xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
32 
33 static const unsigned int tran_exp[] = {
34 	10000,		100000,		1000000,	10000000,
35 	0,		0,		0,		0
36 };
37 
38 static const unsigned char tran_mant[] = {
39 	0,	10,	12,	13,	15,	20,	25,	30,
40 	35,	40,	45,	50,	55,	60,	70,	80,
41 };
42 
43 static const unsigned int taac_exp[] = {
44 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
45 };
46 
47 static const unsigned int taac_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 #define UNSTUFF_BITS(resp,start,size)					\
53 	({								\
54 		const int __size = size;				\
55 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
56 		const int __off = 3 - ((start) / 32);			\
57 		const int __shft = (start) & 31;			\
58 		u32 __res;						\
59 									\
60 		__res = resp[__off] >> __shft;				\
61 		if (__size + __shft > 32)				\
62 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
63 		__res & __mask;						\
64 	})
65 
66 /*
67  * Given the decoded CSD structure, decode the raw CID to our CID structure.
68  */
69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 	u32 *resp = card->raw_cid;
72 
73 	/*
74 	 * The selection of the format here is based upon published
75 	 * specs from sandisk and from what people have reported.
76 	 */
77 	switch (card->csd.mmca_vsn) {
78 	case 0: /* MMC v1.0 - v1.2 */
79 	case 1: /* MMC v1.4 */
80 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
81 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
82 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
83 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
84 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
85 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
86 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
87 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
88 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
89 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
90 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
91 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
92 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
93 		break;
94 
95 	case 2: /* MMC v2.0 - v2.2 */
96 	case 3: /* MMC v3.1 - v3.3 */
97 	case 4: /* MMC v4 */
98 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
99 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
100 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
101 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
102 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
103 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
104 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
105 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
106 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
107 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
108 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
109 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
110 		break;
111 
112 	default:
113 		pr_err("%s: card has unknown MMCA version %d\n",
114 			mmc_hostname(card->host), card->csd.mmca_vsn);
115 		return -EINVAL;
116 	}
117 
118 	return 0;
119 }
120 
121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 	if (card->ext_csd.erase_group_def & 1)
124 		card->erase_size = card->ext_csd.hc_erase_size;
125 	else
126 		card->erase_size = card->csd.erase_size;
127 
128 	mmc_init_erase(card);
129 }
130 
131 /*
132  * Given a 128-bit response, decode to our card CSD structure.
133  */
134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 	struct mmc_csd *csd = &card->csd;
137 	unsigned int e, m, a, b;
138 	u32 *resp = card->raw_csd;
139 
140 	/*
141 	 * We only understand CSD structure v1.1 and v1.2.
142 	 * v1.2 has extra information in bits 15, 11 and 10.
143 	 * We also support eMMC v4.4 & v4.41.
144 	 */
145 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 	if (csd->structure == 0) {
147 		pr_err("%s: unrecognised CSD structure version %d\n",
148 			mmc_hostname(card->host), csd->structure);
149 		return -EINVAL;
150 	}
151 
152 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
153 	m = UNSTUFF_BITS(resp, 115, 4);
154 	e = UNSTUFF_BITS(resp, 112, 3);
155 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
156 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
157 
158 	m = UNSTUFF_BITS(resp, 99, 4);
159 	e = UNSTUFF_BITS(resp, 96, 3);
160 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
161 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
162 
163 	e = UNSTUFF_BITS(resp, 47, 3);
164 	m = UNSTUFF_BITS(resp, 62, 12);
165 	csd->capacity	  = (1 + m) << (e + 2);
166 
167 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 
176 	if (csd->write_blkbits >= 9) {
177 		a = UNSTUFF_BITS(resp, 42, 5);
178 		b = UNSTUFF_BITS(resp, 37, 5);
179 		csd->erase_size = (a + 1) * (b + 1);
180 		csd->erase_size <<= csd->write_blkbits - 9;
181 	}
182 
183 	return 0;
184 }
185 
186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 	struct mmc_host *host = card->host;
189 	u8 card_type = card->ext_csd.raw_card_type;
190 	u32 caps = host->caps, caps2 = host->caps2;
191 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 	unsigned int avail_type = 0;
193 
194 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 	}
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 	}
205 
206 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 	}
211 
212 	if (caps & MMC_CAP_1_2V_DDR &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 	}
217 
218 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 		hs200_max_dtr = MMC_HS200_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS400_1_8V &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_2V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 	}
241 
242 	if ((caps2 & MMC_CAP2_HS400_ES) &&
243 	    card->ext_csd.strobe_support &&
244 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 
247 	card->ext_csd.hs_max_dtr = hs_max_dtr;
248 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 	card->mmc_avail_type = avail_type;
250 }
251 
252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
255 
256 	/*
257 	 * Disable these attributes by default
258 	 */
259 	card->ext_csd.enhanced_area_offset = -EINVAL;
260 	card->ext_csd.enhanced_area_size = -EINVAL;
261 
262 	/*
263 	 * Enhanced area feature support -- check whether the eMMC
264 	 * card has the Enhanced area enabled.  If so, export enhanced
265 	 * area offset and size to user by adding sysfs interface.
266 	 */
267 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 		if (card->ext_csd.partition_setting_completed) {
270 			hc_erase_grp_sz =
271 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 			hc_wp_grp_sz =
273 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274 
275 			/*
276 			 * calculate the enhanced data area offset, in bytes
277 			 */
278 			card->ext_csd.enhanced_area_offset =
279 				(((unsigned long long)ext_csd[139]) << 24) +
280 				(((unsigned long long)ext_csd[138]) << 16) +
281 				(((unsigned long long)ext_csd[137]) << 8) +
282 				(((unsigned long long)ext_csd[136]));
283 			if (mmc_card_blockaddr(card))
284 				card->ext_csd.enhanced_area_offset <<= 9;
285 			/*
286 			 * calculate the enhanced data area size, in kilobytes
287 			 */
288 			card->ext_csd.enhanced_area_size =
289 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 				ext_csd[140];
291 			card->ext_csd.enhanced_area_size *=
292 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 			card->ext_csd.enhanced_area_size <<= 9;
294 		} else {
295 			pr_warn("%s: defines enhanced area without partition setting complete\n",
296 				mmc_hostname(card->host));
297 		}
298 	}
299 }
300 
301 static void mmc_part_add(struct mmc_card *card, u64 size,
302 			 unsigned int part_cfg, char *name, int idx, bool ro,
303 			 int area_type)
304 {
305 	card->part[card->nr_parts].size = size;
306 	card->part[card->nr_parts].part_cfg = part_cfg;
307 	sprintf(card->part[card->nr_parts].name, name, idx);
308 	card->part[card->nr_parts].force_ro = ro;
309 	card->part[card->nr_parts].area_type = area_type;
310 	card->nr_parts++;
311 }
312 
313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 	int idx;
316 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 	u64 part_size;
318 
319 	/*
320 	 * General purpose partition feature support --
321 	 * If ext_csd has the size of general purpose partitions,
322 	 * set size, part_cfg, partition name in mmc_part.
323 	 */
324 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 	    EXT_CSD_PART_SUPPORT_PART_EN) {
326 		hc_erase_grp_sz =
327 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 		hc_wp_grp_sz =
329 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 
331 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 				continue;
336 			if (card->ext_csd.partition_setting_completed == 0) {
337 				pr_warn("%s: has partition size defined without partition complete\n",
338 					mmc_hostname(card->host));
339 				break;
340 			}
341 			part_size =
342 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 				<< 16) +
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 				<< 8) +
346 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
348 			mmc_part_add(card, part_size << 19,
349 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 				"gp%d", idx, false,
351 				MMC_BLK_DATA_AREA_GP);
352 		}
353 	}
354 }
355 
356 /* Minimum partition switch timeout in milliseconds */
357 #define MMC_MIN_PART_SWITCH_TIME	300
358 
359 /*
360  * Decode extended CSD.
