1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "quirks.h" 28 #include "sd_ops.h" 29 #include "pwrseq.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 #define MIN_CACHE_EN_TIMEOUT_MS 1600 33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 #define UNSTUFF_BITS(resp,start,size) \ 55 ({ \ 56 const int __size = size; \ 57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 58 const int __off = 3 - ((start) / 32); \ 59 const int __shft = (start) & 31; \ 60 u32 __res; \ 61 \ 62 __res = resp[__off] >> __shft; \ 63 if (__size + __shft > 32) \ 64 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 65 __res & __mask; \ 66 }) 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 static int mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * Add the raw card ID (cid) data to the entropy pool. It doesn't 77 * matter that not all of it is unique, it's just bonus entropy. 78 */ 79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 80 81 /* 82 * The selection of the format here is based upon published 83 * specs from sandisk and from what people have reported. 84 */ 85 switch (card->csd.mmca_vsn) { 86 case 0: /* MMC v1.0 - v1.2 */ 87 case 1: /* MMC v1.4 */ 88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 99 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 101 break; 102 103 case 2: /* MMC v2.0 - v2.2 */ 104 case 3: /* MMC v3.1 - v3.3 */ 105 case 4: /* MMC v4 */ 106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 116 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 118 break; 119 120 default: 121 pr_err("%s: card has unknown MMCA version %d\n", 122 mmc_hostname(card->host), card->csd.mmca_vsn); 123 return -EINVAL; 124 } 125 126 return 0; 127 } 128 129 static void mmc_set_erase_size(struct mmc_card *card) 130 { 131 if (card->ext_csd.erase_group_def & 1) 132 card->erase_size = card->ext_csd.hc_erase_size; 133 else 134 card->erase_size = card->csd.erase_size; 135 136 mmc_init_erase(card); 137 } 138 139 /* 140 * Given a 128-bit response, decode to our card CSD structure. 141 */ 142 static int mmc_decode_csd(struct mmc_card *card) 143 { 144 struct mmc_csd *csd = &card->csd; 145 unsigned int e, m, a, b; 146 u32 *resp = card->raw_csd; 147 148 /* 149 * We only understand CSD structure v1.1 and v1.2. 150 * v1.2 has extra information in bits 15, 11 and 10. 151 * We also support eMMC v4.4 & v4.41. 152 */ 153 csd->structure = UNSTUFF_BITS(resp, 126, 2); 154 if (csd->structure == 0) { 155 pr_err("%s: unrecognised CSD structure version %d\n", 156 mmc_hostname(card->host), csd->structure); 157 return -EINVAL; 158 } 159 160 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 161 m = UNSTUFF_BITS(resp, 115, 4); 162 e = UNSTUFF_BITS(resp, 112, 3); 163 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 164 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 165 166 m = UNSTUFF_BITS(resp, 99, 4); 167 e = UNSTUFF_BITS(resp, 96, 3); 168 csd->max_dtr = tran_exp[e] * tran_mant[m]; 169 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 170 171 e = UNSTUFF_BITS(resp, 47, 3); 172 m = UNSTUFF_BITS(resp, 62, 12); 173 csd->capacity = (1 + m) << (e + 2); 174 175 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 176 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 177 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 178 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 179 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 180 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 181 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 182 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 183 184 if (csd->write_blkbits >= 9) { 185 a = UNSTUFF_BITS(resp, 42, 5); 186 b = UNSTUFF_BITS(resp, 37, 5); 187 csd->erase_size = (a + 1) * (b + 1); 188 csd->erase_size <<= csd->write_blkbits - 9; 189 } 190 191 return 0; 192 } 193 194 static void mmc_select_card_type(struct mmc_card *card) 195 { 196 struct mmc_host *host = card->host; 197 u8 card_type = card->ext_csd.raw_card_type; 198 u32 caps = host->caps, caps2 = host->caps2; 199 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 200 unsigned int avail_type = 0; 201 202 if (caps & MMC_CAP_MMC_HIGHSPEED && 203 card_type & EXT_CSD_CARD_TYPE_HS_26) { 204 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 205 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 206 } 207 208 if (caps & MMC_CAP_MMC_HIGHSPEED && 209 card_type & EXT_CSD_CARD_TYPE_HS_52) { 210 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 211 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 212 } 213 214 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 215 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 218 } 219 220 if (caps & MMC_CAP_1_2V_DDR && 221 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 222 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 224 } 225 226 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 227 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 228 hs200_max_dtr = MMC_HS200_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 230 } 231 232 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 233 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 234 hs200_max_dtr = MMC_HS200_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 236 } 237 238 if (caps2 & MMC_CAP2_HS400_1_8V && 239 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 240 hs200_max_dtr = MMC_HS200_MAX_DTR; 241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 242 } 243 244 if (caps2 & MMC_CAP2_HS400_1_2V && 245 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 246 hs200_max_dtr = MMC_HS200_MAX_DTR; 247 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 248 } 249 250 if ((caps2 & MMC_CAP2_HS400_ES) && 251 card->ext_csd.strobe_support && 252 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 253 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 254 255 card->ext_csd.hs_max_dtr = hs_max_dtr; 256 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 257 card->mmc_avail_type = avail_type; 258 } 259 260 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 261 { 262 u8 hc_erase_grp_sz, hc_wp_grp_sz; 263 264 /* 265 * Disable these attributes by default 266 */ 267 card->ext_csd.enhanced_area_offset = -EINVAL; 268 card->ext_csd.enhanced_area_size = -EINVAL; 269 270 /* 271 * Enhanced area feature support -- check whether the eMMC 272 * card has the Enhanced area enabled. If so, export enhanced 273 * area offset and size to user by adding sysfs interface. 274 */ 275 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 276 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 277 if (card->ext_csd.partition_setting_completed) { 278 hc_erase_grp_sz = 279 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 280 hc_wp_grp_sz = 281 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 282 283 /* 284 * calculate the enhanced data area offset, in bytes 285 */ 286 card->ext_csd.enhanced_area_offset = 287 (((unsigned long long)ext_csd[139]) << 24) + 288 (((unsigned long long)ext_csd[138]) << 16) + 289 (((unsigned long long)ext_csd[137]) << 8) + 290 (((unsigned long long)ext_csd[136])); 291 if (mmc_card_blockaddr(card)) 292 card->ext_csd.enhanced_area_offset <<= 9; 293 /* 294 * calculate the enhanced data area size, in kilobytes 295 */ 296 card->ext_csd.enhanced_area_size = 297 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 298 ext_csd[140]; 299 card->ext_csd.enhanced_area_size *= 300 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 301 card->ext_csd.enhanced_area_size <<= 9; 302 } else { 303 pr_warn("%s: defines enhanced area without partition setting complete\n", 304 mmc_hostname(card->host)); 305 } 306 } 307 } 308 309 static void mmc_part_add(struct mmc_card *card, u64 size, 310 unsigned int part_cfg, char *name, int idx, bool ro, 311 int area_type) 312 { 313 card->part[card->nr_parts].size = size; 314 card->part[card->nr_parts].part_cfg = part_cfg; 315 sprintf(card->part[card->nr_parts].name, name, idx); 316 card->part[card->nr_parts].force_ro = ro; 317 card->part[card->nr_parts].area_type = area_type; 318 card->nr_parts++; 319 } 320 321 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 322 { 323 int idx; 324 u8 hc_erase_grp_sz, hc_wp_grp_sz; 325 u64 part_size; 326 327 /* 328 * General purpose partition feature support -- 329 * If ext_csd has the size of general purpose partitions, 330 * set size, part_cfg, partition name in mmc_part. 331 */ 332 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 333 EXT_CSD_PART_SUPPORT_PART_EN) { 