xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34 
35 static const unsigned int tran_exp[] = {
36 	10000,		100000,		1000000,	10000000,
37 	0,		0,		0,		0
38 };
39 
40 static const unsigned char tran_mant[] = {
41 	0,	10,	12,	13,	15,	20,	25,	30,
42 	35,	40,	45,	50,	55,	60,	70,	80,
43 };
44 
45 static const unsigned int taac_exp[] = {
46 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
47 };
48 
49 static const unsigned int taac_mant[] = {
50 	0,	10,	12,	13,	15,	20,	25,	30,
51 	35,	40,	45,	50,	55,	60,	70,	80,
52 };
53 
54 #define UNSTUFF_BITS(resp,start,size)					\
55 	({								\
56 		const int __size = size;				\
57 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
58 		const int __off = 3 - ((start) / 32);			\
59 		const int __shft = (start) & 31;			\
60 		u32 __res;						\
61 									\
62 		__res = resp[__off] >> __shft;				\
63 		if (__size + __shft > 32)				\
64 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
65 		__res & __mask;						\
66 	})
67 
68 /*
69  * Given the decoded CSD structure, decode the raw CID to our CID structure.
70  */
71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 	u32 *resp = card->raw_cid;
74 
75 	/*
76 	 * The selection of the format here is based upon published
77 	 * specs from sandisk and from what people have reported.
78 	 */
79 	switch (card->csd.mmca_vsn) {
80 	case 0: /* MMC v1.0 - v1.2 */
81 	case 1: /* MMC v1.4 */
82 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
83 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
84 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
85 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
86 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
87 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
88 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
89 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
90 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
91 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
92 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
93 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
94 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
95 		break;
96 
97 	case 2: /* MMC v2.0 - v2.2 */
98 	case 3: /* MMC v3.1 - v3.3 */
99 	case 4: /* MMC v4 */
100 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
101 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
102 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
103 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
104 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
105 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
106 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
107 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
108 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
109 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
110 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
111 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
112 		break;
113 
114 	default:
115 		pr_err("%s: card has unknown MMCA version %d\n",
116 			mmc_hostname(card->host), card->csd.mmca_vsn);
117 		return -EINVAL;
118 	}
119 
120 	return 0;
121 }
122 
123 static void mmc_set_erase_size(struct mmc_card *card)
124 {
125 	if (card->ext_csd.erase_group_def & 1)
126 		card->erase_size = card->ext_csd.hc_erase_size;
127 	else
128 		card->erase_size = card->csd.erase_size;
129 
130 	mmc_init_erase(card);
131 }
132 
133 /*
134  * Given a 128-bit response, decode to our card CSD structure.
135  */
136 static int mmc_decode_csd(struct mmc_card *card)
137 {
138 	struct mmc_csd *csd = &card->csd;
139 	unsigned int e, m, a, b;
140 	u32 *resp = card->raw_csd;
141 
142 	/*
143 	 * We only understand CSD structure v1.1 and v1.2.
144 	 * v1.2 has extra information in bits 15, 11 and 10.
145 	 * We also support eMMC v4.4 & v4.41.
146 	 */
147 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
148 	if (csd->structure == 0) {
149 		pr_err("%s: unrecognised CSD structure version %d\n",
150 			mmc_hostname(card->host), csd->structure);
151 		return -EINVAL;
152 	}
153 
154 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
155 	m = UNSTUFF_BITS(resp, 115, 4);
156 	e = UNSTUFF_BITS(resp, 112, 3);
157 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
158 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
159 
160 	m = UNSTUFF_BITS(resp, 99, 4);
161 	e = UNSTUFF_BITS(resp, 96, 3);
162 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
163 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
164 
165 	e = UNSTUFF_BITS(resp, 47, 3);
166 	m = UNSTUFF_BITS(resp, 62, 12);
167 	csd->capacity	  = (1 + m) << (e + 2);
168 
169 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
170 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
171 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
172 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
173 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
174 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
175 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
176 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
177 
178 	if (csd->write_blkbits >= 9) {
179 		a = UNSTUFF_BITS(resp, 42, 5);
180 		b = UNSTUFF_BITS(resp, 37, 5);
181 		csd->erase_size = (a + 1) * (b + 1);
182 		csd->erase_size <<= csd->write_blkbits - 9;
183 	}
184 
185 	return 0;
186 }
187 
188 static void mmc_select_card_type(struct mmc_card *card)
189 {
190 	struct mmc_host *host = card->host;
191 	u8 card_type = card->ext_csd.raw_card_type;
192 	u32 caps = host->caps, caps2 = host->caps2;
193 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
194 	unsigned int avail_type = 0;
195 
196 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
197 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
198 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
199 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
200 	}
201 
202 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
203 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
204 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
205 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
206 	}
207 
208 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
209 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
210 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
212 	}
213 
214 	if (caps & MMC_CAP_1_2V_DDR &&
215 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
216 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
217 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
218 	}
219 
220 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
221 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
222 		hs200_max_dtr = MMC_HS200_MAX_DTR;
223 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
224 	}
225 
226 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
227 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
228 		hs200_max_dtr = MMC_HS200_MAX_DTR;
229 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
230 	}
231 
232 	if (caps2 & MMC_CAP2_HS400_1_8V &&
233 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
234 		hs200_max_dtr = MMC_HS200_MAX_DTR;
235 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
236 	}
237 
238 	if (caps2 & MMC_CAP2_HS400_1_2V &&
239 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
240 		hs200_max_dtr = MMC_HS200_MAX_DTR;
241 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
242 	}
243 
244 	if ((caps2 & MMC_CAP2_HS400_ES) &&
245 	    card->ext_csd.strobe_support &&
246 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
247 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
248 
249 	card->ext_csd.hs_max_dtr = hs_max_dtr;
250 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
251 	card->mmc_avail_type = avail_type;
252 }
253 
254 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
255 {
256 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
257 
258 	/*
259 	 * Disable these attributes by default
260 	 */
261 	card->ext_csd.enhanced_area_offset = -EINVAL;
262 	card->ext_csd.enhanced_area_size = -EINVAL;
263 
264 	/*
265 	 * Enhanced area feature support -- check whether the eMMC
266 	 * card has the Enhanced area enabled.  If so, export enhanced
267 	 * area offset and size to user by adding sysfs interface.
268 	 */
269 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
270 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
271 		if (card->ext_csd.partition_setting_completed) {
272 			hc_erase_grp_sz =
273 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
274 			hc_wp_grp_sz =
275 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
276 
277 			/*
278 			 * calculate the enhanced data area offset, in bytes
279 			 */
280 			card->ext_csd.enhanced_area_offset =
281 				(((unsigned long long)ext_csd[139]) << 24) +
282 				(((unsigned long long)ext_csd[138]) << 16) +
283 				(((unsigned long long)ext_csd[137]) << 8) +
284 				(((unsigned long long)ext_csd[136]));
285 			if (mmc_card_blockaddr(card))
286 				card->ext_csd.enhanced_area_offset <<= 9;
287 			/*
288 			 * calculate the enhanced data area size, in kilobytes
289 			 */
290 			card->ext_csd.enhanced_area_size =
291 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
292 				ext_csd[140];
293 			card->ext_csd.enhanced_area_size *=
294 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
295 			card->ext_csd.enhanced_area_size <<= 9;
296 		} else {
297 			pr_warn("%s: defines enhanced area without partition setting complete\n",
298 				mmc_hostname(card->host));
299 		}
300 	}
301 }
302 
303 static void mmc_part_add(struct mmc_card *card, unsigned int size,
304 			 unsigned int part_cfg, char *name, int idx, bool ro,
305 			 int area_type)
306 {
307 	card->part[card->nr_parts].size = size;
308 	card->part[card->nr_parts].part_cfg = part_cfg;
309 	sprintf(card->part[card->nr_parts].name, name, idx);
310 	card->part[card->nr_parts].force_ro = ro;
311 	card->part[card->nr_parts].area_type = area_type;
312 	card->nr_parts++;
313 }
314 
315 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
316 {
317 	int idx;
318 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
319 	unsigned int part_size;
320 
321 	/*
322 	 * General purpose partition feature support --
323 	 * If ext_csd has the size of general purpose partitions,
324 	 * set size, part_cfg, partition name in mmc_part.