361  */
362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 {
364 	int err = 0, idx;
365 	u64 part_size;
366 	struct device_node *np;
367 	bool broken_hpi = false;
368 
369 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 	if (card->csd.structure == 3) {
372 		if (card->ext_csd.raw_ext_csd_structure > 2) {
373 			pr_err("%s: unrecognised EXT_CSD structure "
374 				"version %d\n", mmc_hostname(card->host),
375 					card->ext_csd.raw_ext_csd_structure);
376 			err = -EINVAL;
377 			goto out;
378 		}
379 	}
380 
381 	np = mmc_of_find_child_device(card->host, 0);
382 	if (np && of_device_is_compatible(np, "mmc-card"))
383 		broken_hpi = of_property_read_bool(np, "broken-hpi");
384 	of_node_put(np);
385 
386 	/*
387 	 * The EXT_CSD format is meant to be forward compatible. As long
388 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 	 * are authorized, see JEDEC JESD84-B50 section B.8.
390 	 */
391 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392 
393 	/* fixup device after ext_csd revision field is updated */
394 	mmc_fixup_device(card, mmc_ext_csd_fixups);
395 
396 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 	if (card->ext_csd.rev >= 2) {
401 		card->ext_csd.sectors =
402 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406 
407 		/* Cards with density > 2GiB are sector addressed */
408 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 			mmc_card_set_blockaddr(card);
410 	}
411 
412 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 	mmc_select_card_type(card);
415 
416 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 	card->ext_csd.raw_erase_timeout_mult =
418 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 	card->ext_csd.raw_hc_erase_grp_size =
420 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 	card->ext_csd.raw_boot_mult =
422 		ext_csd[EXT_CSD_BOOT_MULT];
423 	if (card->ext_csd.rev >= 3) {
424 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426 
427 		/* EXT_CSD value is in units of 10ms, but we store in ms */
428 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 
430 		/* Sleep / awake timeout in 100ns units */
431 		if (sa_shift > 0 && sa_shift <= 0x17)
432 			card->ext_csd.sa_timeout =
433 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 		card->ext_csd.erase_group_def =
435 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 		card->ext_csd.hc_erase_timeout = 300 *
437 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 		card->ext_csd.hc_erase_size =
439 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440 
441 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442 
443 		/*
444 		 * There are two boot regions of equal size, defined in
445 		 * multiples of 128K.
446 		 */
447 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 				mmc_part_add(card, part_size,
451 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 					"boot%d", idx, true,
453 					MMC_BLK_DATA_AREA_BOOT);
454 			}
455 		}
456 	}
457 
458 	card->ext_csd.raw_hc_erase_gap_size =
459 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 	card->ext_csd.raw_sec_trim_mult =
461 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 	card->ext_csd.raw_sec_erase_mult =
463 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 	card->ext_csd.raw_sec_feature_support =
465 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 	card->ext_csd.raw_trim_mult =
467 		ext_csd[EXT_CSD_TRIM_MULT];
468 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 	if (card->ext_csd.rev >= 4) {
471 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 		    EXT_CSD_PART_SETTING_COMPLETED)
473 			card->ext_csd.partition_setting_completed = 1;
474 		else
475 			card->ext_csd.partition_setting_completed = 0;
476 
477 		mmc_manage_enhanced_area(card, ext_csd);
478 
479 		mmc_manage_gp_partitions(card, ext_csd);
480 
481 		card->ext_csd.sec_trim_mult =
482 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 		card->ext_csd.sec_erase_mult =
484 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 		card->ext_csd.sec_feature_support =
486 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 		card->ext_csd.trim_timeout = 300 *
488 			ext_csd[EXT_CSD_TRIM_MULT];
489 
490 		/*
491 		 * Note that the call to mmc_part_add above defaults to read
492 		 * only. If this default assumption is changed, the call must
493 		 * take into account the value of boot_locked below.
494 		 */
495 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 		card->ext_csd.boot_ro_lockable = true;
497 
498 		/* Save power class values */
499 		card->ext_csd.raw_pwr_cl_52_195 =
500 			ext_csd[EXT_CSD_PWR_CL_52_195];
501 		card->ext_csd.raw_pwr_cl_26_195 =
502 			ext_csd[EXT_CSD_PWR_CL_26_195];
503 		card->ext_csd.raw_pwr_cl_52_360 =
504 			ext_csd[EXT_CSD_PWR_CL_52_360];
505 		card->ext_csd.raw_pwr_cl_26_360 =
506 			ext_csd[EXT_CSD_PWR_CL_26_360];
507 		card->ext_csd.raw_pwr_cl_200_195 =
508 			ext_csd[EXT_CSD_PWR_CL_200_195];
509 		card->ext_csd.raw_pwr_cl_200_360 =
510 			ext_csd[EXT_CSD_PWR_CL_200_360];
511 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 	}
518 
519 	if (card->ext_csd.rev >= 5) {
520 		/* Adjust production date as per JEDEC JESD84-B451 */
521 		if (card->cid.year < 2010)
522 			card->cid.year += 16;
523 
524 		/* check whether the eMMC card supports BKOPS */
525 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
526 			card->ext_csd.bkops = 1;
527 			card->ext_csd.man_bkops_en =
528 					(ext_csd[EXT_CSD_BKOPS_EN] &
529 						EXT_CSD_MANUAL_BKOPS_MASK);
530 			card->ext_csd.raw_bkops_status =
531 				ext_csd[EXT_CSD_BKOPS_STATUS];
532 			if (card->ext_csd.man_bkops_en)
533 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
534 					mmc_hostname(card->host));
535 			card->ext_csd.auto_bkops_en =
536 					(ext_csd[EXT_CSD_BKOPS_EN] &
537 						EXT_CSD_AUTO_BKOPS_MASK);
538 			if (card->ext_csd.auto_bkops_en)
539 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
540 					mmc_hostname(card->host));
541 		}
542 
543 		/* check whether the eMMC card supports HPI */
544 		if (!mmc_card_broken_hpi(card) &&
545 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
546 			card->ext_csd.hpi = 1;
547 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
548 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
549 			else
550 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
551 			/*
552 			 * Indicate the maximum timeout to close
553 			 * a command interrupted by HPI
554 			 */
555 			card->ext_csd.out_of_int_time =
556 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
557 		}
558 
559 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
560 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
561 
562 		/*
563 		 * RPMB regions are defined in multiples of 128K.
564 		 */
565 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
566 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
567 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
568 				EXT_CSD_PART_CONFIG_ACC_RPMB,
569 				"rpmb", 0, false,
570 				MMC_BLK_DATA_AREA_RPMB);
571 		}
572 	}
573 
574 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
575 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
576 		card->erased_byte = 0xFF;
577 	else
578 		card->erased_byte = 0x0;
579 
580 	/* eMMC v4.5 or later */
581 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
582 	if (card->ext_csd.rev >= 6) {
583 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
584 
585 		card->ext_csd.generic_cmd6_time = 10 *
586 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
587 		card->ext_csd.power_off_longtime = 10 *
588 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
589 
590 		card->ext_csd.cache_size =
591 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
592 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
595 
596 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
597 			card->ext_csd.data_sector_size = 4096;
598 		else
599 			card->ext_csd.data_sector_size = 512;
600 
601 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
602 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
603 			card->ext_csd.data_tag_unit_size =
604 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
605 			(card->ext_csd.data_sector_size);
606 		} else {
607 			card->ext_csd.data_tag_unit_size = 0;
608 		}
609 
610 		card->ext_csd.max_packed_writes =
611 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
612 		card->ext_csd.max_packed_reads =
613 			ext_csd[EXT_CSD_MAX_PACKED_READS];
614 	} else {
615 		card->ext_csd.data_sector_size = 512;
616 	}
617 
618 	/*
619 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
620 	 * when accessing a specific field", so use it here if there is no
621 	 * PARTITION_SWITCH_TIME.