334 hc_erase_grp_sz = 335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 336 hc_wp_grp_sz = 337 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 338 339 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 340 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 341 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 342 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 343 continue; 344 if (card->ext_csd.partition_setting_completed == 0) { 345 pr_warn("%s: has partition size defined without partition complete\n", 346 mmc_hostname(card->host)); 347 break; 348 } 349 part_size = 350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 351 << 16) + 352 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 353 << 8) + 354 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 355 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 356 mmc_part_add(card, part_size << 19, 357 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 358 "gp%d", idx, false, 359 MMC_BLK_DATA_AREA_GP); 360 } 361 } 362 } 363 364 /* Minimum partition switch timeout in milliseconds */ 365 #define MMC_MIN_PART_SWITCH_TIME 300 366 367 /* 368 * Decode extended CSD. 369 */ 370 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 371 { 372 int err = 0, idx; 373 u64 part_size; 374 struct device_node *np; 375 bool broken_hpi = false; 376 377 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 378 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 379 if (card->csd.structure == 3) { 380 if (card->ext_csd.raw_ext_csd_structure > 2) { 381 pr_err("%s: unrecognised EXT_CSD structure " 382 "version %d\n", mmc_hostname(card->host), 383 card->ext_csd.raw_ext_csd_structure); 384 err = -EINVAL; 385 goto out; 386 } 387 } 388 389 np = mmc_of_find_child_device(card->host, 0); 390 if (np && of_device_is_compatible(np, "mmc-card")) 391 broken_hpi = of_property_read_bool(np, "broken-hpi"); 392 of_node_put(np); 393 394 /* 395 * The EXT_CSD format is meant to be forward compatible. As long 396 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 397 * are authorized, see JEDEC JESD84-B50 section B.8. 398 */ 399 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 400 401 /* fixup device after ext_csd revision field is updated */ 402 mmc_fixup_device(card, mmc_ext_csd_fixups); 403 404 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 405 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 406 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 407 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 408 if (card->ext_csd.rev >= 2) { 409 card->ext_csd.sectors = 410 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 411 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 412 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 413 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 414 415 /* Cards with density > 2GiB are sector addressed */ 416 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 417 mmc_card_set_blockaddr(card); 418 } 419 420 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 421 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 422 mmc_select_card_type(card); 423 424 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.raw_erase_timeout_mult = 426 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 427 card->ext_csd.raw_hc_erase_grp_size = 428 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 429 card->ext_csd.raw_boot_mult = 430 ext_csd[EXT_CSD_BOOT_MULT]; 431 if (card->ext_csd.rev >= 3) { 432 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 433 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 434 435 /* EXT_CSD value is in units of 10ms, but we store in ms */ 436 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 437 438 /* Sleep / awake timeout in 100ns units */ 439 if (sa_shift > 0 && sa_shift <= 0x17) 440 card->ext_csd.sa_timeout = 441 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 442 card->ext_csd.erase_group_def = 443 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 444 card->ext_csd.hc_erase_timeout = 300 * 445 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 446 card->ext_csd.hc_erase_size = 447 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 448 449 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 450 451 /* 452 * There are two boot regions of equal size, defined in 453 * multiples of 128K. 454 */ 455 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 456 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 457 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 458 mmc_part_add(card, part_size, 459 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 460 "boot%d", idx, true, 461 MMC_BLK_DATA_AREA_BOOT); 462 } 463 } 464 } 465 466 card->ext_csd.raw_hc_erase_gap_size = 467 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 468 card->ext_csd.raw_sec_trim_mult = 469 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 470 card->ext_csd.raw_sec_erase_mult = 471 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 472 card->ext_csd.raw_sec_feature_support = 473 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 474 card->ext_csd.raw_trim_mult = 475 ext_csd[EXT_CSD_TRIM_MULT]; 476 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 477 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 478 if (card->ext_csd.rev >= 4) { 479 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 480 EXT_CSD_PART_SETTING_COMPLETED) 481 card->ext_csd.partition_setting_completed = 1; 482 else 483 card->ext_csd.partition_setting_completed = 0; 484 485 mmc_manage_enhanced_area(card, ext_csd); 486 487 mmc_manage_gp_partitions(card, ext_csd); 488 489 card->ext_csd.sec_trim_mult = 490 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 491 card->ext_csd.sec_erase_mult = 492 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 493 card->ext_csd.sec_feature_support = 494 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 495 card->ext_csd.trim_timeout = 300 * 496 ext_csd[EXT_CSD_TRIM_MULT]; 497 498 /* 499 * Note that the call to mmc_part_add above defaults to read 500 * only. If this default assumption is changed, the call must 501 * take into account the value of boot_locked below. 502 */ 503 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 504 card->ext_csd.boot_ro_lockable = true; 505 506 /* Save power class values */ 507 card->ext_csd.raw_pwr_cl_52_195 = 508 ext_csd[EXT_CSD_PWR_CL_52_195]; 509 card->ext_csd.raw_pwr_cl_26_195 = 510 ext_csd[EXT_CSD_PWR_CL_26_195]; 511 card->ext_csd.raw_pwr_cl_52_360 = 512 ext_csd[EXT_CSD_PWR_CL_52_360]; 513 card->ext_csd.raw_pwr_cl_26_360 = 514 ext_csd[EXT_CSD_PWR_CL_26_360]; 515 card->ext_csd.raw_pwr_cl_200_195 = 516 ext_csd[EXT_CSD_PWR_CL_200_195]; 517 card->ext_csd.raw_pwr_cl_200_360 = 518 ext_csd[EXT_CSD_PWR_CL_200_360]; 519 card->ext_csd.raw_pwr_cl_ddr_52_195 = 520 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 521 card->ext_csd.raw_pwr_cl_ddr_52_360 = 522 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 523 card->ext_csd.raw_pwr_cl_ddr_200_360 = 524 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 525 } 526 527 if (card->ext_csd.rev >= 5) { 528 /* Adjust production date as per JEDEC JESD84-B451 */ 529 if (card->cid.year < 2010) 530 card->cid.year += 16; 531 532 /* check whether the eMMC card supports BKOPS */ 533 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 534 card->ext_csd.bkops = 1; 535 card->ext_csd.man_bkops_en = 536 (ext_csd[EXT_CSD_BKOPS_EN] & 537 EXT_CSD_MANUAL_BKOPS_MASK); 538 card->ext_csd.raw_bkops_status = 539 ext_csd[EXT_CSD_BKOPS_STATUS]; 540 if (card->ext_csd.man_bkops_en) 541 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 542 mmc_hostname(card->host)); 543 card->ext_csd.auto_bkops_en = 544 (ext_csd[EXT_CSD_BKOPS_EN] & 545 EXT_CSD_AUTO_BKOPS_MASK); 546 if (card->ext_csd.auto_bkops_en) 547 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 548 mmc_hostname(card->host)); 549 } 550 551 /* check whether the eMMC card supports HPI */ 552 if (!mmc_card_broken_hpi(card) && 553 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 554 card->ext_csd.hpi = 1; 555 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 556 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 557 else 558 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 559 /* 560 * Indicate the maximum timeout to close 561 * a command interrupted by HPI 562 */ 563 card->ext_csd.out_of_int_time = 564 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 565 } 566 567 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 