325 	 */
326 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
327 	    EXT_CSD_PART_SUPPORT_PART_EN) {
328 		hc_erase_grp_sz =
329 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
330 		hc_wp_grp_sz =
331 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
332 
333 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
334 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
336 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
337 				continue;
338 			if (card->ext_csd.partition_setting_completed == 0) {
339 				pr_warn("%s: has partition size defined without partition complete\n",
340 					mmc_hostname(card->host));
341 				break;
342 			}
343 			part_size =
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
345 				<< 16) +
346 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
347 				<< 8) +
348 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
349 			part_size *= (size_t)(hc_erase_grp_sz *
350 				hc_wp_grp_sz);
351 			mmc_part_add(card, part_size << 19,
352 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
353 				"gp%d", idx, false,
354 				MMC_BLK_DATA_AREA_GP);
355 		}
356 	}
357 }
358 
359 /* Minimum partition switch timeout in milliseconds */
360 #define MMC_MIN_PART_SWITCH_TIME	300
361 
362 /*
363  * Decode extended CSD.
364  */
365 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
366 {
367 	int err = 0, idx;
368 	unsigned int part_size;
369 	struct device_node *np;
370 	bool broken_hpi = false;
371 
372 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
373 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
374 	if (card->csd.structure == 3) {
375 		if (card->ext_csd.raw_ext_csd_structure > 2) {
376 			pr_err("%s: unrecognised EXT_CSD structure "
377 				"version %d\n", mmc_hostname(card->host),
378 					card->ext_csd.raw_ext_csd_structure);
379 			err = -EINVAL;
380 			goto out;
381 		}
382 	}
383 
384 	np = mmc_of_find_child_device(card->host, 0);
385 	if (np && of_device_is_compatible(np, "mmc-card"))
386 		broken_hpi = of_property_read_bool(np, "broken-hpi");
387 	of_node_put(np);
388 
389 	/*
390 	 * The EXT_CSD format is meant to be forward compatible. As long
391 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
392 	 * are authorized, see JEDEC JESD84-B50 section B.8.
393 	 */
394 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395 
396 	/* fixup device after ext_csd revision field is updated */
397 	mmc_fixup_device(card, mmc_ext_csd_fixups);
398 
399 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
400 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
401 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
402 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
403 	if (card->ext_csd.rev >= 2) {
404 		card->ext_csd.sectors =
405 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
406 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
407 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
408 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409 
410 		/* Cards with density > 2GiB are sector addressed */
411 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
412 			mmc_card_set_blockaddr(card);
413 	}
414 
415 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
416 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
417 	mmc_select_card_type(card);
418 
419 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
420 	card->ext_csd.raw_erase_timeout_mult =
421 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
422 	card->ext_csd.raw_hc_erase_grp_size =
423 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
424 	if (card->ext_csd.rev >= 3) {
425 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 
428 		/* EXT_CSD value is in units of 10ms, but we store in ms */
429 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430 		/* Some eMMC set the value too low so set a minimum */
431 		if (card->ext_csd.part_time &&
432 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
433 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
434 
435 		/* Sleep / awake timeout in 100ns units */
436 		if (sa_shift > 0 && sa_shift <= 0x17)
437 			card->ext_csd.sa_timeout =
438 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
439 		card->ext_csd.erase_group_def =
440 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
441 		card->ext_csd.hc_erase_timeout = 300 *
442 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
443 		card->ext_csd.hc_erase_size =
444 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445 
446 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
447 
448 		/*
449 		 * There are two boot regions of equal size, defined in
450 		 * multiples of 128K.
451 		 */
452 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
453 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
454 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
455 				mmc_part_add(card, part_size,
456 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
457 					"boot%d", idx, true,
458 					MMC_BLK_DATA_AREA_BOOT);
459 			}
460 		}
461 	}
462 
463 	card->ext_csd.raw_hc_erase_gap_size =
464 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
465 	card->ext_csd.raw_sec_trim_mult =
466 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
467 	card->ext_csd.raw_sec_erase_mult =
468 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
469 	card->ext_csd.raw_sec_feature_support =
470 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
471 	card->ext_csd.raw_trim_mult =
472 		ext_csd[EXT_CSD_TRIM_MULT];
473 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
474 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
475 	if (card->ext_csd.rev >= 4) {
476 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
477 		    EXT_CSD_PART_SETTING_COMPLETED)
478 			card->ext_csd.partition_setting_completed = 1;
479 		else
480 			card->ext_csd.partition_setting_completed = 0;
481 
482 		mmc_manage_enhanced_area(card, ext_csd);
483 
484 		mmc_manage_gp_partitions(card, ext_csd);
485 
486 		card->ext_csd.sec_trim_mult =
487 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
488 		card->ext_csd.sec_erase_mult =
489 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
490 		card->ext_csd.sec_feature_support =
491 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
492 		card->ext_csd.trim_timeout = 300 *
493 			ext_csd[EXT_CSD_TRIM_MULT];
494 
495 		/*
496 		 * Note that the call to mmc_part_add above defaults to read
497 		 * only. If this default assumption is changed, the call must
498 		 * take into account the value of boot_locked below.
499 		 */
500 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
501 		card->ext_csd.boot_ro_lockable = true;
502 
503 		/* Save power class values */
504 		card->ext_csd.raw_pwr_cl_52_195 =
505 			ext_csd[EXT_CSD_PWR_CL_52_195];
506 		card->ext_csd.raw_pwr_cl_26_195 =
507 			ext_csd[EXT_CSD_PWR_CL_26_195];
508 		card->ext_csd.raw_pwr_cl_52_360 =
509 			ext_csd[EXT_CSD_PWR_CL_52_360];
510 		card->ext_csd.raw_pwr_cl_26_360 =
511 			ext_csd[EXT_CSD_PWR_CL_26_360];
512 		card->ext_csd.raw_pwr_cl_200_195 =
513 			ext_csd[EXT_CSD_PWR_CL_200_195];
514 		card->ext_csd.raw_pwr_cl_200_360 =
515 			ext_csd[EXT_CSD_PWR_CL_200_360];
516 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
518 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
519 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
520 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
521 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
522 	}
523 
524 	if (card->ext_csd.rev >= 5) {
525 		/* Adjust production date as per JEDEC JESD84-B451 */
526 		if (card->cid.year < 2010)
527 			card->cid.year += 16;
528 
529 		/* check whether the eMMC card supports BKOPS */
530 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 			card->ext_csd.bkops = 1;
532 			card->ext_csd.man_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_MANUAL_BKOPS_MASK);
535 			card->ext_csd.raw_bkops_status =
536 				ext_csd[EXT_CSD_BKOPS_STATUS];
537 			if (card->ext_csd.man_bkops_en)
538 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 					mmc_hostname(card->host));
540 			card->ext_csd.auto_bkops_en =
541 					(ext_csd[EXT_CSD_BKOPS_EN] &
542 						EXT_CSD_AUTO_BKOPS_MASK);
543 			if (card->ext_csd.auto_bkops_en)
544 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 					mmc_hostname(card->host));
546 		}
547 
548 		/* check whether the eMMC card supports HPI */
549 		if (!mmc_card_broken_hpi(card) &&
550 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 			card->ext_csd.hpi = 1;
552 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
554 			else
555 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 			/*
557 			 * Indicate the maximum timeout to close
558 			 * a command interrupted by HPI
559 			 */
560 			card->ext_csd.out_of_int_time =
561 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 		}
563 
564 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566 
567 		/*
568 		 * RPMB regions are defined in multiples of 128K.
