1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "quirks.h" 28 #include "sd_ops.h" 29 #include "pwrseq.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 #define MIN_CACHE_EN_TIMEOUT_MS 1600 33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 #define UNSTUFF_BITS(resp,start,size) \ 55 ({ \ 56 const int __size = size; \ 57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 58 const int __off = 3 - ((start) / 32); \ 59 const int __shft = (start) & 31; \ 60 u32 __res; \ 61 \ 62 __res = resp[__off] >> __shft; \ 63 if (__size + __shft > 32) \ 64 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 65 __res & __mask; \ 66 }) 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 static int mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * Add the raw card ID (cid) data to the entropy pool. It doesn't 77 * matter that not all of it is unique, it's just bonus entropy. 78 */ 79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 80 81 /* 82 * The selection of the format here is based upon published 83 * specs from sandisk and from what people have reported. 84 */ 85 switch (card->csd.mmca_vsn) { 86 case 0: /* MMC v1.0 - v1.2 */ 87 case 1: /* MMC v1.4 */ 88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 99 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 101 break; 102 103 case 2: /* MMC v2.0 - v2.2 */ 104 case 3: /* MMC v3.1 - v3.3 */ 105 case 4: /* MMC v4 */ 106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 116 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 118 break; 119 120 default: 121 pr_err("%s: card has unknown MMCA version %d\n", 122 mmc_hostname(card->host), card->csd.mmca_vsn); 123 return -EINVAL; 124 } 125 126 return 0; 127 } 128 129 static void mmc_set_erase_size(struct mmc_card *card) 130 { 131 if (card->ext_csd.erase_group_def & 1) 132 card->erase_size = card->ext_csd.hc_erase_size; 133 else 134 card->erase_size = card->csd.erase_size; 135 136 mmc_init_erase(card); 137 } 138 139 /* 140 * Given a 128-bit response, decode to our card CSD structure. 141 */ 142 static int mmc_decode_csd(struct mmc_card *card) 143 { 144 struct mmc_csd *csd = &card->csd; 145 unsigned int e, m, a, b; 146 u32 *resp = card->raw_csd; 147 148 /* 149 * We only understand CSD structure v1.1 and v1.2. 150 * v1.2 has extra information in bits 15, 11 and 10. 151 * We also support eMMC v4.4 & v4.41. 152 */ 153 csd->structure = UNSTUFF_BITS(resp, 126, 2); 154 if (csd->structure == 0) { 155 pr_err("%s: unrecognised CSD structure version %d\n", 156 mmc_hostname(card->host), csd->structure); 157 return -EINVAL; 158 } 159 160 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 161 m = UNSTUFF_BITS(resp, 115, 4); 162 e = UNSTUFF_BITS(resp, 112, 3); 163 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 164 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 165 166 m = UNSTUFF_BITS(resp, 99, 4); 167 e = UNSTUFF_BITS(resp, 96, 3); 168 csd->max_dtr = tran_exp[e] * tran_mant[m]; 169 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 170 171 e = UNSTUFF_BITS(resp, 47, 3); 172 m = UNSTUFF_BITS(resp, 62, 12); 173 csd->capacity = (1 + m) << (e + 2); 174 175 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 176 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 177 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 178 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 179 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 180 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 181 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 182 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 183 184 if (csd->write_blkbits >= 9) { 185 a = UNSTUFF_BITS(resp, 42, 5); 186 b = UNSTUFF_BITS(resp, 37, 5); 187 csd->erase_size = (a + 1) * (b + 1); 188 csd->erase_size <<= csd->write_blkbits - 9; 189 } 190 191 return 0; 192 } 193 194 static void mmc_select_card_type(struct mmc_card *card) 195 { 196 struct mmc_host *host = card->host; 197 u8 card_type = card->ext_csd.raw_card_type; 198 u32 caps = host->caps, caps2 = host->caps2; 199 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 200 unsigned int avail_type = 0; 201 202 if (caps & MMC_CAP_MMC_HIGHSPEED && 203 card_type & EXT_CSD_CARD_TYPE_HS_26) { 204 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 205 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 206 } 207 208 if (caps & MMC_CAP_MMC_HIGHSPEED && 209 card_type & EXT_CSD_CARD_TYPE_HS_52) { 210 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 211 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 212 } 213 214 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 215 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 218 } 219 220 if (caps & MMC_CAP_1_2V_DDR && 221 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 222 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 224 } 225 226 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 227 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 228 hs200_max_dtr = MMC_HS200_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 230 } 231 232 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 233 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 234 hs200_max_dtr = MMC_HS200_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 236 } 237 238 if (caps2 & MMC_CAP2_HS400_1_8V && 239 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 240 hs200_max_dtr = MMC_HS200_MAX_DTR; 241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 242 } 243 244 if (caps2 & MMC_CAP2_HS400_1_2V && 245 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 246 hs200_max_dtr = MMC_HS200_MAX_DTR; 247 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 248 } 249 250 if ((caps2 & MMC_CAP2_HS400_ES) && 251 card->ext_csd.strobe_support && 252 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 253 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 254 255 card->ext_csd.hs_max_dtr = hs_max_dtr; 256 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 257 card->mmc_avail_type = avail_type; 258 } 259 260 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 261 { 262 u8 hc_erase_grp_sz, hc_wp_grp_sz; 263 264 /* 265 * Disable these attributes by default 266 */ 267 card->ext_csd.enhanced_area_offset = -EINVAL; 268 card->ext_csd.enhanced_area_size = -EINVAL; 269 270 /* 271 * Enhanced area feature support -- check whether the eMMC 272 * card has the Enhanced area enabled. If so, export enhanced 273 * area offset and size to user by adding sysfs interface. 274 */ 275 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 276 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 277 if (card->ext_csd.partition_setting_completed) { 278 hc_erase_grp_sz = 279 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 280 hc_wp_grp_sz = 281 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 282 283 /* 284 * calculate the enhanced data area offset, in bytes 285 */ 286 card->ext_csd.enhanced_area_offset = 287 (((unsigned long long)ext_csd[139]) << 24) + 288 (((unsigned long long)ext_csd[138]) << 16) + 289 (((unsigned long long)ext_csd[137]) << 8) + 290 (((unsigned long long)ext_csd[136])); 291 if (mmc_card_blockaddr(card)) 292 card->ext_csd.enhanced_area_offset <<= 9; 293 /* 294 * calculate the enhanced data area size, in kilobytes 295 */ 296 card->ext_csd.enhanced_area_size = 297 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 298 ext_csd[140]; 299 card->ext_csd.enhanced_area_size *= 300 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 301 card->ext_csd.enhanced_area_size <<= 9; 302 } else { 303 pr_warn("%s: defines enhanced area without partition setting complete\n", 304 mmc_hostname(card->host)); 305 } 306 } 307 } 308 309 static void mmc_part_add(struct mmc_card *card, u64 size, 310 unsigned int part_cfg, char *name, int idx, bool ro, 311 int area_type) 312 { 313 card->part[card->nr_parts].size = size; 314 card->part[card->nr_parts].part_cfg = part_cfg; 315 sprintf(card->part[card->nr_parts].name, name, idx); 316 card->part[card->nr_parts].force_ro = ro; 317 card->part[card->nr_parts].area_type = area_type; 318 card->nr_parts++; 319 } 320 321 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 322 { 323 int idx; 324 u8 hc_erase_grp_sz, hc_wp_grp_sz; 325 u64 part_size; 326 327 /* 328 * General purpose partition feature support -- 329 * If ext_csd has the size of general purpose partitions, 330 * set size, part_cfg, partition name in mmc_part. 331 */ 332 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 333 EXT_CSD_PART_SUPPORT_PART_EN) { 334 hc_erase_grp_sz = 