568 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 569 570 /* 571 * RPMB regions are defined in multiples of 128K. 572 */ 573 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 574 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 575 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 576 EXT_CSD_PART_CONFIG_ACC_RPMB, 577 "rpmb", 0, false, 578 MMC_BLK_DATA_AREA_RPMB); 579 } 580 } 581 582 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 583 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 584 card->erased_byte = 0xFF; 585 else 586 card->erased_byte = 0x0; 587 588 /* eMMC v4.5 or later */ 589 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 590 if (card->ext_csd.rev >= 6) { 591 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 592 593 card->ext_csd.generic_cmd6_time = 10 * 594 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 595 card->ext_csd.power_off_longtime = 10 * 596 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 597 598 card->ext_csd.cache_size = 599 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 600 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 601 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 602 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 603 604 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 605 card->ext_csd.data_sector_size = 4096; 606 else 607 card->ext_csd.data_sector_size = 512; 608 609 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 610 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 611 card->ext_csd.data_tag_unit_size = 612 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 613 (card->ext_csd.data_sector_size); 614 } else { 615 card->ext_csd.data_tag_unit_size = 0; 616 } 617 618 card->ext_csd.max_packed_writes = 619 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 620 card->ext_csd.max_packed_reads = 621 ext_csd[EXT_CSD_MAX_PACKED_READS]; 622 } else { 623 card->ext_csd.data_sector_size = 512; 624 } 625 626 /* 627 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 628 * when accessing a specific field", so use it here if there is no 629 * PARTITION_SWITCH_TIME. 630 */ 631 if (!card->ext_csd.part_time) 632 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 633 /* Some eMMC set the value too low so set a minimum */ 634 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 635 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 636 637 /* eMMC v5 or later */ 638 if (card->ext_csd.rev >= 7) { 639 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 640 MMC_FIRMWARE_LEN); 641 card->ext_csd.ffu_capable = 642 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 643 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 644 645 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 646 card->ext_csd.device_life_time_est_typ_a = 647 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 648 card->ext_csd.device_life_time_est_typ_b = 649 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 650 } 651 652 /* eMMC v5.1 or later */ 653 if (card->ext_csd.rev >= 8) { 654 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 655 EXT_CSD_CMDQ_SUPPORTED; 656 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 657 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 658 /* Exclude inefficiently small queue depths */ 659 if (card->ext_csd.cmdq_depth <= 2) { 660 card->ext_csd.cmdq_support = false; 661 card->ext_csd.cmdq_depth = 0; 662 } 663 if (card->ext_csd.cmdq_support) { 664 pr_debug("%s: Command Queue supported depth %u\n", 665 mmc_hostname(card->host), 666 card->ext_csd.cmdq_depth); 667 } 668 card->ext_csd.enhanced_rpmb_supported = 669 (card->ext_csd.rel_param & 670 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 671 } 672 out: 673 return err; 674 } 675 676 static int mmc_read_ext_csd(struct mmc_card *card) 677 { 678 u8 *ext_csd; 679 int err; 680 681 if (!mmc_can_ext_csd(card)) 682 return 0; 683 684 err = mmc_get_ext_csd(card, &ext_csd); 685 if (err) { 686 /* If the host or the card can't do the switch, 687 * fail more gracefully. */ 688 if ((err != -EINVAL) 689 && (err != -ENOSYS) 690 && (err != -EFAULT)) 691 return err; 692 693 /* 694 * High capacity cards should have this "magic" size 695 * stored in their CSD. 696 */ 697 if (card->csd.capacity == (4096 * 512)) { 698 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 699 mmc_hostname(card->host)); 700 } else { 701 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 702 mmc_hostname(card->host)); 703 err = 0; 704 } 705 706 return err; 707 } 708 709 err = mmc_decode_ext_csd(card, ext_csd); 710 kfree(ext_csd); 711 return err; 712 } 713 714 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 715 { 716 u8 *bw_ext_csd; 717 int err; 718 719 if (bus_width == MMC_BUS_WIDTH_1) 720 return 0; 721 722 err = mmc_get_ext_csd(card, &bw_ext_csd); 723 if (err) 724 return err; 725 726 /* only compare read only fields */ 727 err = !((card->ext_csd.raw_partition_support == 728 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 729 (card->ext_csd.raw_erased_mem_count == 730 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 731 (card->ext_csd.rev == 732 bw_ext_csd[EXT_CSD_REV]) && 733 (card->ext_csd.raw_ext_csd_structure == 734 bw_ext_csd[EXT_CSD_STRUCTURE]) && 735 (card->ext_csd.raw_card_type == 736 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 737 (card->ext_csd.raw_s_a_timeout == 738 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 739 (card->ext_csd.raw_hc_erase_gap_size == 740 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 741 (card->ext_csd.raw_erase_timeout_mult == 742 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 743 (card->ext_csd.raw_hc_erase_grp_size == 744 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 745 (card->ext_csd.raw_sec_trim_mult == 746 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 747 (card->ext_csd.raw_sec_erase_mult == 748 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 749 (card->ext_csd.raw_sec_feature_support == 750 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 751 (card->ext_csd.raw_trim_mult == 752 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 753 (card->ext_csd.raw_sectors[0] == 754 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 755 (card->ext_csd.raw_sectors[1] == 756 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 757 (card->ext_csd.raw_sectors[2] == 758 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 759 (card->ext_csd.raw_sectors[3] == 760 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 761 (card->ext_csd.raw_pwr_cl_52_195 == 762 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 763 (card->ext_csd.raw_pwr_cl_26_195 == 764 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 765 (card->ext_csd.raw_pwr_cl_52_360 == 766 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 767 (card->ext_csd.raw_pwr_cl_26_360 == 768 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 769 (card->ext_csd.raw_pwr_cl_200_195 == 770 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 771 (card->ext_csd.raw_pwr_cl_200_360 == 772 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 773 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 774 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 775 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 776 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 777 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 778 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 779 780 if (err) 781 err = -EINVAL; 782 783 kfree(bw_ext_csd); 784 return err; 785 } 786 787 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 788 card->raw_cid[2], card->raw_cid[3]); 789 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 790 card->raw_csd[2], card->raw_csd[3]); 791 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 792 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 793 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 794 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 795 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 796 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 797 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 798 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 799 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 800 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 801 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 802 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 803 card->ext_csd.device_life_time_est_typ_a, 