1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "quirks.h" 26 #include "sd_ops.h" 27 #include "pwrseq.h" 28 29 #define DEFAULT_CMD6_TIMEOUT_MS 500 30 #define MIN_CACHE_EN_TIMEOUT_MS 1600 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 #define UNSTUFF_BITS(resp,start,size) \ 52 ({ \ 53 const int __size = size; \ 54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 55 const int __off = 3 - ((start) / 32); \ 56 const int __shft = (start) & 31; \ 57 u32 __res; \ 58 \ 59 __res = resp[__off] >> __shft; \ 60 if (__size + __shft > 32) \ 61 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 62 __res & __mask; \ 63 }) 64 65 /* 66 * Given the decoded CSD structure, decode the raw CID to our CID structure. 67 */ 68 static int mmc_decode_cid(struct mmc_card *card) 69 { 70 u32 *resp = card->raw_cid; 71 72 /* 73 * The selection of the format here is based upon published 74 * specs from sandisk and from what people have reported. 75 */ 76 switch (card->csd.mmca_vsn) { 77 case 0: /* MMC v1.0 - v1.2 */ 78 case 1: /* MMC v1.4 */ 79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 90 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 92 break; 93 94 case 2: /* MMC v2.0 - v2.2 */ 95 case 3: /* MMC v3.1 - v3.3 */ 96 case 4: /* MMC v4 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 107 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 109 break; 110 111 default: 112 pr_err("%s: card has unknown MMCA version %d\n", 113 mmc_hostname(card->host), card->csd.mmca_vsn); 114 return -EINVAL; 115 } 116 117 return 0; 118 } 119 120 static void mmc_set_erase_size(struct mmc_card *card) 121 { 122 if (card->ext_csd.erase_group_def & 1) 123 card->erase_size = card->ext_csd.hc_erase_size; 124 else 125 card->erase_size = card->csd.erase_size; 126 127 mmc_init_erase(card); 128 } 129 130 /* 131 * Given a 128-bit response, decode to our card CSD structure. 132 */ 133 static int mmc_decode_csd(struct mmc_card *card) 134 { 135 struct mmc_csd *csd = &card->csd; 136 unsigned int e, m, a, b; 137 u32 *resp = card->raw_csd; 138 139 /* 140 * We only understand CSD structure v1.1 and v1.2. 141 * v1.2 has extra information in bits 15, 11 and 10. 142 * We also support eMMC v4.4 & v4.41. 143 */ 144 csd->structure = UNSTUFF_BITS(resp, 126, 2); 145 if (csd->structure == 0) { 146 pr_err("%s: unrecognised CSD structure version %d\n", 147 mmc_hostname(card->host), csd->structure); 148 return -EINVAL; 149 } 150 151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 152 m = UNSTUFF_BITS(resp, 115, 4); 153 e = UNSTUFF_BITS(resp, 112, 3); 154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 156 157 m = UNSTUFF_BITS(resp, 99, 4); 158 e = UNSTUFF_BITS(resp, 96, 3); 159 csd->max_dtr = tran_exp[e] * tran_mant[m]; 160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 161 162 e = UNSTUFF_BITS(resp, 47, 3); 163 m = UNSTUFF_BITS(resp, 62, 12); 164 csd->capacity = (1 + m) << (e + 2); 165 166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 174 175 if (csd->write_blkbits >= 9) { 176 a = UNSTUFF_BITS(resp, 42, 5); 177 b = UNSTUFF_BITS(resp, 37, 5); 178 csd->erase_size = (a + 1) * (b + 1); 179 csd->erase_size <<= csd->write_blkbits - 9; 180 } 181 182 return 0; 183 } 184 185 static void mmc_select_card_type(struct mmc_card *card) 186 { 187 struct mmc_host *host = card->host; 188 u8 card_type = card->ext_csd.raw_card_type; 189 u32 caps = host->caps, caps2 = host->caps2; 190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 191 unsigned int avail_type = 0; 192 193 if (caps & MMC_CAP_MMC_HIGHSPEED && 194 card_type & EXT_CSD_CARD_TYPE_HS_26) { 195 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 196 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 197 } 198 199 if (caps & MMC_CAP_MMC_HIGHSPEED && 200 card_type & EXT_CSD_CARD_TYPE_HS_52) { 201 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 202 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 203 } 204 205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 209 } 210 211 if (caps & MMC_CAP_1_2V_DDR && 212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 215 } 216 217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 219 hs200_max_dtr = MMC_HS200_MAX_DTR; 220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 221 } 222 223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 225 hs200_max_dtr = MMC_HS200_MAX_DTR; 226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 227 } 228 229 if (caps2 & MMC_CAP2_HS400_1_8V && 230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 231 hs200_max_dtr = MMC_HS200_MAX_DTR; 232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 233 } 234 235 if (caps2 & MMC_CAP2_HS400_1_2V && 236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 237 hs200_max_dtr = MMC_HS200_MAX_DTR; 238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 239 } 240 241 if ((caps2 & MMC_CAP2_HS400_ES) && 242 card->ext_csd.strobe_support && 243 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 245 246 card->ext_csd.hs_max_dtr = hs_max_dtr; 247 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 248 card->mmc_avail_type = avail_type; 249 } 250 251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 252 { 253 u8 hc_erase_grp_sz, hc_wp_grp_sz; 254 255 /* 256 * Disable these attributes by default 257 */ 258 card->ext_csd.enhanced_area_offset = -EINVAL; 259 card->ext_csd.enhanced_area_size = -EINVAL; 260 261 /* 262 * Enhanced area feature support -- check whether the eMMC 263 * card has the Enhanced area enabled. If so, export enhanced 264 * area offset and size to user by adding sysfs interface. 265 */ 266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 268 if (card->ext_csd.partition_setting_completed) { 269 hc_erase_grp_sz = 270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 271 hc_wp_grp_sz = 272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 273 274 /* 275 * calculate the enhanced data area offset, in bytes 276 */ 277 card->ext_csd.enhanced_area_offset = 278 (((unsigned long long)ext_csd[139]) << 24) + 279 (((unsigned long long)ext_csd[138]) << 16) + 280 (((unsigned long long)ext_csd[137]) << 8) + 281 (((unsigned long long)ext_csd[136])); 282 if (mmc_card_blockaddr(card)) 283 card->ext_csd.enhanced_area_offset <<= 9; 284 /* 285 * calculate the enhanced data area size, in kilobytes 286 */ 287 card->ext_csd.enhanced_area_size = 288 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 289 ext_csd[140]; 290 card->ext_csd.enhanced_area_size *= 291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 292 card->ext_csd.enhanced_area_size <<= 9; 293 } else { 294 pr_warn("%s: defines enhanced area without partition setting complete\n", 295 mmc_hostname(card->host)); 296 } 297 } 298 } 299 300 static void mmc_part_add(struct mmc_card *card, u64 size, 301 unsigned int part_cfg, char *name, int idx, bool ro, 302 int area_type) 303 { 304 card->part[card->nr_parts].size = size; 305 card->part[card->nr_parts].part_cfg = part_cfg; 306 sprintf(card->part[card->nr_parts].name, name, idx); 307 card->part[card->nr_parts].force_ro = ro; 308 card->part[card->nr_parts].area_type = area_type; 309 card->nr_parts++; 310 } 311 312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 313 { 314 int idx; 315 u8 hc_erase_grp_sz, hc_wp_grp_sz; 316 u64 part_size; 317 318 /* 319 * General purpose partition feature support -- 320 * If ext_csd has the size of general purpose partitions, 321 * set size, part_cfg, partition name in mmc_part. 322 */ 323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 324 EXT_CSD_PART_SUPPORT_PART_EN) { 325 hc_erase_grp_sz = 326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 327 hc_wp_grp_sz = 328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 329 330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 334 continue; 335 if (card->ext_csd.partition_setting_completed == 0) { 336 pr_warn("%s: has partition size defined without partition complete\n", 337 mmc_hostname(card->host)); 338 break; 339 } 340 part_size = 