335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 336 hc_wp_grp_sz = 337 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 338 339 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 340 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 341 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 342 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 343 continue; 344 if (card->ext_csd.partition_setting_completed == 0) { 345 pr_warn("%s: has partition size defined without partition complete\n", 346 mmc_hostname(card->host)); 347 break; 348 } 349 part_size = 350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 351 << 16) + 352 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 353 << 8) + 354 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 355 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 356 mmc_part_add(card, part_size << 19, 357 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 358 "gp%d", idx, false, 359 MMC_BLK_DATA_AREA_GP); 360 } 361 } 362 } 363 364 /* Minimum partition switch timeout in milliseconds */ 365 #define MMC_MIN_PART_SWITCH_TIME 300 366 367 /* 368 * Decode extended CSD. 369 */ 370 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 371 { 372 int err = 0, idx; 373 u64 part_size; 374 struct device_node *np; 375 bool broken_hpi = false; 376 377 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 378 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 379 if (card->csd.structure == 3) { 380 if (card->ext_csd.raw_ext_csd_structure > 2) { 381 pr_err("%s: unrecognised EXT_CSD structure " 382 "version %d\n", mmc_hostname(card->host), 383 card->ext_csd.raw_ext_csd_structure); 384 err = -EINVAL; 385 goto out; 386 } 387 } 388 389 np = mmc_of_find_child_device(card->host, 0); 390 if (np && of_device_is_compatible(np, "mmc-card")) 391 broken_hpi = of_property_read_bool(np, "broken-hpi"); 392 of_node_put(np); 393 394 /* 395 * The EXT_CSD format is meant to be forward compatible. As long 396 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 397 * are authorized, see JEDEC JESD84-B50 section B.8. 398 */ 399 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 400 401 /* fixup device after ext_csd revision field is updated */ 402 mmc_fixup_device(card, mmc_ext_csd_fixups); 403 404 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 405 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 406 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 407 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 408 if (card->ext_csd.rev >= 2) { 409 card->ext_csd.sectors = 410 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 411 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 412 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 413 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 414 415 /* Cards with density > 2GiB are sector addressed */ 416 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 417 mmc_card_set_blockaddr(card); 418 } 419 420 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 421 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 422 mmc_select_card_type(card); 423 424 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.raw_erase_timeout_mult = 426 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 427 card->ext_csd.raw_hc_erase_grp_size = 428 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 429 card->ext_csd.raw_boot_mult = 430 ext_csd[EXT_CSD_BOOT_MULT]; 431 if (card->ext_csd.rev >= 3) { 432 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 433 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 434 435 /* EXT_CSD value is in units of 10ms, but we store in ms */ 436 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 437 438 /* Sleep / awake timeout in 100ns units */ 439 if (sa_shift > 0 && sa_shift <= 0x17) 440 card->ext_csd.sa_timeout = 441 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 442 card->ext_csd.erase_group_def = 443 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 444 card->ext_csd.hc_erase_timeout = 300 * 445 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 446 card->ext_csd.hc_erase_size = 447 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 448 449 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 450 451 /* 452 * There are two boot regions of equal size, defined in 453 * multiples of 128K. 454 */ 455 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 456 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 457 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 458 mmc_part_add(card, part_size, 459 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 460 "boot%d", idx, true, 461 MMC_BLK_DATA_AREA_BOOT); 462 } 463 } 464 } 465 466 card->ext_csd.raw_hc_erase_gap_size = 467 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 468 card->ext_csd.raw_sec_trim_mult = 469 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 470 card->ext_csd.raw_sec_erase_mult = 471 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 472 card->ext_csd.raw_sec_feature_support = 473 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 474 card->ext_csd.raw_trim_mult = 475 ext_csd[EXT_CSD_TRIM_MULT]; 476 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 477 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 478 if (card->ext_csd.rev >= 4) { 479 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 480 EXT_CSD_PART_SETTING_COMPLETED) 481 card->ext_csd.partition_setting_completed = 1; 482 else 483 card->ext_csd.partition_setting_completed = 0; 484 485 mmc_manage_enhanced_area(card, ext_csd); 486 487 mmc_manage_gp_partitions(card, ext_csd); 488 489 card->ext_csd.sec_trim_mult = 490 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 491 card->ext_csd.sec_erase_mult = 492 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 493 card->ext_csd.sec_feature_support = 494 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 495 card->ext_csd.trim_timeout = 300 * 496 ext_csd[EXT_CSD_TRIM_MULT]; 497 498 /* 499 * Note that the call to mmc_part_add above defaults to read 500 * only. If this default assumption is changed, the call must 501 * take into account the value of boot_locked below. 502 */ 503 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 504 card->ext_csd.boot_ro_lockable = true; 505 506 /* Save power class values */ 507 card->ext_csd.raw_pwr_cl_52_195 = 508 ext_csd[EXT_CSD_PWR_CL_52_195]; 509 card->ext_csd.raw_pwr_cl_26_195 = 510 ext_csd[EXT_CSD_PWR_CL_26_195]; 511 card->ext_csd.raw_pwr_cl_52_360 = 512 ext_csd[EXT_CSD_PWR_CL_52_360]; 513 card->ext_csd.raw_pwr_cl_26_360 = 514 ext_csd[EXT_CSD_PWR_CL_26_360]; 515 card->ext_csd.raw_pwr_cl_200_195 = 516 ext_csd[EXT_CSD_PWR_CL_200_195]; 517 card->ext_csd.raw_pwr_cl_200_360 = 518 ext_csd[EXT_CSD_PWR_CL_200_360]; 519 card->ext_csd.raw_pwr_cl_ddr_52_195 = 520 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 521 card->ext_csd.raw_pwr_cl_ddr_52_360 = 522 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 523 card->ext_csd.raw_pwr_cl_ddr_200_360 = 524 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 525 } 526 527 if (card->ext_csd.rev >= 5) { 528 /* Adjust production date as per JEDEC JESD84-B451 */ 529 if (card->cid.year < 2010) 530 card->cid.year += 16; 531 532 /* check whether the eMMC card supports BKOPS */ 533 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 534 card->ext_csd.bkops = 1; 535 card->ext_csd.man_bkops_en = 536 (ext_csd[EXT_CSD_BKOPS_EN] & 537 EXT_CSD_MANUAL_BKOPS_MASK); 538 card->ext_csd.raw_bkops_status = 539 ext_csd[EXT_CSD_BKOPS_STATUS]; 540 if (card->ext_csd.man_bkops_en) 541 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 542 mmc_hostname(card->host)); 543 card->ext_csd.auto_bkops_en = 544 (ext_csd[EXT_CSD_BKOPS_EN] & 545 EXT_CSD_AUTO_BKOPS_MASK); 546 if (card->ext_csd.auto_bkops_en) 547 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 548 mmc_hostname(card->host)); 549 } 550 551 /* check whether the eMMC card supports HPI */ 552 if (!mmc_card_broken_hpi(card) && 553 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 554 card->ext_csd.hpi = 1; 555 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 556 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 557 else 558 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 559 /* 560 * Indicate the maximum timeout to close 561 * a command interrupted by HPI 562 */ 563 card->ext_csd.out_of_int_time = 564 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 565 } 566 567 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 568 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 