1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "quirks.h" 26 #include "sd_ops.h" 27 #include "pwrseq.h" 28 29 #define DEFAULT_CMD6_TIMEOUT_MS 500 30 #define MIN_CACHE_EN_TIMEOUT_MS 1600 31 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 32 33 static const unsigned int tran_exp[] = { 34 10000, 100000, 1000000, 10000000, 35 0, 0, 0, 0 36 }; 37 38 static const unsigned char tran_mant[] = { 39 0, 10, 12, 13, 15, 20, 25, 30, 40 35, 40, 45, 50, 55, 60, 70, 80, 41 }; 42 43 static const unsigned int taac_exp[] = { 44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 45 }; 46 47 static const unsigned int taac_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 #define UNSTUFF_BITS(resp,start,size) \ 53 ({ \ 54 const int __size = size; \ 55 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 56 const int __off = 3 - ((start) / 32); \ 57 const int __shft = (start) & 31; \ 58 u32 __res; \ 59 \ 60 __res = resp[__off] >> __shft; \ 61 if (__size + __shft > 32) \ 62 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 63 __res & __mask; \ 64 }) 65 66 /* 67 * Given the decoded CSD structure, decode the raw CID to our CID structure. 68 */ 69 static int mmc_decode_cid(struct mmc_card *card) 70 { 71 u32 *resp = card->raw_cid; 72 73 /* 74 * The selection of the format here is based upon published 75 * specs from sandisk and from what people have reported. 76 */ 77 switch (card->csd.mmca_vsn) { 78 case 0: /* MMC v1.0 - v1.2 */ 79 case 1: /* MMC v1.4 */ 80 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 81 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 82 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 83 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 84 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 85 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 86 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 87 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 88 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 89 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 90 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 91 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 92 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 93 break; 94 95 case 2: /* MMC v2.0 - v2.2 */ 96 case 3: /* MMC v3.1 - v3.3 */ 97 case 4: /* MMC v4 */ 98 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 99 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 100 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 101 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 102 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 103 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 104 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 105 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 106 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 107 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 108 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 109 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 110 break; 111 112 default: 113 pr_err("%s: card has unknown MMCA version %d\n", 114 mmc_hostname(card->host), card->csd.mmca_vsn); 115 return -EINVAL; 116 } 117 118 return 0; 119 } 120 121 static void mmc_set_erase_size(struct mmc_card *card) 122 { 123 if (card->ext_csd.erase_group_def & 1) 124 card->erase_size = card->ext_csd.hc_erase_size; 125 else 126 card->erase_size = card->csd.erase_size; 127 128 mmc_init_erase(card); 129 } 130 131 /* 132 * Given a 128-bit response, decode to our card CSD structure. 133 */ 134 static int mmc_decode_csd(struct mmc_card *card) 135 { 136 struct mmc_csd *csd = &card->csd; 137 unsigned int e, m, a, b; 138 u32 *resp = card->raw_csd; 139 140 /* 141 * We only understand CSD structure v1.1 and v1.2. 142 * v1.2 has extra information in bits 15, 11 and 10. 143 * We also support eMMC v4.4 & v4.41. 144 */ 145 csd->structure = UNSTUFF_BITS(resp, 126, 2); 146 if (csd->structure == 0) { 147 pr_err("%s: unrecognised CSD structure version %d\n", 148 mmc_hostname(card->host), csd->structure); 149 return -EINVAL; 150 } 151 152 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 153 m = UNSTUFF_BITS(resp, 115, 4); 154 e = UNSTUFF_BITS(resp, 112, 3); 155 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 156 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 157 158 m = UNSTUFF_BITS(resp, 99, 4); 159 e = UNSTUFF_BITS(resp, 96, 3); 160 csd->max_dtr = tran_exp[e] * tran_mant[m]; 161 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 162 163 e = UNSTUFF_BITS(resp, 47, 3); 164 m = UNSTUFF_BITS(resp, 62, 12); 165 csd->capacity = (1 + m) << (e + 2); 166 167 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 168 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 169 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 170 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 171 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 172 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 173 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 174 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 175 176 if (csd->write_blkbits >= 9) { 177 a = UNSTUFF_BITS(resp, 42, 5); 178 b = UNSTUFF_BITS(resp, 37, 5); 179 csd->erase_size = (a + 1) * (b + 1); 180 csd->erase_size <<= csd->write_blkbits - 9; 181 } 182 183 return 0; 184 } 185 186 static void mmc_select_card_type(struct mmc_card *card) 187 { 188 struct mmc_host *host = card->host; 189 u8 card_type = card->ext_csd.raw_card_type; 190 u32 caps = host->caps, caps2 = host->caps2; 191 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 192 unsigned int avail_type = 0; 193 194 if (caps & MMC_CAP_MMC_HIGHSPEED && 195 card_type & EXT_CSD_CARD_TYPE_HS_26) { 196 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 197 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 198 } 199 200 if (caps & MMC_CAP_MMC_HIGHSPEED && 201 card_type & EXT_CSD_CARD_TYPE_HS_52) { 202 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 203 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 204 } 205 206 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 207 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 208 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 209 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 210 } 211 212 if (caps & MMC_CAP_1_2V_DDR && 213 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 216 } 217 218 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 219 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 220 hs200_max_dtr = MMC_HS200_MAX_DTR; 221 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 222 } 223 224 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 225 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 226 hs200_max_dtr = MMC_HS200_MAX_DTR; 227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 228 } 229 230 if (caps2 & MMC_CAP2_HS400_1_8V && 231 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 232 hs200_max_dtr = MMC_HS200_MAX_DTR; 233 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 234 } 235 236 if (caps2 & MMC_CAP2_HS400_1_2V && 237 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 238 hs200_max_dtr = MMC_HS200_MAX_DTR; 239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 240 } 241 242 if ((caps2 & MMC_CAP2_HS400_ES) && 243 card->ext_csd.strobe_support && 244 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 245 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 246 247 card->ext_csd.hs_max_dtr = hs_max_dtr; 248 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 249 card->mmc_avail_type = avail_type; 250 } 251 252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 253 { 254 u8 hc_erase_grp_sz, hc_wp_grp_sz; 255 256 /* 257 * Disable these attributes by default 258 */ 259 card->ext_csd.enhanced_area_offset = -EINVAL; 260 card->ext_csd.enhanced_area_size = -EINVAL; 261 262 /* 263 * Enhanced area feature support -- check whether the eMMC 264 * card has the Enhanced area enabled. If so, export enhanced 265 * area offset and size to user by adding sysfs interface. 266 */ 267 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 268 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 269 if (card->ext_csd.partition_setting_completed) { 270 hc_erase_grp_sz = 271 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 272 hc_wp_grp_sz = 273 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 274 275 /* 276 * calculate the enhanced data area offset, in bytes 277 */ 278 card->ext_csd.enhanced_area_offset = 279 (((unsigned long long)ext_csd[139]) << 24) + 280 (((unsigned long long)ext_csd[138]) << 16) + 281 (((unsigned long long)ext_csd[137]) << 8) + 282 (((unsigned long long)ext_csd[136])); 283 if (mmc_card_blockaddr(card)) 284 card->ext_csd.enhanced_area_offset <<= 9; 285 /* 286 * calculate the enhanced data area size, in kilobytes 287 */ 288 card->ext_csd.enhanced_area_size = 289 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 290 ext_csd[140]; 291 card->ext_csd.enhanced_area_size *= 292 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 293 card->ext_csd.enhanced_area_size <<= 9; 294 } else { 295 pr_warn("%s: defines enhanced area without partition setting complete\n", 296 mmc_hostname(card->host)); 297 } 298 } 299 } 300 301 static void mmc_part_add(struct mmc_card *card, u64 size, 302 unsigned int part_cfg, char *name, int idx, bool ro, 303 int area_type) 304 { 305 card->part[card->nr_parts].size = size; 306 card->part[card->nr_parts].part_cfg = part_cfg; 307 sprintf(card->part[card->nr_parts].name, name, idx); 308 card->part[card->nr_parts].force_ro = ro; 309 card->part[card->nr_parts].area_type = area_type; 310 card->nr_parts++; 311 } 312 313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 314 { 315 int idx; 316 u8 hc_erase_grp_sz, hc_wp_grp_sz; 317 u64 part_size; 318 319 /* 320 * General purpose partition feature support -- 321 * If ext_csd has the size of general purpose partitions, 322 * set size, part_cfg, partition name in mmc_part. 323 */ 324 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 325 EXT_CSD_PART_SUPPORT_PART_EN) { 326 hc_erase_grp_sz = 327 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 328 hc_wp_grp_sz = 329 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 330 331 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 332 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 335 continue; 336 if (card->ext_csd.partition_setting_completed == 0) { 337 pr_warn("%s: has partition size defined without partition complete\n", 338 mmc_hostname(card->host)); 339 break; 340 } 341 part_size = 342 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 343 << 16) + 344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 345 << 8) + 346 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 347 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 348 mmc_part_add(card, part_size << 19, 349 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 350 "gp%d", idx, false, 351 MMC_BLK_DATA_AREA_GP); 352 } 353 } 354 } 355 356 /* Minimum partition switch timeout in milliseconds */ 357 #define MMC_MIN_PART_SWITCH_TIME 300 358 359 /* 360 * Decode extended CSD. 361 */ 362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 363 { 364 int err = 0, idx; 365 u64 part_size; 366 struct device_node *np; 367 bool broken_hpi = false; 368 369 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 370 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 371 if (card->csd.structure == 3) { 372 if (card->ext_csd.raw_ext_csd_structure > 2) { 373 pr_err("%s: unrecognised EXT_CSD structure " 374 "version %d\n", mmc_hostname(card->host), 375 card->ext_csd.raw_ext_csd_structure); 376 err = -EINVAL; 377 goto out; 378 } 379 } 380 381 np = mmc_of_find_child_device(card->host, 0); 382 if (np && of_device_is_compatible(np, "mmc-card")) 383 broken_hpi = of_property_read_bool(np, "broken-hpi"); 384 of_node_put(np); 385 386 /* 387 * The EXT_CSD format is meant to be forward compatible. As long 388 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 389 * are authorized, see JEDEC JESD84-B50 section B.8. 