341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 342 << 16) + 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 344 << 8) + 345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 347 mmc_part_add(card, part_size << 19, 348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 349 "gp%d", idx, false, 350 MMC_BLK_DATA_AREA_GP); 351 } 352 } 353 } 354 355 /* Minimum partition switch timeout in milliseconds */ 356 #define MMC_MIN_PART_SWITCH_TIME 300 357 358 /* 359 * Decode extended CSD. 360 */ 361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 362 { 363 int err = 0, idx; 364 u64 part_size; 365 struct device_node *np; 366 bool broken_hpi = false; 367 368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 370 if (card->csd.structure == 3) { 371 if (card->ext_csd.raw_ext_csd_structure > 2) { 372 pr_err("%s: unrecognised EXT_CSD structure " 373 "version %d\n", mmc_hostname(card->host), 374 card->ext_csd.raw_ext_csd_structure); 375 err = -EINVAL; 376 goto out; 377 } 378 } 379 380 np = mmc_of_find_child_device(card->host, 0); 381 if (np && of_device_is_compatible(np, "mmc-card")) 382 broken_hpi = of_property_read_bool(np, "broken-hpi"); 383 of_node_put(np); 384 385 /* 386 * The EXT_CSD format is meant to be forward compatible. As long 387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 388 * are authorized, see JEDEC JESD84-B50 section B.8. 389 */ 390 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 391 392 /* fixup device after ext_csd revision field is updated */ 393 mmc_fixup_device(card, mmc_ext_csd_fixups); 394 395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 399 if (card->ext_csd.rev >= 2) { 400 card->ext_csd.sectors = 401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 405 406 /* Cards with density > 2GiB are sector addressed */ 407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 408 mmc_card_set_blockaddr(card); 409 } 410 411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 413 mmc_select_card_type(card); 414 415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 416 card->ext_csd.raw_erase_timeout_mult = 417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 418 card->ext_csd.raw_hc_erase_grp_size = 419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 420 if (card->ext_csd.rev >= 3) { 421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 423 424 /* EXT_CSD value is in units of 10ms, but we store in ms */ 425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 426 /* Some eMMC set the value too low so set a minimum */ 427 if (card->ext_csd.part_time && 428 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 429 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 430 431 /* Sleep / awake timeout in 100ns units */ 432 if (sa_shift > 0 && sa_shift <= 0x17) 433 card->ext_csd.sa_timeout = 434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 435 card->ext_csd.erase_group_def = 436 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 437 card->ext_csd.hc_erase_timeout = 300 * 438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 439 card->ext_csd.hc_erase_size = 440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 441 442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 443 444 /* 445 * There are two boot regions of equal size, defined in 446 * multiples of 128K. 447 */ 448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 451 mmc_part_add(card, part_size, 452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 453 "boot%d", idx, true, 454 MMC_BLK_DATA_AREA_BOOT); 455 } 456 } 457 } 458 459 card->ext_csd.raw_hc_erase_gap_size = 460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 461 card->ext_csd.raw_sec_trim_mult = 462 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 463 card->ext_csd.raw_sec_erase_mult = 464 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 465 card->ext_csd.raw_sec_feature_support = 466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 467 card->ext_csd.raw_trim_mult = 468 ext_csd[EXT_CSD_TRIM_MULT]; 469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 471 if (card->ext_csd.rev >= 4) { 472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 473 EXT_CSD_PART_SETTING_COMPLETED) 474 card->ext_csd.partition_setting_completed = 1; 475 else 476 card->ext_csd.partition_setting_completed = 0; 477 478 mmc_manage_enhanced_area(card, ext_csd); 479 480 mmc_manage_gp_partitions(card, ext_csd); 481 482 card->ext_csd.sec_trim_mult = 483 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 484 card->ext_csd.sec_erase_mult = 485 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 486 card->ext_csd.sec_feature_support = 487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 488 card->ext_csd.trim_timeout = 300 * 489 ext_csd[EXT_CSD_TRIM_MULT]; 490 491 /* 492 * Note that the call to mmc_part_add above defaults to read 493 * only. If this default assumption is changed, the call must 494 * take into account the value of boot_locked below. 495 */ 496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 497 card->ext_csd.boot_ro_lockable = true; 498 499 /* Save power class values */ 500 card->ext_csd.raw_pwr_cl_52_195 = 501 ext_csd[EXT_CSD_PWR_CL_52_195]; 502 card->ext_csd.raw_pwr_cl_26_195 = 503 ext_csd[EXT_CSD_PWR_CL_26_195]; 504 card->ext_csd.raw_pwr_cl_52_360 = 505 ext_csd[EXT_CSD_PWR_CL_52_360]; 506 card->ext_csd.raw_pwr_cl_26_360 = 507 ext_csd[EXT_CSD_PWR_CL_26_360]; 508 card->ext_csd.raw_pwr_cl_200_195 = 509 ext_csd[EXT_CSD_PWR_CL_200_195]; 510 card->ext_csd.raw_pwr_cl_200_360 = 511 ext_csd[EXT_CSD_PWR_CL_200_360]; 512 card->ext_csd.raw_pwr_cl_ddr_52_195 = 513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 514 card->ext_csd.raw_pwr_cl_ddr_52_360 = 515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 516 card->ext_csd.raw_pwr_cl_ddr_200_360 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 518 } 519 520 if (card->ext_csd.rev >= 5) { 521 /* Adjust production date as per JEDEC JESD84-B451 */ 522 if (card->cid.year < 2010) 523 card->cid.year += 16; 524 525 /* check whether the eMMC card supports BKOPS */ 526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 527 card->ext_csd.bkops = 1; 528 card->ext_csd.man_bkops_en = 529 (ext_csd[EXT_CSD_BKOPS_EN] & 530 EXT_CSD_MANUAL_BKOPS_MASK); 531 card->ext_csd.raw_bkops_status = 532 ext_csd[EXT_CSD_BKOPS_STATUS]; 533 if (card->ext_csd.man_bkops_en) 534 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 535 mmc_hostname(card->host)); 536 card->ext_csd.auto_bkops_en = 537 (ext_csd[EXT_CSD_BKOPS_EN] & 538 EXT_CSD_AUTO_BKOPS_MASK); 539 if (card->ext_csd.auto_bkops_en) 540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 541 mmc_hostname(card->host)); 542 } 543 544 /* check whether the eMMC card supports HPI */ 545 if (!mmc_card_broken_hpi(card) && 546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 547 card->ext_csd.hpi = 1; 548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 550 else 551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 552 /* 553 * Indicate the maximum timeout to close 554 * a command interrupted by HPI 555 */ 556 card->ext_csd.out_of_int_time = 557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 558 } 559 560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 562 563 /* 564 * RPMB regions are defined in multiples of 128K. 565 */ 566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 569 EXT_CSD_PART_CONFIG_ACC_RPMB, 570 "rpmb", 0, false, 571 MMC_BLK_DATA_AREA_RPMB); 572 } 573 } 574 575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 577 card->erased_byte = 0xFF; 578 else 579 card->erased_byte = 0x0; 580 581 /* eMMC v4.5 or later */ 582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 583 if (card->ext_csd.rev >= 6) { 584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 585 586 card->ext_csd.generic_cmd6_time = 10 * 587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 588 card->ext_csd.power_off_longtime = 10 * 589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 590 591 card->ext_csd.cache_size = 592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 