569 		 */
570 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 				EXT_CSD_PART_CONFIG_ACC_RPMB,
574 				"rpmb", 0, false,
575 				MMC_BLK_DATA_AREA_RPMB);
576 		}
577 	}
578 
579 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 		card->erased_byte = 0xFF;
582 	else
583 		card->erased_byte = 0x0;
584 
585 	/* eMMC v4.5 or later */
586 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 	if (card->ext_csd.rev >= 6) {
588 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589 
590 		card->ext_csd.generic_cmd6_time = 10 *
591 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 		card->ext_csd.power_off_longtime = 10 *
593 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594 
595 		card->ext_csd.cache_size =
596 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600 
601 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 			card->ext_csd.data_sector_size = 4096;
603 		else
604 			card->ext_csd.data_sector_size = 512;
605 
606 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 			card->ext_csd.data_tag_unit_size =
609 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 			(card->ext_csd.data_sector_size);
611 		} else {
612 			card->ext_csd.data_tag_unit_size = 0;
613 		}
614 
615 		card->ext_csd.max_packed_writes =
616 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 		card->ext_csd.max_packed_reads =
618 			ext_csd[EXT_CSD_MAX_PACKED_READS];
619 	} else {
620 		card->ext_csd.data_sector_size = 512;
621 	}
622 
623 	/* eMMC v5 or later */
624 	if (card->ext_csd.rev >= 7) {
625 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 		       MMC_FIRMWARE_LEN);
627 		card->ext_csd.ffu_capable =
628 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630 
631 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 		card->ext_csd.device_life_time_est_typ_a =
633 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 		card->ext_csd.device_life_time_est_typ_b =
635 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 	}
637 
638 	/* eMMC v5.1 or later */
639 	if (card->ext_csd.rev >= 8) {
640 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 					     EXT_CSD_CMDQ_SUPPORTED;
642 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 		/* Exclude inefficiently small queue depths */
645 		if (card->ext_csd.cmdq_depth <= 2) {
646 			card->ext_csd.cmdq_support = false;
647 			card->ext_csd.cmdq_depth = 0;
648 		}
649 		if (card->ext_csd.cmdq_support) {
650 			pr_debug("%s: Command Queue supported depth %u\n",
651 				 mmc_hostname(card->host),
652 				 card->ext_csd.cmdq_depth);
653 		}
654 	}
655 out:
656 	return err;
657 }
658 
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 	u8 *ext_csd;
662 	int err;
663 
664 	if (!mmc_can_ext_csd(card))
665 		return 0;
666 
667 	err = mmc_get_ext_csd(card, &ext_csd);
668 	if (err) {
669 		/* If the host or the card can't do the switch,
670 		 * fail more gracefully. */
671 		if ((err != -EINVAL)
672 		 && (err != -ENOSYS)
673 		 && (err != -EFAULT))
674 			return err;
675 
676 		/*
677 		 * High capacity cards should have this "magic" size
678 		 * stored in their CSD.
679 		 */
680 		if (card->csd.capacity == (4096 * 512)) {
681 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 				mmc_hostname(card->host));
683 		} else {
684 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 				mmc_hostname(card->host));
686 			err = 0;
687 		}
688 
689 		return err;
690 	}
691 
692 	err = mmc_decode_ext_csd(card, ext_csd);
693 	kfree(ext_csd);
694 	return err;
695 }
696 
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 	u8 *bw_ext_csd;
700 	int err;
701 
702 	if (bus_width == MMC_BUS_WIDTH_1)
703 		return 0;
704 
705 	err = mmc_get_ext_csd(card, &bw_ext_csd);
706 	if (err)
707 		return err;
708 
709 	/* only compare read only fields */
710 	err = !((card->ext_csd.raw_partition_support ==
711 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 		(card->ext_csd.raw_erased_mem_count ==
713 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 		(card->ext_csd.rev ==
715 			bw_ext_csd[EXT_CSD_REV]) &&
716 		(card->ext_csd.raw_ext_csd_structure ==
717 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 		(card->ext_csd.raw_card_type ==
719 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 		(card->ext_csd.raw_s_a_timeout ==
721 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 		(card->ext_csd.raw_hc_erase_gap_size ==
723 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 		(card->ext_csd.raw_erase_timeout_mult ==
725 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 		(card->ext_csd.raw_hc_erase_grp_size ==
727 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 		(card->ext_csd.raw_sec_trim_mult ==
729 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 		(card->ext_csd.raw_sec_erase_mult ==
731 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 		(card->ext_csd.raw_sec_feature_support ==
733 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 		(card->ext_csd.raw_trim_mult ==
735 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sectors[0] ==
737 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 		(card->ext_csd.raw_sectors[1] ==
739 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 		(card->ext_csd.raw_sectors[2] ==
741 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 		(card->ext_csd.raw_sectors[3] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 		(card->ext_csd.raw_pwr_cl_52_195 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 		(card->ext_csd.raw_pwr_cl_26_195 ==
747 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 		(card->ext_csd.raw_pwr_cl_52_360 ==
749 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 		(card->ext_csd.raw_pwr_cl_26_360 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 		(card->ext_csd.raw_pwr_cl_200_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 		(card->ext_csd.raw_pwr_cl_200_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762 
763 	if (err)
764 		err = -EINVAL;
765 
766 	kfree(bw_ext_csd);
767 	return err;
768 }
769 
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 	card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 	card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 	card->ext_csd.device_life_time_est_typ_a,
787 	card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 		card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
797 
798 static ssize_t mmc_fwrev_show(struct device *dev,
799 			      struct device_attribute *attr,
800 			      char *buf)
801 {
802 	struct mmc_card *card = mmc_dev_to_card(dev);
803 
804 	if (card->ext_csd.rev < 7) {
805 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
806 	} else {
807 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 			       card->ext_csd.fwrev);
809 	}
810 }
811 
812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
813 
814 static ssize_t mmc_dsr_show(struct device *dev,
815 			    struct device_attribute *attr,
816 			    char *buf)
817 {
818 	struct mmc_card *card = mmc_dev_to_card(dev);
819 	struct mmc_host *host = card->host;
820 
821 	if (card->csd.dsr_imp && host->dsr_req)
822 		return sprintf(buf, "0x%x\n", host->dsr);
823 	else
824 		/* return default DSR value */
825 		return sprintf(buf, "0x%x\n", 0x404);
826 }
827 
828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
829 
830 static struct attribute *mmc_std_attrs[] = {
831 	&dev_attr_cid.attr,
832 	&dev_attr_csd.attr,
833 	&dev_attr_date.attr,
834 	&dev_attr_erase_size.attr,
835 	&dev_attr_preferred_erase_size.attr,
836 	&dev_attr_fwrev.attr,
837 	&dev_attr_ffu_capable.attr,
838 	&dev_attr_hwrev.attr,
839 	&dev_attr_manfid.attr,
840 	&dev_attr_name.attr,
841 	&dev_attr_oemid.attr,
842 	&dev_attr_prv.attr,
843 	&dev_attr_rev.attr,
844 	&dev_attr_pre_eol_info.attr,
845 	&dev_attr_life_time.attr,
846 	&dev_attr_serial.attr,
847 	&dev_attr_enhanced_area_offset.attr,
848 	&dev_attr_enhanced_area_size.attr,
849 	&dev_attr_raw_rpmb_size_mult.attr,
850 	&dev_attr_rel_sectors.attr,
851 	&dev_attr_ocr.attr,
852 	&dev_attr_rca.attr,
853 	&dev_attr_dsr.attr,
854 	&dev_attr_cmdq_en.attr,
855 	NULL,
856 };
857 ATTRIBUTE_GROUPS(mmc_std);
858 
859 static struct device_type mmc_type = {
860 	.groups = mmc_std_groups,
861 };
862 
863 /*
864  * Select the PowerClass for the current bus width
865  * If power class is defined for 4/8 bit bus in the
866  * extended CSD register, select it by executing the
867  * mmc_switch command.
