1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/sysfs.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 21 #include "core.h" 22 #include "card.h" 23 #include "host.h" 24 #include "bus.h" 25 #include "mmc_ops.h" 26 #include "quirks.h" 27 #include "sd_ops.h" 28 #include "pwrseq.h" 29 30 #define DEFAULT_CMD6_TIMEOUT_MS 500 31 #define MIN_CACHE_EN_TIMEOUT_MS 1600 32 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 33 34 static const unsigned int tran_exp[] = { 35 10000, 100000, 1000000, 10000000, 36 0, 0, 0, 0 37 }; 38 39 static const unsigned char tran_mant[] = { 40 0, 10, 12, 13, 15, 20, 25, 30, 41 35, 40, 45, 50, 55, 60, 70, 80, 42 }; 43 44 static const unsigned int taac_exp[] = { 45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 46 }; 47 48 static const unsigned int taac_mant[] = { 49 0, 10, 12, 13, 15, 20, 25, 30, 50 35, 40, 45, 50, 55, 60, 70, 80, 51 }; 52 53 #define UNSTUFF_BITS(resp,start,size) \ 54 ({ \ 55 const int __size = size; \ 56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 57 const int __off = 3 - ((start) / 32); \ 58 const int __shft = (start) & 31; \ 59 u32 __res; \ 60 \ 61 __res = resp[__off] >> __shft; \ 62 if (__size + __shft > 32) \ 63 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 64 __res & __mask; \ 65 }) 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 static int mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * The selection of the format here is based upon published 76 * specs from sandisk and from what people have reported. 77 */ 78 switch (card->csd.mmca_vsn) { 79 case 0: /* MMC v1.0 - v1.2 */ 80 case 1: /* MMC v1.4 */ 81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 92 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 94 break; 95 96 case 2: /* MMC v2.0 - v2.2 */ 97 case 3: /* MMC v3.1 - v3.3 */ 98 case 4: /* MMC v4 */ 99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 109 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 111 break; 112 113 default: 114 pr_err("%s: card has unknown MMCA version %d\n", 115 mmc_hostname(card->host), card->csd.mmca_vsn); 116 return -EINVAL; 117 } 118 119 return 0; 120 } 121 122 static void mmc_set_erase_size(struct mmc_card *card) 123 { 124 if (card->ext_csd.erase_group_def & 1) 125 card->erase_size = card->ext_csd.hc_erase_size; 126 else 127 card->erase_size = card->csd.erase_size; 128 129 mmc_init_erase(card); 130 } 131 132 /* 133 * Given a 128-bit response, decode to our card CSD structure. 134 */ 135 static int mmc_decode_csd(struct mmc_card *card) 136 { 137 struct mmc_csd *csd = &card->csd; 138 unsigned int e, m, a, b; 139 u32 *resp = card->raw_csd; 140 141 /* 142 * We only understand CSD structure v1.1 and v1.2. 143 * v1.2 has extra information in bits 15, 11 and 10. 144 * We also support eMMC v4.4 & v4.41. 145 */ 146 csd->structure = UNSTUFF_BITS(resp, 126, 2); 147 if (csd->structure == 0) { 148 pr_err("%s: unrecognised CSD structure version %d\n", 149 mmc_hostname(card->host), csd->structure); 150 return -EINVAL; 151 } 152 153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 154 m = UNSTUFF_BITS(resp, 115, 4); 155 e = UNSTUFF_BITS(resp, 112, 3); 156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 158 159 m = UNSTUFF_BITS(resp, 99, 4); 160 e = UNSTUFF_BITS(resp, 96, 3); 161 csd->max_dtr = tran_exp[e] * tran_mant[m]; 162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 163 164 e = UNSTUFF_BITS(resp, 47, 3); 165 m = UNSTUFF_BITS(resp, 62, 12); 166 csd->capacity = (1 + m) << (e + 2); 167 168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 176 177 if (csd->write_blkbits >= 9) { 178 a = UNSTUFF_BITS(resp, 42, 5); 179 b = UNSTUFF_BITS(resp, 37, 5); 180 csd->erase_size = (a + 1) * (b + 1); 181 csd->erase_size <<= csd->write_blkbits - 9; 182 } 183 184 return 0; 185 } 186 187 static void mmc_select_card_type(struct mmc_card *card) 188 { 189 struct mmc_host *host = card->host; 190 u8 card_type = card->ext_csd.raw_card_type; 191 u32 caps = host->caps, caps2 = host->caps2; 192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 193 unsigned int avail_type = 0; 194 195 if (caps & MMC_CAP_MMC_HIGHSPEED && 196 card_type & EXT_CSD_CARD_TYPE_HS_26) { 197 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 198 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 199 } 200 201 if (caps & MMC_CAP_MMC_HIGHSPEED && 202 card_type & EXT_CSD_CARD_TYPE_HS_52) { 203 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 204 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 205 } 206 207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 211 } 212 213 if (caps & MMC_CAP_1_2V_DDR && 214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 217 } 218 219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 221 hs200_max_dtr = MMC_HS200_MAX_DTR; 222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 223 } 224 225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 227 hs200_max_dtr = MMC_HS200_MAX_DTR; 228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 229 } 230 231 if (caps2 & MMC_CAP2_HS400_1_8V && 232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 233 hs200_max_dtr = MMC_HS200_MAX_DTR; 234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 235 } 236 237 if (caps2 & MMC_CAP2_HS400_1_2V && 238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 239 hs200_max_dtr = MMC_HS200_MAX_DTR; 240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 241 } 242 243 if ((caps2 & MMC_CAP2_HS400_ES) && 244 card->ext_csd.strobe_support && 245 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 247 248 card->ext_csd.hs_max_dtr = hs_max_dtr; 249 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 250 card->mmc_avail_type = avail_type; 251 } 252 253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 254 { 255 u8 hc_erase_grp_sz, hc_wp_grp_sz; 256 257 /* 258 * Disable these attributes by default 259 */ 260 card->ext_csd.enhanced_area_offset = -EINVAL; 261 card->ext_csd.enhanced_area_size = -EINVAL; 262 263 /* 264 * Enhanced area feature support -- check whether the eMMC 265 * card has the Enhanced area enabled. If so, export enhanced 266 * area offset and size to user by adding sysfs interface. 267 */ 268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 270 if (card->ext_csd.partition_setting_completed) { 271 hc_erase_grp_sz = 272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 273 hc_wp_grp_sz = 274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 275 276 /* 277 * calculate the enhanced data area offset, in bytes 278 */ 279 card->ext_csd.enhanced_area_offset = 280 (((unsigned long long)ext_csd[139]) << 24) + 281 (((unsigned long long)ext_csd[138]) << 16) + 282 (((unsigned long long)ext_csd[137]) << 8) + 283 (((unsigned long long)ext_csd[136])); 284 if (mmc_card_blockaddr(card)) 285 card->ext_csd.enhanced_area_offset <<= 9; 286 /* 287 * calculate the enhanced data area size, in kilobytes 288 */ 289 card->ext_csd.enhanced_area_size = 290 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 291 ext_csd[140]; 292 card->ext_csd.enhanced_area_size *= 293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 294 card->ext_csd.enhanced_area_size <<= 9; 295 } else { 296 pr_warn("%s: defines enhanced area without partition setting complete\n", 297 mmc_hostname(card->host)); 298 } 299 } 300 } 301 302 static void mmc_part_add(struct mmc_card *card, u64 size, 303 unsigned int part_cfg, char *name, int idx, bool ro, 304 int area_type) 305 { 306 card->part[card->nr_parts].size = size; 307 card->part[card->nr_parts].part_cfg = part_cfg; 308 sprintf(card->part[card->nr_parts].name, name, idx); 309 card->part[card->nr_parts].force_ro = ro; 310 card->part[card->nr_parts].area_type = area_type; 311 card->nr_parts++; 312 } 313 314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 315 { 316 int idx; 317 u8 hc_erase_grp_sz, hc_wp_grp_sz; 318 u64 part_size; 319 320 /* 321 * General purpose partition feature support -- 322 * If ext_csd has the size of general purpose partitions, 323 * set size, part_cfg, partition name in mmc_part. 324 */ 325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 326 EXT_CSD_PART_SUPPORT_PART_EN) { 327 hc_erase_grp_sz = 328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 329 hc_wp_grp_sz = 330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 331 