804 card->ext_csd.device_life_time_est_typ_b); 805 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 806 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 807 card->ext_csd.enhanced_area_offset); 808 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 809 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 810 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 811 card->ext_csd.enhanced_rpmb_supported); 812 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 813 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 814 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 815 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 816 817 static ssize_t mmc_fwrev_show(struct device *dev, 818 struct device_attribute *attr, 819 char *buf) 820 { 821 struct mmc_card *card = mmc_dev_to_card(dev); 822 823 if (card->ext_csd.rev < 7) 824 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 825 else 826 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 827 card->ext_csd.fwrev); 828 } 829 830 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 831 832 static ssize_t mmc_dsr_show(struct device *dev, 833 struct device_attribute *attr, 834 char *buf) 835 { 836 struct mmc_card *card = mmc_dev_to_card(dev); 837 struct mmc_host *host = card->host; 838 839 if (card->csd.dsr_imp && host->dsr_req) 840 return sysfs_emit(buf, "0x%x\n", host->dsr); 841 else 842 /* return default DSR value */ 843 return sysfs_emit(buf, "0x%x\n", 0x404); 844 } 845 846 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 847 848 static struct attribute *mmc_std_attrs[] = { 849 &dev_attr_cid.attr, 850 &dev_attr_csd.attr, 851 &dev_attr_date.attr, 852 &dev_attr_erase_size.attr, 853 &dev_attr_preferred_erase_size.attr, 854 &dev_attr_fwrev.attr, 855 &dev_attr_ffu_capable.attr, 856 &dev_attr_hwrev.attr, 857 &dev_attr_manfid.attr, 858 &dev_attr_name.attr, 859 &dev_attr_oemid.attr, 860 &dev_attr_prv.attr, 861 &dev_attr_rev.attr, 862 &dev_attr_pre_eol_info.attr, 863 &dev_attr_life_time.attr, 864 &dev_attr_serial.attr, 865 &dev_attr_enhanced_area_offset.attr, 866 &dev_attr_enhanced_area_size.attr, 867 &dev_attr_raw_rpmb_size_mult.attr, 868 &dev_attr_enhanced_rpmb_supported.attr, 869 &dev_attr_rel_sectors.attr, 870 &dev_attr_ocr.attr, 871 &dev_attr_rca.attr, 872 &dev_attr_dsr.attr, 873 &dev_attr_cmdq_en.attr, 874 NULL, 875 }; 876 ATTRIBUTE_GROUPS(mmc_std); 877 878 static struct device_type mmc_type = { 879 .groups = mmc_std_groups, 880 }; 881 882 /* 883 * Select the PowerClass for the current bus width 884 * If power class is defined for 4/8 bit bus in the 885 * extended CSD register, select it by executing the 886 * mmc_switch command. 887 */ 888 static int __mmc_select_powerclass(struct mmc_card *card, 889 unsigned int bus_width) 890 { 891 struct mmc_host *host = card->host; 892 struct mmc_ext_csd *ext_csd = &card->ext_csd; 893 unsigned int pwrclass_val = 0; 894 int err = 0; 895 896 switch (1 << host->ios.vdd) { 897 case MMC_VDD_165_195: 898 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 899 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 900 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 901 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 902 ext_csd->raw_pwr_cl_52_195 : 903 ext_csd->raw_pwr_cl_ddr_52_195; 904 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 905 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 906 break; 907 case MMC_VDD_27_28: 908 case MMC_VDD_28_29: 909 case MMC_VDD_29_30: 910 case MMC_VDD_30_31: 911 case MMC_VDD_31_32: 912 case MMC_VDD_32_33: 913 case MMC_VDD_33_34: 914 case MMC_VDD_34_35: 915 case MMC_VDD_35_36: 916 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 917 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 918 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 919 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 920 ext_csd->raw_pwr_cl_52_360 : 921 ext_csd->raw_pwr_cl_ddr_52_360; 922 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 923 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 924 ext_csd->raw_pwr_cl_ddr_200_360 : 925 ext_csd->raw_pwr_cl_200_360; 926 break; 927 default: 928 pr_warn("%s: Voltage range not supported for power class\n", 929 mmc_hostname(host)); 930 return -EINVAL; 931 } 932 933 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 934 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 935 EXT_CSD_PWR_CL_8BIT_SHIFT; 936 else 937 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 938 EXT_CSD_PWR_CL_4BIT_SHIFT; 939 940 /* If the power class is different from the default value */ 941 if (pwrclass_val > 0) { 942 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 943 EXT_CSD_POWER_CLASS, 944 pwrclass_val, 945 card->ext_csd.generic_cmd6_time); 946 } 947 948 return err; 949 } 950 951 static int mmc_select_powerclass(struct mmc_card *card) 952 { 953 struct mmc_host *host = card->host; 954 u32 bus_width, ext_csd_bits; 955 int err, ddr; 956 957 /* Power class selection is supported for versions >= 4.0 */ 958 if (!mmc_can_ext_csd(card)) 959 return 0; 960 961 bus_width = host->ios.bus_width; 962 /* Power class values are defined only for 4/8 bit bus */ 963 if (bus_width == MMC_BUS_WIDTH_1) 964 return 0; 965 966 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 967 if (ddr) 968 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 969 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 970 else 971 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 972 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 973 974 err = __mmc_select_powerclass(card, ext_csd_bits); 975 if (err) 976 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 977 mmc_hostname(host), 1 << bus_width, ddr); 978 979 return err; 980 } 981 982 /* 983 * Set the bus speed for the selected speed mode. 984 */ 985 static void mmc_set_bus_speed(struct mmc_card *card) 986 { 987 unsigned int max_dtr = (unsigned int)-1; 988 989 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 990 max_dtr > card->ext_csd.hs200_max_dtr) 991 max_dtr = card->ext_csd.hs200_max_dtr; 992 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 993 max_dtr = card->ext_csd.hs_max_dtr; 994 else if (max_dtr > card->csd.max_dtr) 995 max_dtr = card->csd.max_dtr; 996 997 mmc_set_clock(card->host, max_dtr); 998 } 999 1000 /* 1001 * Select the bus width amoung 4-bit and 8-bit(SDR). 1002 * If the bus width is changed successfully, return the selected width value. 1003 * Zero is returned instead of error value if the wide width is not supported. 1004 */ 1005 static int mmc_select_bus_width(struct mmc_card *card) 1006 { 1007 static unsigned ext_csd_bits[] = { 1008 EXT_CSD_BUS_WIDTH_8, 1009 EXT_CSD_BUS_WIDTH_4, 1010 }; 1011 static unsigned bus_widths[] = { 1012 MMC_BUS_WIDTH_8, 1013 MMC_BUS_WIDTH_4, 1014 }; 1015 struct mmc_host *host = card->host; 1016 unsigned idx, bus_width = 0; 1017 int err = 0; 1018 1019 if (!mmc_can_ext_csd(card) || 1020 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1021 return 0; 1022 1023 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1024 1025 /* 1026 * Unlike SD, MMC cards dont have a configuration register to notify 1027 * supported bus width. So bus test command should be run to identify 1028 * the supported bus width or compare the ext csd values of current 1029 * bus width and ext csd values of 1 bit mode read earlier. 1030 */ 1031 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1032 /* 1033 * Host is capable of 8bit transfer, then switch 1034 * the device to work in 8bit transfer mode. If the 1035 * mmc switch command returns error then switch to 1036 * 4bit transfer mode. On success set the corresponding 1037 * bus width on the host. 1038 */ 1039 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1040 EXT_CSD_BUS_WIDTH, 1041 ext_csd_bits[idx], 1042 card->ext_csd.generic_cmd6_time); 1043 if (err) 1044 continue; 1045 1046 bus_width = bus_widths[idx]; 1047 mmc_set_bus_width(host, bus_width); 1048 1049 /* 1050 * If controller can't handle bus width test, 1051 * compare ext_csd previously read in 1 bit mode 1052 * against ext_csd at new bus width 1053 */ 1054 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1055 err = mmc_compare_ext_csds(card, bus_width); 1056 else 1057 err = mmc_bus_test(card, bus_width); 1058 1059 if (!err) { 1060 err = bus_width; 1061 break; 1062 } else { 1063 pr_warn("%s: switch to bus width %d failed\n", 1064 mmc_hostname(host), 1 << bus_width); 1065 } 1066 } 1067 1068 return err; 1069 } 1070 1071 /* 1072 * Switch to the high-speed mode 1073 */ 1074 static int mmc_select_hs(struct mmc_card *card) 1075 { 1076 int err; 1077 1078 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1079 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1080 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1081 true, true, MMC_CMD_RETRIES); 1082 if (err) 1083 pr_warn("%s: switch to high-speed failed, err:%d\n", 1084 mmc_hostname(card->host), err); 1085 1086 return err; 1087 } 1088 1089 /* 1090 * Activate wide bus and DDR if supported. 