596 597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 598 card->ext_csd.data_sector_size = 4096; 599 else 600 card->ext_csd.data_sector_size = 512; 601 602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 604 card->ext_csd.data_tag_unit_size = 605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 606 (card->ext_csd.data_sector_size); 607 } else { 608 card->ext_csd.data_tag_unit_size = 0; 609 } 610 611 card->ext_csd.max_packed_writes = 612 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 613 card->ext_csd.max_packed_reads = 614 ext_csd[EXT_CSD_MAX_PACKED_READS]; 615 } else { 616 card->ext_csd.data_sector_size = 512; 617 } 618 619 /* eMMC v5 or later */ 620 if (card->ext_csd.rev >= 7) { 621 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 622 MMC_FIRMWARE_LEN); 623 card->ext_csd.ffu_capable = 624 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 625 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 626 627 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 628 card->ext_csd.device_life_time_est_typ_a = 629 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 630 card->ext_csd.device_life_time_est_typ_b = 631 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 632 } 633 634 /* eMMC v5.1 or later */ 635 if (card->ext_csd.rev >= 8) { 636 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 637 EXT_CSD_CMDQ_SUPPORTED; 638 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 639 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 640 /* Exclude inefficiently small queue depths */ 641 if (card->ext_csd.cmdq_depth <= 2) { 642 card->ext_csd.cmdq_support = false; 643 card->ext_csd.cmdq_depth = 0; 644 } 645 if (card->ext_csd.cmdq_support) { 646 pr_debug("%s: Command Queue supported depth %u\n", 647 mmc_hostname(card->host), 648 card->ext_csd.cmdq_depth); 649 } 650 card->ext_csd.enhanced_rpmb_supported = 651 (card->ext_csd.rel_param & 652 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 653 } 654 out: 655 return err; 656 } 657 658 static int mmc_read_ext_csd(struct mmc_card *card) 659 { 660 u8 *ext_csd; 661 int err; 662 663 if (!mmc_can_ext_csd(card)) 664 return 0; 665 666 err = mmc_get_ext_csd(card, &ext_csd); 667 if (err) { 668 /* If the host or the card can't do the switch, 669 * fail more gracefully. */ 670 if ((err != -EINVAL) 671 && (err != -ENOSYS) 672 && (err != -EFAULT)) 673 return err; 674 675 /* 676 * High capacity cards should have this "magic" size 677 * stored in their CSD. 678 */ 679 if (card->csd.capacity == (4096 * 512)) { 680 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 681 mmc_hostname(card->host)); 682 } else { 683 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 684 mmc_hostname(card->host)); 685 err = 0; 686 } 687 688 return err; 689 } 690 691 err = mmc_decode_ext_csd(card, ext_csd); 692 kfree(ext_csd); 693 return err; 694 } 695 696 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 697 { 698 u8 *bw_ext_csd; 699 int err; 700 701 if (bus_width == MMC_BUS_WIDTH_1) 702 return 0; 703 704 err = mmc_get_ext_csd(card, &bw_ext_csd); 705 if (err) 706 return err; 707 708 /* only compare read only fields */ 709 err = !((card->ext_csd.raw_partition_support == 710 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 711 (card->ext_csd.raw_erased_mem_count == 712 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 713 (card->ext_csd.rev == 714 bw_ext_csd[EXT_CSD_REV]) && 715 (card->ext_csd.raw_ext_csd_structure == 716 bw_ext_csd[EXT_CSD_STRUCTURE]) && 717 (card->ext_csd.raw_card_type == 718 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 719 (card->ext_csd.raw_s_a_timeout == 720 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 721 (card->ext_csd.raw_hc_erase_gap_size == 722 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 723 (card->ext_csd.raw_erase_timeout_mult == 724 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 725 (card->ext_csd.raw_hc_erase_grp_size == 726 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 727 (card->ext_csd.raw_sec_trim_mult == 728 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 729 (card->ext_csd.raw_sec_erase_mult == 730 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 731 (card->ext_csd.raw_sec_feature_support == 732 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 733 (card->ext_csd.raw_trim_mult == 734 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 735 (card->ext_csd.raw_sectors[0] == 736 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 737 (card->ext_csd.raw_sectors[1] == 738 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 739 (card->ext_csd.raw_sectors[2] == 740 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 741 (card->ext_csd.raw_sectors[3] == 742 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 743 (card->ext_csd.raw_pwr_cl_52_195 == 744 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 745 (card->ext_csd.raw_pwr_cl_26_195 == 746 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 747 (card->ext_csd.raw_pwr_cl_52_360 == 748 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 749 (card->ext_csd.raw_pwr_cl_26_360 == 750 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 751 (card->ext_csd.raw_pwr_cl_200_195 == 752 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 753 (card->ext_csd.raw_pwr_cl_200_360 == 754 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 755 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 756 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 757 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 758 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 759 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 760 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 761 762 if (err) 763 err = -EINVAL; 764 765 kfree(bw_ext_csd); 766 return err; 767 } 768 769 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 770 card->raw_cid[2], card->raw_cid[3]); 771 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 772 card->raw_csd[2], card->raw_csd[3]); 773 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 774 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 775 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 776 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 777 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 778 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 779 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 780 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 781 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 782 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 783 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 784 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 785 card->ext_csd.device_life_time_est_typ_a, 786 card->ext_csd.device_life_time_est_typ_b); 787 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 788 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 789 card->ext_csd.enhanced_area_offset); 790 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 791 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 792 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 793 card->ext_csd.enhanced_rpmb_supported); 794 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 795 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 796 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 797 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 798 799 static ssize_t mmc_fwrev_show(struct device *dev, 800 struct device_attribute *attr, 801 char *buf) 802 { 803 struct mmc_card *card = mmc_dev_to_card(dev); 804 805 if (card->ext_csd.rev < 7) { 806 return sprintf(buf, "0x%x\n", card->cid.fwrev); 807 } else { 808 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 809 card->ext_csd.fwrev); 810 } 811 } 812 813 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 814 815 static ssize_t mmc_dsr_show(struct device *dev, 816 struct device_attribute *attr, 817 char *buf) 818 { 819 struct mmc_card *card = mmc_dev_to_card(dev); 