622 	 */
623 	if (!card->ext_csd.part_time)
624 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
625 	/* Some eMMC set the value too low so set a minimum */
626 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
627 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
628 
629 	/* eMMC v5 or later */
630 	if (card->ext_csd.rev >= 7) {
631 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
632 		       MMC_FIRMWARE_LEN);
633 		card->ext_csd.ffu_capable =
634 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
635 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
636 
637 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
638 		card->ext_csd.device_life_time_est_typ_a =
639 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
640 		card->ext_csd.device_life_time_est_typ_b =
641 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
642 	}
643 
644 	/* eMMC v5.1 or later */
645 	if (card->ext_csd.rev >= 8) {
646 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
647 					     EXT_CSD_CMDQ_SUPPORTED;
648 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
649 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
650 		/* Exclude inefficiently small queue depths */
651 		if (card->ext_csd.cmdq_depth <= 2) {
652 			card->ext_csd.cmdq_support = false;
653 			card->ext_csd.cmdq_depth = 0;
654 		}
655 		if (card->ext_csd.cmdq_support) {
656 			pr_debug("%s: Command Queue supported depth %u\n",
657 				 mmc_hostname(card->host),
658 				 card->ext_csd.cmdq_depth);
659 		}
660 		card->ext_csd.enhanced_rpmb_supported =
661 					(card->ext_csd.rel_param &
662 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
663 	}
664 out:
665 	return err;
666 }
667 
668 static int mmc_read_ext_csd(struct mmc_card *card)
669 {
670 	u8 *ext_csd;
671 	int err;
672 
673 	if (!mmc_can_ext_csd(card))
674 		return 0;
675 
676 	err = mmc_get_ext_csd(card, &ext_csd);
677 	if (err) {
678 		/* If the host or the card can't do the switch,
679 		 * fail more gracefully. */
680 		if ((err != -EINVAL)
681 		 && (err != -ENOSYS)
682 		 && (err != -EFAULT))
683 			return err;
684 
685 		/*
686 		 * High capacity cards should have this "magic" size
687 		 * stored in their CSD.
688 		 */
689 		if (card->csd.capacity == (4096 * 512)) {
690 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
691 				mmc_hostname(card->host));
692 		} else {
693 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
694 				mmc_hostname(card->host));
695 			err = 0;
696 		}
697 
698 		return err;
699 	}
700 
701 	err = mmc_decode_ext_csd(card, ext_csd);
702 	kfree(ext_csd);
703 	return err;
704 }
705 
706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
707 {
708 	u8 *bw_ext_csd;
709 	int err;
710 
711 	if (bus_width == MMC_BUS_WIDTH_1)
712 		return 0;
713 
714 	err = mmc_get_ext_csd(card, &bw_ext_csd);
715 	if (err)
716 		return err;
717 
718 	/* only compare read only fields */
719 	err = !((card->ext_csd.raw_partition_support ==
720 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
721 		(card->ext_csd.raw_erased_mem_count ==
722 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
723 		(card->ext_csd.rev ==
724 			bw_ext_csd[EXT_CSD_REV]) &&
725 		(card->ext_csd.raw_ext_csd_structure ==
726 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
727 		(card->ext_csd.raw_card_type ==
728 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
729 		(card->ext_csd.raw_s_a_timeout ==
730 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
731 		(card->ext_csd.raw_hc_erase_gap_size ==
732 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
733 		(card->ext_csd.raw_erase_timeout_mult ==
734 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
735 		(card->ext_csd.raw_hc_erase_grp_size ==
736 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
737 		(card->ext_csd.raw_sec_trim_mult ==
738 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
739 		(card->ext_csd.raw_sec_erase_mult ==
740 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
741 		(card->ext_csd.raw_sec_feature_support ==
742 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
743 		(card->ext_csd.raw_trim_mult ==
744 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
745 		(card->ext_csd.raw_sectors[0] ==
746 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
747 		(card->ext_csd.raw_sectors[1] ==
748 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
749 		(card->ext_csd.raw_sectors[2] ==
750 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
751 		(card->ext_csd.raw_sectors[3] ==
752 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
753 		(card->ext_csd.raw_pwr_cl_52_195 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
755 		(card->ext_csd.raw_pwr_cl_26_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
757 		(card->ext_csd.raw_pwr_cl_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_26_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
761 		(card->ext_csd.raw_pwr_cl_200_195 ==
762 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
763 		(card->ext_csd.raw_pwr_cl_200_360 ==
764 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
765 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
766 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
767 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
768 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
769 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
770 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
771 
772 	if (err)
773 		err = -EINVAL;
774 
775 	kfree(bw_ext_csd);
776 	return err;
777 }
778 
779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
780 	card->raw_cid[2], card->raw_cid[3]);
781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
782 	card->raw_csd[2], card->raw_csd[3]);
783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
786 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
787 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
788 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
789 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
790 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
791 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
792 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
793 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
794 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
795 	card->ext_csd.device_life_time_est_typ_a,
796 	card->ext_csd.device_life_time_est_typ_b);
797 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
798 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
799 		card->ext_csd.enhanced_area_offset);
800 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
801 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
802 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
803 	card->ext_csd.enhanced_rpmb_supported);
804 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
805 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
806 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
807 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
808 
809 static ssize_t mmc_fwrev_show(struct device *dev,
810 			      struct device_attribute *attr,
811 			      char *buf)
812 {
813 	struct mmc_card *card = mmc_dev_to_card(dev);
814 
815 	if (card->ext_csd.rev < 7) {
816 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
817 	} else {
818 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
819 			       card->ext_csd.fwrev);
820 	}
821 }
822 
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824 
825 static ssize_t mmc_dsr_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct mmc_card *card = mmc_dev_to_card(dev);
830 	struct mmc_host *host = card->host;
831 
832 	if (card->csd.dsr_imp && host->dsr_req)
833 		return sprintf(buf, "0x%x\n", host->dsr);
834 	else
835 		/* return default DSR value */
836 		return sprintf(buf, "0x%x\n", 0x404);
837 }
838 
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840 
841 static struct attribute *mmc_std_attrs[] = {
842 	&dev_attr_cid.attr,
843 	&dev_attr_csd.attr,
844 	&dev_attr_date.attr,
845 	&dev_attr_erase_size.attr,
846 	&dev_attr_preferred_erase_size.attr,
847 	&dev_attr_fwrev.attr,
848 	&dev_attr_ffu_capable.attr,
849 	&dev_attr_hwrev.attr,
850 	&dev_attr_manfid.attr,
851 	&dev_attr_name.attr,
852 	&dev_attr_oemid.attr,
853 	&dev_attr_prv.attr,
854 	&dev_attr_rev.attr,
855 	&dev_attr_pre_eol_info.attr,
856 	&dev_attr_life_time.attr,
857 	&dev_attr_serial.attr,
858 	&dev_attr_enhanced_area_offset.attr,
859 	&dev_attr_enhanced_area_size.attr,
860 	&dev_attr_raw_rpmb_size_mult.attr,
861 	&dev_attr_enhanced_rpmb_supported.attr,
862 	&dev_attr_rel_sectors.attr,
863 	&dev_attr_ocr.attr,
864 	&dev_attr_rca.attr,
865 	&dev_attr_dsr.attr,
866 	&dev_attr_cmdq_en.attr,
867 	NULL,
868 };
869 ATTRIBUTE_GROUPS(mmc_std);
870 
871 static struct device_type mmc_type = {
872 	.groups = mmc_std_groups,
873 };
874 
875 /*
876  * Select the PowerClass for the current bus width
877  * If power class is defined for 4/8 bit bus in the
878  * extended CSD register, select it by executing the
879  * mmc_switch command.
880  */
881 static int __mmc_select_powerclass(struct mmc_card *card,
882 				   unsigned int bus_width)
883 {
884 	struct mmc_host *host = card->host;
885 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
886 	unsigned int pwrclass_val = 0;
887 	int err = 0;
888 
889 	switch (1 << host->ios.vdd) {
890 	case MMC_VDD_165_195:
891 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
892 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
893 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
894 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
895 				ext_csd->raw_pwr_cl_52_195 :
896 				ext_csd->raw_pwr_cl_ddr_52_195;
897 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
899 		break;
900 	case MMC_VDD_27_28:
901 	case MMC_VDD_28_29:
902 	case MMC_VDD_29_30:
903 	case MMC_VDD_30_31:
904 	case MMC_VDD_31_32:
905 	case MMC_VDD_32_33:
906 	case MMC_VDD_33_34:
907 	case MMC_VDD_34_35:
908 	case MMC_VDD_35_36:
909 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
910 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
911 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
912 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
913 				ext_csd->raw_pwr_cl_52_360 :
914 				ext_csd->raw_pwr_cl_ddr_52_360;
915 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
916 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
917 				ext_csd->raw_pwr_cl_ddr_200_360 :
918 				ext_csd->raw_pwr_cl_200_360;
919 		break;
920 	default:
921 		pr_warn("%s: Voltage range not supported for power class\n",
922 			mmc_hostname(host));
923 		return -EINVAL;
924 	}
925 
926 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
928 				EXT_CSD_PWR_CL_8BIT_SHIFT;
929 	else
930 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
931 				EXT_CSD_PWR_CL_4BIT_SHIFT;
932 
933 	/* If the power class is different from the default value */
934 	if (pwrclass_val > 0) {
935 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
936 				 EXT_CSD_POWER_CLASS,
937 				 pwrclass_val,
938 				 card->ext_csd.generic_cmd6_time);
939 	}
940 
941 	return err;
942 }
943 
944 static int mmc_select_powerclass(struct mmc_card *card)
945 {
946 	struct mmc_host *host = card->host;
947 	u32 bus_width, ext_csd_bits;
948 	int err, ddr;
949 
950 	/* Power class selection is supported for versions >= 4.0 */
951 	if (!mmc_can_ext_csd(card))
952 		return 0;
953 
954 	bus_width = host->ios.bus_width;
955 	/* Power class values are defined only for 4/8 bit bus */
956 	if (bus_width == MMC_BUS_WIDTH_1)
957 		return 0;
958 
959 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
960 	if (ddr)
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
963 	else
964 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
965 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
966 
967 	err = __mmc_select_powerclass(card, ext_csd_bits);
968 	if (err)
969 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
970 			mmc_hostname(host), 1 << bus_width, ddr);
971 
972 	return err;
973 }
974 
975 /*
976  * Set the bus speed for the selected speed mode.