332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 336 continue; 337 if (card->ext_csd.partition_setting_completed == 0) { 338 pr_warn("%s: has partition size defined without partition complete\n", 339 mmc_hostname(card->host)); 340 break; 341 } 342 part_size = 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 344 << 16) + 345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 346 << 8) + 347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 348 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 349 mmc_part_add(card, part_size << 19, 350 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 351 "gp%d", idx, false, 352 MMC_BLK_DATA_AREA_GP); 353 } 354 } 355 } 356 357 /* Minimum partition switch timeout in milliseconds */ 358 #define MMC_MIN_PART_SWITCH_TIME 300 359 360 /* 361 * Decode extended CSD. 362 */ 363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 364 { 365 int err = 0, idx; 366 u64 part_size; 367 struct device_node *np; 368 bool broken_hpi = false; 369 370 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 371 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 372 if (card->csd.structure == 3) { 373 if (card->ext_csd.raw_ext_csd_structure > 2) { 374 pr_err("%s: unrecognised EXT_CSD structure " 375 "version %d\n", mmc_hostname(card->host), 376 card->ext_csd.raw_ext_csd_structure); 377 err = -EINVAL; 378 goto out; 379 } 380 } 381 382 np = mmc_of_find_child_device(card->host, 0); 383 if (np && of_device_is_compatible(np, "mmc-card")) 384 broken_hpi = of_property_read_bool(np, "broken-hpi"); 385 of_node_put(np); 386 387 /* 388 * The EXT_CSD format is meant to be forward compatible. As long 389 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 390 * are authorized, see JEDEC JESD84-B50 section B.8. 391 */ 392 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 393 394 /* fixup device after ext_csd revision field is updated */ 395 mmc_fixup_device(card, mmc_ext_csd_fixups); 396 397 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 398 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 399 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 400 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 401 if (card->ext_csd.rev >= 2) { 402 card->ext_csd.sectors = 403 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 404 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 405 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 406 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 407 408 /* Cards with density > 2GiB are sector addressed */ 409 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 410 mmc_card_set_blockaddr(card); 411 } 412 413 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 414 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 415 mmc_select_card_type(card); 416 417 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 418 card->ext_csd.raw_erase_timeout_mult = 419 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 420 card->ext_csd.raw_hc_erase_grp_size = 421 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 422 card->ext_csd.raw_boot_mult = 423 ext_csd[EXT_CSD_BOOT_MULT]; 424 if (card->ext_csd.rev >= 3) { 425 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 426 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 427 428 /* EXT_CSD value is in units of 10ms, but we store in ms */ 429 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 430 431 /* Sleep / awake timeout in 100ns units */ 432 if (sa_shift > 0 && sa_shift <= 0x17) 433 card->ext_csd.sa_timeout = 434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 435 card->ext_csd.erase_group_def = 436 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 437 card->ext_csd.hc_erase_timeout = 300 * 438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 439 card->ext_csd.hc_erase_size = 440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 441 442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 443 444 /* 445 * There are two boot regions of equal size, defined in 446 * multiples of 128K. 447 */ 448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 451 mmc_part_add(card, part_size, 452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 453 "boot%d", idx, true, 454 MMC_BLK_DATA_AREA_BOOT); 455 } 456 } 457 } 458 459 card->ext_csd.raw_hc_erase_gap_size = 460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 461 card->ext_csd.raw_sec_trim_mult = 462 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 463 card->ext_csd.raw_sec_erase_mult = 464 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 465 card->ext_csd.raw_sec_feature_support = 466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 467 card->ext_csd.raw_trim_mult = 468 ext_csd[EXT_CSD_TRIM_MULT]; 469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 471 if (card->ext_csd.rev >= 4) { 472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 473 EXT_CSD_PART_SETTING_COMPLETED) 474 card->ext_csd.partition_setting_completed = 1; 475 else 476 card->ext_csd.partition_setting_completed = 0; 477 478 mmc_manage_enhanced_area(card, ext_csd); 479 480 mmc_manage_gp_partitions(card, ext_csd); 481 482 card->ext_csd.sec_trim_mult = 483 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 484 card->ext_csd.sec_erase_mult = 485 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 486 card->ext_csd.sec_feature_support = 487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 488 card->ext_csd.trim_timeout = 300 * 489 ext_csd[EXT_CSD_TRIM_MULT]; 490 491 /* 492 * Note that the call to mmc_part_add above defaults to read 493 * only. If this default assumption is changed, the call must 494 * take into account the value of boot_locked below. 495 */ 496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 497 card->ext_csd.boot_ro_lockable = true; 498 499 /* Save power class values */ 500 card->ext_csd.raw_pwr_cl_52_195 = 501 ext_csd[EXT_CSD_PWR_CL_52_195]; 502 card->ext_csd.raw_pwr_cl_26_195 = 503 ext_csd[EXT_CSD_PWR_CL_26_195]; 504 card->ext_csd.raw_pwr_cl_52_360 = 505 ext_csd[EXT_CSD_PWR_CL_52_360]; 506 card->ext_csd.raw_pwr_cl_26_360 = 507 ext_csd[EXT_CSD_PWR_CL_26_360]; 508 card->ext_csd.raw_pwr_cl_200_195 = 509 ext_csd[EXT_CSD_PWR_CL_200_195]; 510 card->ext_csd.raw_pwr_cl_200_360 = 511 ext_csd[EXT_CSD_PWR_CL_200_360]; 512 card->ext_csd.raw_pwr_cl_ddr_52_195 = 513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 514 card->ext_csd.raw_pwr_cl_ddr_52_360 = 515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 516 card->ext_csd.raw_pwr_cl_ddr_200_360 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 518 } 519 520 if (card->ext_csd.rev >= 5) { 521 /* Adjust production date as per JEDEC JESD84-B451 */ 522 if (card->cid.year < 2010) 523 card->cid.year += 16; 524 525 /* check whether the eMMC card supports BKOPS */ 526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 527 card->ext_csd.bkops = 1; 528 card->ext_csd.man_bkops_en = 529 (ext_csd[EXT_CSD_BKOPS_EN] & 530 EXT_CSD_MANUAL_BKOPS_MASK); 531 card->ext_csd.raw_bkops_status = 532 ext_csd[EXT_CSD_BKOPS_STATUS]; 533 if (card->ext_csd.man_bkops_en) 534 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 535 mmc_hostname(card->host)); 536 card->ext_csd.auto_bkops_en = 537 (ext_csd[EXT_CSD_BKOPS_EN] & 538 EXT_CSD_AUTO_BKOPS_MASK); 539 if (card->ext_csd.auto_bkops_en) 540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 541 mmc_hostname(card->host)); 542 } 543 544 /* check whether the eMMC card supports HPI */ 545 if (!mmc_card_broken_hpi(card) && 546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 547 card->ext_csd.hpi = 1; 548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 550 else 551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 552 /* 553 * Indicate the maximum timeout to close 554 * a command interrupted by HPI 555 */ 556 card->ext_csd.out_of_int_time = 557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 558 } 559 560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 562 563 /* 564 * RPMB regions are defined in multiples of 128K. 565 */ 566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 569 EXT_CSD_PART_CONFIG_ACC_RPMB, 570 "rpmb", 0, false, 571 MMC_BLK_DATA_AREA_RPMB); 572 } 573 } 574 575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 577 card->erased_byte = 0xFF; 578 else 579 card->erased_byte = 0x0; 580 581 /* eMMC v4.5 or later */ 582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 583 if (card->ext_csd.rev >= 6) { 584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 585 586 card->ext_csd.generic_cmd6_time = 10 * 587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 588 card->ext_csd.power_off_longtime = 10 * 589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 590 591 card->ext_csd.cache_size = 592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 596 597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 598 card->ext_csd.data_sector_size = 4096; 599 else 600 card->ext_csd.data_sector_size = 512; 601 602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 604 card->ext_csd.data_tag_unit_size = 605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 606 (card->ext_csd.data_sector_size); 607 } else { 608 card->ext_csd.data_tag_unit_size = 0; 609 } 610 611 card->ext_csd.max_packed_writes = 612 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 613 card->ext_csd.max_packed_reads = 614 ext_csd[EXT_CSD_MAX_PACKED_READS]; 615 } else { 616 card->ext_csd.data_sector_size = 512; 617 } 618 619 /* 620 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 621 * when accessing a specific field", so use it here if there is no 622 * PARTITION_SWITCH_TIME. 623 */ 624 if (!card->ext_csd.part_time) 625 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 626 /* Some eMMC set the value too low so set a minimum */ 627 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 628 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 629 630 /* eMMC v5 or later */ 631 if (card->ext_csd.rev >= 7) { 632 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 633 MMC_FIRMWARE_LEN); 634 card->ext_csd.ffu_capable = 635 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 636 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 637 638 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 639 card->ext_csd.device_life_time_est_typ_a = 640 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 641 card->ext_csd.device_life_time_est_typ_b = 642 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 643 } 644 645 /* eMMC v5.1 or later */ 646 if (card->ext_csd.rev >= 8) { 647 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 648 EXT_CSD_CMDQ_SUPPORTED; 649 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 650 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 651 /* Exclude inefficiently small queue depths */ 652 if (card->ext_csd.cmdq_depth <= 2) { 653 card->ext_csd.cmdq_support = false; 654 card->ext_csd.cmdq_depth = 0; 655 } 656 if (card->ext_csd.cmdq_support) { 657 pr_debug("%s: Command Queue supported depth %u\n", 658 mmc_hostname(card->host), 659 card->ext_csd.cmdq_depth); 660 } 661 card->ext_csd.enhanced_rpmb_supported = 662 (card->ext_csd.rel_param & 663 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 664 } 665 out: 666 return err; 667 } 668 669 static int mmc_read_ext_csd(struct mmc_card *card) 670 { 671 u8 *ext_csd; 672 int err; 673 674 if (!mmc_can_ext_csd(card)) 675 return 0; 676 677 err = mmc_get_ext_csd(card, &ext_csd); 678 if (err) { 679 /* If the host or the card can't do the switch, 680 * fail more gracefully. */ 681 if ((err != -EINVAL) 682 && (err != -ENOSYS) 683 && (err != -EFAULT)) 684 return err; 685 686 /* 687 * High capacity cards should have this "magic" size 688 * stored in their CSD. 689 */ 690 if (card->csd.capacity == (4096 * 512)) { 691 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 692 mmc_hostname(card->host)); 693 } else { 694 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 695 mmc_hostname(card->host)); 696 err = 0; 697 } 698 699 return err; 700 } 701 702 err = mmc_decode_ext_csd(card, ext_csd); 703 kfree(ext_csd); 704 return err; 705 } 706 707 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 708 { 709 u8 *bw_ext_csd; 710 int err; 711 712 if (bus_width == MMC_BUS_WIDTH_1) 713 return 0; 714 715 err = mmc_get_ext_csd(card, &bw_ext_csd); 716 if (err) 717 return err; 718 719 /* only compare read only fields */ 720 err = !((card->ext_csd.raw_partition_support == 721 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 722 (card->ext_csd.raw_erased_mem_count == 723 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 724 (card->ext_csd.rev == 725 bw_ext_csd[EXT_CSD_REV]) && 726 (card->ext_csd.raw_ext_csd_structure == 727 bw_ext_csd[EXT_CSD_STRUCTURE]) && 728 (card->ext_csd.raw_card_type == 729 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 730 (card->ext_csd.raw_s_a_timeout == 731 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 732 (card->ext_csd.raw_hc_erase_gap_size == 733 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 734 (card->ext_csd.raw_erase_timeout_mult == 735 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 736 (card->ext_csd.raw_hc_erase_grp_size == 737 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 738 (card->ext_csd.raw_sec_trim_mult == 739 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 740 (card->ext_csd.raw_sec_erase_mult == 741 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 742 (card->ext_csd.raw_sec_feature_support == 743 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 744 (card->ext_csd.raw_trim_mult == 745 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 746 (card->ext_csd.raw_sectors[0] == 747 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 748 (card->ext_csd.raw_sectors[1] == 749 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 750 (card->ext_csd.raw_sectors[2] == 751 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 752 (card->ext_csd.raw_sectors[3] == 753 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 754 (card->ext_csd.raw_pwr_cl_52_195 == 755 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 756 (card->ext_csd.raw_pwr_cl_26_195 == 757 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 758 (card->ext_csd.raw_pwr_cl_52_360 == 759 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 760 (card->ext_csd.raw_pwr_cl_26_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 762 (card->ext_csd.raw_pwr_cl_200_195 == 763 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 764 (card->ext_csd.raw_pwr_cl_200_360 == 765 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 766 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 767 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 768 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 769 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 770 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 771 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 772 773 if (err) 774 err = -EINVAL; 775 776 kfree(bw_ext_csd); 777 return err; 778 } 779 780 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 781 card->raw_cid[2], card->raw_cid[3]); 782 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 783 card->raw_csd[2], card->raw_csd[3]); 784 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 785 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 786 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 787 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 788 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 789 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 790 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 791 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 792 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 793 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 794 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 795 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 796 card->ext_csd.device_life_time_est_typ_a, 797 card->ext_csd.device_life_time_est_typ_b); 798 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 799 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 800 card->ext_csd.enhanced_area_offset); 801 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 802 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 803 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 804 card->ext_csd.enhanced_rpmb_supported); 805 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 806 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 807 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 808 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 809 