868  */
869 static int __mmc_select_powerclass(struct mmc_card *card,
870 				   unsigned int bus_width)
871 {
872 	struct mmc_host *host = card->host;
873 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 	unsigned int pwrclass_val = 0;
875 	int err = 0;
876 
877 	switch (1 << host->ios.vdd) {
878 	case MMC_VDD_165_195:
879 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 				ext_csd->raw_pwr_cl_52_195 :
884 				ext_csd->raw_pwr_cl_ddr_52_195;
885 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
887 		break;
888 	case MMC_VDD_27_28:
889 	case MMC_VDD_28_29:
890 	case MMC_VDD_29_30:
891 	case MMC_VDD_30_31:
892 	case MMC_VDD_31_32:
893 	case MMC_VDD_32_33:
894 	case MMC_VDD_33_34:
895 	case MMC_VDD_34_35:
896 	case MMC_VDD_35_36:
897 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 				ext_csd->raw_pwr_cl_52_360 :
902 				ext_csd->raw_pwr_cl_ddr_52_360;
903 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 				ext_csd->raw_pwr_cl_ddr_200_360 :
906 				ext_csd->raw_pwr_cl_200_360;
907 		break;
908 	default:
909 		pr_warn("%s: Voltage range not supported for power class\n",
910 			mmc_hostname(host));
911 		return -EINVAL;
912 	}
913 
914 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 				EXT_CSD_PWR_CL_8BIT_SHIFT;
917 	else
918 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 				EXT_CSD_PWR_CL_4BIT_SHIFT;
920 
921 	/* If the power class is different from the default value */
922 	if (pwrclass_val > 0) {
923 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 				 EXT_CSD_POWER_CLASS,
925 				 pwrclass_val,
926 				 card->ext_csd.generic_cmd6_time);
927 	}
928 
929 	return err;
930 }
931 
932 static int mmc_select_powerclass(struct mmc_card *card)
933 {
934 	struct mmc_host *host = card->host;
935 	u32 bus_width, ext_csd_bits;
936 	int err, ddr;
937 
938 	/* Power class selection is supported for versions >= 4.0 */
939 	if (!mmc_can_ext_csd(card))
940 		return 0;
941 
942 	bus_width = host->ios.bus_width;
943 	/* Power class values are defined only for 4/8 bit bus */
944 	if (bus_width == MMC_BUS_WIDTH_1)
945 		return 0;
946 
947 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
948 	if (ddr)
949 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
951 	else
952 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
954 
955 	err = __mmc_select_powerclass(card, ext_csd_bits);
956 	if (err)
957 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 			mmc_hostname(host), 1 << bus_width, ddr);
959 
960 	return err;
961 }
962 
963 /*
964  * Set the bus speed for the selected speed mode.
965  */
966 static void mmc_set_bus_speed(struct mmc_card *card)
967 {
968 	unsigned int max_dtr = (unsigned int)-1;
969 
970 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 	     max_dtr > card->ext_csd.hs200_max_dtr)
972 		max_dtr = card->ext_csd.hs200_max_dtr;
973 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 		max_dtr = card->ext_csd.hs_max_dtr;
975 	else if (max_dtr > card->csd.max_dtr)
976 		max_dtr = card->csd.max_dtr;
977 
978 	mmc_set_clock(card->host, max_dtr);
979 }
980 
981 /*
982  * Select the bus width amoung 4-bit and 8-bit(SDR).
983  * If the bus width is changed successfully, return the selected width value.
984  * Zero is returned instead of error value if the wide width is not supported.
985  */
986 static int mmc_select_bus_width(struct mmc_card *card)
987 {
988 	static unsigned ext_csd_bits[] = {
989 		EXT_CSD_BUS_WIDTH_8,
990 		EXT_CSD_BUS_WIDTH_4,
991 	};
992 	static unsigned bus_widths[] = {
993 		MMC_BUS_WIDTH_8,
994 		MMC_BUS_WIDTH_4,
995 	};
996 	struct mmc_host *host = card->host;
997 	unsigned idx, bus_width = 0;
998 	int err = 0;
999 
1000 	if (!mmc_can_ext_csd(card) ||
1001 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002 		return 0;
1003 
1004 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005 
1006 	/*
1007 	 * Unlike SD, MMC cards dont have a configuration register to notify
1008 	 * supported bus width. So bus test command should be run to identify
1009 	 * the supported bus width or compare the ext csd values of current
1010 	 * bus width and ext csd values of 1 bit mode read earlier.
1011 	 */
1012 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013 		/*
1014 		 * Host is capable of 8bit transfer, then switch
1015 		 * the device to work in 8bit transfer mode. If the
1016 		 * mmc switch command returns error then switch to
1017 		 * 4bit transfer mode. On success set the corresponding
1018 		 * bus width on the host.
1019 		 */
1020 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 				 EXT_CSD_BUS_WIDTH,
1022 				 ext_csd_bits[idx],
1023 				 card->ext_csd.generic_cmd6_time);
1024 		if (err)
1025 			continue;
1026 
1027 		bus_width = bus_widths[idx];
1028 		mmc_set_bus_width(host, bus_width);
1029 
1030 		/*
1031 		 * If controller can't handle bus width test,
1032 		 * compare ext_csd previously read in 1 bit mode
1033 		 * against ext_csd at new bus width
1034 		 */
1035 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 			err = mmc_compare_ext_csds(card, bus_width);
1037 		else
1038 			err = mmc_bus_test(card, bus_width);
1039 
1040 		if (!err) {
1041 			err = bus_width;
1042 			break;
1043 		} else {
1044 			pr_warn("%s: switch to bus width %d failed\n",
1045 				mmc_hostname(host), 1 << bus_width);
1046 		}
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /*
1053  * Switch to the high-speed mode
1054  */
1055 static int mmc_select_hs(struct mmc_card *card)
1056 {
1057 	int err;
1058 
1059 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062 			   true, true, true);
1063 	if (err)
1064 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 			mmc_hostname(card->host), err);
1066 
1067 	return err;
1068 }
1069 
1070 /*
1071  * Activate wide bus and DDR if supported.
1072  */
1073 static int mmc_select_hs_ddr(struct mmc_card *card)
1074 {
1075 	struct mmc_host *host = card->host;
1076 	u32 bus_width, ext_csd_bits;
1077 	int err = 0;
1078 
1079 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080 		return 0;
1081 
1082 	bus_width = host->ios.bus_width;
1083 	if (bus_width == MMC_BUS_WIDTH_1)
1084 		return 0;
1085 
1086 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088 
1089 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090 			   EXT_CSD_BUS_WIDTH,
1091 			   ext_csd_bits,
1092 			   card->ext_csd.generic_cmd6_time,
1093 			   MMC_TIMING_MMC_DDR52,
1094 			   true, true, true);
1095 	if (err) {
1096 		pr_err("%s: switch to bus width %d ddr failed\n",
1097 			mmc_hostname(host), 1 << bus_width);
1098 		return err;
1099 	}
1100 
1101 	/*
1102 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103 	 * signaling.
1104 	 *
1105 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106 	 *
1107 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 	 * in the JEDEC spec for DDR.
1109 	 *
1110 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 	 * host controller can support this, like some of the SDHCI
1112 	 * controller which connect to an eMMC device. Some of these
1113 	 * host controller still needs to use 1.8v vccq for supporting
1114 	 * DDR mode.
1115 	 *
1116 	 * So the sequence will be:
1117 	 * if (host and device can both support 1.2v IO)
1118 	 *	use 1.2v IO;
1119 	 * else if (host and device can both support 1.8v IO)
1120 	 *	use 1.8v IO;
1121 	 * so if host and device can only support 3.3v IO, this is the
1122 	 * last choice.