977  */
978 static void mmc_set_bus_speed(struct mmc_card *card)
979 {
980 	unsigned int max_dtr = (unsigned int)-1;
981 
982 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
983 	     max_dtr > card->ext_csd.hs200_max_dtr)
984 		max_dtr = card->ext_csd.hs200_max_dtr;
985 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
986 		max_dtr = card->ext_csd.hs_max_dtr;
987 	else if (max_dtr > card->csd.max_dtr)
988 		max_dtr = card->csd.max_dtr;
989 
990 	mmc_set_clock(card->host, max_dtr);
991 }
992 
993 /*
994  * Select the bus width amoung 4-bit and 8-bit(SDR).
995  * If the bus width is changed successfully, return the selected width value.
996  * Zero is returned instead of error value if the wide width is not supported.
997  */
998 static int mmc_select_bus_width(struct mmc_card *card)
999 {
1000 	static unsigned ext_csd_bits[] = {
1001 		EXT_CSD_BUS_WIDTH_8,
1002 		EXT_CSD_BUS_WIDTH_4,
1003 	};
1004 	static unsigned bus_widths[] = {
1005 		MMC_BUS_WIDTH_8,
1006 		MMC_BUS_WIDTH_4,
1007 	};
1008 	struct mmc_host *host = card->host;
1009 	unsigned idx, bus_width = 0;
1010 	int err = 0;
1011 
1012 	if (!mmc_can_ext_csd(card) ||
1013 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1014 		return 0;
1015 
1016 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1017 
1018 	/*
1019 	 * Unlike SD, MMC cards dont have a configuration register to notify
1020 	 * supported bus width. So bus test command should be run to identify
1021 	 * the supported bus width or compare the ext csd values of current
1022 	 * bus width and ext csd values of 1 bit mode read earlier.
1023 	 */
1024 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1025 		/*
1026 		 * Host is capable of 8bit transfer, then switch
1027 		 * the device to work in 8bit transfer mode. If the
1028 		 * mmc switch command returns error then switch to
1029 		 * 4bit transfer mode. On success set the corresponding
1030 		 * bus width on the host.
1031 		 */
1032 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1033 				 EXT_CSD_BUS_WIDTH,
1034 				 ext_csd_bits[idx],
1035 				 card->ext_csd.generic_cmd6_time);
1036 		if (err)
1037 			continue;
1038 
1039 		bus_width = bus_widths[idx];
1040 		mmc_set_bus_width(host, bus_width);
1041 
1042 		/*
1043 		 * If controller can't handle bus width test,
1044 		 * compare ext_csd previously read in 1 bit mode
1045 		 * against ext_csd at new bus width
1046 		 */
1047 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1048 			err = mmc_compare_ext_csds(card, bus_width);
1049 		else
1050 			err = mmc_bus_test(card, bus_width);
1051 
1052 		if (!err) {
1053 			err = bus_width;
1054 			break;
1055 		} else {
1056 			pr_warn("%s: switch to bus width %d failed\n",
1057 				mmc_hostname(host), 1 << bus_width);
1058 		}
1059 	}
1060 
1061 	return err;
1062 }
1063 
1064 /*
1065  * Switch to the high-speed mode
1066  */
1067 static int mmc_select_hs(struct mmc_card *card)
1068 {
1069 	int err;
1070 
1071 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 			   true, true, MMC_CMD_RETRIES);
1075 	if (err)
1076 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 			mmc_hostname(card->host), err);
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * Activate wide bus and DDR if supported.
1084  */
1085 static int mmc_select_hs_ddr(struct mmc_card *card)
1086 {
1087 	struct mmc_host *host = card->host;
1088 	u32 bus_width, ext_csd_bits;
1089 	int err = 0;
1090 
1091 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1092 		return 0;
1093 
1094 	bus_width = host->ios.bus_width;
1095 	if (bus_width == MMC_BUS_WIDTH_1)
1096 		return 0;
1097 
1098 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1099 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1100 
1101 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1102 			   EXT_CSD_BUS_WIDTH,
1103 			   ext_csd_bits,
1104 			   card->ext_csd.generic_cmd6_time,
1105 			   MMC_TIMING_MMC_DDR52,
1106 			   true, true, MMC_CMD_RETRIES);
1107 	if (err) {
1108 		pr_err("%s: switch to bus width %d ddr failed\n",
1109 			mmc_hostname(host), 1 << bus_width);
1110 		return err;
1111 	}
1112 
1113 	/*
1114 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1115 	 * signaling.
1116 	 *
1117 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1118 	 *
1119 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1120 	 * in the JEDEC spec for DDR.
1121 	 *
1122 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1123 	 * host controller can support this, like some of the SDHCI
1124 	 * controller which connect to an eMMC device. Some of these
1125 	 * host controller still needs to use 1.8v vccq for supporting
1126 	 * DDR mode.
1127 	 *
1128 	 * So the sequence will be:
1129 	 * if (host and device can both support 1.2v IO)
1130 	 *	use 1.2v IO;
1131 	 * else if (host and device can both support 1.8v IO)
1132 	 *	use 1.8v IO;
1133 	 * so if host and device can only support 3.3v IO, this is the
1134 	 * last choice.