810 static ssize_t mmc_fwrev_show(struct device *dev, 811 struct device_attribute *attr, 812 char *buf) 813 { 814 struct mmc_card *card = mmc_dev_to_card(dev); 815 816 if (card->ext_csd.rev < 7) 817 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 818 else 819 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 820 card->ext_csd.fwrev); 821 } 822 823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 824 825 static ssize_t mmc_dsr_show(struct device *dev, 826 struct device_attribute *attr, 827 char *buf) 828 { 829 struct mmc_card *card = mmc_dev_to_card(dev); 830 struct mmc_host *host = card->host; 831 832 if (card->csd.dsr_imp && host->dsr_req) 833 return sysfs_emit(buf, "0x%x\n", host->dsr); 834 else 835 /* return default DSR value */ 836 return sysfs_emit(buf, "0x%x\n", 0x404); 837 } 838 839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 840 841 static struct attribute *mmc_std_attrs[] = { 842 &dev_attr_cid.attr, 843 &dev_attr_csd.attr, 844 &dev_attr_date.attr, 845 &dev_attr_erase_size.attr, 846 &dev_attr_preferred_erase_size.attr, 847 &dev_attr_fwrev.attr, 848 &dev_attr_ffu_capable.attr, 849 &dev_attr_hwrev.attr, 850 &dev_attr_manfid.attr, 851 &dev_attr_name.attr, 852 &dev_attr_oemid.attr, 853 &dev_attr_prv.attr, 854 &dev_attr_rev.attr, 855 &dev_attr_pre_eol_info.attr, 856 &dev_attr_life_time.attr, 857 &dev_attr_serial.attr, 858 &dev_attr_enhanced_area_offset.attr, 859 &dev_attr_enhanced_area_size.attr, 860 &dev_attr_raw_rpmb_size_mult.attr, 861 &dev_attr_enhanced_rpmb_supported.attr, 862 &dev_attr_rel_sectors.attr, 863 &dev_attr_ocr.attr, 864 &dev_attr_rca.attr, 865 &dev_attr_dsr.attr, 866 &dev_attr_cmdq_en.attr, 867 NULL, 868 }; 869 ATTRIBUTE_GROUPS(mmc_std); 870 871 static struct device_type mmc_type = { 872 .groups = mmc_std_groups, 873 }; 874 875 /* 876 * Select the PowerClass for the current bus width 877 * If power class is defined for 4/8 bit bus in the 878 * extended CSD register, select it by executing the 879 * mmc_switch command. 880 */ 881 static int __mmc_select_powerclass(struct mmc_card *card, 882 unsigned int bus_width) 883 { 884 struct mmc_host *host = card->host; 885 struct mmc_ext_csd *ext_csd = &card->ext_csd; 886 unsigned int pwrclass_val = 0; 887 int err = 0; 888 889 switch (1 << host->ios.vdd) { 890 case MMC_VDD_165_195: 891 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 892 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 893 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 894 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 895 ext_csd->raw_pwr_cl_52_195 : 896 ext_csd->raw_pwr_cl_ddr_52_195; 897 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 898 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 899 break; 900 case MMC_VDD_27_28: 901 case MMC_VDD_28_29: 902 case MMC_VDD_29_30: 903 case MMC_VDD_30_31: 904 case MMC_VDD_31_32: 905 case MMC_VDD_32_33: 906 case MMC_VDD_33_34: 907 case MMC_VDD_34_35: 908 case MMC_VDD_35_36: 909 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 910 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 911 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 912 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 913 ext_csd->raw_pwr_cl_52_360 : 914 ext_csd->raw_pwr_cl_ddr_52_360; 915 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 916 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 917 ext_csd->raw_pwr_cl_ddr_200_360 : 918 ext_csd->raw_pwr_cl_200_360; 919 break; 920 default: 921 pr_warn("%s: Voltage range not supported for power class\n", 922 mmc_hostname(host)); 923 return -EINVAL; 924 } 925 926 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 927 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 928 EXT_CSD_PWR_CL_8BIT_SHIFT; 929 else 930 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 931 EXT_CSD_PWR_CL_4BIT_SHIFT; 932 933 /* If the power class is different from the default value */ 934 if (pwrclass_val > 0) { 935 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 936 EXT_CSD_POWER_CLASS, 937 pwrclass_val, 938 card->ext_csd.generic_cmd6_time); 939 } 940 941 return err; 942 } 943 944 static int mmc_select_powerclass(struct mmc_card *card) 945 { 946 struct mmc_host *host = card->host; 947 u32 bus_width, ext_csd_bits; 948 int err, ddr; 949 950 /* Power class selection is supported for versions >= 4.0 */ 951 if (!mmc_can_ext_csd(card)) 952 return 0; 953 954 bus_width = host->ios.bus_width; 955 /* Power class values are defined only for 4/8 bit bus */ 956 if (bus_width == MMC_BUS_WIDTH_1) 957 return 0; 958 959 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 960 if (ddr) 961 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 962 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 963 else 964 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 965 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 966 967 err = __mmc_select_powerclass(card, ext_csd_bits); 968 if (err) 969 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 970 mmc_hostname(host), 1 << bus_width, ddr); 971 972 return err; 973 } 974 975 /* 976 * Set the bus speed for the selected speed mode. 977 */ 978 static void mmc_set_bus_speed(struct mmc_card *card) 979 { 980 unsigned int max_dtr = (unsigned int)-1; 981 982 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 983 max_dtr > card->ext_csd.hs200_max_dtr) 984 max_dtr = card->ext_csd.hs200_max_dtr; 985 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 986 max_dtr = card->ext_csd.hs_max_dtr; 987 else if (max_dtr > card->csd.max_dtr) 988 max_dtr = card->csd.max_dtr; 989 990 mmc_set_clock(card->host, max_dtr); 991 } 992 993 /* 994 * Select the bus width amoung 4-bit and 8-bit(SDR). 995 * If the bus width is changed successfully, return the selected width value. 996 * Zero is returned instead of error value if the wide width is not supported. 997 */ 998 static int mmc_select_bus_width(struct mmc_card *card) 999 { 1000 static unsigned ext_csd_bits[] = { 1001 EXT_CSD_BUS_WIDTH_8, 1002 EXT_CSD_BUS_WIDTH_4, 1003 }; 1004 static unsigned bus_widths[] = { 1005 MMC_BUS_WIDTH_8, 1006 MMC_BUS_WIDTH_4, 1007 }; 1008 struct mmc_host *host = card->host; 1009 unsigned idx, bus_width = 0; 1010 int err = 0; 1011 1012 if (!mmc_can_ext_csd(card) || 1013 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1014 return 0; 1015 1016 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1017 1018 /* 1019 * Unlike SD, MMC cards dont have a configuration register to notify 1020 * supported bus width. So bus test command should be run to identify 1021 * the supported bus width or compare the ext csd values of current 1022 * bus width and ext csd values of 1 bit mode read earlier. 1023 */ 1024 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1025 /* 1026 * Host is capable of 8bit transfer, then switch 1027 * the device to work in 8bit transfer mode. If the 1028 * mmc switch command returns error then switch to 1029 * 4bit transfer mode. On success set the corresponding 1030 * bus width on the host. 1031 */ 1032 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1033 EXT_CSD_BUS_WIDTH, 1034 ext_csd_bits[idx], 1035 card->ext_csd.generic_cmd6_time); 1036 if (err) 1037 continue; 1038 1039 bus_width = bus_widths[idx]; 1040 mmc_set_bus_width(host, bus_width); 1041 1042 /* 1043 * If controller can't handle bus width test, 1044 * compare ext_csd previously read in 1 bit mode 1045 * against ext_csd at new bus width 1046 */ 1047 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1048 err = mmc_compare_ext_csds(card, bus_width); 1049 else 1050 err = mmc_bus_test(card, bus_width); 1051 1052 if (!err) { 1053 err = bus_width; 1054 break; 1055 } else { 1056 pr_warn("%s: switch to bus width %d failed\n", 1057 mmc_hostname(host), 1 << bus_width); 1058 } 1059 } 1060 1061 return err; 1062 } 1063 1064 /* 1065 * Switch to the high-speed mode 1066 */ 1067 static int mmc_select_hs(struct mmc_card *card) 1068 { 1069 int err; 1070 1071 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1072 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1073 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1074 true, true, MMC_CMD_RETRIES); 1075 if (err) 1076 pr_warn("%s: switch to high-speed failed, err:%d\n", 1077 mmc_hostname(card->host), err); 1078 1079 return err; 1080 } 1081 1082 /* 1083 * Activate wide bus and DDR if supported. 