 err = mmc_cmdq_enable(card); 1841 if (err && err != -EBADMSG) 1842 goto free_card; 1843 if (err) { 1844 pr_warn("%s: Enabling CMDQ failed\n", 1845 mmc_hostname(card->host)); 1846 card->ext_csd.cmdq_support = false; 1847 card->ext_csd.cmdq_depth = 0; 1848 err = 0; 1849 } 1850 } 1851 /* 1852 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1853 * disabled for a time, so a flag is needed to indicate to re-enable the 1854 * Command Queue. 1855 */ 1856 card->reenable_cmdq = card->ext_csd.cmdq_en; 1857 1858 if (card->ext_csd.cmdq_en && !host->cqe_enabled) { 1859 err = host->cqe_ops->cqe_enable(host, card); 1860 if (err) { 1861 pr_err("%s: Failed to enable CQE, error %d\n", 1862 mmc_hostname(host), err); 1863 } else { 1864 host->cqe_enabled = true; 1865 pr_info("%s: Command Queue Engine enabled\n", 1866 mmc_hostname(host)); 1867 } 1868 } 1869 1870 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1871 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1872 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1873 mmc_hostname(host)); 1874 err = -EINVAL; 1875 goto free_card; 1876 } 1877 1878 if (!oldcard) 1879 host->card = card; 1880 1881 return 0; 1882 1883 free_card: 1884 if (!oldcard) 1885 mmc_remove_card(card); 1886 err: 1887 return err; 1888 } 1889 1890 static int mmc_can_sleep(struct mmc_card *card) 1891 { 1892 return (card && card->ext_csd.rev >= 3); 1893 } 1894 1895 static int mmc_sleep(struct mmc_host *host) 1896 { 1897 struct mmc_command cmd = {}; 1898 struct mmc_card *card = host->card; 1899 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1900 int err; 1901 1902 /* Re-tuning can't be done once the card is deselected */ 1903 mmc_retune_hold(host); 1904 1905 err = mmc_deselect_cards(host); 1906 if (err) 1907 goto out_release; 1908 1909 cmd.opcode = MMC_SLEEP_AWAKE; 1910 cmd.arg = card->rca << 16; 1911 cmd.arg |= 1 << 15; 1912 1913 /* 1914 * If the max_busy_timeout of the host is specified, validate it against 1915 * the sleep cmd timeout. A failure means we need to prevent the host 1916 * from doing hw busy detection, which is done by converting to a R1 1917 * response instead of a R1B. 1918 */ 1919 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1920 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1921 } else { 1922 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1923 cmd.busy_timeout = timeout_ms; 1924 } 1925 1926 err = mmc_wait_for_cmd(host, &cmd, 0); 1927 if (err) 1928 goto out_release; 1929 1930 /* 1931 * If the host does not wait while the card signals busy, then we will 1932 * will have to wait the sleep/awake timeout. Note, we cannot use the 1933 * SEND_STATUS command to poll the status because that command (and most 1934 * others) is invalid while the card sleeps. 1935 */ 1936 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1937 mmc_delay(timeout_ms); 1938 1939 out_release: 1940 mmc_retune_release(host); 1941 return err; 1942 } 1943 1944 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1945 { 1946 return card && 1947 mmc_card_mmc(card) && 1948 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1949 } 1950 1951 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1952 { 1953 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1954 int err; 1955 1956 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1957 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1958 timeout = card->ext_csd.power_off_longtime; 1959 1960 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1961 EXT_CSD_POWER_OFF_NOTIFICATION, 