1135 	 *
1136 	 * WARNING: eMMC rules are NOT the same as SD DDR
1137 	 */
1138 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1139 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1140 		if (!err)
1141 			return 0;
1142 	}
1143 
1144 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1145 	    host->caps & MMC_CAP_1_8V_DDR)
1146 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1147 
1148 	/* make sure vccq is 3.3v after switching disaster */
1149 	if (err)
1150 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1151 
1152 	return err;
1153 }
1154 
1155 static int mmc_select_hs400(struct mmc_card *card)
1156 {
1157 	struct mmc_host *host = card->host;
1158 	unsigned int max_dtr;
1159 	int err = 0;
1160 	u8 val;
1161 
1162 	/*
1163 	 * HS400 mode requires 8-bit bus width
1164 	 */
1165 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1166 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1167 		return 0;
1168 
1169 	/* Switch card to HS mode */
1170 	val = EXT_CSD_TIMING_HS;
1171 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 			   EXT_CSD_HS_TIMING, val,
1173 			   card->ext_csd.generic_cmd6_time, 0,
1174 			   false, true, MMC_CMD_RETRIES);
1175 	if (err) {
1176 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1177 			mmc_hostname(host), err);
1178 		return err;
1179 	}
1180 
1181 	/* Prepare host to downgrade to HS timing */
1182 	if (host->ops->hs400_downgrade)
1183 		host->ops->hs400_downgrade(host);
1184 
1185 	/* Set host controller to HS timing */
1186 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1187 
1188 	/* Reduce frequency to HS frequency */
1189 	max_dtr = card->ext_csd.hs_max_dtr;
1190 	mmc_set_clock(host, max_dtr);
1191 
1192 	err = mmc_switch_status(card, true);
1193 	if (err)
1194 		goto out_err;
1195 
1196 	if (host->ops->hs400_prepare_ddr)
1197 		host->ops->hs400_prepare_ddr(host);
1198 
1199 	/* Switch card to DDR */
1200 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 			 EXT_CSD_BUS_WIDTH,
1202 			 EXT_CSD_DDR_BUS_WIDTH_8,
1203 			 card->ext_csd.generic_cmd6_time);
1204 	if (err) {
1205 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1206 			mmc_hostname(host), err);
1207 		return err;
1208 	}
1209 
1210 	/* Switch card to HS400 */
1211 	val = EXT_CSD_TIMING_HS400 |
1212 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1213 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 			   EXT_CSD_HS_TIMING, val,
1215 			   card->ext_csd.generic_cmd6_time, 0,
1216 			   false, true, MMC_CMD_RETRIES);
1217 	if (err) {
1218 		pr_err("%s: switch to hs400 failed, err:%d\n",
1219 			 mmc_hostname(host), err);
1220 		return err;
1221 	}
1222 
1223 	/* Set host controller to HS400 timing and frequency */
1224 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1225 	mmc_set_bus_speed(card);
1226 
1227 	if (host->ops->hs400_complete)
1228 		host->ops->hs400_complete(host);
1229 
1230 	err = mmc_switch_status(card, true);
1231 	if (err)
1232 		goto out_err;
1233 
1234 	return 0;
1235 
1236 out_err:
1237 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1238 	       __func__, err);
1239 	return err;
1240 }
1241 
1242 int mmc_hs200_to_hs400(struct mmc_card *card)
1243 {
1244 	return mmc_select_hs400(card);
1245 }
1246 
1247 int mmc_hs400_to_hs200(struct mmc_card *card)
1248 {
1249 	struct mmc_host *host = card->host;
1250 	unsigned int max_dtr;
1251 	int err;
1252 	u8 val;
1253 
1254 	/* Reduce frequency to HS */
1255 	max_dtr = card->ext_csd.hs_max_dtr;
1256 	mmc_set_clock(host, max_dtr);
1257 
1258 	/* Switch HS400 to HS DDR */
1259 	val = EXT_CSD_TIMING_HS;
1260 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1261 			   val, card->ext_csd.generic_cmd6_time, 0,
1262 			   false, true, MMC_CMD_RETRIES);
1263 	if (err)
1264 		goto out_err;
1265 
1266 	if (host->ops->hs400_downgrade)
1267 		host->ops->hs400_downgrade(host);
1268 
1269 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1270 
1271 	err = mmc_switch_status(card, true);
1272 	if (err)
1273 		goto out_err;
1274 
1275 	/* Switch HS DDR to HS */
1276 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1277 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1278 			   0, false, true, MMC_CMD_RETRIES);
1279 	if (err)
1280 		goto out_err;
1281 
1282 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1283 
1284 	err = mmc_switch_status(card, true);
1285 	if (err)
1286 		goto out_err;
1287 
1288 	/* Switch HS to HS200 */
1289 	val = EXT_CSD_TIMING_HS200 |
1290 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1291 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1292 			   val, card->ext_csd.generic_cmd6_time, 0,
1293 			   false, true, MMC_CMD_RETRIES);
1294 	if (err)
1295 		goto out_err;
1296 
1297 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1298 
1299 	/*
1300 	 * For HS200, CRC errors are not a reliable way to know the switch
1301 	 * failed. If there really is a problem, we would expect tuning will
1302 	 * fail and the result ends up the same.
1303 	 */
1304 	err = mmc_switch_status(card, false);
1305 	if (err)
1306 		goto out_err;
1307 
1308 	mmc_set_bus_speed(card);
1309 
1310 	/* Prepare tuning for HS400 mode. */
1311 	if (host->ops->prepare_hs400_tuning)
1312 		host->ops->prepare_hs400_tuning(host, &host->ios);
1313 
1314 	return 0;
1315 
1316 out_err:
1317 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1318 	       __func__, err);
1319 	return err;
1320 }
1321 
1322 static void mmc_select_driver_type(struct mmc_card *card)
1323 {
1324 	int card_drv_type, drive_strength, drv_type = 0;
1325 	int fixed_drv_type = card->host->fixed_drv_type;
1326 
1327 	card_drv_type = card->ext_csd.raw_driver_strength |
1328 			mmc_driver_type_mask(0);
1329 
1330 	if (fixed_drv_type >= 0)
1331 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1332 				 ? fixed_drv_type : 0;
1333 	else
1334 		drive_strength = mmc_select_drive_strength(card,
1335 							   card->ext_csd.hs200_max_dtr,
1336 							   card_drv_type, &drv_type);
1337 
1338 	card->drive_strength = drive_strength;
1339 
1340 	if (drv_type)
1341 		mmc_set_driver_type(card->host, drv_type);
1342 }
1343 
1344 static int mmc_select_hs400es(struct mmc_card *card)
1345 {
1346 	struct mmc_host *host = card->host;
1347 	int err = -EINVAL;
1348 	u8 val;
1349 
1350 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1351 		err = -ENOTSUPP;
1352 		goto out_err;
1353 	}
1354 
1355 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1356 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1357 
1358 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1359 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1360 
1361 	/* If fails try again during next card power cycle */
1362 	if (err)
1363 		goto out_err;
1364 
1365 	err = mmc_select_bus_width(card);
1366 	if (err != MMC_BUS_WIDTH_8) {
1367 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1368 			mmc_hostname(host), err);
1369 		err = err < 0 ? err : -ENOTSUPP;
1370 		goto out_err;
1371 	}
1372 
1373 	/* Switch card to HS mode */
1374 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1375 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1376 			   card->ext_csd.generic_cmd6_time, 0,
1377 			   false, true, MMC_CMD_RETRIES);
1378 	if (err) {
1379 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1380 			mmc_hostname(host), err);
1381 		goto out_err;
1382 	}
1383 
1384 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1385 	err = mmc_switch_status(card, true);
1386 	if (err)
1387 		goto out_err;
1388 
1389 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1390 
1391 	/* Switch card to DDR with strobe bit */
1392 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1393 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1394 			 EXT_CSD_BUS_WIDTH,
1395 			 val,
1396 			 card->ext_csd.generic_cmd6_time);
1397 	if (err) {
1398 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1399 			mmc_hostname(host), err);
1400 		goto out_err;
1401 	}
1402 
1403 	mmc_select_driver_type(card);
1404 
1405 	/* Switch card to HS400 */
1406 	val = EXT_CSD_TIMING_HS400 |
1407 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1408 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1409 			   EXT_CSD_HS_TIMING, val,
1410 			   card->ext_csd.generic_cmd6_time, 0,
1411 			   false, true, MMC_CMD_RETRIES);
1412 	if (err) {
1413 		pr_err("%s: switch to hs400es failed, err:%d\n",
1414 			mmc_hostname(host), err);
1415 		goto out_err;
1416 	}
1417 
1418 	/* Set host controller to HS400 timing and frequency */
1419 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1420 
1421 	/* Controller enable enhanced strobe function */
1422 	host->ios.enhanced_strobe = true;
1423 	if (host->ops->hs400_enhanced_strobe)
1424 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1425 
1426 	err = mmc_switch_status(card, true);
1427 	if (err)
1428 		goto out_err;
1429 
1430 	return 0;
1431 
1432 out_err:
1433 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1434 	       __func__, err);
1435 	return err;
1436 }
1437 
1438 /*
1439  * For device supporting HS200 mode, the following sequence
1440  * should be done before executing the tuning process.
1441  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1442  * 2. switch to HS200 mode
1443  * 3. set the clock to > 52Mhz and <=200MHz
1444  */
1445 static int mmc_select_hs200(struct mmc_card *card)
1446 {
1447 	struct mmc_host *host = card->host;
1448 	unsigned int old_timing, old_signal_voltage;
1449 	int err = -EINVAL;
1450 	u8 val;
1451 
1452 	old_signal_voltage = host->ios.signal_voltage;
1453 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1454 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1455 
1456 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1457 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1458 
1459 	/* If fails try again during next card power cycle */
1460 	if (err)
1461 		return err;
1462 
1463 	mmc_select_driver_type(card);
1464 
1465 	/*
1466 	 * Set the bus width(4 or 8) with host's support and
1467 	 * switch to HS200 mode if bus width is set successfully.