820 struct mmc_host *host = card->host; 821 822 if (card->csd.dsr_imp && host->dsr_req) 823 return sprintf(buf, "0x%x\n", host->dsr); 824 else 825 /* return default DSR value */ 826 return sprintf(buf, "0x%x\n", 0x404); 827 } 828 829 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 830 831 static struct attribute *mmc_std_attrs[] = { 832 &dev_attr_cid.attr, 833 &dev_attr_csd.attr, 834 &dev_attr_date.attr, 835 &dev_attr_erase_size.attr, 836 &dev_attr_preferred_erase_size.attr, 837 &dev_attr_fwrev.attr, 838 &dev_attr_ffu_capable.attr, 839 &dev_attr_hwrev.attr, 840 &dev_attr_manfid.attr, 841 &dev_attr_name.attr, 842 &dev_attr_oemid.attr, 843 &dev_attr_prv.attr, 844 &dev_attr_rev.attr, 845 &dev_attr_pre_eol_info.attr, 846 &dev_attr_life_time.attr, 847 &dev_attr_serial.attr, 848 &dev_attr_enhanced_area_offset.attr, 849 &dev_attr_enhanced_area_size.attr, 850 &dev_attr_raw_rpmb_size_mult.attr, 851 &dev_attr_enhanced_rpmb_supported.attr, 852 &dev_attr_rel_sectors.attr, 853 &dev_attr_ocr.attr, 854 &dev_attr_rca.attr, 855 &dev_attr_dsr.attr, 856 &dev_attr_cmdq_en.attr, 857 NULL, 858 }; 859 ATTRIBUTE_GROUPS(mmc_std); 860 861 static struct device_type mmc_type = { 862 .groups = mmc_std_groups, 863 }; 864 865 /* 866 * Select the PowerClass for the current bus width 867 * If power class is defined for 4/8 bit bus in the 868 * extended CSD register, select it by executing the 869 * mmc_switch command. 870 */ 871 static int __mmc_select_powerclass(struct mmc_card *card, 872 unsigned int bus_width) 873 { 874 struct mmc_host *host = card->host; 875 struct mmc_ext_csd *ext_csd = &card->ext_csd; 876 unsigned int pwrclass_val = 0; 877 int err = 0; 878 879 switch (1 << host->ios.vdd) { 880 case MMC_VDD_165_195: 881 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 882 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 883 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 884 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 885 ext_csd->raw_pwr_cl_52_195 : 886 ext_csd->raw_pwr_cl_ddr_52_195; 887 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 888 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 889 break; 890 case MMC_VDD_27_28: 891 case MMC_VDD_28_29: 892 case MMC_VDD_29_30: 893 case MMC_VDD_30_31: 894 case MMC_VDD_31_32: 895 case MMC_VDD_32_33: 896 case MMC_VDD_33_34: 897 case MMC_VDD_34_35: 898 case MMC_VDD_35_36: 899 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 900 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 901 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 902 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 903 ext_csd->raw_pwr_cl_52_360 : 904 ext_csd->raw_pwr_cl_ddr_52_360; 905 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 906 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 907 ext_csd->raw_pwr_cl_ddr_200_360 : 908 ext_csd->raw_pwr_cl_200_360; 909 break; 910 default: 911 pr_warn("%s: Voltage range not supported for power class\n", 912 mmc_hostname(host)); 913 return -EINVAL; 914 } 915 916 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 917 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 918 EXT_CSD_PWR_CL_8BIT_SHIFT; 919 else 920 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 921 EXT_CSD_PWR_CL_4BIT_SHIFT; 922 923 /* If the power class is different from the default value */ 924 if (pwrclass_val > 0) { 925 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 926 EXT_CSD_POWER_CLASS, 927 pwrclass_val, 928 card->ext_csd.generic_cmd6_time); 929 } 930 931 return err; 932 } 933 934 static int mmc_select_powerclass(struct mmc_card *card) 935 { 936 struct mmc_host *host = card->host; 937 u32 bus_width, ext_csd_bits; 938 int err, ddr; 939 940 /* Power class selection is supported for versions >= 4.0 */ 941 if (!mmc_can_ext_csd(card)) 942 return 0; 943 944 bus_width = host->ios.bus_width; 945 /* Power class values are defined only for 4/8 bit bus */ 946 if (bus_width == MMC_BUS_WIDTH_1) 947 return 0; 948 949 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 950 if (ddr) 951 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 952 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 953 else 954 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 955 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 956 957 err = __mmc_select_powerclass(card, ext_csd_bits); 958 if (err) 959 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 960 mmc_hostname(host), 1 << bus_width, ddr); 961 962 return err; 963 } 964 965 /* 966 * Set the bus speed for the selected speed mode. 967 */ 968 static void mmc_set_bus_speed(struct mmc_card *card) 969 { 970 unsigned int max_dtr = (unsigned int)-1; 971 972 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 973 max_dtr > card->ext_csd.hs200_max_dtr) 974 max_dtr = card->ext_csd.hs200_max_dtr; 975 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 976 max_dtr = card->ext_csd.hs_max_dtr; 977 else if (max_dtr > card->csd.max_dtr) 978 max_dtr = card->csd.max_dtr; 979 980 mmc_set_clock(card->host, max_dtr); 981 } 982 983 /* 984 * Select the bus width amoung 4-bit and 8-bit(SDR). 985 * If the bus width is changed successfully, return the selected width value. 986 * Zero is returned instead of error value if the wide width is not supported. 987 */ 988 static int mmc_select_bus_width(struct mmc_card *card) 989 { 990 static unsigned ext_csd_bits[] = { 991 EXT_CSD_BUS_WIDTH_8, 992 EXT_CSD_BUS_WIDTH_4, 993 }; 994 static unsigned bus_widths[] = { 995 MMC_BUS_WIDTH_8, 996 MMC_BUS_WIDTH_4, 997 }; 998 struct mmc_host *host = card->host; 999 unsigned idx, bus_width = 0; 1000 int err = 0; 1001 1002 if (!mmc_can_ext_csd(card) || 1003 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1004 return 0; 1005 1006 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1007 1008 /* 1009 * Unlike SD, MMC cards dont have a configuration register to notify 1010 * supported bus width. So bus test command should be run to identify 1011 * the supported bus width or compare the ext csd values of current 1012 * bus width and ext csd values of 1 bit mode read earlier. 1013 */ 1014 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1015 /* 1016 * Host is capable of 8bit transfer, then switch 1017 * the device to work in 8bit transfer mode. If the 1018 * mmc switch command returns error then switch to 1019 * 4bit transfer mode. On success set the corresponding 1020 * bus width on the host. 1021 */ 1022 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1023 EXT_CSD_BUS_WIDTH, 1024 ext_csd_bits[idx], 1025 card->ext_csd.generic_cmd6_time); 1026 if (err) 1027 continue; 1028 1029 bus_width = bus_widths[idx]; 1030 mmc_set_bus_width(host, bus_width); 1031 1032 /* 1033 * If controller can't handle bus width test, 1034 * compare ext_csd previously read in 1 bit mode 1035 * against ext_csd at new bus width 1036 */ 1037 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1038 err = mmc_compare_ext_csds(card, bus_width); 1039 else 1040 err = mmc_bus_test(card, bus_width); 1041 1042 if (!err) { 1043 err = bus_width; 1044 break; 1045 } else { 1046 pr_warn("%s: switch to bus width %d failed\n", 1047 mmc_hostname(host), 1 << bus_width); 1048 } 1049 } 1050 1051 return err; 1052 } 1053 1054 /* 1055 * Switch to the high-speed mode 1056 */ 1057 static int mmc_select_hs(struct mmc_card *card) 1058 { 1059 int err; 1060 1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1062 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1063 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1064 true, true); 1065 if (err) 1066 pr_warn("%s: switch to high-speed failed, err:%d\n", 1067 mmc_hostname(card->host), err); 1068 1069 return err; 1070 } 1071 1072 /* 1073 * Activate wide bus and DDR if supported. 