569 570 /* 571 * RPMB regions are defined in multiples of 128K. 572 */ 573 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 574 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 575 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 576 EXT_CSD_PART_CONFIG_ACC_RPMB, 577 "rpmb", 0, false, 578 MMC_BLK_DATA_AREA_RPMB); 579 } 580 } 581 582 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 583 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 584 card->erased_byte = 0xFF; 585 else 586 card->erased_byte = 0x0; 587 588 /* eMMC v4.5 or later */ 589 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 590 if (card->ext_csd.rev >= 6) { 591 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 592 593 card->ext_csd.generic_cmd6_time = 10 * 594 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 595 card->ext_csd.power_off_longtime = 10 * 596 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 597 598 card->ext_csd.cache_size = 599 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 600 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 601 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 602 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 603 604 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 605 card->ext_csd.data_sector_size = 4096; 606 else 607 card->ext_csd.data_sector_size = 512; 608 609 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 610 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 611 card->ext_csd.data_tag_unit_size = 612 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 613 (card->ext_csd.data_sector_size); 614 } else { 615 card->ext_csd.data_tag_unit_size = 0; 616 } 617 618 card->ext_csd.max_packed_writes = 619 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 620 card->ext_csd.max_packed_reads = 621 ext_csd[EXT_CSD_MAX_PACKED_READS]; 622 } else { 623 card->ext_csd.data_sector_size = 512; 624 } 625 626 /* 627 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 628 * when accessing a specific field", so use it here if there is no 629 * PARTITION_SWITCH_TIME. 630 */ 631 if (!card->ext_csd.part_time) 632 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 633 /* Some eMMC set the value too low so set a minimum */ 634 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 635 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 636 637 /* eMMC v5 or later */ 638 if (card->ext_csd.rev >= 7) { 639 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 640 MMC_FIRMWARE_LEN); 641 card->ext_csd.ffu_capable = 642 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 643 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 644 645 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 646 card->ext_csd.device_life_time_est_typ_a = 647 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 648 card->ext_csd.device_life_time_est_typ_b = 649 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 650 } 651 652 /* eMMC v5.1 or later */ 653 if (card->ext_csd.rev >= 8) { 654 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 655 EXT_CSD_CMDQ_SUPPORTED; 656 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 657 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 658 /* Exclude inefficiently small queue depths */ 659 if (card->ext_csd.cmdq_depth <= 2) { 660 card->ext_csd.cmdq_support = false; 661 card->ext_csd.cmdq_depth = 0; 662 } 663 if (card->ext_csd.cmdq_support) { 664 pr_debug("%s: Command Queue supported depth %u\n", 665 mmc_hostname(card->host), 666 card->ext_csd.cmdq_depth); 667 } 668 card->ext_csd.enhanced_rpmb_supported = 669 (card->ext_csd.rel_param & 670 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 671 } 672 out: 673 return err; 674 } 675 676 static int mmc_read_ext_csd(struct mmc_card *card) 677 { 678 u8 *ext_csd; 679 int err; 680 681 if (!mmc_can_ext_csd(card)) 682 return 0; 683 684 err = mmc_get_ext_csd(card, &ext_csd); 685 if (err) { 686 /* If the host or the card can't do the switch, 687 * fail more gracefully. */ 688 if ((err != -EINVAL) 689 && (err != -ENOSYS) 690 && (err != -EFAULT)) 691 return err; 692 693 /* 694 * High capacity cards should have this "magic" size 695 * stored in their CSD. 696 */ 697 if (card->csd.capacity == (4096 * 512)) { 698 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 699 mmc_hostname(card->host)); 700 } else { 701 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 702 mmc_hostname(card->host)); 703 err = 0; 704 } 705 706 return err; 707 } 708 709 err = mmc_decode_ext_csd(card, ext_csd); 710 kfree(ext_csd); 711 return err; 712 } 713 714 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 715 { 716 u8 *bw_ext_csd; 717 int err; 718 719 if (bus_width == MMC_BUS_WIDTH_1) 720 return 0; 721 722 err = mmc_get_ext_csd(card, &bw_ext_csd); 723 if (err) 724 return err; 725 726 /* only compare read only fields */ 727 err = !((card->ext_csd.raw_partition_support == 728 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 729 (card->ext_csd.raw_erased_mem_count == 730 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 731 (card->ext_csd.rev == 732 bw_ext_csd[EXT_CSD_REV]) && 733 (card->ext_csd.raw_ext_csd_structure == 734 bw_ext_csd[EXT_CSD_STRUCTURE]) && 735 (card->ext_csd.raw_card_type == 736 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 737 (card->ext_csd.raw_s_a_timeout == 738 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 739 (card->ext_csd.raw_hc_erase_gap_size == 740 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 741 (card->ext_csd.raw_erase_timeout_mult == 742 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 743 (card->ext_csd.raw_hc_erase_grp_size == 744 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 745 (card->ext_csd.raw_sec_trim_mult == 746 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 747 (card->ext_csd.raw_sec_erase_mult == 748 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 749 (card->ext_csd.raw_sec_feature_support == 750 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 751 (card->ext_csd.raw_trim_mult == 752 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 753 (card->ext_csd.raw_sectors[0] == 754 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 755 (card->ext_csd.raw_sectors[1] == 756 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 757 (card->ext_csd.raw_sectors[2] == 758 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 759 (card->ext_csd.raw_sectors[3] == 760 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 761 (card->ext_csd.raw_pwr_cl_52_195 == 762 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 763 (card->ext_csd.raw_pwr_cl_26_195 == 764 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 765 (card->ext_csd.raw_pwr_cl_52_360 == 766 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 767 (card->ext_csd.raw_pwr_cl_26_360 == 768 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 769 (card->ext_csd.raw_pwr_cl_200_195 == 770 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 771 (card->ext_csd.raw_pwr_cl_200_360 == 772 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 773 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 774 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 775 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 776 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 777 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 778 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 779 780 if (err) 781 err = -EINVAL; 782 783 kfree(bw_ext_csd); 784 return err; 785 } 786 787 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 788 card->raw_cid[2], card->raw_cid[3]); 789 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 790 card->raw_csd[2], card->raw_csd[3]); 791 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 792 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 793 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 794 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 795 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 796 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 797 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 798 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 799 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 800 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 801 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 802 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 803 card->ext_csd.device_life_time_est_typ_a, 804 card->ext_csd.device_life_time_est_typ_b); 805 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 806 