1468 	 */
1469 	err = mmc_select_bus_width(card);
1470 	if (err > 0) {
1471 		val = EXT_CSD_TIMING_HS200 |
1472 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1473 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1474 				   EXT_CSD_HS_TIMING, val,
1475 				   card->ext_csd.generic_cmd6_time, 0,
1476 				   false, true, MMC_CMD_RETRIES);
1477 		if (err)
1478 			goto err;
1479 		old_timing = host->ios.timing;
1480 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1481 
1482 		/*
1483 		 * For HS200, CRC errors are not a reliable way to know the
1484 		 * switch failed. If there really is a problem, we would expect
1485 		 * tuning will fail and the result ends up the same.
1486 		 */
1487 		err = mmc_switch_status(card, false);
1488 
1489 		/*
1490 		 * mmc_select_timing() assumes timing has not changed if
1491 		 * it is a switch error.
1492 		 */
1493 		if (err == -EBADMSG)
1494 			mmc_set_timing(host, old_timing);
1495 	}
1496 err:
1497 	if (err) {
1498 		/* fall back to the old signal voltage, if fails report error */
1499 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1500 			err = -EIO;
1501 
1502 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1503 		       __func__, err);
1504 	}
1505 	return err;
1506 }
1507 
1508 /*
1509  * Activate High Speed, HS200 or HS400ES mode if supported.
1510  */
1511 static int mmc_select_timing(struct mmc_card *card)
1512 {
1513 	int err = 0;
1514 
1515 	if (!mmc_can_ext_csd(card))
1516 		goto bus_speed;
1517 
1518 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1519 		err = mmc_select_hs400es(card);
1520 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1521 		err = mmc_select_hs200(card);
1522 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1523 		err = mmc_select_hs(card);
1524 
1525 	if (err && err != -EBADMSG)
1526 		return err;
1527 
1528 bus_speed:
1529 	/*
1530 	 * Set the bus speed to the selected bus timing.
1531 	 * If timing is not selected, backward compatible is the default.
1532 	 */
1533 	mmc_set_bus_speed(card);
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Execute tuning sequence to seek the proper bus operating
1539  * conditions for HS200 and HS400, which sends CMD21 to the device.
1540  */
1541 static int mmc_hs200_tuning(struct mmc_card *card)
1542 {
1543 	struct mmc_host *host = card->host;
1544 
1545 	/*
1546 	 * Timing should be adjusted to the HS400 target
1547 	 * operation frequency for tuning process
1548 	 */
1549 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1550 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1551 		if (host->ops->prepare_hs400_tuning)
1552 			host->ops->prepare_hs400_tuning(host, &host->ios);
1553 
1554 	return mmc_execute_tuning(card);
1555 }
1556 
1557 /*
1558  * Handle the detection and initialisation of a card.
1559  *
1560  * In the case of a resume, "oldcard" will contain the card
1561  * we're trying to reinitialise.
1562  */
1563 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1564 	struct mmc_card *oldcard)
1565 {
1566 	struct mmc_card *card;
1567 	int err;
1568 	u32 cid[4];
1569 	u32 rocr;
1570 
1571 	WARN_ON(!host->claimed);
1572 
1573 	/* Set correct bus mode for MMC before attempting init */
1574 	if (!mmc_host_is_spi(host))
1575 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1576 
1577 	/*
1578 	 * Since we're changing the OCR value, we seem to
1579 	 * need to tell some cards to go back to the idle
1580 	 * state.  We wait 1ms to give cards time to
1581 	 * respond.
1582 	 * mmc_go_idle is needed for eMMC that are asleep
1583 	 */
1584 	mmc_go_idle(host);
1585 
1586 	/* The extra bit indicates that we support high capacity */
1587 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1588 	if (err)
1589 		goto err;
1590 
1591 	/*
1592 	 * For SPI, enable CRC as appropriate.
1593 	 */
1594 	if (mmc_host_is_spi(host)) {
1595 		err = mmc_spi_set_crc(host, use_spi_crc);
1596 		if (err)
1597 			goto err;
1598 	}
1599 
1600 	/*
1601 	 * Fetch CID from card.
1602 	 */
1603 	err = mmc_send_cid(host, cid);
1604 	if (err)
1605 		goto err;
1606 
1607 	if (oldcard) {
1608 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1609 			pr_debug("%s: Perhaps the card was replaced\n",
1610 				mmc_hostname(host));
1611 			err = -ENOENT;
1612 			goto err;
1613 		}
1614 
1615 		card = oldcard;
1616 	} else {
1617 		/*
1618 		 * Allocate card structure.
1619 		 */
1620 		card = mmc_alloc_card(host, &mmc_type);
1621 		if (IS_ERR(card)) {
1622 			err = PTR_ERR(card);
1623 			goto err;
1624 		}
1625 
1626 		card->ocr = ocr;
1627 		card->type = MMC_TYPE_MMC;
1628 		card->rca = 1;
1629 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1630 	}
1631 
1632 	/*
1633 	 * Call the optional HC's init_card function to handle quirks.
1634 	 */
1635 	if (host->ops->init_card)
1636 		host->ops->init_card(host, card);
1637 
1638 	/*
1639 	 * For native busses:  set card RCA and quit open drain mode.
1640 	 */
1641 	if (!mmc_host_is_spi(host)) {
1642 		err = mmc_set_relative_addr(card);
1643 		if (err)
1644 			goto free_card;
1645 
1646 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1647 	}
1648 
1649 	if (!oldcard) {
1650 		/*
1651 		 * Fetch CSD from card.
1652 		 */
1653 		err = mmc_send_csd(card, card->raw_csd);
1654 		if (err)
1655 			goto free_card;
1656 
1657 		err = mmc_decode_csd(card);
1658 		if (err)
1659 			goto free_card;
1660 		err = mmc_decode_cid(card);
1661 		if (err)
1662 			goto free_card;
1663 	}
1664 
1665 	/*
1666 	 * handling only for cards supporting DSR and hosts requesting
1667 	 * DSR configuration
1668 	 */
1669 	if (card->csd.dsr_imp && host->dsr_req)
1670 		mmc_set_dsr(host);
1671 
1672 	/*
1673 	 * Select card, as all following commands rely on that.
1674 	 */
1675 	if (!mmc_host_is_spi(host)) {
1676 		err = mmc_select_card(card);
1677 		if (err)
1678 			goto free_card;
1679 	}
1680 
1681 	if (!oldcard) {
1682 		/* Read extended CSD. */
1683 		err = mmc_read_ext_csd(card);
1684 		if (err)
1685 			goto free_card;
1686 
1687 		/*
1688 		 * If doing byte addressing, check if required to do sector
1689 		 * addressing.  Handle the case of <2GB cards needing sector
1690 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1691 		 * ocr register has bit 30 set for sector addressing.
1692 		 */
1693 		if (rocr & BIT(30))
1694 			mmc_card_set_blockaddr(card);
1695 
1696 		/* Erase size depends on CSD and Extended CSD */
1697 		mmc_set_erase_size(card);
1698 	}
1699 
1700 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1701 	if (card->ext_csd.rev >= 3) {
1702 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1703 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1704 				 card->ext_csd.generic_cmd6_time);
1705 
1706 		if (err && err != -EBADMSG)
1707 			goto free_card;
1708 
1709 		if (err) {
1710 			/*
1711 			 * Just disable enhanced area off & sz
1712 			 * will try to enable ERASE_GROUP_DEF
1713 			 * during next time reinit
1714 			 */
1715 			card->ext_csd.enhanced_area_offset = -EINVAL;
1716 			card->ext_csd.enhanced_area_size = -EINVAL;
1717 		} else {
1718 			card->ext_csd.erase_group_def = 1;
1719 			/*
1720 			 * enable ERASE_GRP_DEF successfully.