1074 */ 1075 static int mmc_select_hs_ddr(struct mmc_card *card) 1076 { 1077 struct mmc_host *host = card->host; 1078 u32 bus_width, ext_csd_bits; 1079 int err = 0; 1080 1081 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1082 return 0; 1083 1084 bus_width = host->ios.bus_width; 1085 if (bus_width == MMC_BUS_WIDTH_1) 1086 return 0; 1087 1088 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1089 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1090 1091 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1092 EXT_CSD_BUS_WIDTH, 1093 ext_csd_bits, 1094 card->ext_csd.generic_cmd6_time, 1095 MMC_TIMING_MMC_DDR52, 1096 true, true); 1097 if (err) { 1098 pr_err("%s: switch to bus width %d ddr failed\n", 1099 mmc_hostname(host), 1 << bus_width); 1100 return err; 1101 } 1102 1103 /* 1104 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1105 * signaling. 1106 * 1107 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1108 * 1109 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1110 * in the JEDEC spec for DDR. 1111 * 1112 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1113 * host controller can support this, like some of the SDHCI 1114 * controller which connect to an eMMC device. Some of these 1115 * host controller still needs to use 1.8v vccq for supporting 1116 * DDR mode. 1117 * 1118 * So the sequence will be: 1119 * if (host and device can both support 1.2v IO) 1120 * use 1.2v IO; 1121 * else if (host and device can both support 1.8v IO) 1122 * use 1.8v IO; 1123 * so if host and device can only support 3.3v IO, this is the 1124 * last choice. 1125 * 1126 * WARNING: eMMC rules are NOT the same as SD DDR 1127 */ 1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1129 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1130 if (!err) 1131 return 0; 1132 } 1133 1134 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1135 host->caps & MMC_CAP_1_8V_DDR) 1136 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1137 1138 /* make sure vccq is 3.3v after switching disaster */ 1139 if (err) 1140 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1141 1142 return err; 1143 } 1144 1145 static int mmc_select_hs400(struct mmc_card *card) 1146 { 1147 struct mmc_host *host = card->host; 1148 unsigned int max_dtr; 1149 int err = 0; 1150 u8 val; 1151 1152 /* 1153 * HS400 mode requires 8-bit bus width 1154 */ 1155 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1156 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1157 return 0; 1158 1159 /* Switch card to HS mode */ 1160 val = EXT_CSD_TIMING_HS; 1161 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1162 EXT_CSD_HS_TIMING, val, 1163 card->ext_csd.generic_cmd6_time, 0, 1164 false, true); 1165 if (err) { 1166 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1167 mmc_hostname(host), err); 1168 return err; 1169 } 1170 1171 /* Set host controller to HS timing */ 1172 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1173 1174 /* Prepare host to downgrade to HS timing */ 1175 if (host->ops->hs400_downgrade) 1176 host->ops->hs400_downgrade(host); 1177 1178 /* Reduce frequency to HS frequency */ 1179 max_dtr = card->ext_csd.hs_max_dtr; 1180 mmc_set_clock(host, max_dtr); 1181 1182 err = mmc_switch_status(card, true); 1183 if (err) 1184 goto out_err; 1185 1186 if (host->ops->hs400_prepare_ddr) 1187 host->ops->hs400_prepare_ddr(host); 1188 1189 /* Switch card to DDR */ 1190 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1191 EXT_CSD_BUS_WIDTH, 1192 EXT_CSD_DDR_BUS_WIDTH_8, 1193 card->ext_csd.generic_cmd6_time); 1194 if (err) { 1195 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1196 mmc_hostname(host), err); 1197 return err; 1198 } 1199 1200 /* Switch card to HS400 */ 1201 val = EXT_CSD_TIMING_HS400 | 1202 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1203 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1204 EXT_CSD_HS_TIMING, val, 1205 card->ext_csd.generic_cmd6_time, 0, 1206 false, true); 1207 if (err) { 1208 pr_err("%s: switch to hs400 failed, err:%d\n", 1209 mmc_hostname(host), err); 1210 return err; 1211 } 1212 1213 /* Set host controller to HS400 timing and frequency */ 1214 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1215 mmc_set_bus_speed(card); 1216 1217 if (host->ops->hs400_complete) 1218 host->ops->hs400_complete(host); 1219 1220 err = mmc_switch_status(card, true); 1221 if (err) 1222 goto out_err; 1223 1224 return 0; 1225 1226 out_err: 1227 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1228 __func__, err); 1229 return err; 1230 } 1231 1232 int mmc_hs200_to_hs400(struct mmc_card *card) 1233 { 1234 return mmc_select_hs400(card); 1235 } 1236 1237 int mmc_hs400_to_hs200(struct mmc_card *card) 1238 { 1239 struct mmc_host *host = card->host; 1240 unsigned int max_dtr; 1241 int err; 1242 u8 val; 1243 1244 /* Reduce frequency to HS */ 1245 max_dtr = card->ext_csd.hs_max_dtr; 1246 mmc_set_clock(host, max_dtr); 1247 1248 /* Switch HS400 to HS DDR */ 1249 val = EXT_CSD_TIMING_HS; 1250 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1251 val, card->ext_csd.generic_cmd6_time, 0, 1252 false, true); 1253 if (err) 1254 goto out_err; 1255 1256 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1257 1258 err = mmc_switch_status(card, true); 1259 if (err) 1260 goto out_err; 1261 1262 /* Switch HS DDR to HS */ 1263 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1264 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1265 0, false, true); 1266 if (err) 1267 goto out_err; 1268 1269 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1270 1271 if (host->ops->hs400_downgrade) 1272 host->ops->hs400_downgrade(host); 1273 1274 err = mmc_switch_status(card, true); 1275 if (err) 1276 goto out_err; 1277 1278 /* Switch HS to HS200 */ 1279 val = EXT_CSD_TIMING_HS200 | 1280 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1281 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1282 val, card->ext_csd.generic_cmd6_time, 0, 1283 false, true); 1284 if (err) 1285 goto out_err; 1286 1287 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1288 1289 /* 1290 * For HS200, CRC errors are not a reliable way to know the switch 1291 * failed. If there really is a problem, we would expect tuning will 1292 * fail and the result ends up the same. 1293 */ 1294 err = mmc_switch_status(card, false); 1295 if (err) 1296 goto out_err; 1297 1298 mmc_set_bus_speed(card); 1299 1300 /* Prepare tuning for HS400 mode. */ 1301 if (host->ops->prepare_hs400_tuning) 1302 host->ops->prepare_hs400_tuning(host, &host->ios); 1303 1304 return 0; 1305 1306 out_err: 1307 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1308 __func__, err); 1309 return err; 1310 } 1311 1312 static void mmc_select_driver_type(struct mmc_card *card) 1313 { 1314 int card_drv_type, drive_strength, drv_type = 0; 1315 int fixed_drv_type = card->host->fixed_drv_type; 1316 1317 card_drv_type = card->ext_csd.raw_driver_strength | 1318 mmc_driver_type_mask(0); 1319 1320 if (fixed_drv_type >= 0) 1321 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1322 ? fixed_drv_type : 0; 1323 else 1324 drive_strength = mmc_select_drive_strength(card, 1325 card->ext_csd.hs200_max_dtr, 1326 card_drv_type, &drv_type); 1327 1328 card->drive_strength = drive_strength; 1329 1330 if (drv_type) 1331 mmc_set_driver_type(card->host, drv_type); 1332 } 1333 1334 static int mmc_select_hs400es(struct mmc_card *card) 1335 { 1336 struct mmc_host *host = card->host; 1337 int err = -EINVAL; 1338 u8 val; 1339 1340 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1341 err = -ENOTSUPP; 1342 goto out_err; 1343 } 1344 1345 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1346 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1347 1348 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1349 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1350 1351 /* If fails try again during next card power cycle */ 1352 if (err) 1353 goto out_err; 1354 1355 err = mmc_select_bus_width(card); 1356 if (err != MMC_BUS_WIDTH_8) { 1357 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1358 mmc_hostname(host), err); 1359 err = err < 0 ? err : -ENOTSUPP; 1360 goto out_err; 1361 } 1362 1363 /* Switch card to HS mode */ 1364 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1365 