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 807 card->ext_csd.enhanced_area_offset); 808 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 809 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 810 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 811 card->ext_csd.enhanced_rpmb_supported); 812 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 813 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 814 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 815 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 816 817 static ssize_t mmc_fwrev_show(struct device *dev, 818 struct device_attribute *attr, 819 char *buf) 820 { 821 struct mmc_card *card = mmc_dev_to_card(dev); 822 823 if (card->ext_csd.rev < 7) 824 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 825 else 826 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 827 card->ext_csd.fwrev); 828 } 829 830 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 831 832 static ssize_t mmc_dsr_show(struct device *dev, 833 struct device_attribute *attr, 834 char *buf) 835 { 836 struct mmc_card *card = mmc_dev_to_card(dev); 837 struct mmc_host *host = card->host; 838 839 if (card->csd.dsr_imp && host->dsr_req) 840 return sysfs_emit(buf, "0x%x\n", host->dsr); 841 else 842 /* return default DSR value */ 843 return sysfs_emit(buf, "0x%x\n", 0x404); 844 } 845 846 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 847 848 static struct attribute *mmc_std_attrs[] = { 849 &dev_attr_cid.attr, 850 &dev_attr_csd.attr, 851 &dev_attr_date.attr, 852 &dev_attr_erase_size.attr, 853 &dev_attr_preferred_erase_size.attr, 854 &dev_attr_fwrev.attr, 855 &dev_attr_ffu_capable.attr, 856 &dev_attr_hwrev.attr, 857 &dev_attr_manfid.attr, 858 &dev_attr_name.attr, 859 &dev_attr_oemid.attr, 860 &dev_attr_prv.attr, 861 &dev_attr_rev.attr, 862 &dev_attr_pre_eol_info.attr, 863 &dev_attr_life_time.attr, 864 &dev_attr_serial.attr, 865 &dev_attr_enhanced_area_offset.attr, 866 &dev_attr_enhanced_area_size.attr, 867 &dev_attr_raw_rpmb_size_mult.attr, 868 &dev_attr_enhanced_rpmb_supported.attr, 869 &dev_attr_rel_sectors.attr, 870 &dev_attr_ocr.attr, 871 &dev_attr_rca.attr, 872 &dev_attr_dsr.attr, 873 &dev_attr_cmdq_en.attr, 874 NULL, 875 }; 876 ATTRIBUTE_GROUPS(mmc_std); 877 878 static struct device_type mmc_type = { 879 .groups = mmc_std_groups, 880 }; 881 882 /* 883 * Select the PowerClass for the current bus width 884 * If power class is defined for 4/8 bit bus in the 885 * extended CSD register, select it by executing the 886 * mmc_switch command. 887 */ 888 static int __mmc_select_powerclass(struct mmc_card *card, 889 unsigned int bus_width) 890 { 891 struct mmc_host *host = card->host; 892 struct mmc_ext_csd *ext_csd = &card->ext_csd; 893 unsigned int pwrclass_val = 0; 894 int err = 0; 895 896 switch (1 << host->ios.vdd) { 897 case MMC_VDD_165_195: 898 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 899 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 900 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 901 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 902 ext_csd->raw_pwr_cl_52_195 : 903 ext_csd->raw_pwr_cl_ddr_52_195; 904 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 905 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 906 break; 907 case MMC_VDD_27_28: 908 case MMC_VDD_28_29: 909 case MMC_VDD_29_30: 910 case MMC_VDD_30_31: 911 case MMC_VDD_31_32: 912 case MMC_VDD_32_33: 913 case MMC_VDD_33_34: 914 case MMC_VDD_34_35: 915 case MMC_VDD_35_36: 916 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 917 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 918 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 919 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 920 ext_csd->raw_pwr_cl_52_360 : 921 ext_csd->raw_pwr_cl_ddr_52_360; 922 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 923 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 924 ext_csd->raw_pwr_cl_ddr_200_360 : 925 ext_csd->raw_pwr_cl_200_360; 926 break; 927 default: 928 pr_warn("%s: Voltage range not supported for power class\n", 929 mmc_hostname(host)); 930 return -EINVAL; 931 } 932 933 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 934 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 935 EXT_CSD_PWR_CL_8BIT_SHIFT; 936 else 937 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 938 EXT_CSD_PWR_CL_4BIT_SHIFT; 939 940 /* If the power class is different from the default value */ 941 if (pwrclass_val > 0) { 942 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 943 EXT_CSD_POWER_CLASS, 944 pwrclass_val, 945 card->ext_csd.generic_cmd6_time); 946 } 947 948 return err; 949 } 950 951 static int mmc_select_powerclass(struct mmc_card *card) 952 { 953 struct mmc_host *host = card->host; 954 u32 bus_width, ext_csd_bits; 955 int err, ddr; 956 957 /* Power class selection is supported for versions >= 4.0 */ 958 if (!mmc_can_ext_csd(card)) 959 return 0; 960 961 bus_width = host->ios.bus_width; 962 /* Power class values are defined only for 4/8 bit bus */ 963 if (bus_width == MMC_BUS_WIDTH_1) 964 return 0; 965 966 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 967 if (ddr) 968 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 969 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 970 else 971 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 972 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 973 974 err = __mmc_select_powerclass(card, ext_csd_bits); 975 if (err) 976 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 977 mmc_hostname(host), 1 << bus_width, ddr); 978 979 return err; 980 } 981 982 /* 983 * Set the bus speed for the selected speed mode. 984 */ 985 static void mmc_set_bus_speed(struct mmc_card *card) 986 { 987 unsigned int max_dtr = (unsigned int)-1; 988 989 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 990 max_dtr > card->ext_csd.hs200_max_dtr) 991 max_dtr = card->ext_csd.hs200_max_dtr; 992 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 993 max_dtr = card->ext_csd.hs_max_dtr; 994 else if (max_dtr > card->csd.max_dtr) 995 max_dtr = card->csd.max_dtr; 996 997 mmc_set_clock(card->host, max_dtr); 998 } 999 1000 /* 1001 * Select the bus width amoung 4-bit and 8-bit(SDR). 1002 * If the bus width is changed successfully, return the selected width value. 1003 * Zero is returned instead of error value if the wide width is not supported. 1004 */ 1005 static int mmc_select_bus_width(struct mmc_card *card) 1006 { 1007 static unsigned ext_csd_bits[] = { 1008 EXT_CSD_BUS_WIDTH_8, 1009 EXT_CSD_BUS_WIDTH_4, 1010 EXT_CSD_BUS_WIDTH_1, 1011 }; 1012 static unsigned bus_widths[] = { 1013 MMC_BUS_WIDTH_8, 1014 MMC_BUS_WIDTH_4, 1015 MMC_BUS_WIDTH_1, 1016 }; 1017 struct mmc_host *host = card->host; 1018 unsigned idx, bus_width = 0; 1019 int err = 0; 1020 1021 if (!mmc_can_ext_csd(card) || 1022 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1023 return 0; 1024 1025 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1026 1027 /* 1028 * Unlike SD, MMC cards dont have a configuration register to notify 1029 * supported bus width. So bus test command should be run to identify 1030 * the supported bus width or compare the ext csd values of current 1031 * bus width and ext csd values of 1 bit mode read earlier. 1032 */ 1033 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1034 /* 1035 * Host is capable of 8bit transfer, then switch 1036 * the device to work in 8bit transfer mode. If the 1037 * mmc switch command returns error then switch to 1038 * 4bit transfer mode. On success set the corresponding 1039 * bus width on the host. 1040 */ 1041 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1042 EXT_CSD_BUS_WIDTH, 1043 ext_csd_bits[idx], 1044 card->ext_csd.generic_cmd6_time); 1045 if (err) 1046 continue; 1047 1048 bus_width = bus_widths[idx]; 1049 mmc_set_bus_width(host, bus_width); 1050 1051 /* 1052 * If controller can't handle bus width test, 1053 * compare ext_csd previously read in 1 bit mode 1054 * against ext_csd at new bus width 1055 */ 1056 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1057 err = mmc_compare_ext_csds(card, bus_width); 1058 else 1059 err = mmc_bus_test(card, bus_width); 1060 1061 if (!err) { 1062 err = bus_width; 1063 break; 1064 } else { 1065 pr_warn("%s: switch to bus width %d failed\n", 1066 mmc_hostname(host), 1 << bus_width); 1067 } 1068 } 1069 1070 return err; 1071 } 1072 1073 /* 1074 * Switch to the high-speed mode 1075 */ 1076 static int mmc_select_hs(struct mmc_card *card) 1077 { 1078 int err; 1079 1080 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1081 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1082 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1083 true, true, MMC_CMD_RETRIES); 1084 if (err) 1085 pr_warn("%s: switch to high-speed failed, err:%d\n", 1086 mmc_hostname(card->host), err); 1087 1088 return err; 1089 } 1090 1091 /* 1092 * Activate wide bus and DDR if supported. 