1123 	 *
1124 	 * WARNING: eMMC rules are NOT the same as SD DDR
1125 	 */
1126 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128 		if (!err)
1129 			return 0;
1130 	}
1131 
1132 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 	    host->caps & MMC_CAP_1_8V_DDR)
1134 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135 
1136 	/* make sure vccq is 3.3v after switching disaster */
1137 	if (err)
1138 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1139 
1140 	return err;
1141 }
1142 
1143 static int mmc_select_hs400(struct mmc_card *card)
1144 {
1145 	struct mmc_host *host = card->host;
1146 	unsigned int max_dtr;
1147 	int err = 0;
1148 	u8 val;
1149 
1150 	/*
1151 	 * HS400 mode requires 8-bit bus width
1152 	 */
1153 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1155 		return 0;
1156 
1157 	/* Switch card to HS mode */
1158 	val = EXT_CSD_TIMING_HS;
1159 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 			   EXT_CSD_HS_TIMING, val,
1161 			   card->ext_csd.generic_cmd6_time, 0,
1162 			   true, false, true);
1163 	if (err) {
1164 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 			mmc_hostname(host), err);
1166 		return err;
1167 	}
1168 
1169 	/* Set host controller to HS timing */
1170 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171 
1172 	/* Prepare host to downgrade to HS timing */
1173 	if (host->ops->hs400_downgrade)
1174 		host->ops->hs400_downgrade(host);
1175 
1176 	/* Reduce frequency to HS frequency */
1177 	max_dtr = card->ext_csd.hs_max_dtr;
1178 	mmc_set_clock(host, max_dtr);
1179 
1180 	err = mmc_switch_status(card);
1181 	if (err)
1182 		goto out_err;
1183 
1184 	if (host->ops->hs400_prepare_ddr)
1185 		host->ops->hs400_prepare_ddr(host);
1186 
1187 	/* Switch card to DDR */
1188 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1189 			 EXT_CSD_BUS_WIDTH,
1190 			 EXT_CSD_DDR_BUS_WIDTH_8,
1191 			 card->ext_csd.generic_cmd6_time);
1192 	if (err) {
1193 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1194 			mmc_hostname(host), err);
1195 		return err;
1196 	}
1197 
1198 	/* Switch card to HS400 */
1199 	val = EXT_CSD_TIMING_HS400 |
1200 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1201 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1202 			   EXT_CSD_HS_TIMING, val,
1203 			   card->ext_csd.generic_cmd6_time, 0,
1204 			   true, false, true);
1205 	if (err) {
1206 		pr_err("%s: switch to hs400 failed, err:%d\n",
1207 			 mmc_hostname(host), err);
1208 		return err;
1209 	}
1210 
1211 	/* Set host controller to HS400 timing and frequency */
1212 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1213 	mmc_set_bus_speed(card);
1214 
1215 	err = mmc_switch_status(card);
1216 	if (err)
1217 		goto out_err;
1218 
1219 	if (host->ops->hs400_complete)
1220 		host->ops->hs400_complete(host);
1221 
1222 	return 0;
1223 
1224 out_err:
1225 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1226 	       __func__, err);
1227 	return err;
1228 }
1229 
1230 int mmc_hs200_to_hs400(struct mmc_card *card)
1231 {
1232 	return mmc_select_hs400(card);
1233 }
1234 
1235 int mmc_hs400_to_hs200(struct mmc_card *card)
1236 {
1237 	struct mmc_host *host = card->host;
1238 	unsigned int max_dtr;
1239 	int err;
1240 	u8 val;
1241 
1242 	/* Reduce frequency to HS */
1243 	max_dtr = card->ext_csd.hs_max_dtr;
1244 	mmc_set_clock(host, max_dtr);
1245 
1246 	/* Switch HS400 to HS DDR */
1247 	val = EXT_CSD_TIMING_HS;
1248 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1249 			   val, card->ext_csd.generic_cmd6_time, 0,
1250 			   true, false, true);
1251 	if (err)
1252 		goto out_err;
1253 
1254 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1255 
1256 	err = mmc_switch_status(card);
1257 	if (err)
1258 		goto out_err;
1259 
1260 	/* Switch HS DDR to HS */
1261 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1262 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1263 			   0, true, false, true);
1264 	if (err)
1265 		goto out_err;
1266 
1267 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1268 
1269 	if (host->ops->hs400_downgrade)
1270 		host->ops->hs400_downgrade(host);
1271 
1272 	err = mmc_switch_status(card);
1273 	if (err)
1274 		goto out_err;
1275 
1276 	/* Switch HS to HS200 */
1277 	val = EXT_CSD_TIMING_HS200 |
1278 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1279 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1280 			   val, card->ext_csd.generic_cmd6_time, 0,
1281 			   true, false, true);
1282 	if (err)
1283 		goto out_err;
1284 
1285 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1286 
1287 	/*
1288 	 * For HS200, CRC errors are not a reliable way to know the switch
1289 	 * failed. If there really is a problem, we would expect tuning will
1290 	 * fail and the result ends up the same.
1291 	 */
1292 	err = __mmc_switch_status(card, false);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	mmc_set_bus_speed(card);
1297 
1298 	/* Prepare tuning for HS400 mode. */
1299 	if (host->ops->prepare_hs400_tuning)
1300 		host->ops->prepare_hs400_tuning(host, &host->ios);
1301 
1302 	return 0;
1303 
1304 out_err:
1305 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1306 	       __func__, err);
1307 	return err;
1308 }
1309 
1310 static void mmc_select_driver_type(struct mmc_card *card)
1311 {
1312 	int card_drv_type, drive_strength, drv_type = 0;
1313 	int fixed_drv_type = card->host->fixed_drv_type;
1314 
1315 	card_drv_type = card->ext_csd.raw_driver_strength |
1316 			mmc_driver_type_mask(0);
1317 
1318 	if (fixed_drv_type >= 0)
1319 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1320 				 ? fixed_drv_type : 0;
1321 	else
1322 		drive_strength = mmc_select_drive_strength(card,
1323 							   card->ext_csd.hs200_max_dtr,
1324 							   card_drv_type, &drv_type);
1325 
1326 	card->drive_strength = drive_strength;
1327 
1328 	if (drv_type)
1329 		mmc_set_driver_type(card->host, drv_type);
1330 }
1331 
1332 static int mmc_select_hs400es(struct mmc_card *card)
1333 {
1334 	struct mmc_host *host = card->host;
1335 	int err = -EINVAL;
1336 	u8 val;
1337 
1338 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1339 		err = -ENOTSUPP;
1340 		goto out_err;
1341 	}
1342 
1343 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1344 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1345 
1346 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1347 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1348 
1349 	/* If fails try again during next card power cycle */
1350 	if (err)
1351 		goto out_err;
1352 
1353 	err = mmc_select_bus_width(card);
1354 	if (err != MMC_BUS_WIDTH_8) {
1355 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1356 			mmc_hostname(host), err);
1357 		err = err < 0 ? err : -ENOTSUPP;
1358 		goto out_err;
1359 	}
1360 
1361 	/* Switch card to HS mode */
1362 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1363 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1364 			   card->ext_csd.generic_cmd6_time, 0,
1365 			   true, false, true);
1366 	if (err) {
1367 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1368 			mmc_hostname(host), err);
1369 		goto out_err;
1370 	}
1371 
1372 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1373 	err = mmc_switch_status(card);
1374 	if (err)
1375 		goto out_err;
1376 
1377 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1378 
1379 	/* Switch card to DDR with strobe bit */
1380 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1381 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1382 			 EXT_CSD_BUS_WIDTH,
1383 			 val,
1384 			 card->ext_csd.generic_cmd6_time);
1385 	if (err) {
1386 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1387 			mmc_hostname(host), err);
1388 		goto out_err;
1389 	}
1390 
1391 	mmc_select_driver_type(card);
1392 
1393 	/* Switch card to HS400 */
1394 	val = EXT_CSD_TIMING_HS400 |
1395 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1396 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1397 			   EXT_CSD_HS_TIMING, val,
1398 			   card->ext_csd.generic_cmd6_time, 0,
1399 			   true, false, true);
1400 	if (err) {
1401 		pr_err("%s: switch to hs400es failed, err:%d\n",
1402 			mmc_hostname(host), err);
1403 		goto out_err;
1404 	}
1405 
1406 	/* Set host controller to HS400 timing and frequency */
1407 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1408 
1409 	/* Controller enable enhanced strobe function */
1410 	host->ios.enhanced_strobe = true;
1411 	if (host->ops->hs400_enhanced_strobe)
1412 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1413 
1414 	err = mmc_switch_status(card);
1415 	if (err)
1416 		goto out_err;
1417 
1418 	return 0;
1419 
1420 out_err:
1421 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1422 	       __func__, err);
1423 	return err;
1424 }
1425 
1426 /*
1427  * For device supporting HS200 mode, the following sequence
1428  * should be done before executing the tuning process.