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1366 card->ext_csd.generic_cmd6_time, 0, 1367 false, true); 1368 if (err) { 1369 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1370 mmc_hostname(host), err); 1371 goto out_err; 1372 } 1373 1374 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1375 err = mmc_switch_status(card, true); 1376 if (err) 1377 goto out_err; 1378 1379 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1380 1381 /* Switch card to DDR with strobe bit */ 1382 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1383 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1384 EXT_CSD_BUS_WIDTH, 1385 val, 1386 card->ext_csd.generic_cmd6_time); 1387 if (err) { 1388 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1389 mmc_hostname(host), err); 1390 goto out_err; 1391 } 1392 1393 mmc_select_driver_type(card); 1394 1395 /* Switch card to HS400 */ 1396 val = EXT_CSD_TIMING_HS400 | 1397 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1398 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1399 EXT_CSD_HS_TIMING, val, 1400 card->ext_csd.generic_cmd6_time, 0, 1401 false, true); 1402 if (err) { 1403 pr_err("%s: switch to hs400es failed, err:%d\n", 1404 mmc_hostname(host), err); 1405 goto out_err; 1406 } 1407 1408 /* Set host controller to HS400 timing and frequency */ 1409 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1410 1411 /* Controller enable enhanced strobe function */ 1412 host->ios.enhanced_strobe = true; 1413 if (host->ops->hs400_enhanced_strobe) 1414 host->ops->hs400_enhanced_strobe(host, &host->ios); 1415 1416 err = mmc_switch_status(card, true); 1417 if (err) 1418 goto out_err; 1419 1420 return 0; 1421 1422 out_err: 1423 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1424 __func__, err); 1425 return err; 1426 } 1427 1428 /* 1429 * For device supporting HS200 mode, the following sequence 1430 * should be done before executing the tuning process. 1431 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1432 * 2. switch to HS200 mode 1433 * 3. set the clock to > 52Mhz and <=200MHz 1434 */ 1435 static int mmc_select_hs200(struct mmc_card *card) 1436 { 1437 struct mmc_host *host = card->host; 1438 unsigned int old_timing, old_signal_voltage; 1439 int err = -EINVAL; 1440 u8 val; 1441 1442 old_signal_voltage = host->ios.signal_voltage; 1443 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1444 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1445 1446 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1447 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1448 1449 /* If fails try again during next card power cycle */ 1450 if (err) 1451 return err; 1452 1453 mmc_select_driver_type(card); 1454 1455 /* 1456 * Set the bus width(4 or 8) with host's support and 1457 * switch to HS200 mode if bus width is set successfully. 1458 */ 1459 err = mmc_select_bus_width(card); 1460 if (err > 0) { 1461 val = EXT_CSD_TIMING_HS200 | 1462 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1463 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1464 EXT_CSD_HS_TIMING, val, 1465 card->ext_csd.generic_cmd6_time, 0, 1466 false, true); 1467 if (err) 1468 goto err; 1469 old_timing = host->ios.timing; 1470 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1471 1472 /* 1473 * For HS200, CRC errors are not a reliable way to know the 1474 * switch failed. If there really is a problem, we would expect 1475 * tuning will fail and the result ends up the same. 1476 */ 1477 err = mmc_switch_status(card, false); 1478 1479 /* 1480 * mmc_select_timing() assumes timing has not changed if 1481 * it is a switch error. 1482 */ 1483 if (err == -EBADMSG) 1484 mmc_set_timing(host, old_timing); 1485 } 1486 err: 1487 if (err) { 1488 /* fall back to the old signal voltage, if fails report error */ 1489 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1490 err = -EIO; 1491 1492 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1493 __func__, err); 1494 } 1495 return err; 1496 } 1497 1498 /* 1499 * Activate High Speed, HS200 or HS400ES mode if supported. 1500 */ 1501 static int mmc_select_timing(struct mmc_card *card) 1502 { 1503 int err = 0; 1504 1505 if (!mmc_can_ext_csd(card)) 1506 goto bus_speed; 1507 1508 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1509 err = mmc_select_hs400es(card); 1510 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1511 err = mmc_select_hs200(card); 1512 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1513 err = mmc_select_hs(card); 1514 1515 if (err && err != -EBADMSG) 1516 return err; 1517 1518 bus_speed: 1519 /* 1520 * Set the bus speed to the selected bus timing. 1521 * If timing is not selected, backward compatible is the default. 1522 */ 1523 mmc_set_bus_speed(card); 1524 return 0; 1525 } 1526 1527 /* 1528 * Execute tuning sequence to seek the proper bus operating 1529 * conditions for HS200 and HS400, which sends CMD21 to the device. 1530 */ 1531 static int mmc_hs200_tuning(struct mmc_card *card) 1532 { 1533 struct mmc_host *host = card->host; 1534 1535 /* 1536 * Timing should be adjusted to the HS400 target 1537 * operation frequency for tuning process 1538 */ 1539 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1540 host->ios.bus_width == MMC_BUS_WIDTH_8) 1541 if (host->ops->prepare_hs400_tuning) 1542 host->ops->prepare_hs400_tuning(host, &host->ios); 1543 1544 return mmc_execute_tuning(card); 1545 } 1546 1547 /* 1548 * Handle the detection and initialisation of a card. 1549 * 1550 * In the case of a resume, "oldcard" will contain the card 1551 * we're trying to reinitialise. 1552 */ 1553 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1554 struct mmc_card *oldcard) 1555 { 1556 struct mmc_card *card; 1557 int err; 1558 u32 cid[4]; 1559 u32 rocr; 1560 1561 WARN_ON(!host->claimed); 1562 1563 /* Set correct bus mode for MMC before attempting init */ 1564 if (!mmc_host_is_spi(host)) 1565 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1566 1567 /* 1568 * Since we're changing the OCR value, we seem to 1569 * need to tell some cards to go back to the idle 1570 * state. We wait 1ms to give cards time to 1571 * respond. 1572 * mmc_go_idle is needed for eMMC that are asleep 1573 */ 1574 mmc_go_idle(host); 1575 1576 /* The extra bit indicates that we support high capacity */ 1577 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1578 if (err) 1579 goto err; 1580 1581 /* 1582 * For SPI, enable CRC as appropriate. 1583 */ 1584 if (mmc_host_is_spi(host)) { 1585 err = mmc_spi_set_crc(host, use_spi_crc); 1586 if (err) 1587 goto err; 1588 } 1589 1590 /* 1591 * Fetch CID from card. 1592 */ 1593 err = mmc_send_cid(host, cid); 1594 if (err) 1595 goto err; 1596 1597 if (oldcard) { 1598 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1599 pr_debug("%s: Perhaps the card was replaced\n", 1600 mmc_hostname(host)); 1601 err = -ENOENT; 1602 goto err; 1603 } 1604 1605 card = oldcard; 1606 } else { 1607 /* 1608 * Allocate card structure. 1609 */ 1610 card = mmc_alloc_card(host, &mmc_type); 1611 if (IS_ERR(card)) { 1612 err = PTR_ERR(card); 1613 goto err; 1614 } 1615 1616 card->ocr = ocr; 1617 card->type = MMC_TYPE_MMC; 1618 card->rca = 1; 1619 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1620 } 1621 1622 /* 1623 * Call the optional HC's init_card function to handle quirks. 