1093 */ 1094 static int mmc_select_hs_ddr(struct mmc_card *card) 1095 { 1096 struct mmc_host *host = card->host; 1097 u32 bus_width, ext_csd_bits; 1098 int err = 0; 1099 1100 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1101 return 0; 1102 1103 bus_width = host->ios.bus_width; 1104 if (bus_width == MMC_BUS_WIDTH_1) 1105 return 0; 1106 1107 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1108 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1109 1110 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1111 EXT_CSD_BUS_WIDTH, 1112 ext_csd_bits, 1113 card->ext_csd.generic_cmd6_time, 1114 MMC_TIMING_MMC_DDR52, 1115 true, true, MMC_CMD_RETRIES); 1116 if (err) { 1117 pr_err("%s: switch to bus width %d ddr failed\n", 1118 mmc_hostname(host), 1 << bus_width); 1119 return err; 1120 } 1121 1122 /* 1123 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1124 * signaling. 1125 * 1126 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1127 * 1128 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1129 * in the JEDEC spec for DDR. 1130 * 1131 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1132 * host controller can support this, like some of the SDHCI 1133 * controller which connect to an eMMC device. Some of these 1134 * host controller still needs to use 1.8v vccq for supporting 1135 * DDR mode. 1136 * 1137 * So the sequence will be: 1138 * if (host and device can both support 1.2v IO) 1139 * use 1.2v IO; 1140 * else if (host and device can both support 1.8v IO) 1141 * use 1.8v IO; 1142 * so if host and device can only support 3.3v IO, this is the 1143 * last choice. 1144 * 1145 * WARNING: eMMC rules are NOT the same as SD DDR 1146 */ 1147 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1148 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1149 if (!err) 1150 return 0; 1151 } 1152 1153 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1154 host->caps & MMC_CAP_1_8V_DDR) 1155 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1156 1157 /* make sure vccq is 3.3v after switching disaster */ 1158 if (err) 1159 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1160 1161 return err; 1162 } 1163 1164 static int mmc_select_hs400(struct mmc_card *card) 1165 { 1166 struct mmc_host *host = card->host; 1167 unsigned int max_dtr; 1168 int err = 0; 1169 u8 val; 1170 1171 /* 1172 * HS400 mode requires 8-bit bus width 1173 */ 1174 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1175 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1176 return 0; 1177 1178 /* Switch card to HS mode */ 1179 val = EXT_CSD_TIMING_HS; 1180 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1181 EXT_CSD_HS_TIMING, val, 1182 card->ext_csd.generic_cmd6_time, 0, 1183 false, true, MMC_CMD_RETRIES); 1184 if (err) { 1185 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1186 mmc_hostname(host), err); 1187 return err; 1188 } 1189 1190 /* Prepare host to downgrade to HS timing */ 1191 if (host->ops->hs400_downgrade) 1192 host->ops->hs400_downgrade(host); 1193 1194 /* Set host controller to HS timing */ 1195 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1196 1197 /* Reduce frequency to HS frequency */ 1198 max_dtr = card->ext_csd.hs_max_dtr; 1199 mmc_set_clock(host, max_dtr); 1200 1201 err = mmc_switch_status(card, true); 1202 if (err) 1203 goto out_err; 1204 1205 if (host->ops->hs400_prepare_ddr) 1206 host->ops->hs400_prepare_ddr(host); 1207 1208 /* Switch card to DDR */ 1209 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1210 EXT_CSD_BUS_WIDTH, 1211 EXT_CSD_DDR_BUS_WIDTH_8, 1212 card->ext_csd.generic_cmd6_time); 1213 if (err) { 1214 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1215 mmc_hostname(host), err); 1216 return err; 1217 } 1218 1219 /* Switch card to HS400 */ 1220 val = EXT_CSD_TIMING_HS400 | 1221 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1222 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1223 EXT_CSD_HS_TIMING, val, 1224 card->ext_csd.generic_cmd6_time, 0, 1225 false, true, MMC_CMD_RETRIES); 1226 if (err) { 1227 pr_err("%s: switch to hs400 failed, err:%d\n", 1228 mmc_hostname(host), err); 1229 return err; 1230 } 1231 1232 /* Set host controller to HS400 timing and frequency */ 1233 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1234 mmc_set_bus_speed(card); 1235 1236 if (host->ops->execute_hs400_tuning) { 1237 mmc_retune_disable(host); 1238 err = host->ops->execute_hs400_tuning(host, card); 1239 mmc_retune_enable(host); 1240 if (err) 1241 goto out_err; 1242 } 1243 1244 if (host->ops->hs400_complete) 1245 host->ops->hs400_complete(host); 1246 1247 err = mmc_switch_status(card, true); 1248 if (err) 1249 goto out_err; 1250 1251 return 0; 1252 1253 out_err: 1254 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1255 __func__, err); 1256 return err; 1257 } 1258 1259 int mmc_hs200_to_hs400(struct mmc_card *card) 1260 { 1261 return mmc_select_hs400(card); 1262 } 1263 1264 int mmc_hs400_to_hs200(struct mmc_card *card) 1265 { 1266 struct mmc_host *host = card->host; 1267 unsigned int max_dtr; 1268 int err; 1269 u8 val; 1270 1271 /* Reduce frequency to HS */ 1272 max_dtr = card->ext_csd.hs_max_dtr; 1273 mmc_set_clock(host, max_dtr); 1274 1275 /* Switch HS400 to HS DDR */ 1276 val = EXT_CSD_TIMING_HS; 1277 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1278 val, card->ext_csd.generic_cmd6_time, 0, 1279 false, true, MMC_CMD_RETRIES); 1280 if (err) 1281 goto out_err; 1282 1283 if (host->ops->hs400_downgrade) 1284 host->ops->hs400_downgrade(host); 1285 1286 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1287 1288 err = mmc_switch_status(card, true); 1289 if (err) 1290 goto out_err; 1291 1292 /* Switch HS DDR to HS */ 1293 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1294 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1295 0, false, true, MMC_CMD_RETRIES); 1296 if (err) 1297 goto out_err; 1298 1299 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1300 1301 err = mmc_switch_status(card, true); 1302 if (err) 1303 goto out_err; 1304 1305 /* Switch HS to HS200 */ 1306 val = EXT_CSD_TIMING_HS200 | 1307 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1308 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1309 val, card->ext_csd.generic_cmd6_time, 0, 1310 false, true, MMC_CMD_RETRIES); 1311 if (err) 1312 goto out_err; 1313 1314 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1315 1316 /* 1317 * For HS200, CRC errors are not a reliable way to know the switch 1318 * failed. If there really is a problem, we would expect tuning will 1319 * fail and the result ends up the same. 1320 */ 1321 err = mmc_switch_status(card, false); 1322 if (err) 1323 goto out_err; 1324 1325 mmc_set_bus_speed(card); 1326 1327 /* Prepare tuning for HS400 mode. */ 1328 if (host->ops->prepare_hs400_tuning) 1329 host->ops->prepare_hs400_tuning(host, &host->ios); 1330 1331 return 0; 1332 1333 out_err: 1334 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1335 __func__, err); 1336 return err; 1337 } 1338 1339 static void mmc_select_driver_type(struct mmc_card *card) 1340 { 1341 int card_drv_type, drive_strength, drv_type = 0; 1342 int fixed_drv_type = card->host->fixed_drv_type; 1343 1344 card_drv_type = card->ext_csd.raw_driver_strength | 1345 mmc_driver_type_mask(0); 1346 1347 if (fixed_drv_type >= 0) 1348 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1349 ? fixed_drv_type : 0; 1350 else 1351 drive_strength = mmc_select_drive_strength(card, 1352 card->ext_csd.hs200_max_dtr, 1353 card_drv_type, &drv_type); 1354 1355 card->drive_strength = drive_strength; 1356 1357 if (drv_type) 1358 mmc_set_driver_type(card->host, drv_type); 1359 } 1360 1361 static int mmc_select_hs400es(struct mmc_card *card) 1362 { 1363 struct mmc_host *host = card->host; 1364 int err = -EINVAL; 1365 u8 val; 1366 1367 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1368 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1369 1370 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1371 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1372 1373 /* If fails try again during next card power cycle */ 1374 if (err) 1375 goto out_err; 1376 1377 err = mmc_select_bus_width(card); 1378 if (err != MMC_BUS_WIDTH_8) { 1379 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1380 mmc_hostname(host), err); 1381 err = err < 0 ? err : -ENOTSUPP; 1382 goto out_err; 1383 } 1384 1385 /* Switch card to HS mode */ 1386 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1387 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1388 card->ext_csd.generic_cmd6_time, 0, 1389 false, true, MMC_CMD_RETRIES); 1390 if (err) { 1391 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1392 mmc_hostname(host), err); 1393 goto out_err; 1394 } 1395 1396 /* 1397 * Bump to HS timing and frequency. Some cards don't handle 1398 * SEND_STATUS reliably at the initial frequency. 