1091 */ 1092 static int mmc_select_hs_ddr(struct mmc_card *card) 1093 { 1094 struct mmc_host *host = card->host; 1095 u32 bus_width, ext_csd_bits; 1096 int err = 0; 1097 1098 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1099 return 0; 1100 1101 bus_width = host->ios.bus_width; 1102 if (bus_width == MMC_BUS_WIDTH_1) 1103 return 0; 1104 1105 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1106 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1107 1108 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1109 EXT_CSD_BUS_WIDTH, 1110 ext_csd_bits, 1111 card->ext_csd.generic_cmd6_time, 1112 MMC_TIMING_MMC_DDR52, 1113 true, true, MMC_CMD_RETRIES); 1114 if (err) { 1115 pr_err("%s: switch to bus width %d ddr failed\n", 1116 mmc_hostname(host), 1 << bus_width); 1117 return err; 1118 } 1119 1120 /* 1121 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1122 * signaling. 1123 * 1124 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1125 * 1126 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1127 * in the JEDEC spec for DDR. 1128 * 1129 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1130 * host controller can support this, like some of the SDHCI 1131 * controller which connect to an eMMC device. Some of these 1132 * host controller still needs to use 1.8v vccq for supporting 1133 * DDR mode. 1134 * 1135 * So the sequence will be: 1136 * if (host and device can both support 1.2v IO) 1137 * use 1.2v IO; 1138 * else if (host and device can both support 1.8v IO) 1139 * use 1.8v IO; 1140 * so if host and device can only support 3.3v IO, this is the 1141 * last choice. 1142 * 1143 * WARNING: eMMC rules are NOT the same as SD DDR 1144 */ 1145 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1147 if (!err) 1148 return 0; 1149 } 1150 1151 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1152 host->caps & MMC_CAP_1_8V_DDR) 1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1154 1155 /* make sure vccq is 3.3v after switching disaster */ 1156 if (err) 1157 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1158 1159 return err; 1160 } 1161 1162 static int mmc_select_hs400(struct mmc_card *card) 1163 { 1164 struct mmc_host *host = card->host; 1165 unsigned int max_dtr; 1166 int err = 0; 1167 u8 val; 1168 1169 /* 1170 * HS400 mode requires 8-bit bus width 1171 */ 1172 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1173 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1174 return 0; 1175 1176 /* Switch card to HS mode */ 1177 val = EXT_CSD_TIMING_HS; 1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1179 EXT_CSD_HS_TIMING, val, 1180 card->ext_csd.generic_cmd6_time, 0, 1181 false, true, MMC_CMD_RETRIES); 1182 if (err) { 1183 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1184 mmc_hostname(host), err); 1185 return err; 1186 } 1187 1188 /* Prepare host to downgrade to HS timing */ 1189 if (host->ops->hs400_downgrade) 1190 host->ops->hs400_downgrade(host); 1191 1192 /* Set host controller to HS timing */ 1193 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1194 1195 /* Reduce frequency to HS frequency */ 1196 max_dtr = card->ext_csd.hs_max_dtr; 1197 mmc_set_clock(host, max_dtr); 1198 1199 err = mmc_switch_status(card, true); 1200 if (err) 1201 goto out_err; 1202 1203 if (host->ops->hs400_prepare_ddr) 1204 host->ops->hs400_prepare_ddr(host); 1205 1206 /* Switch card to DDR */ 1207 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1208 EXT_CSD_BUS_WIDTH, 1209 EXT_CSD_DDR_BUS_WIDTH_8, 1210 card->ext_csd.generic_cmd6_time); 1211 if (err) { 1212 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1213 mmc_hostname(host), err); 1214 return err; 1215 } 1216 1217 /* Switch card to HS400 */ 1218 val = EXT_CSD_TIMING_HS400 | 1219 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1221 EXT_CSD_HS_TIMING, val, 1222 card->ext_csd.generic_cmd6_time, 0, 1223 false, true, MMC_CMD_RETRIES); 1224 if (err) { 1225 pr_err("%s: switch to hs400 failed, err:%d\n", 1226 mmc_hostname(host), err); 1227 return err; 1228 } 1229 1230 /* Set host controller to HS400 timing and frequency */ 1231 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1232 mmc_set_bus_speed(card); 1233 1234 if (host->ops->execute_hs400_tuning) { 1235 mmc_retune_disable(host); 1236 err = host->ops->execute_hs400_tuning(host, card); 1237 mmc_retune_enable(host); 1238 if (err) 1239 goto out_err; 1240 } 1241 1242 if (host->ops->hs400_complete) 1243 host->ops->hs400_complete(host); 1244 1245 err = mmc_switch_status(card, true); 1246 if (err) 1247 goto out_err; 1248 1249 return 0; 1250 1251 out_err: 1252 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1253 __func__, err); 1254 return err; 1255 } 1256 1257 int mmc_hs200_to_hs400(struct mmc_card *card) 1258 { 1259 return mmc_select_hs400(card); 1260 } 1261 1262 int mmc_hs400_to_hs200(struct mmc_card *card) 1263 { 1264 struct mmc_host *host = card->host; 1265 unsigned int max_dtr; 1266 int err; 1267 u8 val; 1268 1269 /* Reduce frequency to HS */ 1270 max_dtr = card->ext_csd.hs_max_dtr; 1271 mmc_set_clock(host, max_dtr); 1272 1273 /* Switch HS400 to HS DDR */ 1274 val = EXT_CSD_TIMING_HS; 1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1276 val, card->ext_csd.generic_cmd6_time, 0, 1277 false, true, MMC_CMD_RETRIES); 1278 if (err) 1279 goto out_err; 1280 1281 if (host->ops->hs400_downgrade) 1282 host->ops->hs400_downgrade(host); 1283 1284 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1285 1286 err = mmc_switch_status(card, true); 1287 if (err) 1288 goto out_err; 1289 1290 /* Switch HS DDR to HS */ 1291 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1292 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1293 0, false, true, MMC_CMD_RETRIES); 1294 if (err) 1295 goto out_err; 1296 1297 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1298 1299 err = mmc_switch_status(card, true); 1300 if (err) 1301 goto out_err; 1302 1303 /* Switch HS to HS200 */ 1304 val = EXT_CSD_TIMING_HS200 | 1305 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1306 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1307 val, card->ext_csd.generic_cmd6_time, 0, 1308 false, true, MMC_CMD_RETRIES); 1309 if (err) 1310 goto out_err; 1311 1312 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1313 1314 /* 1315 * For HS200, CRC errors are not a reliable way to know the switch 1316 * failed. If there really is a problem, we would expect tuning will 1317 * fail and the result ends up the same. 1318 */ 1319 err = mmc_switch_status(card, false); 1320 if (err) 1321 goto out_err; 1322 1323 mmc_set_bus_speed(card); 1324 1325 /* Prepare tuning for HS400 mode. */ 1326 if (host->ops->prepare_hs400_tuning) 1327 host->ops->prepare_hs400_tuning(host, &host->ios); 1328 1329 return 0; 1330 1331 out_err: 1332 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1333 __func__, err); 1334 return err; 1335 } 1336 1337 static void mmc_select_driver_type(struct mmc_card *card) 1338 { 1339 int card_drv_type, drive_strength, drv_type = 0; 1340 int fixed_drv_type = card->host->fixed_drv_type; 1341 1342 card_drv_type = card->ext_csd.raw_driver_strength | 1343 mmc_driver_type_mask(0); 1344 1345 if (fixed_drv_type >= 0) 1346 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1347 ? fixed_drv_type : 0; 1348 else 1349 drive_strength = mmc_select_drive_strength(card, 1350 card->ext_csd.hs200_max_dtr, 1351 card_drv_type, &drv_type); 1352 1353 card->drive_strength = drive_strength; 1354 1355 if (drv_type) 1356 mmc_set_driver_type(card->host, drv_type); 1357 } 1358 1359 static int mmc_select_hs400es(struct mmc_card *card) 1360 { 1361 struct mmc_host *host = card->host; 1362 int err = -EINVAL; 1363 u8 val; 1364 1365 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1366 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1367 1368 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1369 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1370 1371 /* If fails try again during next card power cycle */ 1372 if (err) 1373 goto out_err; 1374 1375 err = mmc_select_bus_width(card); 1376 if (err != MMC_BUS_WIDTH_8) { 1377 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1378 mmc_hostname(host), err); 1379 err = err < 0 ? err : -ENOTSUPP; 1380 goto out_err; 1381 } 1382 1383 /* Switch card to HS mode */ 1384 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1385 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1386 card->ext_csd.generic_cmd6_time, 0, 1387 false, true, MMC_CMD_RETRIES); 1388 if (err) { 1389 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1390 mmc_hostname(host), err); 1391 goto out_err; 1392 } 1393 1394 /* 1395 * Bump to HS timing and frequency. Some cards don't handle 1396 * SEND_STATUS reliably at the initial frequency. 