1962 notify_type, timeout, 0, true, false, false); 1963 if (err) 1964 pr_err("%s: Power Off Notification timed out, %u\n", 1965 mmc_hostname(card->host), timeout); 1966 1967 /* Disable the power off notification after the switch operation. */ 1968 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1969 1970 return err; 1971 } 1972 1973 /* 1974 * Host is being removed. Free up the current card. 1975 */ 1976 static void mmc_remove(struct mmc_host *host) 1977 { 1978 mmc_remove_card(host->card); 1979 host->card = NULL; 1980 } 1981 1982 /* 1983 * Card detection - card is alive. 1984 */ 1985 static int mmc_alive(struct mmc_host *host) 1986 { 1987 return mmc_send_status(host->card, NULL); 1988 } 1989 1990 /* 1991 * Card detection callback from host. 1992 */ 1993 static void mmc_detect(struct mmc_host *host) 1994 { 1995 int err; 1996 1997 mmc_get_card(host->card, NULL); 1998 1999 /* 2000 * Just check if our card has been removed. 2001 */ 2002 err = _mmc_detect_card_removed(host); 2003 2004 mmc_put_card(host->card, NULL); 2005 2006 if (err) { 2007 mmc_remove(host); 2008 2009 mmc_claim_host(host); 2010 mmc_detach_bus(host); 2011 mmc_power_off(host); 2012 mmc_release_host(host); 2013 } 2014 } 2015 2016 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2017 { 2018 int err = 0; 2019 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2020 EXT_CSD_POWER_OFF_LONG; 2021 2022 mmc_claim_host(host); 2023 2024 if (mmc_card_suspended(host->card)) 2025 goto out; 2026 2027 err = mmc_flush_cache(host->card); 2028 if (err) 2029 goto out; 2030 2031 if (mmc_can_poweroff_notify(host->card) && 2032 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 2033 err = mmc_poweroff_notify(host->card, notify_type); 2034 else if (mmc_can_sleep(host->card)) 2035 err = mmc_sleep(host); 2036 else if (!mmc_host_is_spi(host)) 2037 err = mmc_deselect_cards(host); 2038 2039 if (!err) { 2040 mmc_power_off(host); 2041 mmc_card_set_suspended(host->card); 2042 } 2043 out: 2044 mmc_release_host(host); 2045 return err; 2046 } 2047 2048 /* 2049 * Suspend callback 2050 */ 2051 static int mmc_suspend(struct mmc_host *host) 2052 { 2053 int err; 2054 2055 err = _mmc_suspend(host, true); 2056 if (!err) { 2057 pm_runtime_disable(&host->card->dev); 2058 pm_runtime_set_suspended(&host->card->dev); 2059 } 2060 2061 return err; 2062 } 2063 2064 /* 2065 * This function tries to determine if the same card is still present 2066 * and, if so, restore all state to it. 2067 */ 2068 static int _mmc_resume(struct mmc_host *host) 2069 { 2070 int err = 0; 2071 2072 mmc_claim_host(host); 2073 2074 if (!mmc_card_suspended(host->card)) 2075 goto out; 2076 2077 mmc_power_up(host, host->card->ocr); 2078 err = mmc_init_card(host, host->card->ocr, host->card); 2079 mmc_card_clr_suspended(host->card); 2080 2081 out: 2082 mmc_release_host(host); 2083 return err; 2084 } 2085 2086 /* 2087 * Shutdown callback 2088 */ 2089 static int mmc_shutdown(struct mmc_host *host) 2090 { 2091 int err = 0; 2092 2093 /* 2094 * In a specific case for poweroff notify, we need to resume the card 2095 * before we can shutdown it properly. 2096 */ 2097 if (mmc_can_poweroff_notify(host->card) && 2098 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2099 err = _mmc_resume(host); 2100 2101 if (!err) 2102 err = _mmc_suspend(host, false); 2103 2104 return err; 2105 } 2106 2107 /* 2108 * Callback for resume. 2109 */ 2110 static int mmc_resume(struct mmc_host *host) 2111 { 2112 pm_runtime_enable(&host->card->dev); 2113 return 0; 2114 } 2115 2116 /* 2117 * Callback for runtime_suspend. 