1399 */ 1400 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1401 mmc_set_bus_speed(card); 1402 1403 err = mmc_switch_status(card, true); 1404 if (err) 1405 goto out_err; 1406 1407 /* Switch card to DDR with strobe bit */ 1408 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1409 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1410 EXT_CSD_BUS_WIDTH, 1411 val, 1412 card->ext_csd.generic_cmd6_time); 1413 if (err) { 1414 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1415 mmc_hostname(host), err); 1416 goto out_err; 1417 } 1418 1419 mmc_select_driver_type(card); 1420 1421 /* Switch card to HS400 */ 1422 val = EXT_CSD_TIMING_HS400 | 1423 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1424 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1425 EXT_CSD_HS_TIMING, val, 1426 card->ext_csd.generic_cmd6_time, 0, 1427 false, true, MMC_CMD_RETRIES); 1428 if (err) { 1429 pr_err("%s: switch to hs400es failed, err:%d\n", 1430 mmc_hostname(host), err); 1431 goto out_err; 1432 } 1433 1434 /* Set host controller to HS400 timing and frequency */ 1435 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1436 1437 /* Controller enable enhanced strobe function */ 1438 host->ios.enhanced_strobe = true; 1439 if (host->ops->hs400_enhanced_strobe) 1440 host->ops->hs400_enhanced_strobe(host, &host->ios); 1441 1442 err = mmc_switch_status(card, true); 1443 if (err) 1444 goto out_err; 1445 1446 return 0; 1447 1448 out_err: 1449 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1450 __func__, err); 1451 return err; 1452 } 1453 1454 /* 1455 * For device supporting HS200 mode, the following sequence 1456 * should be done before executing the tuning process. 1457 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1458 * 2. switch to HS200 mode 1459 * 3. set the clock to > 52Mhz and <=200MHz 1460 */ 1461 static int mmc_select_hs200(struct mmc_card *card) 1462 { 1463 struct mmc_host *host = card->host; 1464 unsigned int old_timing, old_signal_voltage, old_clock; 1465 int err = -EINVAL; 1466 u8 val; 1467 1468 old_signal_voltage = host->ios.signal_voltage; 1469 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1470 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1471 1472 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1473 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1474 1475 /* If fails try again during next card power cycle */ 1476 if (err) 1477 return err; 1478 1479 mmc_select_driver_type(card); 1480 1481 /* 1482 * Set the bus width(4 or 8) with host's support and 1483 * switch to HS200 mode if bus width is set successfully. 1484 */ 1485 err = mmc_select_bus_width(card); 1486 if (err > 0) { 1487 val = EXT_CSD_TIMING_HS200 | 1488 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1489 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1490 EXT_CSD_HS_TIMING, val, 1491 card->ext_csd.generic_cmd6_time, 0, 1492 false, true, MMC_CMD_RETRIES); 1493 if (err) 1494 goto err; 1495 1496 /* 1497 * Bump to HS timing and frequency. Some cards don't handle 1498 * SEND_STATUS reliably at the initial frequency. 1499 * NB: We can't move to full (HS200) speeds until after we've 1500 * successfully switched over. 1501 */ 1502 old_timing = host->ios.timing; 1503 old_clock = host->ios.clock; 1504 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1505 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1506 1507 /* 1508 * For HS200, CRC errors are not a reliable way to know the 1509 * switch failed. If there really is a problem, we would expect 1510 * tuning will fail and the result ends up the same. 1511 */ 1512 err = mmc_switch_status(card, false); 1513 1514 /* 1515 * mmc_select_timing() assumes timing has not changed if 1516 * it is a switch error. 1517 */ 1518 if (err == -EBADMSG) { 1519 mmc_set_clock(host, old_clock); 1520 mmc_set_timing(host, old_timing); 1521 } 1522 } 1523 err: 1524 if (err) { 1525 /* fall back to the old signal voltage, if fails report error */ 1526 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1527 err = -EIO; 1528 1529 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1530 __func__, err); 1531 } 1532 return err; 1533 } 1534 1535 /* 1536 * Activate High Speed, HS200 or HS400ES mode if supported. 1537 */ 1538 static int mmc_select_timing(struct mmc_card *card) 1539 { 1540 int err = 0; 1541 1542 if (!mmc_can_ext_csd(card)) 1543 goto bus_speed; 1544 1545 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1546 err = mmc_select_hs400es(card); 1547 goto out; 1548 } 1549 1550 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1551 err = mmc_select_hs200(card); 1552 if (err == -EBADMSG) 1553 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1554 else 1555 goto out; 1556 } 1557 1558 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1559 err = mmc_select_hs(card); 1560 1561 out: 1562 if (err && err != -EBADMSG) 1563 return err; 1564 1565 bus_speed: 1566 /* 1567 * Set the bus speed to the selected bus timing. 1568 * If timing is not selected, backward compatible is the default. 1569 */ 1570 mmc_set_bus_speed(card); 1571 return 0; 1572 } 1573 1574 /* 1575 * Execute tuning sequence to seek the proper bus operating 1576 * conditions for HS200 and HS400, which sends CMD21 to the device. 1577 */ 1578 static int mmc_hs200_tuning(struct mmc_card *card) 1579 { 1580 struct mmc_host *host = card->host; 1581 1582 /* 1583 * Timing should be adjusted to the HS400 target 1584 * operation frequency for tuning process 1585 */ 1586 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1587 host->ios.bus_width == MMC_BUS_WIDTH_8) 1588 if (host->ops->prepare_hs400_tuning) 1589 host->ops->prepare_hs400_tuning(host, &host->ios); 1590 1591 return mmc_execute_tuning(card); 1592 } 1593 1594 /* 1595 * Handle the detection and initialisation of a card. 1596 * 1597 * In the case of a resume, "oldcard" will contain the card 1598 * we're trying to reinitialise. 1599 */ 1600 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1601 struct mmc_card *oldcard) 1602 { 1603 struct mmc_card *card; 1604 int err; 1605 u32 cid[4]; 1606 u32 rocr; 1607 1608 WARN_ON(!host->claimed); 1609 1610 /* Set correct bus mode for MMC before attempting init */ 1611 if (!mmc_host_is_spi(host)) 1612 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1613 1614 /* 1615 * Since we're changing the OCR value, we seem to 1616 * need to tell some cards to go back to the idle 1617 * state. We wait 1ms to give cards time to 1618 * respond. 1619 * mmc_go_idle is needed for eMMC that are asleep 1620 */ 1621 mmc_go_idle(host); 1622 1623 /* The extra bit indicates that we support high capacity */ 1624 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1625 if (err) 1626 goto err; 1627 1628 /* 1629 * For SPI, enable CRC as appropriate. 1630 */ 1631 if (mmc_host_is_spi(host)) { 1632 err = mmc_spi_set_crc(host, use_spi_crc); 1633 if (err) 1634 goto err; 1635 } 1636 1637 /* 1638 * Fetch CID from card. 1639 */ 1640 err = mmc_send_cid(host, cid); 1641 if (err) 1642 goto err; 1643 1644 if (oldcard) { 1645 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1646 pr_debug("%s: Perhaps the card was replaced\n", 1647 mmc_hostname(host)); 1648 err = -ENOENT; 1649 goto err; 1650 } 1651 1652 card = oldcard; 1653 } else { 1654 /* 1655 * Allocate card structure. 1656 */ 1657 card = mmc_alloc_card(host, &mmc_type); 1658 if (IS_ERR(card)) { 1659 err = PTR_ERR(card); 1660 goto err; 1661 } 1662 1663 card->ocr = ocr; 1664 card->type = MMC_TYPE_MMC; 1665 card->rca = 1; 1666 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1667 } 1668 1669 /* 1670 * Call the optional HC's init_card function to handle quirks. 