1084 */ 1085 static int mmc_select_hs_ddr(struct mmc_card *card) 1086 { 1087 struct mmc_host *host = card->host; 1088 u32 bus_width, ext_csd_bits; 1089 int err = 0; 1090 1091 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1092 return 0; 1093 1094 bus_width = host->ios.bus_width; 1095 if (bus_width == MMC_BUS_WIDTH_1) 1096 return 0; 1097 1098 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1099 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1100 1101 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1102 EXT_CSD_BUS_WIDTH, 1103 ext_csd_bits, 1104 card->ext_csd.generic_cmd6_time, 1105 MMC_TIMING_MMC_DDR52, 1106 true, true, MMC_CMD_RETRIES); 1107 if (err) { 1108 pr_err("%s: switch to bus width %d ddr failed\n", 1109 mmc_hostname(host), 1 << bus_width); 1110 return err; 1111 } 1112 1113 /* 1114 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1115 * signaling. 1116 * 1117 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1118 * 1119 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1120 * in the JEDEC spec for DDR. 1121 * 1122 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1123 * host controller can support this, like some of the SDHCI 1124 * controller which connect to an eMMC device. Some of these 1125 * host controller still needs to use 1.8v vccq for supporting 1126 * DDR mode. 1127 * 1128 * So the sequence will be: 1129 * if (host and device can both support 1.2v IO) 1130 * use 1.2v IO; 1131 * else if (host and device can both support 1.8v IO) 1132 * use 1.8v IO; 1133 * so if host and device can only support 3.3v IO, this is the 1134 * last choice. 1135 * 1136 * WARNING: eMMC rules are NOT the same as SD DDR 1137 */ 1138 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1139 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1140 if (!err) 1141 return 0; 1142 } 1143 1144 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1145 host->caps & MMC_CAP_1_8V_DDR) 1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1147 1148 /* make sure vccq is 3.3v after switching disaster */ 1149 if (err) 1150 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1151 1152 return err; 1153 } 1154 1155 static int mmc_select_hs400(struct mmc_card *card) 1156 { 1157 struct mmc_host *host = card->host; 1158 unsigned int max_dtr; 1159 int err = 0; 1160 u8 val; 1161 1162 /* 1163 * HS400 mode requires 8-bit bus width 1164 */ 1165 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1166 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1167 return 0; 1168 1169 /* Switch card to HS mode */ 1170 val = EXT_CSD_TIMING_HS; 1171 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1172 EXT_CSD_HS_TIMING, val, 1173 card->ext_csd.generic_cmd6_time, 0, 1174 false, true, MMC_CMD_RETRIES); 1175 if (err) { 1176 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1177 mmc_hostname(host), err); 1178 return err; 1179 } 1180 1181 /* Prepare host to downgrade to HS timing */ 1182 if (host->ops->hs400_downgrade) 1183 host->ops->hs400_downgrade(host); 1184 1185 /* Set host controller to HS timing */ 1186 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1187 1188 /* Reduce frequency to HS frequency */ 1189 max_dtr = card->ext_csd.hs_max_dtr; 1190 mmc_set_clock(host, max_dtr); 1191 1192 err = mmc_switch_status(card, true); 1193 if (err) 1194 goto out_err; 1195 1196 if (host->ops->hs400_prepare_ddr) 1197 host->ops->hs400_prepare_ddr(host); 1198 1199 /* Switch card to DDR */ 1200 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1201 EXT_CSD_BUS_WIDTH, 1202 EXT_CSD_DDR_BUS_WIDTH_8, 1203 card->ext_csd.generic_cmd6_time); 1204 if (err) { 1205 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1206 mmc_hostname(host), err); 1207 return err; 1208 } 1209 1210 /* Switch card to HS400 */ 1211 val = EXT_CSD_TIMING_HS400 | 1212 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1213 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1214 EXT_CSD_HS_TIMING, val, 1215 card->ext_csd.generic_cmd6_time, 0, 1216 false, true, MMC_CMD_RETRIES); 1217 if (err) { 1218 pr_err("%s: switch to hs400 failed, err:%d\n", 1219 mmc_hostname(host), err); 1220 return err; 1221 } 1222 1223 /* Set host controller to HS400 timing and frequency */ 1224 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1225 mmc_set_bus_speed(card); 1226 1227 if (host->ops->execute_hs400_tuning) { 1228 mmc_retune_disable(host); 1229 err = host->ops->execute_hs400_tuning(host, card); 1230 mmc_retune_enable(host); 1231 if (err) 1232 goto out_err; 1233 } 1234 1235 if (host->ops->hs400_complete) 1236 host->ops->hs400_complete(host); 1237 1238 err = mmc_switch_status(card, true); 1239 if (err) 1240 goto out_err; 1241 1242 return 0; 1243 1244 out_err: 1245 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1246 __func__, err); 1247 return err; 1248 } 1249 1250 int mmc_hs200_to_hs400(struct mmc_card *card) 1251 { 1252 return mmc_select_hs400(card); 1253 } 1254 1255 int mmc_hs400_to_hs200(struct mmc_card *card) 1256 { 1257 struct mmc_host *host = card->host; 1258 unsigned int max_dtr; 1259 int err; 1260 u8 val; 1261 1262 /* Reduce frequency to HS */ 1263 max_dtr = card->ext_csd.hs_max_dtr; 1264 mmc_set_clock(host, max_dtr); 1265 1266 /* Switch HS400 to HS DDR */ 1267 val = EXT_CSD_TIMING_HS; 1268 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1269 val, card->ext_csd.generic_cmd6_time, 0, 1270 false, true, MMC_CMD_RETRIES); 1271 if (err) 1272 goto out_err; 1273 1274 if (host->ops->hs400_downgrade) 1275 host->ops->hs400_downgrade(host); 1276 1277 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1278 1279 err = mmc_switch_status(card, true); 1280 if (err) 1281 goto out_err; 1282 1283 /* Switch HS DDR to HS */ 1284 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1285 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1286 0, false, true, MMC_CMD_RETRIES); 1287 if (err) 1288 goto out_err; 1289 1290 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1291 1292 err = mmc_switch_status(card, true); 1293 if (err) 1294 goto out_err; 1295 1296 /* Switch HS to HS200 */ 1297 val = EXT_CSD_TIMING_HS200 | 1298 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1299 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1300 val, card->ext_csd.generic_cmd6_time, 0, 1301 false, true, MMC_CMD_RETRIES); 1302 if (err) 1303 goto out_err; 1304 1305 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1306 1307 /* 1308 * For HS200, CRC errors are not a reliable way to know the switch 1309 * failed. If there really is a problem, we would expect tuning will 1310 * fail and the result ends up the same. 1311 */ 1312 err = mmc_switch_status(card, false); 1313 if (err) 1314 goto out_err; 1315 1316 mmc_set_bus_speed(card); 1317 1318 /* Prepare tuning for HS400 mode. */ 1319 if (host->ops->prepare_hs400_tuning) 1320 host->ops->prepare_hs400_tuning(host, &host->ios); 1321 1322 return 0; 1323 1324 out_err: 1325 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1326 __func__, err); 1327 return err; 1328 } 1329 1330 static void mmc_select_driver_type(struct mmc_card *card) 1331 { 1332 int card_drv_type, drive_strength, drv_type = 0; 1333 int fixed_drv_type = card->host->fixed_drv_type; 1334 1335 card_drv_type = card->ext_csd.raw_driver_strength | 1336 mmc_driver_type_mask(0); 1337 1338 if (fixed_drv_type >= 0) 1339 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1340 ? fixed_drv_type : 0; 1341 else 1342 drive_strength = mmc_select_drive_strength(card, 1343 card->ext_csd.hs200_max_dtr, 1344 card_drv_type, &drv_type); 1345 1346 card->drive_strength = drive_strength; 1347 1348 if (drv_type) 1349 mmc_set_driver_type(card->host, drv_type); 1350 } 1351 1352 static int mmc_select_hs400es(struct mmc_card *card) 1353 { 1354 struct mmc_host *host = card->host; 1355 int err = -EINVAL; 1356 u8 val; 1357 1358 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1359 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1360 1361 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1362 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1363 1364 /* If fails try again during next card power cycle */ 1365 if (err) 1366 goto out_err; 1367 1368 err = mmc_select_bus_width(card); 1369 if (err != MMC_BUS_WIDTH_8) { 1370 