2118 */ 2119 static int mmc_runtime_suspend(struct mmc_host *host) 2120 { 2121 int err; 2122 2123 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2124 return 0; 2125 2126 err = _mmc_suspend(host, true); 2127 if (err) 2128 pr_err("%s: error %d doing aggressive suspend\n", 2129 mmc_hostname(host), err); 2130 2131 return err; 2132 } 2133 2134 /* 2135 * Callback for runtime_resume. 2136 */ 2137 static int mmc_runtime_resume(struct mmc_host *host) 2138 { 2139 int err; 2140 2141 err = _mmc_resume(host); 2142 if (err && err != -ENOMEDIUM) 2143 pr_err("%s: error %d doing runtime resume\n", 2144 mmc_hostname(host), err); 2145 2146 return 0; 2147 } 2148 2149 static int mmc_can_reset(struct mmc_card *card) 2150 { 2151 u8 rst_n_function; 2152 2153 rst_n_function = card->ext_csd.rst_n_function; 2154 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2155 return 0; 2156 return 1; 2157 } 2158 2159 static int _mmc_hw_reset(struct mmc_host *host) 2160 { 2161 struct mmc_card *card = host->card; 2162 2163 /* 2164 * In the case of recovery, we can't expect flushing the cache to work 2165 * always, but we have a go and ignore errors. 2166 */ 2167 mmc_flush_cache(host->card); 2168 2169 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2170 mmc_can_reset(card)) { 2171 /* If the card accept RST_n signal, send it. */ 2172 mmc_set_clock(host, host->f_init); 2173 host->ops->hw_reset(host); 2174 /* Set initial state and call mmc_set_ios */ 2175 mmc_set_initial_state(host); 2176 } else { 2177 /* Do a brute force power cycle */ 2178 mmc_power_cycle(host, card->ocr); 2179 mmc_pwrseq_reset(host); 2180 } 2181 return mmc_init_card(host, card->ocr, card); 2182 } 2183 2184 static const struct mmc_bus_ops mmc_ops = { 2185 .remove = mmc_remove, 2186 .detect = mmc_detect, 2187 .suspend = mmc_suspend, 2188 .resume = mmc_resume, 2189 .runtime_suspend = mmc_runtime_suspend, 2190 .runtime_resume = mmc_runtime_resume, 2191 .alive = mmc_alive, 2192 .shutdown = mmc_shutdown, 2193 .hw_reset = _mmc_hw_reset, 2194 }; 2195 2196 /* 2197 * Starting point for MMC card init. 2198 */ 2199 int mmc_attach_mmc(struct mmc_host *host) 2200 { 2201 int err; 2202 u32 ocr, rocr; 2203 2204 WARN_ON(!host->claimed); 2205 2206 /* Set correct bus mode for MMC before attempting attach */ 2207 if (!mmc_host_is_spi(host)) 2208 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2209 2210 err = mmc_send_op_cond(host, 0, &ocr); 2211 if (err) 2212 return err; 2213 2214 mmc_attach_bus(host, &mmc_ops); 2215 if (host->ocr_avail_mmc) 2216 host->ocr_avail = host->ocr_avail_mmc; 2217 2218 /* 2219 * We need to get OCR a different way for SPI. 2220 */ 2221 if (mmc_host_is_spi(host)) { 2222 err = mmc_spi_read_ocr(host, 1, &ocr); 2223 if (err) 2224 goto err; 2225 } 2226 2227 rocr = mmc_select_voltage(host, ocr); 2228 2229 /* 2230 * Can we support the voltage of the card? 2231 */ 2232 if (!rocr) { 2233 err = -EINVAL; 2234 goto err; 2235 } 2236 2237 /* 2238 * Detect and init the card. 2239 */ 2240 err = mmc_init_card(host, rocr, NULL); 2241 if (err) 2242 goto err; 2243 2244 mmc_release_host(host); 2245 err = mmc_add_card(host->card); 2246 if (err) 2247 goto remove_card; 2248 2249 mmc_claim_host(host); 2250 return 0; 2251 2252 remove_card: 2253 mmc_remove_card(host->card); 2254 mmc_claim_host(host); 2255 host->card = NULL; 2256 err: 2257 mmc_detach_bus(host); 2258 2259 pr_err("%s: error %d whilst initialising MMC card\n", 2260 mmc_hostname(host), err); 2261 2262 return err; 2263 } 2264