1397 */ 1398 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1399 mmc_set_bus_speed(card); 1400 1401 err = mmc_switch_status(card, true); 1402 if (err) 1403 goto out_err; 1404 1405 /* Switch card to DDR with strobe bit */ 1406 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1407 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1408 EXT_CSD_BUS_WIDTH, 1409 val, 1410 card->ext_csd.generic_cmd6_time); 1411 if (err) { 1412 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1413 mmc_hostname(host), err); 1414 goto out_err; 1415 } 1416 1417 mmc_select_driver_type(card); 1418 1419 /* Switch card to HS400 */ 1420 val = EXT_CSD_TIMING_HS400 | 1421 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1422 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1423 EXT_CSD_HS_TIMING, val, 1424 card->ext_csd.generic_cmd6_time, 0, 1425 false, true, MMC_CMD_RETRIES); 1426 if (err) { 1427 pr_err("%s: switch to hs400es failed, err:%d\n", 1428 mmc_hostname(host), err); 1429 goto out_err; 1430 } 1431 1432 /* Set host controller to HS400 timing and frequency */ 1433 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1434 1435 /* Controller enable enhanced strobe function */ 1436 host->ios.enhanced_strobe = true; 1437 if (host->ops->hs400_enhanced_strobe) 1438 host->ops->hs400_enhanced_strobe(host, &host->ios); 1439 1440 err = mmc_switch_status(card, true); 1441 if (err) 1442 goto out_err; 1443 1444 return 0; 1445 1446 out_err: 1447 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1448 __func__, err); 1449 return err; 1450 } 1451 1452 /* 1453 * For device supporting HS200 mode, the following sequence 1454 * should be done before executing the tuning process. 1455 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1456 * 2. switch to HS200 mode 1457 * 3. set the clock to > 52Mhz and <=200MHz 1458 */ 1459 static int mmc_select_hs200(struct mmc_card *card) 1460 { 1461 struct mmc_host *host = card->host; 1462 unsigned int old_timing, old_signal_voltage, old_clock; 1463 int err = -EINVAL; 1464 u8 val; 1465 1466 old_signal_voltage = host->ios.signal_voltage; 1467 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1468 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1469 1470 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1471 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1472 1473 /* If fails try again during next card power cycle */ 1474 if (err) 1475 return err; 1476 1477 mmc_select_driver_type(card); 1478 1479 /* 1480 * Set the bus width(4 or 8) with host's support and 1481 * switch to HS200 mode if bus width is set successfully. 1482 */ 1483 err = mmc_select_bus_width(card); 1484 if (err > 0) { 1485 val = EXT_CSD_TIMING_HS200 | 1486 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1487 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1488 EXT_CSD_HS_TIMING, val, 1489 card->ext_csd.generic_cmd6_time, 0, 1490 false, true, MMC_CMD_RETRIES); 1491 if (err) 1492 goto err; 1493 1494 /* 1495 * Bump to HS timing and frequency. Some cards don't handle 1496 * SEND_STATUS reliably at the initial frequency. 1497 * NB: We can't move to full (HS200) speeds until after we've 1498 * successfully switched over. 1499 */ 1500 old_timing = host->ios.timing; 1501 old_clock = host->ios.clock; 1502 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1503 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1504 1505 /* 1506 * For HS200, CRC errors are not a reliable way to know the 1507 * switch failed. If there really is a problem, we would expect 1508 * tuning will fail and the result ends up the same. 1509 */ 1510 err = mmc_switch_status(card, false); 1511 1512 /* 1513 * mmc_select_timing() assumes timing has not changed if 1514 * it is a switch error. 1515 */ 1516 if (err == -EBADMSG) { 1517 mmc_set_clock(host, old_clock); 1518 mmc_set_timing(host, old_timing); 1519 } 1520 } 1521 err: 1522 if (err) { 1523 /* fall back to the old signal voltage, if fails report error */ 1524 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1525 err = -EIO; 1526 1527 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1528 __func__, err); 1529 } 1530 return err; 1531 } 1532 1533 /* 1534 * Activate High Speed, HS200 or HS400ES mode if supported. 1535 */ 1536 static int mmc_select_timing(struct mmc_card *card) 1537 { 1538 int err = 0; 1539 1540 if (!mmc_can_ext_csd(card)) 1541 goto bus_speed; 1542 1543 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1544 err = mmc_select_hs400es(card); 1545 goto out; 1546 } 1547 1548 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1549 err = mmc_select_hs200(card); 1550 if (err == -EBADMSG) 1551 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1552 else 1553 goto out; 1554 } 1555 1556 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1557 err = mmc_select_hs(card); 1558 1559 out: 1560 if (err && err != -EBADMSG) 1561 return err; 1562 1563 bus_speed: 1564 /* 1565 * Set the bus speed to the selected bus timing. 1566 * If timing is not selected, backward compatible is the default. 1567 */ 1568 mmc_set_bus_speed(card); 1569 return 0; 1570 } 1571 1572 /* 1573 * Execute tuning sequence to seek the proper bus operating 1574 * conditions for HS200 and HS400, which sends CMD21 to the device. 1575 */ 1576 static int mmc_hs200_tuning(struct mmc_card *card) 1577 { 1578 struct mmc_host *host = card->host; 1579 1580 /* 1581 * Timing should be adjusted to the HS400 target 1582 * operation frequency for tuning process 1583 */ 1584 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1585 host->ios.bus_width == MMC_BUS_WIDTH_8) 1586 if (host->ops->prepare_hs400_tuning) 1587 host->ops->prepare_hs400_tuning(host, &host->ios); 1588 1589 return mmc_execute_tuning(card); 1590 } 1591 1592 /* 1593 * Handle the detection and initialisation of a card. 1594 * 1595 * In the case of a resume, "oldcard" will contain the card 1596 * we're trying to reinitialise. 1597 */ 1598 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1599 struct mmc_card *oldcard) 1600 { 1601 struct mmc_card *card; 1602 int err; 1603 u32 cid[4]; 1604 u32 rocr; 1605 1606 WARN_ON(!host->claimed); 1607 1608 /* Set correct bus mode for MMC before attempting init */ 1609 if (!mmc_host_is_spi(host)) 1610 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1611 1612 /* 1613 * Since we're changing the OCR value, we seem to 1614 * need to tell some cards to go back to the idle 1615 * state. We wait 1ms to give cards time to 1616 * respond. 1617 * mmc_go_idle is needed for eMMC that are asleep 1618 */ 1619 mmc_go_idle(host); 1620 1621 /* The extra bit indicates that we support high capacity */ 1622 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1623 if (err) 1624 goto err; 1625 1626 /* 1627 * For SPI, enable CRC as appropriate. 1628 */ 1629 if (mmc_host_is_spi(host)) { 1630 err = mmc_spi_set_crc(host, use_spi_crc); 1631 if (err) 1632 goto err; 1633 } 1634 1635 /* 1636 * Fetch CID from card. 1637 */ 1638 err = mmc_send_cid(host, cid); 1639 if (err) 1640 goto err; 1641 1642 if (oldcard) { 1643 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1644 pr_debug("%s: Perhaps the card was replaced\n", 1645 mmc_hostname(host)); 1646 err = -ENOENT; 1647 goto err; 1648 } 1649 1650 card = oldcard; 1651 } else { 1652 /* 1653 * Allocate card structure. 1654 */ 1655 card = mmc_alloc_card(host, &mmc_type); 1656 if (IS_ERR(card)) { 1657 err = PTR_ERR(card); 1658 goto err; 1659 } 1660 1661 card->ocr = ocr; 1662 card->type = MMC_TYPE_MMC; 1663 card->rca = 1; 1664 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1665 } 1666 1667 /* 1668 * Call the optional HC's init_card function to handle quirks. 