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1371 mmc_hostname(host), err); 1372 err = err < 0 ? err : -ENOTSUPP; 1373 goto out_err; 1374 } 1375 1376 /* Switch card to HS mode */ 1377 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1378 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1379 card->ext_csd.generic_cmd6_time, 0, 1380 false, true, MMC_CMD_RETRIES); 1381 if (err) { 1382 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1383 mmc_hostname(host), err); 1384 goto out_err; 1385 } 1386 1387 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1388 err = mmc_switch_status(card, true); 1389 if (err) 1390 goto out_err; 1391 1392 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1393 1394 /* Switch card to DDR with strobe bit */ 1395 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1396 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1397 EXT_CSD_BUS_WIDTH, 1398 val, 1399 card->ext_csd.generic_cmd6_time); 1400 if (err) { 1401 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1402 mmc_hostname(host), err); 1403 goto out_err; 1404 } 1405 1406 mmc_select_driver_type(card); 1407 1408 /* Switch card to HS400 */ 1409 val = EXT_CSD_TIMING_HS400 | 1410 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1411 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1412 EXT_CSD_HS_TIMING, val, 1413 card->ext_csd.generic_cmd6_time, 0, 1414 false, true, MMC_CMD_RETRIES); 1415 if (err) { 1416 pr_err("%s: switch to hs400es failed, err:%d\n", 1417 mmc_hostname(host), err); 1418 goto out_err; 1419 } 1420 1421 /* Set host controller to HS400 timing and frequency */ 1422 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1423 1424 /* Controller enable enhanced strobe function */ 1425 host->ios.enhanced_strobe = true; 1426 if (host->ops->hs400_enhanced_strobe) 1427 host->ops->hs400_enhanced_strobe(host, &host->ios); 1428 1429 err = mmc_switch_status(card, true); 1430 if (err) 1431 goto out_err; 1432 1433 return 0; 1434 1435 out_err: 1436 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1437 __func__, err); 1438 return err; 1439 } 1440 1441 /* 1442 * For device supporting HS200 mode, the following sequence 1443 * should be done before executing the tuning process. 1444 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1445 * 2. switch to HS200 mode 1446 * 3. set the clock to > 52Mhz and <=200MHz 1447 */ 1448 static int mmc_select_hs200(struct mmc_card *card) 1449 { 1450 struct mmc_host *host = card->host; 1451 unsigned int old_timing, old_signal_voltage; 1452 int err = -EINVAL; 1453 u8 val; 1454 1455 old_signal_voltage = host->ios.signal_voltage; 1456 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1457 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1458 1459 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1460 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1461 1462 /* If fails try again during next card power cycle */ 1463 if (err) 1464 return err; 1465 1466 mmc_select_driver_type(card); 1467 1468 /* 1469 * Set the bus width(4 or 8) with host's support and 1470 * switch to HS200 mode if bus width is set successfully. 1471 */ 1472 err = mmc_select_bus_width(card); 1473 if (err > 0) { 1474 val = EXT_CSD_TIMING_HS200 | 1475 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1476 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1477 EXT_CSD_HS_TIMING, val, 1478 card->ext_csd.generic_cmd6_time, 0, 1479 false, true, MMC_CMD_RETRIES); 1480 if (err) 1481 goto err; 1482 old_timing = host->ios.timing; 1483 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1484 1485 /* 1486 * For HS200, CRC errors are not a reliable way to know the 1487 * switch failed. If there really is a problem, we would expect 1488 * tuning will fail and the result ends up the same. 1489 */ 1490 err = mmc_switch_status(card, false); 1491 1492 /* 1493 * mmc_select_timing() assumes timing has not changed if 1494 * it is a switch error. 1495 */ 1496 if (err == -EBADMSG) 1497 mmc_set_timing(host, old_timing); 1498 } 1499 err: 1500 if (err) { 1501 /* fall back to the old signal voltage, if fails report error */ 1502 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1503 err = -EIO; 1504 1505 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1506 __func__, err); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * Activate High Speed, HS200 or HS400ES mode if supported. 1513 */ 1514 static int mmc_select_timing(struct mmc_card *card) 1515 { 1516 int err = 0; 1517 1518 if (!mmc_can_ext_csd(card)) 1519 goto bus_speed; 1520 1521 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1522 err = mmc_select_hs400es(card); 1523 goto out; 1524 } 1525 1526 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1527 err = mmc_select_hs200(card); 1528 if (err == -EBADMSG) 1529 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1530 else 1531 goto out; 1532 } 1533 1534 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1535 err = mmc_select_hs(card); 1536 1537 out: 1538 if (err && err != -EBADMSG) 1539 return err; 1540 1541 bus_speed: 1542 /* 1543 * Set the bus speed to the selected bus timing. 1544 * If timing is not selected, backward compatible is the default. 1545 */ 1546 mmc_set_bus_speed(card); 1547 return 0; 1548 } 1549 1550 /* 1551 * Execute tuning sequence to seek the proper bus operating 1552 * conditions for HS200 and HS400, which sends CMD21 to the device. 1553 */ 1554 static int mmc_hs200_tuning(struct mmc_card *card) 1555 { 1556 struct mmc_host *host = card->host; 1557 1558 /* 1559 * Timing should be adjusted to the HS400 target 1560 * operation frequency for tuning process 1561 */ 1562 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1563 host->ios.bus_width == MMC_BUS_WIDTH_8) 1564 if (host->ops->prepare_hs400_tuning) 1565 host->ops->prepare_hs400_tuning(host, &host->ios); 1566 1567 return mmc_execute_tuning(card); 1568 } 1569 1570 /* 1571 * Handle the detection and initialisation of a card. 1572 * 1573 * In the case of a resume, "oldcard" will contain the card 1574 * we're trying to reinitialise. 1575 */ 1576 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1577 struct mmc_card *oldcard) 1578 { 1579 struct mmc_card *card; 1580 int err; 1581 u32 cid[4]; 1582 u32 rocr; 1583 1584 WARN_ON(!host->claimed); 1585 1586 /* Set correct bus mode for MMC before attempting init */ 1587 if (!mmc_host_is_spi(host)) 1588 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1589 1590 /* 1591 * Since we're changing the OCR value, we seem to 1592 * need to tell some cards to go back to the idle 1593 * state. We wait 1ms to give cards time to 1594 * respond. 1595 * mmc_go_idle is needed for eMMC that are asleep 1596 */ 1597 mmc_go_idle(host); 1598 1599 /* The extra bit indicates that we support high capacity */ 1600 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1601 if (err) 1602 goto err; 1603 1604 /* 1605 * For SPI, enable CRC as appropriate. 1606 */ 1607 if (mmc_host_is_spi(host)) { 1608 err = mmc_spi_set_crc(host, use_spi_crc); 1609 if (err) 1610 goto err; 1611 } 1612 1613 /* 1614 * Fetch CID from card. 1615 */ 1616 err = mmc_send_cid(host, cid); 1617 if (err) 1618 goto err; 1619 1620 if (oldcard) { 1621 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1622 pr_debug("%s: Perhaps the card was replaced\n", 1623 mmc_hostname(host)); 1624 err = -ENOENT; 1625 goto err; 1626 } 1627 1628 card = oldcard; 1629 } else { 1630 /* 1631 * Allocate card structure. 1632 */ 1633 card = mmc_alloc_card(host, &mmc_type); 1634 if (IS_ERR(card)) { 1635 err = PTR_ERR(card); 1636 goto err; 1637 } 1638 1639 card->ocr = ocr; 1640 card->type = MMC_TYPE_MMC; 1641 card->rca = 1; 1642 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1643 } 1644 1645 /* 1646 * Call the optional HC's init_card function to handle quirks. 