1624 */ 1625 if (host->ops->init_card) 1626 host->ops->init_card(host, card); 1627 1628 /* 1629 * For native busses: set card RCA and quit open drain mode. 1630 */ 1631 if (!mmc_host_is_spi(host)) { 1632 err = mmc_set_relative_addr(card); 1633 if (err) 1634 goto free_card; 1635 1636 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1637 } 1638 1639 if (!oldcard) { 1640 /* 1641 * Fetch CSD from card. 1642 */ 1643 err = mmc_send_csd(card, card->raw_csd); 1644 if (err) 1645 goto free_card; 1646 1647 err = mmc_decode_csd(card); 1648 if (err) 1649 goto free_card; 1650 err = mmc_decode_cid(card); 1651 if (err) 1652 goto free_card; 1653 } 1654 1655 /* 1656 * handling only for cards supporting DSR and hosts requesting 1657 * DSR configuration 1658 */ 1659 if (card->csd.dsr_imp && host->dsr_req) 1660 mmc_set_dsr(host); 1661 1662 /* 1663 * Select card, as all following commands rely on that. 1664 */ 1665 if (!mmc_host_is_spi(host)) { 1666 err = mmc_select_card(card); 1667 if (err) 1668 goto free_card; 1669 } 1670 1671 if (!oldcard) { 1672 /* Read extended CSD. */ 1673 err = mmc_read_ext_csd(card); 1674 if (err) 1675 goto free_card; 1676 1677 /* 1678 * If doing byte addressing, check if required to do sector 1679 * addressing. Handle the case of <2GB cards needing sector 1680 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1681 * ocr register has bit 30 set for sector addressing. 1682 */ 1683 if (rocr & BIT(30)) 1684 mmc_card_set_blockaddr(card); 1685 1686 /* Erase size depends on CSD and Extended CSD */ 1687 mmc_set_erase_size(card); 1688 } 1689 1690 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1691 if (card->ext_csd.rev >= 3) { 1692 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1693 EXT_CSD_ERASE_GROUP_DEF, 1, 1694 card->ext_csd.generic_cmd6_time); 1695 1696 if (err && err != -EBADMSG) 1697 goto free_card; 1698 1699 if (err) { 1700 err = 0; 1701 /* 1702 * Just disable enhanced area off & sz 1703 * will try to enable ERASE_GROUP_DEF 1704 * during next time reinit 1705 */ 1706 card->ext_csd.enhanced_area_offset = -EINVAL; 1707 card->ext_csd.enhanced_area_size = -EINVAL; 1708 } else { 1709 card->ext_csd.erase_group_def = 1; 1710 /* 1711 * enable ERASE_GRP_DEF successfully. 1712 * This will affect the erase size, so 1713 * here need to reset erase size 1714 */ 1715 mmc_set_erase_size(card); 1716 } 1717 } 1718 1719 /* 1720 * Ensure eMMC user default partition is enabled 1721 */ 1722 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1723 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1724 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1725 card->ext_csd.part_config, 1726 card->ext_csd.part_time); 1727 if (err && err != -EBADMSG) 1728 goto free_card; 1729 } 1730 1731 /* 1732 * Enable power_off_notification byte in the ext_csd register 1733 */ 1734 if (card->ext_csd.rev >= 6) { 1735 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1736 EXT_CSD_POWER_OFF_NOTIFICATION, 1737 EXT_CSD_POWER_ON, 1738 card->ext_csd.generic_cmd6_time); 1739 if (err && err != -EBADMSG) 1740 goto free_card; 1741 1742 /* 1743 * The err can be -EBADMSG or 0, 1744 * so check for success and update the flag 1745 */ 1746 if (!err) 1747 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1748 } 1749 1750 /* set erase_arg */ 1751 if (mmc_can_discard(card)) 1752 card->erase_arg = MMC_DISCARD_ARG; 1753 else if (mmc_can_trim(card)) 1754 card->erase_arg = MMC_TRIM_ARG; 1755 else 1756 card->erase_arg = MMC_ERASE_ARG; 1757 1758 /* 1759 * Select timing interface 1760 */ 1761 err = mmc_select_timing(card); 1762 if (err) 1763 goto free_card; 1764 1765 if (mmc_card_hs200(card)) { 1766 err = mmc_hs200_tuning(card); 1767 if (err) 1768 goto free_card; 1769 1770 err = mmc_select_hs400(card); 1771 if (err) 1772 goto free_card; 1773 } else if (!mmc_card_hs400es(card)) { 1774 /* Select the desired bus width optionally */ 1775 err = mmc_select_bus_width(card); 1776 if (err > 0 && mmc_card_hs(card)) { 1777 err = mmc_select_hs_ddr(card); 1778 if (err) 1779 goto free_card; 1780 } 1781 } 1782 1783 /* 1784 * Choose the power class with selected bus interface 1785 */ 1786 mmc_select_powerclass(card); 1787 1788 /* 1789 * Enable HPI feature (if supported) 1790 */ 1791 if (card->ext_csd.hpi) { 1792 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1793 EXT_CSD_HPI_MGMT, 1, 1794 card->ext_csd.generic_cmd6_time); 1795 if (err && err != -EBADMSG) 1796 goto free_card; 1797 if (err) { 1798 pr_warn("%s: Enabling HPI failed\n", 1799 mmc_hostname(card->host)); 1800 card->ext_csd.hpi_en = 0; 1801 err = 0; 1802 } else { 1803 card->ext_csd.hpi_en = 1; 1804 } 1805 } 1806 1807 /* 1808 * If cache size is higher than 0, this indicates the existence of cache 1809 * and it can be turned on. Note that some eMMCs from Micron has been 1810 * reported to need ~800 ms timeout, while enabling the cache after 1811 * sudden power failure tests. Let's extend the timeout to a minimum of 1812 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1813 */ 1814 if (card->ext_csd.cache_size > 0) { 1815 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1816 1817 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1818 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1819 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1820 if (err && err != -EBADMSG) 1821 goto free_card; 1822 1823 /* 1824 * Only if no error, cache is turned on successfully. 1825 */ 1826 if (err) { 1827 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1828 mmc_hostname(card->host), err); 1829 card->ext_csd.cache_ctrl = 0; 1830 err = 0; 1831 } else { 1832 card->ext_csd.cache_ctrl = 1; 1833 } 1834 } 1835 1836 /* 1837 * Enable Command Queue if supported. Note that Packed Commands cannot 1838 * be used with Command Queue. 1839 */ 1840 card->ext_csd.cmdq_en = false; 1841 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1842 err = mmc_cmdq_enable(card); 1843 if (err && err != -EBADMSG) 1844 goto free_card; 1845 if (err) { 1846 pr_warn("%s: Enabling CMDQ failed\n", 1847 mmc_hostname(card->host)); 1848 card->ext_csd.cmdq_support = false; 1849 card->ext_csd.cmdq_depth = 0; 1850 err = 0; 1851 } 1852 } 1853 /* 1854 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1855 * disabled for a time, so a flag is needed to indicate to re-enable the 1856 * Command Queue. 1857 */ 1858 card->reenable_cmdq = card->ext_csd.cmdq_en; 1859 1860 if (host->cqe_ops && !host->cqe_enabled) { 1861 err = host->cqe_ops->cqe_enable(host, card); 1862 if (!err) { 1863 host->cqe_enabled = true; 1864 1865 if (card->ext_csd.cmdq_en) { 1866 pr_info("%s: Command Queue Engine enabled\n", 1867 mmc_hostname(host)); 1868 } else { 1869 host->hsq_enabled = true; 1870 pr_info("%s: Host Software Queue enabled\n", 1871 mmc_hostname(host)); 1872 } 1873 } 1874 } 1875 1876 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1877 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1878 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1879 mmc_hostname(host)); 1880 err = -EINVAL; 1881 goto free_card; 1882 } 1883 1884 if (!oldcard) 1885 host->card = card; 1886 1887 return 0; 1888 1889 free_card: 1890 if (!oldcard) 1891 mmc_remove_card(card); 1892 err: 1893 return err; 1894 } 1895 1896 static int mmc_can_sleep(struct mmc_card *card) 1897 { 1898 return (card && card->ext_csd.rev >= 3); 1899 } 1900 1901 static int mmc_sleep(struct mmc_host *host) 1902 { 1903 struct mmc_command cmd = {}; 1904 struct mmc_card *card = host->card; 1905 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1906 int err; 1907 1908 /* Re-tuning can't be done once the card is deselected */ 1909 mmc_retune_hold(host); 1910 1911 err = mmc_deselect_cards(host); 1912 if (err) 1913 goto out_release; 1914 1915 cmd.opcode = MMC_SLEEP_AWAKE; 1916 cmd.arg = card->rca << 16; 1917 cmd.arg |= 1 << 15; 1918 1919 /* 1920 * If the max_busy_timeout of the host is specified, validate it against 1921 * the sleep cmd timeout. A failure means we need to prevent the host 1922 * from doing hw busy detection, which is done by converting to a R1 1923 * response instead of a R1B. Note, some hosts requires R1B, which also 1924 * means they are on their own when it comes to deal with the busy 1925 * timeout. 1926 */ 1927 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && 1928 (timeout_ms > host->max_busy_timeout)) { 1929 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1930 } else { 1931 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1932 cmd.busy_timeout = timeout_ms; 1933 } 1934 1935 err = mmc_wait_for_cmd(host, &cmd, 0); 1936 if (err) 1937 goto out_release; 1938 1939 /* 1940 * If the host does not wait while the card signals busy, then we will 1941 * will have to wait the sleep/awake timeout. Note, we cannot use the 1942 * SEND_STATUS command to poll the status because that command (and most 1943 * others) is invalid while the card sleeps. 