1669 */ 1670 if (host->ops->init_card) 1671 host->ops->init_card(host, card); 1672 1673 /* 1674 * For native busses: set card RCA and quit open drain mode. 1675 */ 1676 if (!mmc_host_is_spi(host)) { 1677 err = mmc_set_relative_addr(card); 1678 if (err) 1679 goto free_card; 1680 1681 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1682 } 1683 1684 if (!oldcard) { 1685 /* 1686 * Fetch CSD from card. 1687 */ 1688 err = mmc_send_csd(card, card->raw_csd); 1689 if (err) 1690 goto free_card; 1691 1692 err = mmc_decode_csd(card); 1693 if (err) 1694 goto free_card; 1695 err = mmc_decode_cid(card); 1696 if (err) 1697 goto free_card; 1698 } 1699 1700 /* 1701 * handling only for cards supporting DSR and hosts requesting 1702 * DSR configuration 1703 */ 1704 if (card->csd.dsr_imp && host->dsr_req) 1705 mmc_set_dsr(host); 1706 1707 /* 1708 * Select card, as all following commands rely on that. 1709 */ 1710 if (!mmc_host_is_spi(host)) { 1711 err = mmc_select_card(card); 1712 if (err) 1713 goto free_card; 1714 } 1715 1716 if (!oldcard) { 1717 /* Read extended CSD. */ 1718 err = mmc_read_ext_csd(card); 1719 if (err) 1720 goto free_card; 1721 1722 /* 1723 * If doing byte addressing, check if required to do sector 1724 * addressing. Handle the case of <2GB cards needing sector 1725 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1726 * ocr register has bit 30 set for sector addressing. 1727 */ 1728 if (rocr & BIT(30)) 1729 mmc_card_set_blockaddr(card); 1730 1731 /* Erase size depends on CSD and Extended CSD */ 1732 mmc_set_erase_size(card); 1733 } 1734 1735 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1736 if (card->ext_csd.rev >= 3) { 1737 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1738 EXT_CSD_ERASE_GROUP_DEF, 1, 1739 card->ext_csd.generic_cmd6_time); 1740 1741 if (err && err != -EBADMSG) 1742 goto free_card; 1743 1744 if (err) { 1745 /* 1746 * Just disable enhanced area off & sz 1747 * will try to enable ERASE_GROUP_DEF 1748 * during next time reinit 1749 */ 1750 card->ext_csd.enhanced_area_offset = -EINVAL; 1751 card->ext_csd.enhanced_area_size = -EINVAL; 1752 } else { 1753 card->ext_csd.erase_group_def = 1; 1754 /* 1755 * enable ERASE_GRP_DEF successfully. 1756 * This will affect the erase size, so 1757 * here need to reset erase size 1758 */ 1759 mmc_set_erase_size(card); 1760 } 1761 } 1762 1763 /* 1764 * Ensure eMMC user default partition is enabled 1765 */ 1766 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1767 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1768 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1769 card->ext_csd.part_config, 1770 card->ext_csd.part_time); 1771 if (err && err != -EBADMSG) 1772 goto free_card; 1773 } 1774 1775 /* 1776 * Enable power_off_notification byte in the ext_csd register 1777 */ 1778 if (card->ext_csd.rev >= 6) { 1779 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1780 EXT_CSD_POWER_OFF_NOTIFICATION, 1781 EXT_CSD_POWER_ON, 1782 card->ext_csd.generic_cmd6_time); 1783 if (err && err != -EBADMSG) 1784 goto free_card; 1785 1786 /* 1787 * The err can be -EBADMSG or 0, 1788 * so check for success and update the flag 1789 */ 1790 if (!err) 1791 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1792 } 1793 1794 /* set erase_arg */ 1795 if (mmc_can_discard(card)) 1796 card->erase_arg = MMC_DISCARD_ARG; 1797 else if (mmc_can_trim(card)) 1798 card->erase_arg = MMC_TRIM_ARG; 1799 else 1800 card->erase_arg = MMC_ERASE_ARG; 1801 1802 /* 1803 * Select timing interface 1804 */ 1805 err = mmc_select_timing(card); 1806 if (err) 1807 goto free_card; 1808 1809 if (mmc_card_hs200(card)) { 1810 host->doing_init_tune = 1; 1811 1812 err = mmc_hs200_tuning(card); 1813 if (!err) 1814 err = mmc_select_hs400(card); 1815 1816 host->doing_init_tune = 0; 1817 1818 if (err) 1819 goto free_card; 1820 1821 } else if (!mmc_card_hs400es(card)) { 1822 /* Select the desired bus width optionally */ 1823 err = mmc_select_bus_width(card); 1824 if (err > 0 && mmc_card_hs(card)) { 1825 err = mmc_select_hs_ddr(card); 1826 if (err) 1827 goto free_card; 1828 } 1829 } 1830 1831 /* 1832 * Choose the power class with selected bus interface 1833 */ 1834 mmc_select_powerclass(card); 1835 1836 /* 1837 * Enable HPI feature (if supported) 1838 */ 1839 if (card->ext_csd.hpi) { 1840 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1841 EXT_CSD_HPI_MGMT, 1, 1842 card->ext_csd.generic_cmd6_time); 1843 if (err && err != -EBADMSG) 1844 goto free_card; 1845 if (err) { 1846 pr_warn("%s: Enabling HPI failed\n", 1847 mmc_hostname(card->host)); 1848 card->ext_csd.hpi_en = 0; 1849 } else { 1850 card->ext_csd.hpi_en = 1; 1851 } 1852 } 1853 1854 /* 1855 * If cache size is higher than 0, this indicates the existence of cache 1856 * and it can be turned on. Note that some eMMCs from Micron has been 1857 * reported to need ~800 ms timeout, while enabling the cache after 1858 * sudden power failure tests. Let's extend the timeout to a minimum of 1859 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1860 */ 1861 if (card->ext_csd.cache_size > 0) { 1862 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1863 1864 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1865 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1866 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1867 if (err && err != -EBADMSG) 1868 goto free_card; 1869 1870 /* 1871 * Only if no error, cache is turned on successfully. 1872 */ 1873 if (err) { 1874 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1875 mmc_hostname(card->host), err); 1876 card->ext_csd.cache_ctrl = 0; 1877 } else { 1878 card->ext_csd.cache_ctrl = 1; 1879 } 1880 } 1881 1882 /* 1883 * Enable Command Queue if supported. Note that Packed Commands cannot 1884 * be used with Command Queue. 1885 */ 1886 card->ext_csd.cmdq_en = false; 1887 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1888 err = mmc_cmdq_enable(card); 1889 if (err && err != -EBADMSG) 1890 goto free_card; 1891 if (err) { 1892 pr_warn("%s: Enabling CMDQ failed\n", 1893 mmc_hostname(card->host)); 1894 card->ext_csd.cmdq_support = false; 1895 card->ext_csd.cmdq_depth = 0; 1896 } 1897 } 1898 /* 1899 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1900 * disabled for a time, so a flag is needed to indicate to re-enable the 1901 * Command Queue. 1902 */ 1903 card->reenable_cmdq = card->ext_csd.cmdq_en; 1904 1905 if (host->cqe_ops && !host->cqe_enabled) { 1906 err = host->cqe_ops->cqe_enable(host, card); 1907 if (!err) { 1908 host->cqe_enabled = true; 1909 1910 if (card->ext_csd.cmdq_en) { 1911 pr_info("%s: Command Queue Engine enabled\n", 1912 mmc_hostname(host)); 1913 } else { 1914 host->hsq_enabled = true; 1915 pr_info("%s: Host Software Queue enabled\n", 1916 mmc_hostname(host)); 1917 } 1918 } 1919 } 1920 1921 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1922 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1923 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1924 mmc_hostname(host)); 1925 err = -EINVAL; 1926 goto free_card; 1927 } 1928 1929 if (!oldcard) 1930 host->card = card; 1931 1932 return 0; 1933 1934 free_card: 1935 if (!oldcard) 1936 mmc_remove_card(card); 1937 err: 1938 return err; 1939 } 1940 1941 static int mmc_can_sleep(struct mmc_card *card) 1942 { 1943 return card->ext_csd.rev >= 3; 1944 } 1945 1946 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1947 { 1948 struct mmc_host *host = cb_data; 1949 1950 *busy = host->ops->card_busy(host); 1951 return 0; 1952 } 1953 1954 static int mmc_sleep(struct mmc_host *host) 1955 { 1956 struct mmc_command cmd = {}; 1957 struct mmc_card *card = host->card; 1958 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1959 bool use_r1b_resp; 1960 int err; 1961 1962 /* Re-tuning can't be done once the card is deselected */ 1963 mmc_retune_hold(host); 1964 1965 err = mmc_deselect_cards(host); 1966 if (err) 1967 goto out_release; 1968 1969 cmd.opcode = MMC_SLEEP_AWAKE; 1970 cmd.arg = card->rca << 16; 1971 cmd.arg |= 1 << 15; 1972 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1973 1974 err = mmc_wait_for_cmd(host, &cmd, 0); 1975 if (err) 1976 goto out_release; 1977 1978 /* 1979 * If the host does not wait while the card signals busy, then we can 1980 * try to poll, but only if the host supports HW polling, as the 1981 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1982 * to wait the sleep/awake timeout. 