1429  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1430  * 2. switch to HS200 mode
1431  * 3. set the clock to > 52Mhz and <=200MHz
1432  */
1433 static int mmc_select_hs200(struct mmc_card *card)
1434 {
1435 	struct mmc_host *host = card->host;
1436 	unsigned int old_timing, old_signal_voltage;
1437 	int err = -EINVAL;
1438 	u8 val;
1439 
1440 	old_signal_voltage = host->ios.signal_voltage;
1441 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1442 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1443 
1444 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1445 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1446 
1447 	/* If fails try again during next card power cycle */
1448 	if (err)
1449 		return err;
1450 
1451 	mmc_select_driver_type(card);
1452 
1453 	/*
1454 	 * Set the bus width(4 or 8) with host's support and
1455 	 * switch to HS200 mode if bus width is set successfully.
1456 	 */
1457 	err = mmc_select_bus_width(card);
1458 	if (err > 0) {
1459 		val = EXT_CSD_TIMING_HS200 |
1460 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1461 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1462 				   EXT_CSD_HS_TIMING, val,
1463 				   card->ext_csd.generic_cmd6_time, 0,
1464 				   true, false, true);
1465 		if (err)
1466 			goto err;
1467 		old_timing = host->ios.timing;
1468 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1469 
1470 		/*
1471 		 * For HS200, CRC errors are not a reliable way to know the
1472 		 * switch failed. If there really is a problem, we would expect
1473 		 * tuning will fail and the result ends up the same.
1474 		 */
1475 		err = __mmc_switch_status(card, false);
1476 
1477 		/*
1478 		 * mmc_select_timing() assumes timing has not changed if
1479 		 * it is a switch error.
1480 		 */
1481 		if (err == -EBADMSG)
1482 			mmc_set_timing(host, old_timing);
1483 	}
1484 err:
1485 	if (err) {
1486 		/* fall back to the old signal voltage, if fails report error */
1487 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1488 			err = -EIO;
1489 
1490 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1491 		       __func__, err);
1492 	}
1493 	return err;
1494 }
1495 
1496 /*
1497  * Activate High Speed, HS200 or HS400ES mode if supported.
1498  */
1499 static int mmc_select_timing(struct mmc_card *card)
1500 {
1501 	int err = 0;
1502 
1503 	if (!mmc_can_ext_csd(card))
1504 		goto bus_speed;
1505 
1506 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1507 		err = mmc_select_hs400es(card);
1508 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1509 		err = mmc_select_hs200(card);
1510 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1511 		err = mmc_select_hs(card);
1512 
1513 	if (err && err != -EBADMSG)
1514 		return err;
1515 
1516 bus_speed:
1517 	/*
1518 	 * Set the bus speed to the selected bus timing.
1519 	 * If timing is not selected, backward compatible is the default.
1520 	 */
1521 	mmc_set_bus_speed(card);
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Execute tuning sequence to seek the proper bus operating
1527  * conditions for HS200 and HS400, which sends CMD21 to the device.
1528  */
1529 static int mmc_hs200_tuning(struct mmc_card *card)
1530 {
1531 	struct mmc_host *host = card->host;
1532 
1533 	/*
1534 	 * Timing should be adjusted to the HS400 target
1535 	 * operation frequency for tuning process
1536 	 */
1537 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1538 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1539 		if (host->ops->prepare_hs400_tuning)
1540 			host->ops->prepare_hs400_tuning(host, &host->ios);
1541 
1542 	return mmc_execute_tuning(card);
1543 }
1544 
1545 /*
1546  * Handle the detection and initialisation of a card.
1547  *
1548  * In the case of a resume, "oldcard" will contain the card
1549  * we're trying to reinitialise.
1550  */
1551 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1552 	struct mmc_card *oldcard)
1553 {
1554 	struct mmc_card *card;
1555 	int err;
1556 	u32 cid[4];
1557 	u32 rocr;
1558 
1559 	WARN_ON(!host->claimed);
1560 
1561 	/* Set correct bus mode for MMC before attempting init */
1562 	if (!mmc_host_is_spi(host))
1563 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1564 
1565 	/*
1566 	 * Since we're changing the OCR value, we seem to
1567 	 * need to tell some cards to go back to the idle
1568 	 * state.  We wait 1ms to give cards time to
1569 	 * respond.
1570 	 * mmc_go_idle is needed for eMMC that are asleep
1571 	 */
1572 	mmc_go_idle(host);
1573 
1574 	/* The extra bit indicates that we support high capacity */
1575 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1576 	if (err)
1577 		goto err;
1578 
1579 	/*
1580 	 * For SPI, enable CRC as appropriate.
1581 	 */
1582 	if (mmc_host_is_spi(host)) {
1583 		err = mmc_spi_set_crc(host, use_spi_crc);
1584 		if (err)
1585 			goto err;
1586 	}
1587 
1588 	/*
1589 	 * Fetch CID from card.
1590 	 */
1591 	err = mmc_send_cid(host, cid);
1592 	if (err)
1593 		goto err;
1594 
1595 	if (oldcard) {
1596 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1597 			err = -ENOENT;
1598 			goto err;
1599 		}
1600 
1601 		card = oldcard;
1602 	} else {
1603 		/*
1604 		 * Allocate card structure.
1605 		 */
1606 		card = mmc_alloc_card(host, &mmc_type);
1607 		if (IS_ERR(card)) {
1608 			err = PTR_ERR(card);
1609 			goto err;
1610 		}
1611 
1612 		card->ocr = ocr;
1613 		card->type = MMC_TYPE_MMC;
1614 		card->rca = 1;
1615 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1616 	}
1617 
1618 	/*
1619 	 * Call the optional HC's init_card function to handle quirks.
1620 	 */
1621 	if (host->ops->init_card)
1622 		host->ops->init_card(host, card);
1623 
1624 	/*
1625 	 * For native busses:  set card RCA and quit open drain mode.
1626 	 */
1627 	if (!mmc_host_is_spi(host)) {
1628 		err = mmc_set_relative_addr(card);
1629 		if (err)
1630 			goto free_card;
1631 
1632 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1633 	}
1634 
1635 	if (!oldcard) {
1636 		/*
1637 		 * Fetch CSD from card.
1638 		 */
1639 		err = mmc_send_csd(card, card->raw_csd);
1640 		if (err)
1641 			goto free_card;
1642 
1643 		err = mmc_decode_csd(card);
1644 		if (err)
1645 			goto free_card;
1646 		err = mmc_decode_cid(card);
1647 		if (err)
1648 			goto free_card;
1649 	}
1650 
1651 	/*
1652 	 * handling only for cards supporting DSR and hosts requesting
1653 	 * DSR configuration
1654 	 */
1655 	if (card->csd.dsr_imp && host->dsr_req)
1656 		mmc_set_dsr(host);
1657 
1658 	/*
1659 	 * Select card, as all following commands rely on that.
1660 	 */
1661 	if (!mmc_host_is_spi(host)) {
1662 		err = mmc_select_card(card);
1663 		if (err)
1664 			goto free_card;
1665 	}
1666 
1667 	if (!oldcard) {
1668 		/* Read extended CSD. */
1669 		err = mmc_read_ext_csd(card);
1670 		if (err)
1671 			goto free_card;
1672 
1673 		/*
1674 		 * If doing byte addressing, check if required to do sector
1675 		 * addressing.  Handle the case of <2GB cards needing sector
1676 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1677 		 * ocr register has bit 30 set for sector addressing.
1678 		 */
1679 		if (rocr & BIT(30))
1680 			mmc_card_set_blockaddr(card);
1681 
1682 		/* Erase size depends on CSD and Extended CSD */
1683 		mmc_set_erase_size(card);
1684 	}
1685 
1686 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1687 	if (card->ext_csd.rev >= 3) {
1688 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1689 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1690 				 card->ext_csd.generic_cmd6_time);
1691 
1692 		if (err && err != -EBADMSG)
1693 			goto free_card;
1694 
1695 		if (err) {
1696 			err = 0;
1697 			/*
1698 			 * Just disable enhanced area off & sz
1699 			 * will try to enable ERASE_GROUP_DEF
1700 			 * during next time reinit
1701 			 */
1702 			card->ext_csd.enhanced_area_offset = -EINVAL;
1703 			card->ext_csd.enhanced_area_size = -EINVAL;
1704 		} else {
1705 			card->ext_csd.erase_group_def = 1;
1706 			/*
1707 			 * enable ERASE_GRP_DEF successfully.