1647 */ 1648 if (host->ops->init_card) 1649 host->ops->init_card(host, card); 1650 1651 /* 1652 * For native busses: set card RCA and quit open drain mode. 1653 */ 1654 if (!mmc_host_is_spi(host)) { 1655 err = mmc_set_relative_addr(card); 1656 if (err) 1657 goto free_card; 1658 1659 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1660 } 1661 1662 if (!oldcard) { 1663 /* 1664 * Fetch CSD from card. 1665 */ 1666 err = mmc_send_csd(card, card->raw_csd); 1667 if (err) 1668 goto free_card; 1669 1670 err = mmc_decode_csd(card); 1671 if (err) 1672 goto free_card; 1673 err = mmc_decode_cid(card); 1674 if (err) 1675 goto free_card; 1676 } 1677 1678 /* 1679 * handling only for cards supporting DSR and hosts requesting 1680 * DSR configuration 1681 */ 1682 if (card->csd.dsr_imp && host->dsr_req) 1683 mmc_set_dsr(host); 1684 1685 /* 1686 * Select card, as all following commands rely on that. 1687 */ 1688 if (!mmc_host_is_spi(host)) { 1689 err = mmc_select_card(card); 1690 if (err) 1691 goto free_card; 1692 } 1693 1694 if (!oldcard) { 1695 /* Read extended CSD. */ 1696 err = mmc_read_ext_csd(card); 1697 if (err) 1698 goto free_card; 1699 1700 /* 1701 * If doing byte addressing, check if required to do sector 1702 * addressing. Handle the case of <2GB cards needing sector 1703 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1704 * ocr register has bit 30 set for sector addressing. 1705 */ 1706 if (rocr & BIT(30)) 1707 mmc_card_set_blockaddr(card); 1708 1709 /* Erase size depends on CSD and Extended CSD */ 1710 mmc_set_erase_size(card); 1711 } 1712 1713 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1714 if (card->ext_csd.rev >= 3) { 1715 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1716 EXT_CSD_ERASE_GROUP_DEF, 1, 1717 card->ext_csd.generic_cmd6_time); 1718 1719 if (err && err != -EBADMSG) 1720 goto free_card; 1721 1722 if (err) { 1723 /* 1724 * Just disable enhanced area off & sz 1725 * will try to enable ERASE_GROUP_DEF 1726 * during next time reinit 1727 */ 1728 card->ext_csd.enhanced_area_offset = -EINVAL; 1729 card->ext_csd.enhanced_area_size = -EINVAL; 1730 } else { 1731 card->ext_csd.erase_group_def = 1; 1732 /* 1733 * enable ERASE_GRP_DEF successfully. 1734 * This will affect the erase size, so 1735 * here need to reset erase size 1736 */ 1737 mmc_set_erase_size(card); 1738 } 1739 } 1740 1741 /* 1742 * Ensure eMMC user default partition is enabled 1743 */ 1744 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1745 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1746 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1747 card->ext_csd.part_config, 1748 card->ext_csd.part_time); 1749 if (err && err != -EBADMSG) 1750 goto free_card; 1751 } 1752 1753 /* 1754 * Enable power_off_notification byte in the ext_csd register 1755 */ 1756 if (card->ext_csd.rev >= 6) { 1757 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1758 EXT_CSD_POWER_OFF_NOTIFICATION, 1759 EXT_CSD_POWER_ON, 1760 card->ext_csd.generic_cmd6_time); 1761 if (err && err != -EBADMSG) 1762 goto free_card; 1763 1764 /* 1765 * The err can be -EBADMSG or 0, 1766 * so check for success and update the flag 1767 */ 1768 if (!err) 1769 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1770 } 1771 1772 /* set erase_arg */ 1773 if (mmc_can_discard(card)) 1774 card->erase_arg = MMC_DISCARD_ARG; 1775 else if (mmc_can_trim(card)) 1776 card->erase_arg = MMC_TRIM_ARG; 1777 else 1778 card->erase_arg = MMC_ERASE_ARG; 1779 1780 /* 1781 * Select timing interface 1782 */ 1783 err = mmc_select_timing(card); 1784 if (err) 1785 goto free_card; 1786 1787 if (mmc_card_hs200(card)) { 1788 host->doing_init_tune = 1; 1789 1790 err = mmc_hs200_tuning(card); 1791 if (!err) 1792 err = mmc_select_hs400(card); 1793 1794 host->doing_init_tune = 0; 1795 1796 if (err) 1797 goto free_card; 1798 1799 } else if (!mmc_card_hs400es(card)) { 1800 /* Select the desired bus width optionally */ 1801 err = mmc_select_bus_width(card); 1802 if (err > 0 && mmc_card_hs(card)) { 1803 err = mmc_select_hs_ddr(card); 1804 if (err) 1805 goto free_card; 1806 } 1807 } 1808 1809 /* 1810 * Choose the power class with selected bus interface 1811 */ 1812 mmc_select_powerclass(card); 1813 1814 /* 1815 * Enable HPI feature (if supported) 1816 */ 1817 if (card->ext_csd.hpi) { 1818 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1819 EXT_CSD_HPI_MGMT, 1, 1820 card->ext_csd.generic_cmd6_time); 1821 if (err && err != -EBADMSG) 1822 goto free_card; 1823 if (err) { 1824 pr_warn("%s: Enabling HPI failed\n", 1825 mmc_hostname(card->host)); 1826 card->ext_csd.hpi_en = 0; 1827 } else { 1828 card->ext_csd.hpi_en = 1; 1829 } 1830 } 1831 1832 /* 1833 * If cache size is higher than 0, this indicates the existence of cache 1834 * and it can be turned on. Note that some eMMCs from Micron has been 1835 * reported to need ~800 ms timeout, while enabling the cache after 1836 * sudden power failure tests. Let's extend the timeout to a minimum of 1837 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1838 */ 1839 if (card->ext_csd.cache_size > 0) { 1840 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1841 1842 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1843 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1844 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1845 if (err && err != -EBADMSG) 1846 goto free_card; 1847 1848 /* 1849 * Only if no error, cache is turned on successfully. 1850 */ 1851 if (err) { 1852 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1853 mmc_hostname(card->host), err); 1854 card->ext_csd.cache_ctrl = 0; 1855 } else { 1856 card->ext_csd.cache_ctrl = 1; 1857 } 1858 } 1859 1860 /* 1861 * Enable Command Queue if supported. Note that Packed Commands cannot 1862 * be used with Command Queue. 1863 */ 1864 card->ext_csd.cmdq_en = false; 1865 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1866 err = mmc_cmdq_enable(card); 1867 if (err && err != -EBADMSG) 1868 goto free_card; 1869 if (err) { 1870 pr_warn("%s: Enabling CMDQ failed\n", 1871 mmc_hostname(card->host)); 1872 card->ext_csd.cmdq_support = false; 1873 card->ext_csd.cmdq_depth = 0; 1874 } 1875 } 1876 /* 1877 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1878 * disabled for a time, so a flag is needed to indicate to re-enable the 1879 * Command Queue. 1880 */ 1881 card->reenable_cmdq = card->ext_csd.cmdq_en; 1882 1883 if (host->cqe_ops && !host->cqe_enabled) { 1884 err = host->cqe_ops->cqe_enable(host, card); 1885 if (!err) { 1886 host->cqe_enabled = true; 1887 1888 if (card->ext_csd.cmdq_en) { 1889 pr_info("%s: Command Queue Engine enabled\n", 1890 mmc_hostname(host)); 1891 } else { 1892 host->hsq_enabled = true; 1893 pr_info("%s: Host Software Queue enabled\n", 1894 mmc_hostname(host)); 1895 } 1896 } 1897 } 1898 1899 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1900 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1901 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1902 mmc_hostname(host)); 1903 err = -EINVAL; 1904 goto free_card; 1905 } 1906 1907 if (!oldcard) 1908 host->card = card; 1909 1910 return 0; 1911 1912 free_card: 1913 if (!oldcard) 1914 mmc_remove_card(card); 1915 err: 1916 return err; 1917 } 1918 1919 static int mmc_can_sleep(struct mmc_card *card) 1920 { 1921 return card->ext_csd.rev >= 3; 1922 } 1923 1924 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1925 { 1926 struct mmc_host *host = cb_data; 1927 1928 *busy = host->ops->card_busy(host); 1929 return 0; 1930 } 1931 1932 static int mmc_sleep(struct mmc_host *host) 1933 { 1934 struct mmc_command cmd = {}; 1935 struct mmc_card *card = host->card; 1936 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1937 bool use_r1b_resp; 1938 int err; 1939 1940 /* Re-tuning can't be done once the card is deselected */ 1941 mmc_retune_hold(host); 1942 1943 err = mmc_deselect_cards(host); 1944 if (err) 1945 goto out_release; 1946 1947 cmd.opcode = MMC_SLEEP_AWAKE; 1948 cmd.arg = card->rca << 16; 1949 cmd.arg |= 1 << 15; 1950 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1951 1952 err = mmc_wait_for_cmd(host, &cmd, 0); 1953 if (err) 1954 goto out_release; 1955 1956 /* 1957 * If the host does not wait while the card signals busy, then we can 1958 * try to poll, but only if the host supports HW polling, as the 1959 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1960 * to wait the sleep/awake timeout. 