1983 */ 1984 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 1985 goto out_release; 1986 1987 if (!host->ops->card_busy) { 1988 mmc_delay(timeout_ms); 1989 goto out_release; 1990 } 1991 1992 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 1993 1994 out_release: 1995 mmc_retune_release(host); 1996 return err; 1997 } 1998 1999 static int mmc_can_poweroff_notify(const struct mmc_card *card) 2000 { 2001 return card && 2002 mmc_card_mmc(card) && 2003 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2004 } 2005 2006 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2007 { 2008 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2009 int err; 2010 2011 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2012 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2013 timeout = card->ext_csd.power_off_longtime; 2014 2015 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2016 EXT_CSD_POWER_OFF_NOTIFICATION, 2017 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2018 if (err) 2019 pr_err("%s: Power Off Notification timed out, %u\n", 2020 mmc_hostname(card->host), timeout); 2021 2022 /* Disable the power off notification after the switch operation. */ 2023 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2024 2025 return err; 2026 } 2027 2028 /* 2029 * Host is being removed. Free up the current card. 2030 */ 2031 static void mmc_remove(struct mmc_host *host) 2032 { 2033 mmc_remove_card(host->card); 2034 host->card = NULL; 2035 } 2036 2037 /* 2038 * Card detection - card is alive. 2039 */ 2040 static int mmc_alive(struct mmc_host *host) 2041 { 2042 return mmc_send_status(host->card, NULL); 2043 } 2044 2045 /* 2046 * Card detection callback from host. 2047 */ 2048 static void mmc_detect(struct mmc_host *host) 2049 { 2050 int err; 2051 2052 mmc_get_card(host->card, NULL); 2053 2054 /* 2055 * Just check if our card has been removed. 2056 */ 2057 err = _mmc_detect_card_removed(host); 2058 2059 mmc_put_card(host->card, NULL); 2060 2061 if (err) { 2062 mmc_remove(host); 2063 2064 mmc_claim_host(host); 2065 mmc_detach_bus(host); 2066 mmc_power_off(host); 2067 mmc_release_host(host); 2068 } 2069 } 2070 2071 static bool _mmc_cache_enabled(struct mmc_host *host) 2072 { 2073 return host->card->ext_csd.cache_size > 0 && 2074 host->card->ext_csd.cache_ctrl & 1; 2075 } 2076 2077 /* 2078 * Flush the internal cache of the eMMC to non-volatile storage. 2079 */ 2080 static int _mmc_flush_cache(struct mmc_host *host) 2081 { 2082 int err = 0; 2083 2084 if (_mmc_cache_enabled(host)) { 2085 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2086 EXT_CSD_FLUSH_CACHE, 1, 2087 CACHE_FLUSH_TIMEOUT_MS); 2088 if (err) 2089 pr_err("%s: cache flush error %d\n", 2090 mmc_hostname(host), err); 2091 } 2092 2093 return err; 2094 } 2095 2096 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2097 { 2098 int err = 0; 2099 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2100 EXT_CSD_POWER_OFF_LONG; 2101 2102 mmc_claim_host(host); 2103 2104 if (mmc_card_suspended(host->card)) 2105 goto out; 2106 2107 err = _mmc_flush_cache(host); 2108 if (err) 2109 goto out; 2110 2111 if (mmc_can_poweroff_notify(host->card) && 2112 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2113 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2114 err = mmc_poweroff_notify(host->card, notify_type); 2115 else if (mmc_can_sleep(host->card)) 2116 err = mmc_sleep(host); 2117 else if (!mmc_host_is_spi(host)) 2118 err = mmc_deselect_cards(host); 2119 2120 if (!err) { 2121 mmc_power_off(host); 2122 mmc_card_set_suspended(host->card); 2123 } 2124 out: 2125 mmc_release_host(host); 2126 return err; 2127 } 2128 2129 /* 2130 * Suspend callback 2131 */ 2132 static int mmc_suspend(struct mmc_host *host) 2133 { 2134 int err; 2135 2136 err = _mmc_suspend(host, true); 2137 if (!err) { 2138 pm_runtime_disable(&host->card->dev); 2139 pm_runtime_set_suspended(&host->card->dev); 2140 } 2141 2142 return err; 2143 } 2144 2145 /* 2146 * This function tries to determine if the same card is still present 2147 * and, if so, restore all state to it. 2148 */ 2149 static int _mmc_resume(struct mmc_host *host) 2150 { 2151 int err = 0; 2152 2153 mmc_claim_host(host); 2154 2155 if (!mmc_card_suspended(host->card)) 2156 goto out; 2157 2158 mmc_power_up(host, host->card->ocr); 2159 err = mmc_init_card(host, host->card->ocr, host->card); 2160 mmc_card_clr_suspended(host->card); 2161 2162 out: 2163 mmc_release_host(host); 2164 return err; 2165 } 2166 2167 /* 2168 * Shutdown callback 2169 */ 2170 static int mmc_shutdown(struct mmc_host *host) 2171 { 2172 int err = 0; 2173 2174 /* 2175 * In a specific case for poweroff notify, we need to resume the card 2176 * before we can shutdown it properly. 2177 */ 2178 if (mmc_can_poweroff_notify(host->card) && 2179 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2180 err = _mmc_resume(host); 2181 2182 if (!err) 2183 err = _mmc_suspend(host, false); 2184 2185 return err; 2186 } 2187 2188 /* 2189 * Callback for resume. 2190 */ 2191 static int mmc_resume(struct mmc_host *host) 2192 { 2193 pm_runtime_enable(&host->card->dev); 2194 return 0; 2195 } 2196 2197 /* 2198 * Callback for runtime_suspend. 2199 */ 2200 static int mmc_runtime_suspend(struct mmc_host *host) 2201 { 2202 int err; 2203 2204 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2205 return 0; 2206 2207 err = _mmc_suspend(host, true); 2208 if (err) 2209 pr_err("%s: error %d doing aggressive suspend\n", 2210 mmc_hostname(host), err); 2211 2212 return err; 2213 } 2214 2215 /* 2216 * Callback for runtime_resume. 2217 */ 2218 static int mmc_runtime_resume(struct mmc_host *host) 2219 { 2220 int err; 2221 2222 err = _mmc_resume(host); 2223 if (err && err != -ENOMEDIUM) 2224 pr_err("%s: error %d doing runtime resume\n", 2225 mmc_hostname(host), err); 2226 2227 return 0; 2228 } 2229 2230 static int mmc_can_reset(struct mmc_card *card) 2231 { 2232 u8 rst_n_function; 2233 2234 rst_n_function = card->ext_csd.rst_n_function; 2235 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2236 return 0; 2237 return 1; 2238 } 2239 2240 static int _mmc_hw_reset(struct mmc_host *host) 2241 { 2242 struct mmc_card *card = host->card; 2243 2244 /* 2245 * In the case of recovery, we can't expect flushing the cache to work 2246 * always, but we have a go and ignore errors. 2247 */ 2248 _mmc_flush_cache(host); 2249 2250 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2251 mmc_can_reset(card)) { 2252 /* If the card accept RST_n signal, send it. */ 2253 mmc_set_clock(host, host->f_init); 2254 host->ops->card_hw_reset(host); 2255 /* Set initial state and call mmc_set_ios */ 2256 mmc_set_initial_state(host); 2257 } else { 2258 /* Do a brute force power cycle */ 2259 mmc_power_cycle(host, card->ocr); 2260 mmc_pwrseq_reset(host); 2261 } 2262 return mmc_init_card(host, card->ocr, card); 2263 } 2264 2265 static const struct mmc_bus_ops mmc_ops = { 2266 .remove = mmc_remove, 2267 .detect = mmc_detect, 2268 .suspend = mmc_suspend, 2269 .resume = mmc_resume, 2270 .runtime_suspend = mmc_runtime_suspend, 2271 .runtime_resume = mmc_runtime_resume, 2272 .alive = mmc_alive, 2273 .shutdown = mmc_shutdown, 2274 .hw_reset = _mmc_hw_reset, 2275 .cache_enabled = _mmc_cache_enabled, 2276 .flush_cache = _mmc_flush_cache, 2277 }; 2278 2279 /* 2280 * Starting point for MMC card init. 2281 */ 2282 int mmc_attach_mmc(struct mmc_host *host) 2283 { 2284 int err; 2285 u32 ocr, rocr; 2286 2287 WARN_ON(!host->claimed); 2288 2289 /* Set correct bus mode for MMC before attempting attach */ 2290 if (!mmc_host_is_spi(host)) 2291 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2292 2293 err = mmc_send_op_cond(host, 0, &ocr); 2294 if (err) 2295 return err; 2296 2297 mmc_attach_bus(host, &mmc_ops); 2298 if (host->ocr_avail_mmc) 2299 host->ocr_avail = host->ocr_avail_mmc; 2300 2301 /* 2302 * We need to get OCR a different way for SPI. 2303 */ 2304 if (mmc_host_is_spi(host)) { 2305 err = mmc_spi_read_ocr(host, 1, &ocr); 2306 if (err) 2307 goto err; 2308 } 2309 2310 rocr = mmc_select_voltage(host, ocr); 2311 2312 /* 2313 * Can we support the voltage of the card? 2314 */ 2315 if (!rocr) { 2316 err = -EINVAL; 2317 goto err; 2318 } 2319 2320 /* 2321 * Detect and init the card. 2322 */ 2323 err = mmc_init_card(host, rocr, NULL); 2324 if (err) 2325 goto err; 2326 2327 mmc_release_host(host); 2328 err = mmc_add_card(host->card); 2329 if (err) 2330 goto remove_card; 2331 2332 mmc_claim_host(host); 2333 return 0; 2334 2335 remove_card: 2336 mmc_remove_card(host->card); 2337 mmc_claim_host(host); 2338 host->card = NULL; 2339 err: 2340 mmc_detach_bus(host); 2341 2342 pr_err("%s: error %d whilst initialising MMC card\n", 2343 mmc_hostname(host), err); 2344 2345 return err; 2346 } 2347