1671 */ 1672 if (host->ops->init_card) 1673 host->ops->init_card(host, card); 1674 1675 /* 1676 * For native busses: set card RCA and quit open drain mode. 1677 */ 1678 if (!mmc_host_is_spi(host)) { 1679 err = mmc_set_relative_addr(card); 1680 if (err) 1681 goto free_card; 1682 1683 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1684 } 1685 1686 if (!oldcard) { 1687 /* 1688 * Fetch CSD from card. 1689 */ 1690 err = mmc_send_csd(card, card->raw_csd); 1691 if (err) 1692 goto free_card; 1693 1694 err = mmc_decode_csd(card); 1695 if (err) 1696 goto free_card; 1697 err = mmc_decode_cid(card); 1698 if (err) 1699 goto free_card; 1700 } 1701 1702 /* 1703 * handling only for cards supporting DSR and hosts requesting 1704 * DSR configuration 1705 */ 1706 if (card->csd.dsr_imp && host->dsr_req) 1707 mmc_set_dsr(host); 1708 1709 /* 1710 * Select card, as all following commands rely on that. 1711 */ 1712 if (!mmc_host_is_spi(host)) { 1713 err = mmc_select_card(card); 1714 if (err) 1715 goto free_card; 1716 } 1717 1718 if (!oldcard) { 1719 /* Read extended CSD. */ 1720 err = mmc_read_ext_csd(card); 1721 if (err) 1722 goto free_card; 1723 1724 /* 1725 * If doing byte addressing, check if required to do sector 1726 * addressing. Handle the case of <2GB cards needing sector 1727 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1728 * ocr register has bit 30 set for sector addressing. 1729 */ 1730 if (rocr & BIT(30)) 1731 mmc_card_set_blockaddr(card); 1732 1733 /* Erase size depends on CSD and Extended CSD */ 1734 mmc_set_erase_size(card); 1735 } 1736 1737 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1738 if (card->ext_csd.rev >= 3) { 1739 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1740 EXT_CSD_ERASE_GROUP_DEF, 1, 1741 card->ext_csd.generic_cmd6_time); 1742 1743 if (err && err != -EBADMSG) 1744 goto free_card; 1745 1746 if (err) { 1747 /* 1748 * Just disable enhanced area off & sz 1749 * will try to enable ERASE_GROUP_DEF 1750 * during next time reinit 1751 */ 1752 card->ext_csd.enhanced_area_offset = -EINVAL; 1753 card->ext_csd.enhanced_area_size = -EINVAL; 1754 } else { 1755 card->ext_csd.erase_group_def = 1; 1756 /* 1757 * enable ERASE_GRP_DEF successfully. 1758 * This will affect the erase size, so 1759 * here need to reset erase size 1760 */ 1761 mmc_set_erase_size(card); 1762 } 1763 } 1764 1765 /* 1766 * Ensure eMMC user default partition is enabled 1767 */ 1768 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1769 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1770 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1771 card->ext_csd.part_config, 1772 card->ext_csd.part_time); 1773 if (err && err != -EBADMSG) 1774 goto free_card; 1775 } 1776 1777 /* 1778 * Enable power_off_notification byte in the ext_csd register 1779 */ 1780 if (card->ext_csd.rev >= 6) { 1781 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1782 EXT_CSD_POWER_OFF_NOTIFICATION, 1783 EXT_CSD_POWER_ON, 1784 card->ext_csd.generic_cmd6_time); 1785 if (err && err != -EBADMSG) 1786 goto free_card; 1787 1788 /* 1789 * The err can be -EBADMSG or 0, 1790 * so check for success and update the flag 1791 */ 1792 if (!err) 1793 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1794 } 1795 1796 /* set erase_arg */ 1797 if (mmc_can_discard(card)) 1798 card->erase_arg = MMC_DISCARD_ARG; 1799 else if (mmc_can_trim(card)) 1800 card->erase_arg = MMC_TRIM_ARG; 1801 else 1802 card->erase_arg = MMC_ERASE_ARG; 1803 1804 /* 1805 * Select timing interface 1806 */ 1807 err = mmc_select_timing(card); 1808 if (err) 1809 goto free_card; 1810 1811 if (mmc_card_hs200(card)) { 1812 host->doing_init_tune = 1; 1813 1814 err = mmc_hs200_tuning(card); 1815 if (!err) 1816 err = mmc_select_hs400(card); 1817 1818 host->doing_init_tune = 0; 1819 1820 if (err) 1821 goto free_card; 1822 1823 } else if (!mmc_card_hs400es(card)) { 1824 /* Select the desired bus width optionally */ 1825 err = mmc_select_bus_width(card); 1826 if (err > 0 && mmc_card_hs(card)) { 1827 err = mmc_select_hs_ddr(card); 1828 if (err) 1829 goto free_card; 1830 } 1831 } 1832 1833 /* 1834 * Choose the power class with selected bus interface 1835 */ 1836 mmc_select_powerclass(card); 1837 1838 /* 1839 * Enable HPI feature (if supported) 1840 */ 1841 if (card->ext_csd.hpi) { 1842 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1843 EXT_CSD_HPI_MGMT, 1, 1844 card->ext_csd.generic_cmd6_time); 1845 if (err && err != -EBADMSG) 1846 goto free_card; 1847 if (err) { 1848 pr_warn("%s: Enabling HPI failed\n", 1849 mmc_hostname(card->host)); 1850 card->ext_csd.hpi_en = 0; 1851 } else { 1852 card->ext_csd.hpi_en = 1; 1853 } 1854 } 1855 1856 /* 1857 * If cache size is higher than 0, this indicates the existence of cache 1858 * and it can be turned on. Note that some eMMCs from Micron has been 1859 * reported to need ~800 ms timeout, while enabling the cache after 1860 * sudden power failure tests. Let's extend the timeout to a minimum of 1861 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1862 */ 1863 if (card->ext_csd.cache_size > 0) { 1864 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1865 1866 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1867 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1868 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1869 if (err && err != -EBADMSG) 1870 goto free_card; 1871 1872 /* 1873 * Only if no error, cache is turned on successfully. 1874 */ 1875 if (err) { 1876 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1877 mmc_hostname(card->host), err); 1878 card->ext_csd.cache_ctrl = 0; 1879 } else { 1880 card->ext_csd.cache_ctrl = 1; 1881 } 1882 } 1883 1884 /* 1885 * Enable Command Queue if supported. Note that Packed Commands cannot 1886 * be used with Command Queue. 1887 */ 1888 card->ext_csd.cmdq_en = false; 1889 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1890 err = mmc_cmdq_enable(card); 1891 if (err && err != -EBADMSG) 1892 goto free_card; 1893 if (err) { 1894 pr_warn("%s: Enabling CMDQ failed\n", 1895 mmc_hostname(card->host)); 1896 card->ext_csd.cmdq_support = false; 1897 card->ext_csd.cmdq_depth = 0; 1898 } 1899 } 1900 /* 1901 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1902 * disabled for a time, so a flag is needed to indicate to re-enable the 1903 * Command Queue. 1904 */ 1905 card->reenable_cmdq = card->ext_csd.cmdq_en; 1906 1907 if (host->cqe_ops && !host->cqe_enabled) { 1908 err = host->cqe_ops->cqe_enable(host, card); 1909 if (!err) { 1910 host->cqe_enabled = true; 1911 1912 if (card->ext_csd.cmdq_en) { 1913 pr_info("%s: Command Queue Engine enabled\n", 1914 mmc_hostname(host)); 1915 } else { 1916 host->hsq_enabled = true; 1917 pr_info("%s: Host Software Queue enabled\n", 1918 mmc_hostname(host)); 1919 } 1920 } 1921 } 1922 1923 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1924 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1925 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1926 mmc_hostname(host)); 1927 err = -EINVAL; 1928 goto free_card; 1929 } 1930 1931 if (!oldcard) 1932 host->card = card; 1933 1934 return 0; 1935 1936 free_card: 1937 if (!oldcard) 1938 mmc_remove_card(card); 1939 err: 1940 return err; 1941 } 1942 1943 static int mmc_can_sleep(struct mmc_card *card) 1944 { 1945 return card->ext_csd.rev >= 3; 1946 } 1947 1948 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1949 { 1950 struct mmc_host *host = cb_data; 1951 1952 *busy = host->ops->card_busy(host); 1953 return 0; 1954 } 1955 1956 static int mmc_sleep(struct mmc_host *host) 1957 { 1958 struct mmc_command cmd = {}; 1959 struct mmc_card *card = host->card; 1960 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1961 bool use_r1b_resp; 1962 int err; 1963 1964 /* Re-tuning can't be done once the card is deselected */ 1965 mmc_retune_hold(host); 1966 1967 err = mmc_deselect_cards(host); 1968 if (err) 1969 goto out_release; 1970 1971 cmd.opcode = MMC_SLEEP_AWAKE; 1972 cmd.arg = card->rca << 16; 1973 cmd.arg |= 1 << 15; 1974 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1975 1976 err = mmc_wait_for_cmd(host, &cmd, 0); 1977 if (err) 1978 goto out_release; 1979 1980 /* 1981 * If the host does not wait while the card signals busy, then we can 1982 * try to poll, but only if the host supports HW polling, as the 1983 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1984 * to wait the sleep/awake timeout. 