1961 */ 1962 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 1963 goto out_release; 1964 1965 if (!host->ops->card_busy) { 1966 mmc_delay(timeout_ms); 1967 goto out_release; 1968 } 1969 1970 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 1971 1972 out_release: 1973 mmc_retune_release(host); 1974 return err; 1975 } 1976 1977 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1978 { 1979 return card && 1980 mmc_card_mmc(card) && 1981 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1982 } 1983 1984 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1985 { 1986 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1987 int err; 1988 1989 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1990 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1991 timeout = card->ext_csd.power_off_longtime; 1992 1993 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1994 EXT_CSD_POWER_OFF_NOTIFICATION, 1995 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 1996 if (err) 1997 pr_err("%s: Power Off Notification timed out, %u\n", 1998 mmc_hostname(card->host), timeout); 1999 2000 /* Disable the power off notification after the switch operation. */ 2001 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2002 2003 return err; 2004 } 2005 2006 /* 2007 * Host is being removed. Free up the current card. 2008 */ 2009 static void mmc_remove(struct mmc_host *host) 2010 { 2011 mmc_remove_card(host->card); 2012 host->card = NULL; 2013 } 2014 2015 /* 2016 * Card detection - card is alive. 2017 */ 2018 static int mmc_alive(struct mmc_host *host) 2019 { 2020 return mmc_send_status(host->card, NULL); 2021 } 2022 2023 /* 2024 * Card detection callback from host. 2025 */ 2026 static void mmc_detect(struct mmc_host *host) 2027 { 2028 int err; 2029 2030 mmc_get_card(host->card, NULL); 2031 2032 /* 2033 * Just check if our card has been removed. 2034 */ 2035 err = _mmc_detect_card_removed(host); 2036 2037 mmc_put_card(host->card, NULL); 2038 2039 if (err) { 2040 mmc_remove(host); 2041 2042 mmc_claim_host(host); 2043 mmc_detach_bus(host); 2044 mmc_power_off(host); 2045 mmc_release_host(host); 2046 } 2047 } 2048 2049 static bool _mmc_cache_enabled(struct mmc_host *host) 2050 { 2051 return host->card->ext_csd.cache_size > 0 && 2052 host->card->ext_csd.cache_ctrl & 1; 2053 } 2054 2055 /* 2056 * Flush the internal cache of the eMMC to non-volatile storage. 2057 */ 2058 static int _mmc_flush_cache(struct mmc_host *host) 2059 { 2060 int err = 0; 2061 2062 if (_mmc_cache_enabled(host)) { 2063 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2064 EXT_CSD_FLUSH_CACHE, 1, 2065 CACHE_FLUSH_TIMEOUT_MS); 2066 if (err) 2067 pr_err("%s: cache flush error %d\n", 2068 mmc_hostname(host), err); 2069 } 2070 2071 return err; 2072 } 2073 2074 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2075 { 2076 int err = 0; 2077 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2078 EXT_CSD_POWER_OFF_LONG; 2079 2080 mmc_claim_host(host); 2081 2082 if (mmc_card_suspended(host->card)) 2083 goto out; 2084 2085 err = _mmc_flush_cache(host); 2086 if (err) 2087 goto out; 2088 2089 if (mmc_can_poweroff_notify(host->card) && 2090 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2091 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2092 err = mmc_poweroff_notify(host->card, notify_type); 2093 else if (mmc_can_sleep(host->card)) 2094 err = mmc_sleep(host); 2095 else if (!mmc_host_is_spi(host)) 2096 err = mmc_deselect_cards(host); 2097 2098 if (!err) { 2099 mmc_power_off(host); 2100 mmc_card_set_suspended(host->card); 2101 } 2102 out: 2103 mmc_release_host(host); 2104 return err; 2105 } 2106 2107 /* 2108 * Suspend callback 2109 */ 2110 static int mmc_suspend(struct mmc_host *host) 2111 { 2112 int err; 2113 2114 err = _mmc_suspend(host, true); 2115 if (!err) { 2116 pm_runtime_disable(&host->card->dev); 2117 pm_runtime_set_suspended(&host->card->dev); 2118 } 2119 2120 return err; 2121 } 2122 2123 /* 2124 * This function tries to determine if the same card is still present 2125 * and, if so, restore all state to it. 2126 */ 2127 static int _mmc_resume(struct mmc_host *host) 2128 { 2129 int err = 0; 2130 2131 mmc_claim_host(host); 2132 2133 if (!mmc_card_suspended(host->card)) 2134 goto out; 2135 2136 mmc_power_up(host, host->card->ocr); 2137 err = mmc_init_card(host, host->card->ocr, host->card); 2138 mmc_card_clr_suspended(host->card); 2139 2140 out: 2141 mmc_release_host(host); 2142 return err; 2143 } 2144 2145 /* 2146 * Shutdown callback 2147 */ 2148 static int mmc_shutdown(struct mmc_host *host) 2149 { 2150 int err = 0; 2151 2152 /* 2153 * In a specific case for poweroff notify, we need to resume the card 2154 * before we can shutdown it properly. 2155 */ 2156 if (mmc_can_poweroff_notify(host->card) && 2157 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2158 err = _mmc_resume(host); 2159 2160 if (!err) 2161 err = _mmc_suspend(host, false); 2162 2163 return err; 2164 } 2165 2166 /* 2167 * Callback for resume. 2168 */ 2169 static int mmc_resume(struct mmc_host *host) 2170 { 2171 pm_runtime_enable(&host->card->dev); 2172 return 0; 2173 } 2174 2175 /* 2176 * Callback for runtime_suspend. 2177 */ 2178 static int mmc_runtime_suspend(struct mmc_host *host) 2179 { 2180 int err; 2181 2182 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2183 return 0; 2184 2185 err = _mmc_suspend(host, true); 2186 if (err) 2187 pr_err("%s: error %d doing aggressive suspend\n", 2188 mmc_hostname(host), err); 2189 2190 return err; 2191 } 2192 2193 /* 2194 * Callback for runtime_resume. 2195 */ 2196 static int mmc_runtime_resume(struct mmc_host *host) 2197 { 2198 int err; 2199 2200 err = _mmc_resume(host); 2201 if (err && err != -ENOMEDIUM) 2202 pr_err("%s: error %d doing runtime resume\n", 2203 mmc_hostname(host), err); 2204 2205 return 0; 2206 } 2207 2208 static int mmc_can_reset(struct mmc_card *card) 2209 { 2210 u8 rst_n_function; 2211 2212 rst_n_function = card->ext_csd.rst_n_function; 2213 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2214 return 0; 2215 return 1; 2216 } 2217 2218 static int _mmc_hw_reset(struct mmc_host *host) 2219 { 2220 struct mmc_card *card = host->card; 2221 2222 /* 2223 * In the case of recovery, we can't expect flushing the cache to work 2224 * always, but we have a go and ignore errors. 2225 */ 2226 _mmc_flush_cache(host); 2227 2228 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2229 mmc_can_reset(card)) { 2230 /* If the card accept RST_n signal, send it. */ 2231 mmc_set_clock(host, host->f_init); 2232 host->ops->hw_reset(host); 2233 /* Set initial state and call mmc_set_ios */ 2234 mmc_set_initial_state(host); 2235 } else { 2236 /* Do a brute force power cycle */ 2237 mmc_power_cycle(host, card->ocr); 2238 mmc_pwrseq_reset(host); 2239 } 2240 return mmc_init_card(host, card->ocr, card); 2241 } 2242 2243 static const struct mmc_bus_ops mmc_ops = { 2244 .remove = mmc_remove, 2245 .detect = mmc_detect, 2246 .suspend = mmc_suspend, 2247 .resume = mmc_resume, 2248 .runtime_suspend = mmc_runtime_suspend, 2249 .runtime_resume = mmc_runtime_resume, 2250 .alive = mmc_alive, 2251 .shutdown = mmc_shutdown, 2252 .hw_reset = _mmc_hw_reset, 2253 .cache_enabled = _mmc_cache_enabled, 2254 .flush_cache = _mmc_flush_cache, 2255 }; 2256 2257 /* 2258 * Starting point for MMC card init. 2259 */ 2260 int mmc_attach_mmc(struct mmc_host *host) 2261 { 2262 int err; 2263 u32 ocr, rocr; 2264 2265 WARN_ON(!host->claimed); 2266 2267 /* Set correct bus mode for MMC before attempting attach */ 2268 if (!mmc_host_is_spi(host)) 2269 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2270 2271 err = mmc_send_op_cond(host, 0, &ocr); 2272 if (err) 2273 return err; 2274 2275 mmc_attach_bus(host, &mmc_ops); 2276 if (host->ocr_avail_mmc) 2277 host->ocr_avail = host->ocr_avail_mmc; 2278 2279 /* 2280 * We need to get OCR a different way for SPI. 2281 */ 2282 if (mmc_host_is_spi(host)) { 2283 err = mmc_spi_read_ocr(host, 1, &ocr); 2284 if (err) 2285 goto err; 2286 } 2287 2288 rocr = mmc_select_voltage(host, ocr); 2289 2290 /* 2291 * Can we support the voltage of the card? 2292 */ 2293 if (!rocr) { 2294 err = -EINVAL; 2295 goto err; 2296 } 2297 2298 /* 2299 * Detect and init the card. 2300 */ 2301 err = mmc_init_card(host, rocr, NULL); 2302 if (err) 2303 goto err; 2304 2305 mmc_release_host(host); 2306 err = mmc_add_card(host->card); 2307 if (err) 2308 goto remove_card; 2309 2310 mmc_claim_host(host); 2311 return 0; 2312 2313 remove_card: 2314 mmc_remove_card(host->card); 2315 mmc_claim_host(host); 2316 host->card = NULL; 2317 err: 2318 mmc_detach_bus(host); 2319 2320 pr_err("%s: error %d whilst initialising MMC card\n", 2321 mmc_hostname(host), err); 2322 2323 return err; 2324 } 2325