1721 			 * This will affect the erase size, so
1722 			 * here need to reset erase size
1723 			 */
1724 			mmc_set_erase_size(card);
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * Ensure eMMC user default partition is enabled
1730 	 */
1731 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1732 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1733 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1734 				 card->ext_csd.part_config,
1735 				 card->ext_csd.part_time);
1736 		if (err && err != -EBADMSG)
1737 			goto free_card;
1738 	}
1739 
1740 	/*
1741 	 * Enable power_off_notification byte in the ext_csd register
1742 	 */
1743 	if (card->ext_csd.rev >= 6) {
1744 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1745 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1746 				 EXT_CSD_POWER_ON,
1747 				 card->ext_csd.generic_cmd6_time);
1748 		if (err && err != -EBADMSG)
1749 			goto free_card;
1750 
1751 		/*
1752 		 * The err can be -EBADMSG or 0,
1753 		 * so check for success and update the flag
1754 		 */
1755 		if (!err)
1756 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1757 	}
1758 
1759 	/* set erase_arg */
1760 	if (mmc_can_discard(card))
1761 		card->erase_arg = MMC_DISCARD_ARG;
1762 	else if (mmc_can_trim(card))
1763 		card->erase_arg = MMC_TRIM_ARG;
1764 	else
1765 		card->erase_arg = MMC_ERASE_ARG;
1766 
1767 	/*
1768 	 * Select timing interface
1769 	 */
1770 	err = mmc_select_timing(card);
1771 	if (err)
1772 		goto free_card;
1773 
1774 	if (mmc_card_hs200(card)) {
1775 		host->doing_init_tune = 1;
1776 
1777 		err = mmc_hs200_tuning(card);
1778 		if (!err)
1779 			err = mmc_select_hs400(card);
1780 
1781 		host->doing_init_tune = 0;
1782 
1783 		if (err)
1784 			goto free_card;
1785 
1786 	} else if (!mmc_card_hs400es(card)) {
1787 		/* Select the desired bus width optionally */
1788 		err = mmc_select_bus_width(card);
1789 		if (err > 0 && mmc_card_hs(card)) {
1790 			err = mmc_select_hs_ddr(card);
1791 			if (err)
1792 				goto free_card;
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Choose the power class with selected bus interface
1798 	 */
1799 	mmc_select_powerclass(card);
1800 
1801 	/*
1802 	 * Enable HPI feature (if supported)
1803 	 */
1804 	if (card->ext_csd.hpi) {
1805 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1806 				EXT_CSD_HPI_MGMT, 1,
1807 				card->ext_csd.generic_cmd6_time);
1808 		if (err && err != -EBADMSG)
1809 			goto free_card;
1810 		if (err) {
1811 			pr_warn("%s: Enabling HPI failed\n",
1812 				mmc_hostname(card->host));
1813 			card->ext_csd.hpi_en = 0;
1814 		} else {
1815 			card->ext_csd.hpi_en = 1;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * If cache size is higher than 0, this indicates the existence of cache
1821 	 * and it can be turned on. Note that some eMMCs from Micron has been
1822 	 * reported to need ~800 ms timeout, while enabling the cache after
1823 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1824 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1825 	 */
1826 	if (card->ext_csd.cache_size > 0) {
1827 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1828 
1829 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1830 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1831 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1832 		if (err && err != -EBADMSG)
1833 			goto free_card;
1834 
1835 		/*
1836 		 * Only if no error, cache is turned on successfully.
1837 		 */
1838 		if (err) {
1839 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1840 				mmc_hostname(card->host), err);
1841 			card->ext_csd.cache_ctrl = 0;
1842 		} else {
1843 			card->ext_csd.cache_ctrl = 1;
1844 		}
1845 	}
1846 
1847 	/*
1848 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1849 	 * be used with Command Queue.
1850 	 */
1851 	card->ext_csd.cmdq_en = false;
1852 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1853 		err = mmc_cmdq_enable(card);
1854 		if (err && err != -EBADMSG)
1855 			goto free_card;
1856 		if (err) {
1857 			pr_warn("%s: Enabling CMDQ failed\n",
1858 				mmc_hostname(card->host));
1859 			card->ext_csd.cmdq_support = false;
1860 			card->ext_csd.cmdq_depth = 0;
1861 		}
1862 	}
1863 	/*
1864 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1865 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1866 	 * Command Queue.
1867 	 */
1868 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1869 
1870 	if (host->cqe_ops && !host->cqe_enabled) {
1871 		err = host->cqe_ops->cqe_enable(host, card);
1872 		if (!err) {
1873 			host->cqe_enabled = true;
1874 
1875 			if (card->ext_csd.cmdq_en) {
1876 				pr_info("%s: Command Queue Engine enabled\n",
1877 					mmc_hostname(host));
1878 			} else {
1879 				host->hsq_enabled = true;
1880 				pr_info("%s: Host Software Queue enabled\n",
1881 					mmc_hostname(host));
1882 			}
1883 		}
1884 	}
1885 
1886 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1887 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1888 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1889 			mmc_hostname(host));
1890 		err = -EINVAL;
1891 		goto free_card;
1892 	}
1893 
1894 	if (!oldcard)
1895 		host->card = card;
1896 
1897 	return 0;
1898 
1899 free_card:
1900 	if (!oldcard)
1901 		mmc_remove_card(card);
1902 err:
1903 	return err;
1904 }
1905 
1906 static int mmc_can_sleep(struct mmc_card *card)
1907 {
1908 	return card->ext_csd.rev >= 3;
1909 }
1910 
1911 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1912 {
1913 	struct mmc_host *host = cb_data;
1914 
1915 	*busy = host->ops->card_busy(host);
1916 	return 0;
1917 }
1918 
1919 static int mmc_sleep(struct mmc_host *host)
1920 {
1921 	struct mmc_command cmd = {};
1922 	struct mmc_card *card = host->card;
1923 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1924 	bool use_r1b_resp;
1925 	int err;
1926 
1927 	/* Re-tuning can't be done once the card is deselected */
1928 	mmc_retune_hold(host);
1929 
1930 	err = mmc_deselect_cards(host);
1931 	if (err)
1932 		goto out_release;
1933 
1934 	cmd.opcode = MMC_SLEEP_AWAKE;
1935 	cmd.arg = card->rca << 16;
1936 	cmd.arg |= 1 << 15;
1937 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1938 
1939 	err = mmc_wait_for_cmd(host, &cmd, 0);
1940 	if (err)
1941 		goto out_release;
1942 
1943 	/*
1944 	 * If the host does not wait while the card signals busy, then we can
1945 	 * try to poll, but only if the host supports HW polling, as the
1946 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1947 	 * to wait the sleep/awake timeout.
1948 	 */
1949 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1950 		goto out_release;
1951 
1952 	if (!host->ops->card_busy) {
1953 		mmc_delay(timeout_ms);
1954 		goto out_release;
1955 	}
1956 
1957 	err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host);
1958 
1959 out_release:
1960 	mmc_retune_release(host);
1961 	return err;
1962 }
1963 
1964 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1965 {
1966 	return card &&
1967 		mmc_card_mmc(card) &&
1968 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1969 }
1970 
1971 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1972 {
1973 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1974 	int err;
1975 
1976 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1977 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1978 		timeout = card->ext_csd.power_off_longtime;
1979 
1980 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1981 			EXT_CSD_POWER_OFF_NOTIFICATION,
1982 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1983 	if (err)
1984 		pr_err("%s: Power Off Notification timed out, %u\n",
1985 		       mmc_hostname(card->host), timeout);
1986 
1987 	/* Disable the power off notification after the switch operation. */
1988 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1989 
1990 	return err;
1991 }
1992 
1993 /*
1994  * Host is being removed. Free up the current card.
1995  */
1996 static void mmc_remove(struct mmc_host *host)
1997 {
1998 	mmc_remove_card(host->card);
1999 	host->card = NULL;
2000 }
2001 
2002 /*
2003  * Card detection - card is alive.
2004  */
2005 static int mmc_alive(struct mmc_host *host)
2006 {
2007 	return mmc_send_status(host->card, NULL);
2008 }
2009 
2010 /*
2011  * Card detection callback from host.
2012  */
2013 static void mmc_detect(struct mmc_host *host)
2014 {
2015 	int err;
2016 
2017 	mmc_get_card(host->card, NULL);
2018 
2019 	/*
2020 	 * Just check if our card has been removed.
2021 	 */
2022 	err = _mmc_detect_card_removed(host);
2023 
2024 	mmc_put_card(host->card, NULL);
2025 
2026 	if (err) {
2027 		mmc_remove(host);
2028 
2029 		mmc_claim_host(host);
2030 		mmc_detach_bus(host);
2031 		mmc_power_off(host);
2032 		mmc_release_host(host);
2033 	}
2034 }
2035 
2036 static bool _mmc_cache_enabled(struct mmc_host *host)
2037 {
2038 	return host->card->ext_csd.cache_size > 0 &&
2039 	       host->card->ext_csd.cache_ctrl & 1;
2040 }
2041 
2042 /*
2043  * Flush the internal cache of the eMMC to non-volatile storage.