1708 			 * This will affect the erase size, so
1709 			 * here need to reset erase size
1710 			 */
1711 			mmc_set_erase_size(card);
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * Ensure eMMC user default partition is enabled
1717 	 */
1718 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1719 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1720 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1721 				 card->ext_csd.part_config,
1722 				 card->ext_csd.part_time);
1723 		if (err && err != -EBADMSG)
1724 			goto free_card;
1725 	}
1726 
1727 	/*
1728 	 * Enable power_off_notification byte in the ext_csd register
1729 	 */
1730 	if (card->ext_csd.rev >= 6) {
1731 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1732 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1733 				 EXT_CSD_POWER_ON,
1734 				 card->ext_csd.generic_cmd6_time);
1735 		if (err && err != -EBADMSG)
1736 			goto free_card;
1737 
1738 		/*
1739 		 * The err can be -EBADMSG or 0,
1740 		 * so check for success and update the flag
1741 		 */
1742 		if (!err)
1743 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1744 	}
1745 
1746 	/*
1747 	 * Select timing interface
1748 	 */
1749 	err = mmc_select_timing(card);
1750 	if (err)
1751 		goto free_card;
1752 
1753 	if (mmc_card_hs200(card)) {
1754 		err = mmc_hs200_tuning(card);
1755 		if (err)
1756 			goto free_card;
1757 
1758 		err = mmc_select_hs400(card);
1759 		if (err)
1760 			goto free_card;
1761 	} else if (!mmc_card_hs400es(card)) {
1762 		/* Select the desired bus width optionally */
1763 		err = mmc_select_bus_width(card);
1764 		if (err > 0 && mmc_card_hs(card)) {
1765 			err = mmc_select_hs_ddr(card);
1766 			if (err)
1767 				goto free_card;
1768 		}
1769 	}
1770 
1771 	/*
1772 	 * Choose the power class with selected bus interface
1773 	 */
1774 	mmc_select_powerclass(card);
1775 
1776 	/*
1777 	 * Enable HPI feature (if supported)
1778 	 */
1779 	if (card->ext_csd.hpi) {
1780 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1781 				EXT_CSD_HPI_MGMT, 1,
1782 				card->ext_csd.generic_cmd6_time);
1783 		if (err && err != -EBADMSG)
1784 			goto free_card;
1785 		if (err) {
1786 			pr_warn("%s: Enabling HPI failed\n",
1787 				mmc_hostname(card->host));
1788 			card->ext_csd.hpi_en = 0;
1789 			err = 0;
1790 		} else {
1791 			card->ext_csd.hpi_en = 1;
1792 		}
1793 	}
1794 
1795 	/*
1796 	 * If cache size is higher than 0, this indicates the existence of cache
1797 	 * and it can be turned on. Note that some eMMCs from Micron has been
1798 	 * reported to need ~800 ms timeout, while enabling the cache after
1799 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1800 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1801 	 */
1802 	if (card->ext_csd.cache_size > 0) {
1803 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1804 
1805 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1806 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1807 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1808 		if (err && err != -EBADMSG)
1809 			goto free_card;
1810 
1811 		/*
1812 		 * Only if no error, cache is turned on successfully.
1813 		 */
1814 		if (err) {
1815 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1816 				mmc_hostname(card->host), err);
1817 			card->ext_csd.cache_ctrl = 0;
1818 			err = 0;
1819 		} else {
1820 			card->ext_csd.cache_ctrl = 1;
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1826 	 * be used with Command Queue.
1827 	 */
1828 	card->ext_csd.cmdq_en = false;
1829 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1830 		err = mmc_cmdq_enable(card);
1831 		if (err && err != -EBADMSG)
1832 			goto free_card;
1833 		if (err) {
1834 			pr_warn("%s: Enabling CMDQ failed\n",
1835 				mmc_hostname(card->host));
1836 			card->ext_csd.cmdq_support = false;
1837 			card->ext_csd.cmdq_depth = 0;
1838 			err = 0;
1839 		}
1840 	}
1841 	/*
1842 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1843 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1844 	 * Command Queue.
1845 	 */
1846 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1847 
1848 	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1849 		err = host->cqe_ops->cqe_enable(host, card);
1850 		if (err) {
1851 			pr_err("%s: Failed to enable CQE, error %d\n",
1852 				mmc_hostname(host), err);
1853 		} else {
1854 			host->cqe_enabled = true;
1855 			pr_info("%s: Command Queue Engine enabled\n",
1856 				mmc_hostname(host));
1857 		}
1858 	}
1859 
1860 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1861 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1862 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1863 			mmc_hostname(host));
1864 		err = -EINVAL;
1865 		goto free_card;
1866 	}
1867 
1868 	if (!oldcard)
1869 		host->card = card;
1870 
1871 	return 0;
1872 
1873 free_card:
1874 	if (!oldcard)
1875 		mmc_remove_card(card);
1876 err:
1877 	return err;
1878 }
1879 
1880 static int mmc_can_sleep(struct mmc_card *card)
1881 {
1882 	return (card && card->ext_csd.rev >= 3);
1883 }
1884 
1885 static int mmc_sleep(struct mmc_host *host)
1886 {
1887 	struct mmc_command cmd = {};
1888 	struct mmc_card *card = host->card;
1889 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1890 	int err;
1891 
1892 	/* Re-tuning can't be done once the card is deselected */
1893 	mmc_retune_hold(host);
1894 
1895 	err = mmc_deselect_cards(host);
1896 	if (err)
1897 		goto out_release;
1898 
1899 	cmd.opcode = MMC_SLEEP_AWAKE;
1900 	cmd.arg = card->rca << 16;
1901 	cmd.arg |= 1 << 15;
1902 
1903 	/*
1904 	 * If the max_busy_timeout of the host is specified, validate it against
1905 	 * the sleep cmd timeout. A failure means we need to prevent the host
1906 	 * from doing hw busy detection, which is done by converting to a R1
1907 	 * response instead of a R1B.
1908 	 */
1909 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1910 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1911 	} else {
1912 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1913 		cmd.busy_timeout = timeout_ms;
1914 	}
1915 
1916 	err = mmc_wait_for_cmd(host, &cmd, 0);
1917 	if (err)
1918 		goto out_release;
1919 
1920 	/*
1921 	 * If the host does not wait while the card signals busy, then we will
1922 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1923 	 * SEND_STATUS command to poll the status because that command (and most
1924 	 * others) is invalid while the card sleeps.
1925 	 */
1926 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1927 		mmc_delay(timeout_ms);
1928 
1929 out_release:
1930 	mmc_retune_release(host);
1931 	return err;
1932 }
1933 
1934 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1935 {
1936 	return card &&
1937 		mmc_card_mmc(card) &&
1938 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1939 }
1940 
1941 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1942 {
1943 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1944 	int err;
1945 
1946 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1947 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1948 		timeout = card->ext_csd.power_off_longtime;
1949 
1950 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1951 			EXT_CSD_POWER_OFF_NOTIFICATION,
1952 			notify_type, timeout, 0, true, false, false);
1953 	if (err)
1954 		pr_err("%s: Power Off Notification timed out, %u\n",
1955 		       mmc_hostname(card->host), timeout);
1956 
1957 	/* Disable the power off notification after the switch operation. */
1958 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1959 
1960 	return err;
1961 }
1962 
1963 /*
1964  * Host is being removed. Free up the current card.
1965  */
1966 static void mmc_remove(struct mmc_host *host)
1967 {
1968 	mmc_remove_card(host->card);
1969 	host->card = NULL;
1970 }
1971 
1972 /*
1973  * Card detection - card is alive.
1974  */
1975 static int mmc_alive(struct mmc_host *host)
1976 {
1977 	return mmc_send_status(host->card, NULL);
1978 }
1979 
1980 /*
1981  * Card detection callback from host.