1985 */ 1986 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 1987 goto out_release; 1988 1989 if (!host->ops->card_busy) { 1990 mmc_delay(timeout_ms); 1991 goto out_release; 1992 } 1993 1994 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 1995 1996 out_release: 1997 mmc_retune_release(host); 1998 return err; 1999 } 2000 2001 static int mmc_can_poweroff_notify(const struct mmc_card *card) 2002 { 2003 return card && 2004 mmc_card_mmc(card) && 2005 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2006 } 2007 2008 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2009 { 2010 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2011 int err; 2012 2013 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2014 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2015 timeout = card->ext_csd.power_off_longtime; 2016 2017 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2018 EXT_CSD_POWER_OFF_NOTIFICATION, 2019 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2020 if (err) 2021 pr_err("%s: Power Off Notification timed out, %u\n", 2022 mmc_hostname(card->host), timeout); 2023 2024 /* Disable the power off notification after the switch operation. */ 2025 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2026 2027 return err; 2028 } 2029 2030 /* 2031 * Host is being removed. Free up the current card. 2032 */ 2033 static void mmc_remove(struct mmc_host *host) 2034 { 2035 mmc_remove_card(host->card); 2036 host->card = NULL; 2037 } 2038 2039 /* 2040 * Card detection - card is alive. 2041 */ 2042 static int mmc_alive(struct mmc_host *host) 2043 { 2044 return mmc_send_status(host->card, NULL); 2045 } 2046 2047 /* 2048 * Card detection callback from host. 2049 */ 2050 static void mmc_detect(struct mmc_host *host) 2051 { 2052 int err; 2053 2054 mmc_get_card(host->card, NULL); 2055 2056 /* 2057 * Just check if our card has been removed. 2058 */ 2059 err = _mmc_detect_card_removed(host); 2060 2061 mmc_put_card(host->card, NULL); 2062 2063 if (err) { 2064 mmc_remove(host); 2065 2066 mmc_claim_host(host); 2067 mmc_detach_bus(host); 2068 mmc_power_off(host); 2069 mmc_release_host(host); 2070 } 2071 } 2072 2073 static bool _mmc_cache_enabled(struct mmc_host *host) 2074 { 2075 return host->card->ext_csd.cache_size > 0 && 2076 host->card->ext_csd.cache_ctrl & 1; 2077 } 2078 2079 /* 2080 * Flush the internal cache of the eMMC to non-volatile storage. 2081 */ 2082 static int _mmc_flush_cache(struct mmc_host *host) 2083 { 2084 int err = 0; 2085 2086 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag) 2087 return 0; 2088 2089 if (_mmc_cache_enabled(host)) { 2090 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2091 EXT_CSD_FLUSH_CACHE, 1, 2092 CACHE_FLUSH_TIMEOUT_MS); 2093 if (err) 2094 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err); 2095 else 2096 host->card->written_flag = false; 2097 } 2098 2099 return err; 2100 } 2101 2102 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2103 { 2104 int err = 0; 2105 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2106 EXT_CSD_POWER_OFF_LONG; 2107 2108 mmc_claim_host(host); 2109 2110 if (mmc_card_suspended(host->card)) 2111 goto out; 2112 2113 err = _mmc_flush_cache(host); 2114 if (err) 2115 goto out; 2116 2117 if (mmc_can_poweroff_notify(host->card) && 2118 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2119 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2120 err = mmc_poweroff_notify(host->card, notify_type); 2121 else if (mmc_can_sleep(host->card)) 2122 err = mmc_sleep(host); 2123 else if (!mmc_host_is_spi(host)) 2124 err = mmc_deselect_cards(host); 2125 2126 if (!err) { 2127 mmc_power_off(host); 2128 mmc_card_set_suspended(host->card); 2129 } 2130 out: 2131 mmc_release_host(host); 2132 return err; 2133 } 2134 2135 /* 2136 * Suspend callback 2137 */ 2138 static int mmc_suspend(struct mmc_host *host) 2139 { 2140 int err; 2141 2142 err = _mmc_suspend(host, true); 2143 if (!err) { 2144 pm_runtime_disable(&host->card->dev); 2145 pm_runtime_set_suspended(&host->card->dev); 2146 } 2147 2148 return err; 2149 } 2150 2151 /* 2152 * This function tries to determine if the same card is still present 2153 * and, if so, restore all state to it. 2154 */ 2155 static int _mmc_resume(struct mmc_host *host) 2156 { 2157 int err = 0; 2158 2159 mmc_claim_host(host); 2160 2161 if (!mmc_card_suspended(host->card)) 2162 goto out; 2163 2164 mmc_power_up(host, host->card->ocr); 2165 err = mmc_init_card(host, host->card->ocr, host->card); 2166 mmc_card_clr_suspended(host->card); 2167 2168 out: 2169 mmc_release_host(host); 2170 return err; 2171 } 2172 2173 /* 2174 * Shutdown callback 2175 */ 2176 static int mmc_shutdown(struct mmc_host *host) 2177 { 2178 int err = 0; 2179 2180 /* 2181 * In a specific case for poweroff notify, we need to resume the card 2182 * before we can shutdown it properly. 2183 */ 2184 if (mmc_can_poweroff_notify(host->card) && 2185 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2186 err = _mmc_resume(host); 2187 2188 if (!err) 2189 err = _mmc_suspend(host, false); 2190 2191 return err; 2192 } 2193 2194 /* 2195 * Callback for resume. 2196 */ 2197 static int mmc_resume(struct mmc_host *host) 2198 { 2199 pm_runtime_enable(&host->card->dev); 2200 return 0; 2201 } 2202 2203 /* 2204 * Callback for runtime_suspend. 2205 */ 2206 static int mmc_runtime_suspend(struct mmc_host *host) 2207 { 2208 int err; 2209 2210 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2211 return 0; 2212 2213 err = _mmc_suspend(host, true); 2214 if (err) 2215 pr_err("%s: error %d doing aggressive suspend\n", 2216 mmc_hostname(host), err); 2217 2218 return err; 2219 } 2220 2221 /* 2222 * Callback for runtime_resume. 2223 */ 2224 static int mmc_runtime_resume(struct mmc_host *host) 2225 { 2226 int err; 2227 2228 err = _mmc_resume(host); 2229 if (err && err != -ENOMEDIUM) 2230 pr_err("%s: error %d doing runtime resume\n", 2231 mmc_hostname(host), err); 2232 2233 return 0; 2234 } 2235 2236 static int mmc_can_reset(struct mmc_card *card) 2237 { 2238 u8 rst_n_function; 2239 2240 rst_n_function = card->ext_csd.rst_n_function; 2241 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2242 return 0; 2243 return 1; 2244 } 2245 2246 static int _mmc_hw_reset(struct mmc_host *host) 2247 { 2248 struct mmc_card *card = host->card; 2249 2250 /* 2251 * In the case of recovery, we can't expect flushing the cache to work 2252 * always, but we have a go and ignore errors. 2253 */ 2254 _mmc_flush_cache(host); 2255 2256 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2257 mmc_can_reset(card)) { 2258 /* If the card accept RST_n signal, send it. */ 2259 mmc_set_clock(host, host->f_init); 2260 host->ops->card_hw_reset(host); 2261 /* Set initial state and call mmc_set_ios */ 2262 mmc_set_initial_state(host); 2263 } else { 2264 /* Do a brute force power cycle */ 2265 mmc_power_cycle(host, card->ocr); 2266 mmc_pwrseq_reset(host); 2267 } 2268 return mmc_init_card(host, card->ocr, card); 2269 } 2270 2271 static const struct mmc_bus_ops mmc_ops = { 2272 .remove = mmc_remove, 2273 .detect = mmc_detect, 2274 .suspend = mmc_suspend, 2275 .resume = mmc_resume, 2276 .runtime_suspend = mmc_runtime_suspend, 2277 .runtime_resume = mmc_runtime_resume, 2278 .alive = mmc_alive, 2279 .shutdown = mmc_shutdown, 2280 .hw_reset = _mmc_hw_reset, 2281 .cache_enabled = _mmc_cache_enabled, 2282 .flush_cache = _mmc_flush_cache, 2283 }; 2284 2285 /* 2286 * Starting point for MMC card init. 2287 */ 2288 int mmc_attach_mmc(struct mmc_host *host) 2289 { 2290 int err; 2291 u32 ocr, rocr; 2292 2293 WARN_ON(!host->claimed); 2294 2295 /* Set correct bus mode for MMC before attempting attach */ 2296 if (!mmc_host_is_spi(host)) 2297 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2298 2299 err = mmc_send_op_cond(host, 0, &ocr); 2300 if (err) 2301 return err; 2302 2303 mmc_attach_bus(host, &mmc_ops); 2304 if (host->ocr_avail_mmc) 2305 host->ocr_avail = host->ocr_avail_mmc; 2306 2307 /* 2308 * We need to get OCR a different way for SPI. 2309 */ 2310 if (mmc_host_is_spi(host)) { 2311 err = mmc_spi_read_ocr(host, 1, &ocr); 2312 if (err) 2313 goto err; 2314 } 2315 2316 rocr = mmc_select_voltage(host, ocr); 2317 2318 /* 2319 * Can we support the voltage of the card? 2320 */ 2321 if (!rocr) { 2322 err = -EINVAL; 2323 goto err; 2324 } 2325 2326 /* 2327 * Detect and init the card. 2328 */ 2329 err = mmc_init_card(host, rocr, NULL); 2330 if (err) 2331 goto err; 2332 2333 mmc_release_host(host); 2334 err = mmc_add_card(host->card); 2335 if (err) 2336 goto remove_card; 2337 2338 mmc_claim_host(host); 2339 return 0; 2340 2341 remove_card: 2342 mmc_remove_card(host->card); 2343 mmc_claim_host(host); 2344 host->card = NULL; 2345 err: 2346 mmc_detach_bus(host); 2347 2348 pr_err("%s: error %d whilst initialising MMC card\n", 2349 mmc_hostname(host), err); 2350 2351 return err; 2352 } 2353