2044  */
2045 static int _mmc_flush_cache(struct mmc_host *host)
2046 {
2047 	int err = 0;
2048 
2049 	if (_mmc_cache_enabled(host)) {
2050 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2051 				 EXT_CSD_FLUSH_CACHE, 1,
2052 				 CACHE_FLUSH_TIMEOUT_MS);
2053 		if (err)
2054 			pr_err("%s: cache flush error %d\n",
2055 			       mmc_hostname(host), err);
2056 	}
2057 
2058 	return err;
2059 }
2060 
2061 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2062 {
2063 	int err = 0;
2064 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2065 					EXT_CSD_POWER_OFF_LONG;
2066 
2067 	mmc_claim_host(host);
2068 
2069 	if (mmc_card_suspended(host->card))
2070 		goto out;
2071 
2072 	err = _mmc_flush_cache(host);
2073 	if (err)
2074 		goto out;
2075 
2076 	if (mmc_can_poweroff_notify(host->card) &&
2077 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2078 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2079 		err = mmc_poweroff_notify(host->card, notify_type);
2080 	else if (mmc_can_sleep(host->card))
2081 		err = mmc_sleep(host);
2082 	else if (!mmc_host_is_spi(host))
2083 		err = mmc_deselect_cards(host);
2084 
2085 	if (!err) {
2086 		mmc_power_off(host);
2087 		mmc_card_set_suspended(host->card);
2088 	}
2089 out:
2090 	mmc_release_host(host);
2091 	return err;
2092 }
2093 
2094 /*
2095  * Suspend callback
2096  */
2097 static int mmc_suspend(struct mmc_host *host)
2098 {
2099 	int err;
2100 
2101 	err = _mmc_suspend(host, true);
2102 	if (!err) {
2103 		pm_runtime_disable(&host->card->dev);
2104 		pm_runtime_set_suspended(&host->card->dev);
2105 	}
2106 
2107 	return err;
2108 }
2109 
2110 /*
2111  * This function tries to determine if the same card is still present
2112  * and, if so, restore all state to it.
2113  */
2114 static int _mmc_resume(struct mmc_host *host)
2115 {
2116 	int err = 0;
2117 
2118 	mmc_claim_host(host);
2119 
2120 	if (!mmc_card_suspended(host->card))
2121 		goto out;
2122 
2123 	mmc_power_up(host, host->card->ocr);
2124 	err = mmc_init_card(host, host->card->ocr, host->card);
2125 	mmc_card_clr_suspended(host->card);
2126 
2127 out:
2128 	mmc_release_host(host);
2129 	return err;
2130 }
2131 
2132 /*
2133  * Shutdown callback
2134  */
2135 static int mmc_shutdown(struct mmc_host *host)
2136 {
2137 	int err = 0;
2138 
2139 	/*
2140 	 * In a specific case for poweroff notify, we need to resume the card
2141 	 * before we can shutdown it properly.
2142 	 */
2143 	if (mmc_can_poweroff_notify(host->card) &&
2144 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2145 		err = _mmc_resume(host);
2146 
2147 	if (!err)
2148 		err = _mmc_suspend(host, false);
2149 
2150 	return err;
2151 }
2152 
2153 /*
2154  * Callback for resume.
2155  */
2156 static int mmc_resume(struct mmc_host *host)
2157 {
2158 	pm_runtime_enable(&host->card->dev);
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Callback for runtime_suspend.
2164  */
2165 static int mmc_runtime_suspend(struct mmc_host *host)
2166 {
2167 	int err;
2168 
2169 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2170 		return 0;
2171 
2172 	err = _mmc_suspend(host, true);
2173 	if (err)
2174 		pr_err("%s: error %d doing aggressive suspend\n",
2175 			mmc_hostname(host), err);
2176 
2177 	return err;
2178 }
2179 
2180 /*
2181  * Callback for runtime_resume.
2182  */
2183 static int mmc_runtime_resume(struct mmc_host *host)
2184 {
2185 	int err;
2186 
2187 	err = _mmc_resume(host);
2188 	if (err && err != -ENOMEDIUM)
2189 		pr_err("%s: error %d doing runtime resume\n",
2190 			mmc_hostname(host), err);
2191 
2192 	return 0;
2193 }
2194 
2195 static int mmc_can_reset(struct mmc_card *card)
2196 {
2197 	u8 rst_n_function;
2198 
2199 	rst_n_function = card->ext_csd.rst_n_function;
2200 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2201 		return 0;
2202 	return 1;
2203 }
2204 
2205 static int _mmc_hw_reset(struct mmc_host *host)
2206 {
2207 	struct mmc_card *card = host->card;
2208 
2209 	/*
2210 	 * In the case of recovery, we can't expect flushing the cache to work
2211 	 * always, but we have a go and ignore errors.
2212 	 */
2213 	_mmc_flush_cache(host);
2214 
2215 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2216 	     mmc_can_reset(card)) {
2217 		/* If the card accept RST_n signal, send it. */
2218 		mmc_set_clock(host, host->f_init);
2219 		host->ops->hw_reset(host);
2220 		/* Set initial state and call mmc_set_ios */
2221 		mmc_set_initial_state(host);
2222 	} else {
2223 		/* Do a brute force power cycle */
2224 		mmc_power_cycle(host, card->ocr);
2225 		mmc_pwrseq_reset(host);
2226 	}
2227 	return mmc_init_card(host, card->ocr, card);
2228 }
2229 
2230 static const struct mmc_bus_ops mmc_ops = {
2231 	.remove = mmc_remove,
2232 	.detect = mmc_detect,
2233 	.suspend = mmc_suspend,
2234 	.resume = mmc_resume,
2235 	.runtime_suspend = mmc_runtime_suspend,
2236 	.runtime_resume = mmc_runtime_resume,
2237 	.alive = mmc_alive,
2238 	.shutdown = mmc_shutdown,
2239 	.hw_reset = _mmc_hw_reset,
2240 	.cache_enabled = _mmc_cache_enabled,
2241 	.flush_cache = _mmc_flush_cache,
2242 };
2243 
2244 /*
2245  * Starting point for MMC card init.
2246  */
2247 int mmc_attach_mmc(struct mmc_host *host)
2248 {
2249 	int err;
2250 	u32 ocr, rocr;
2251 
2252 	WARN_ON(!host->claimed);
2253 
2254 	/* Set correct bus mode for MMC before attempting attach */
2255 	if (!mmc_host_is_spi(host))
2256 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2257 
2258 	err = mmc_send_op_cond(host, 0, &ocr);
2259 	if (err)
2260 		return err;
2261 
2262 	mmc_attach_bus(host, &mmc_ops);
2263 	if (host->ocr_avail_mmc)
2264 		host->ocr_avail = host->ocr_avail_mmc;
2265 
2266 	/*
2267 	 * We need to get OCR a different way for SPI.
2268 	 */
2269 	if (mmc_host_is_spi(host)) {
2270 		err = mmc_spi_read_ocr(host, 1, &ocr);
2271 		if (err)
2272 			goto err;
2273 	}
2274 
2275 	rocr = mmc_select_voltage(host, ocr);
2276 
2277 	/*
2278 	 * Can we support the voltage of the card?
2279 	 */
2280 	if (!rocr) {
2281 		err = -EINVAL;
2282 		goto err;
2283 	}
2284 
2285 	/*
2286 	 * Detect and init the card.
2287 	 */
2288 	err = mmc_init_card(host, rocr, NULL);
2289 	if (err)
2290 		goto err;
2291 
2292 	mmc_release_host(host);
2293 	err = mmc_add_card(host->card);
2294 	if (err)
2295 		goto remove_card;
2296 
2297 	mmc_claim_host(host);
2298 	return 0;
2299 
2300 remove_card:
2301 	mmc_remove_card(host->card);
2302 	mmc_claim_host(host);
2303 	host->card = NULL;
2304 err:
2305 	mmc_detach_bus(host);
2306 
2307 	pr_err("%s: error %d whilst initialising MMC card\n",
2308 		mmc_hostname(host), err);
2309 
2310 	return err;
2311 }
2312