1982  */
1983 static void mmc_detect(struct mmc_host *host)
1984 {
1985 	int err;
1986 
1987 	mmc_get_card(host->card, NULL);
1988 
1989 	/*
1990 	 * Just check if our card has been removed.
1991 	 */
1992 	err = _mmc_detect_card_removed(host);
1993 
1994 	mmc_put_card(host->card, NULL);
1995 
1996 	if (err) {
1997 		mmc_remove(host);
1998 
1999 		mmc_claim_host(host);
2000 		mmc_detach_bus(host);
2001 		mmc_power_off(host);
2002 		mmc_release_host(host);
2003 	}
2004 }
2005 
2006 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2007 {
2008 	int err = 0;
2009 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2010 					EXT_CSD_POWER_OFF_LONG;
2011 
2012 	mmc_claim_host(host);
2013 
2014 	if (mmc_card_suspended(host->card))
2015 		goto out;
2016 
2017 	err = mmc_flush_cache(host->card);
2018 	if (err)
2019 		goto out;
2020 
2021 	if (mmc_can_poweroff_notify(host->card) &&
2022 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2023 		err = mmc_poweroff_notify(host->card, notify_type);
2024 	else if (mmc_can_sleep(host->card))
2025 		err = mmc_sleep(host);
2026 	else if (!mmc_host_is_spi(host))
2027 		err = mmc_deselect_cards(host);
2028 
2029 	if (!err) {
2030 		mmc_power_off(host);
2031 		mmc_card_set_suspended(host->card);
2032 	}
2033 out:
2034 	mmc_release_host(host);
2035 	return err;
2036 }
2037 
2038 /*
2039  * Suspend callback
2040  */
2041 static int mmc_suspend(struct mmc_host *host)
2042 {
2043 	int err;
2044 
2045 	err = _mmc_suspend(host, true);
2046 	if (!err) {
2047 		pm_runtime_disable(&host->card->dev);
2048 		pm_runtime_set_suspended(&host->card->dev);
2049 	}
2050 
2051 	return err;
2052 }
2053 
2054 /*
2055  * This function tries to determine if the same card is still present
2056  * and, if so, restore all state to it.
2057  */
2058 static int _mmc_resume(struct mmc_host *host)
2059 {
2060 	int err = 0;
2061 
2062 	mmc_claim_host(host);
2063 
2064 	if (!mmc_card_suspended(host->card))
2065 		goto out;
2066 
2067 	mmc_power_up(host, host->card->ocr);
2068 	err = mmc_init_card(host, host->card->ocr, host->card);
2069 	mmc_card_clr_suspended(host->card);
2070 
2071 out:
2072 	mmc_release_host(host);
2073 	return err;
2074 }
2075 
2076 /*
2077  * Shutdown callback
2078  */
2079 static int mmc_shutdown(struct mmc_host *host)
2080 {
2081 	int err = 0;
2082 
2083 	/*
2084 	 * In a specific case for poweroff notify, we need to resume the card
2085 	 * before we can shutdown it properly.
2086 	 */
2087 	if (mmc_can_poweroff_notify(host->card) &&
2088 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2089 		err = _mmc_resume(host);
2090 
2091 	if (!err)
2092 		err = _mmc_suspend(host, false);
2093 
2094 	return err;
2095 }
2096 
2097 /*
2098  * Callback for resume.
2099  */
2100 static int mmc_resume(struct mmc_host *host)
2101 {
2102 	pm_runtime_enable(&host->card->dev);
2103 	return 0;
2104 }
2105 
2106 /*
2107  * Callback for runtime_suspend.
2108  */
2109 static int mmc_runtime_suspend(struct mmc_host *host)
2110 {
2111 	int err;
2112 
2113 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2114 		return 0;
2115 
2116 	err = _mmc_suspend(host, true);
2117 	if (err)
2118 		pr_err("%s: error %d doing aggressive suspend\n",
2119 			mmc_hostname(host), err);
2120 
2121 	return err;
2122 }
2123 
2124 /*
2125  * Callback for runtime_resume.
2126  */
2127 static int mmc_runtime_resume(struct mmc_host *host)
2128 {
2129 	int err;
2130 
2131 	err = _mmc_resume(host);
2132 	if (err && err != -ENOMEDIUM)
2133 		pr_err("%s: error %d doing runtime resume\n",
2134 			mmc_hostname(host), err);
2135 
2136 	return 0;
2137 }
2138 
2139 static int mmc_can_reset(struct mmc_card *card)
2140 {
2141 	u8 rst_n_function;
2142 
2143 	rst_n_function = card->ext_csd.rst_n_function;
2144 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2145 		return 0;
2146 	return 1;
2147 }
2148 
2149 static int _mmc_hw_reset(struct mmc_host *host)
2150 {
2151 	struct mmc_card *card = host->card;
2152 
2153 	/*
2154 	 * In the case of recovery, we can't expect flushing the cache to work
2155 	 * always, but we have a go and ignore errors.
2156 	 */
2157 	mmc_flush_cache(host->card);
2158 
2159 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2160 	     mmc_can_reset(card)) {
2161 		/* If the card accept RST_n signal, send it. */
2162 		mmc_set_clock(host, host->f_init);
2163 		host->ops->hw_reset(host);
2164 		/* Set initial state and call mmc_set_ios */
2165 		mmc_set_initial_state(host);
2166 	} else {
2167 		/* Do a brute force power cycle */
2168 		mmc_power_cycle(host, card->ocr);
2169 		mmc_pwrseq_reset(host);
2170 	}
2171 	return mmc_init_card(host, card->ocr, card);
2172 }
2173 
2174 static const struct mmc_bus_ops mmc_ops = {
2175 	.remove = mmc_remove,
2176 	.detect = mmc_detect,
2177 	.suspend = mmc_suspend,
2178 	.resume = mmc_resume,
2179 	.runtime_suspend = mmc_runtime_suspend,
2180 	.runtime_resume = mmc_runtime_resume,
2181 	.alive = mmc_alive,
2182 	.shutdown = mmc_shutdown,
2183 	.hw_reset = _mmc_hw_reset,
2184 };
2185 
2186 /*
2187  * Starting point for MMC card init.
2188  */
2189 int mmc_attach_mmc(struct mmc_host *host)
2190 {
2191 	int err;
2192 	u32 ocr, rocr;
2193 
2194 	WARN_ON(!host->claimed);
2195 
2196 	/* Set correct bus mode for MMC before attempting attach */
2197 	if (!mmc_host_is_spi(host))
2198 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2199 
2200 	err = mmc_send_op_cond(host, 0, &ocr);
2201 	if (err)
2202 		return err;
2203 
2204 	mmc_attach_bus(host, &mmc_ops);
2205 	if (host->ocr_avail_mmc)
2206 		host->ocr_avail = host->ocr_avail_mmc;
2207 
2208 	/*
2209 	 * We need to get OCR a different way for SPI.
2210 	 */
2211 	if (mmc_host_is_spi(host)) {
2212 		err = mmc_spi_read_ocr(host, 1, &ocr);
2213 		if (err)
2214 			goto err;
2215 	}
2216 
2217 	rocr = mmc_select_voltage(host, ocr);
2218 
2219 	/*
2220 	 * Can we support the voltage of the card?
2221 	 */
2222 	if (!rocr) {
2223 		err = -EINVAL;
2224 		goto err;
2225 	}
2226 
2227 	/*
2228 	 * Detect and init the card.
2229 	 */
2230 	err = mmc_init_card(host, rocr, NULL);
2231 	if (err)
2232 		goto err;
2233 
2234 	mmc_release_host(host);
2235 	err = mmc_add_card(host->card);
2236 	if (err)
2237 		goto remove_card;
2238 
2239 	mmc_claim_host(host);
2240 	return 0;
2241 
2242 remove_card:
2243 	mmc_remove_card(host->card);
2244 	mmc_claim_host(host);
2245 	host->card = NULL;
2246 err:
2247 	mmc_detach_bus(host);
2248 
2249 	pr_err("%s: error %d whilst initialising MMC card\n",
2250 		mmc_hostname(host), err);
2251 
2252 	return err;
2253 }
2254