1944 */ 1945 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1946 mmc_delay(timeout_ms); 1947 1948 out_release: 1949 mmc_retune_release(host); 1950 return err; 1951 } 1952 1953 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1954 { 1955 return card && 1956 mmc_card_mmc(card) && 1957 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1958 } 1959 1960 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1961 { 1962 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1963 int err; 1964 1965 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1966 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1967 timeout = card->ext_csd.power_off_longtime; 1968 1969 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1970 EXT_CSD_POWER_OFF_NOTIFICATION, 1971 notify_type, timeout, 0, false, false); 1972 if (err) 1973 pr_err("%s: Power Off Notification timed out, %u\n", 1974 mmc_hostname(card->host), timeout); 1975 1976 /* Disable the power off notification after the switch operation. */ 1977 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1978 1979 return err; 1980 } 1981 1982 /* 1983 * Host is being removed. Free up the current card. 1984 */ 1985 static void mmc_remove(struct mmc_host *host) 1986 { 1987 mmc_remove_card(host->card); 1988 host->card = NULL; 1989 } 1990 1991 /* 1992 * Card detection - card is alive. 1993 */ 1994 static int mmc_alive(struct mmc_host *host) 1995 { 1996 return mmc_send_status(host->card, NULL); 1997 } 1998 1999 /* 2000 * Card detection callback from host. 2001 */ 2002 static void mmc_detect(struct mmc_host *host) 2003 { 2004 int err; 2005 2006 mmc_get_card(host->card, NULL); 2007 2008 /* 2009 * Just check if our card has been removed. 2010 */ 2011 err = _mmc_detect_card_removed(host); 2012 2013 mmc_put_card(host->card, NULL); 2014 2015 if (err) { 2016 mmc_remove(host); 2017 2018 mmc_claim_host(host); 2019 mmc_detach_bus(host); 2020 mmc_power_off(host); 2021 mmc_release_host(host); 2022 } 2023 } 2024 2025 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2026 { 2027 int err = 0; 2028 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2029 EXT_CSD_POWER_OFF_LONG; 2030 2031 mmc_claim_host(host); 2032 2033 if (mmc_card_suspended(host->card)) 2034 goto out; 2035 2036 err = mmc_flush_cache(host->card); 2037 if (err) 2038 goto out; 2039 2040 if (mmc_can_poweroff_notify(host->card) && 2041 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 2042 err = mmc_poweroff_notify(host->card, notify_type); 2043 else if (mmc_can_sleep(host->card)) 2044 err = mmc_sleep(host); 2045 else if (!mmc_host_is_spi(host)) 2046 err = mmc_deselect_cards(host); 2047 2048 if (!err) { 2049 mmc_power_off(host); 2050 mmc_card_set_suspended(host->card); 2051 } 2052 out: 2053 mmc_release_host(host); 2054 return err; 2055 } 2056 2057 /* 2058 * Suspend callback 2059 */ 2060 static int mmc_suspend(struct mmc_host *host) 2061 { 2062 int err; 2063 2064 err = _mmc_suspend(host, true); 2065 if (!err) { 2066 pm_runtime_disable(&host->card->dev); 2067 pm_runtime_set_suspended(&host->card->dev); 2068 } 2069 2070 return err; 2071 } 2072 2073 /* 2074 * This function tries to determine if the same card is still present 2075 * and, if so, restore all state to it. 2076 */ 2077 static int _mmc_resume(struct mmc_host *host) 2078 { 2079 int err = 0; 2080 2081 mmc_claim_host(host); 2082 2083 if (!mmc_card_suspended(host->card)) 2084 goto out; 2085 2086 mmc_power_up(host, host->card->ocr); 2087 err = mmc_init_card(host, host->card->ocr, host->card); 2088 mmc_card_clr_suspended(host->card); 2089 2090 out: 2091 mmc_release_host(host); 2092 return err; 2093 } 2094 2095 /* 2096 * Shutdown callback 2097 */ 2098 static int mmc_shutdown(struct mmc_host *host) 2099 { 2100 int err = 0; 2101 2102 /* 2103 * In a specific case for poweroff notify, we need to resume the card 2104 * before we can shutdown it properly. 2105 */ 2106 if (mmc_can_poweroff_notify(host->card) && 2107 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2108 err = _mmc_resume(host); 2109 2110 if (!err) 2111 err = _mmc_suspend(host, false); 2112 2113 return err; 2114 } 2115 2116 /* 2117 * Callback for resume. 2118 */ 2119 static int mmc_resume(struct mmc_host *host) 2120 { 2121 pm_runtime_enable(&host->card->dev); 2122 return 0; 2123 } 2124 2125 /* 2126 * Callback for runtime_suspend. 2127 */ 2128 static int mmc_runtime_suspend(struct mmc_host *host) 2129 { 2130 int err; 2131 2132 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2133 return 0; 2134 2135 err = _mmc_suspend(host, true); 2136 if (err) 2137 pr_err("%s: error %d doing aggressive suspend\n", 2138 mmc_hostname(host), err); 2139 2140 return err; 2141 } 2142 2143 /* 2144 * Callback for runtime_resume. 2145 */ 2146 static int mmc_runtime_resume(struct mmc_host *host) 2147 { 2148 int err; 2149 2150 err = _mmc_resume(host); 2151 if (err && err != -ENOMEDIUM) 2152 pr_err("%s: error %d doing runtime resume\n", 2153 mmc_hostname(host), err); 2154 2155 return 0; 2156 } 2157 2158 static int mmc_can_reset(struct mmc_card *card) 2159 { 2160 u8 rst_n_function; 2161 2162 rst_n_function = card->ext_csd.rst_n_function; 2163 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2164 return 0; 2165 return 1; 2166 } 2167 2168 static int _mmc_hw_reset(struct mmc_host *host) 2169 { 2170 struct mmc_card *card = host->card; 2171 2172 /* 2173 * In the case of recovery, we can't expect flushing the cache to work 2174 * always, but we have a go and ignore errors. 2175 */ 2176 mmc_flush_cache(host->card); 2177 2178 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2179 mmc_can_reset(card)) { 2180 /* If the card accept RST_n signal, send it. */ 2181 mmc_set_clock(host, host->f_init); 2182 host->ops->hw_reset(host); 2183 /* Set initial state and call mmc_set_ios */ 2184 mmc_set_initial_state(host); 2185 } else { 2186 /* Do a brute force power cycle */ 2187 mmc_power_cycle(host, card->ocr); 2188 mmc_pwrseq_reset(host); 2189 } 2190 return mmc_init_card(host, card->ocr, card); 2191 } 2192 2193 static const struct mmc_bus_ops mmc_ops = { 2194 .remove = mmc_remove, 2195 .detect = mmc_detect, 2196 .suspend = mmc_suspend, 2197 .resume = mmc_resume, 2198 .runtime_suspend = mmc_runtime_suspend, 2199 .runtime_resume = mmc_runtime_resume, 2200 .alive = mmc_alive, 2201 .shutdown = mmc_shutdown, 2202 .hw_reset = _mmc_hw_reset, 2203 }; 2204 2205 /* 2206 * Starting point for MMC card init. 2207 */ 2208 int mmc_attach_mmc(struct mmc_host *host) 2209 { 2210 int err; 2211 u32 ocr, rocr; 2212 2213 WARN_ON(!host->claimed); 2214 2215 /* Set correct bus mode for MMC before attempting attach */ 2216 if (!mmc_host_is_spi(host)) 2217 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2218 2219 err = mmc_send_op_cond(host, 0, &ocr); 2220 if (err) 2221 return err; 2222 2223 mmc_attach_bus(host, &mmc_ops); 2224 if (host->ocr_avail_mmc) 2225 host->ocr_avail = host->ocr_avail_mmc; 2226 2227 /* 2228 * We need to get OCR a different way for SPI. 2229 */ 2230 if (mmc_host_is_spi(host)) { 2231 err = mmc_spi_read_ocr(host, 1, &ocr); 2232 if (err) 2233 goto err; 2234 } 2235 2236 rocr = mmc_select_voltage(host, ocr); 2237 2238 /* 2239 * Can we support the voltage of the card? 2240 */ 2241 if (!rocr) { 2242 err = -EINVAL; 2243 goto err; 2244 } 2245 2246 /* 2247 * Detect and init the card. 2248 */ 2249 err = mmc_init_card(host, rocr, NULL); 2250 if (err) 2251 goto err; 2252 2253 mmc_release_host(host); 2254 err = mmc_add_card(host->card); 2255 if (err) 2256 goto remove_card; 2257 2258 mmc_claim_host(host); 2259 return 0; 2260 2261 remove_card: 2262 mmc_remove_card(host->card); 2263 mmc_claim_host(host); 2264 host->card = NULL; 2265 err: 2266 mmc_detach_bus(host); 2267 2268 pr_err("%s: error %d whilst initialising MMC card\n", 2269 mmc_hostname(host), err); 2270 2271 return err; 2272 } 2273