390 */ 391 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 392 393 /* fixup device after ext_csd revision field is updated */ 394 mmc_fixup_device(card, mmc_ext_csd_fixups); 395 396 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 397 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 398 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 399 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 400 if (card->ext_csd.rev >= 2) { 401 card->ext_csd.sectors = 402 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 403 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 404 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 405 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 406 407 /* Cards with density > 2GiB are sector addressed */ 408 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 409 mmc_card_set_blockaddr(card); 410 } 411 412 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 413 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 414 mmc_select_card_type(card); 415 416 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 417 card->ext_csd.raw_erase_timeout_mult = 418 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 419 card->ext_csd.raw_hc_erase_grp_size = 420 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 421 card->ext_csd.raw_boot_mult = 422 ext_csd[EXT_CSD_BOOT_MULT]; 423 if (card->ext_csd.rev >= 3) { 424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 426 427 /* EXT_CSD value is in units of 10ms, but we store in ms */ 428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 429 430 /* Sleep / awake timeout in 100ns units */ 431 if (sa_shift > 0 && sa_shift <= 0x17) 432 card->ext_csd.sa_timeout = 433 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 434 card->ext_csd.erase_group_def = 435 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 436 card->ext_csd.hc_erase_timeout = 300 * 437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 438 card->ext_csd.hc_erase_size = 439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 440 441 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 442 443 /* 444 * There are two boot regions of equal size, defined in 445 * multiples of 128K. 446 */ 447 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 448 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 449 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 450 mmc_part_add(card, part_size, 451 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 452 "boot%d", idx, true, 453 MMC_BLK_DATA_AREA_BOOT); 454 } 455 } 456 } 457 458 card->ext_csd.raw_hc_erase_gap_size = 459 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 460 card->ext_csd.raw_sec_trim_mult = 461 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 462 card->ext_csd.raw_sec_erase_mult = 463 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 464 card->ext_csd.raw_sec_feature_support = 465 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 466 card->ext_csd.raw_trim_mult = 467 ext_csd[EXT_CSD_TRIM_MULT]; 468 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 469 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 470 if (card->ext_csd.rev >= 4) { 471 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 472 EXT_CSD_PART_SETTING_COMPLETED) 473 card->ext_csd.partition_setting_completed = 1; 474 else 475 card->ext_csd.partition_setting_completed = 0; 476 477 mmc_manage_enhanced_area(card, ext_csd); 478 479 mmc_manage_gp_partitions(card, ext_csd); 480 481 card->ext_csd.sec_trim_mult = 482 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 483 card->ext_csd.sec_erase_mult = 484 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 485 card->ext_csd.sec_feature_support = 486 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 487 card->ext_csd.trim_timeout = 300 * 488 ext_csd[EXT_CSD_TRIM_MULT]; 489 490 /* 491 * Note that the call to mmc_part_add above defaults to read 492 * only. If this default assumption is changed, the call must 493 * take into account the value of boot_locked below. 494 */ 495 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 496 card->ext_csd.boot_ro_lockable = true; 497 498 /* Save power class values */ 499 card->ext_csd.raw_pwr_cl_52_195 = 500 ext_csd[EXT_CSD_PWR_CL_52_195]; 501 card->ext_csd.raw_pwr_cl_26_195 = 502 ext_csd[EXT_CSD_PWR_CL_26_195]; 503 card->ext_csd.raw_pwr_cl_52_360 = 504 ext_csd[EXT_CSD_PWR_CL_52_360]; 505 card->ext_csd.raw_pwr_cl_26_360 = 506 ext_csd[EXT_CSD_PWR_CL_26_360]; 507 card->ext_csd.raw_pwr_cl_200_195 = 508 ext_csd[EXT_CSD_PWR_CL_200_195]; 509 card->ext_csd.raw_pwr_cl_200_360 = 510 ext_csd[EXT_CSD_PWR_CL_200_360]; 511 card->ext_csd.raw_pwr_cl_ddr_52_195 = 512 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 513 card->ext_csd.raw_pwr_cl_ddr_52_360 = 514 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 515 card->ext_csd.raw_pwr_cl_ddr_200_360 = 516 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 517 } 518 519 if (card->ext_csd.rev >= 5) { 520 /* Adjust production date as per JEDEC JESD84-B451 */ 521 if (card->cid.year < 2010) 522 card->cid.year += 16; 523 524 /* check whether the eMMC card supports BKOPS */ 525 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 526 card->ext_csd.bkops = 1; 527 card->ext_csd.man_bkops_en = 528 (ext_csd[EXT_CSD_BKOPS_EN] & 529 EXT_CSD_MANUAL_BKOPS_MASK); 530 card->ext_csd.raw_bkops_status = 531 ext_csd[EXT_CSD_BKOPS_STATUS]; 532 if (card->ext_csd.man_bkops_en) 533 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 534 mmc_hostname(card->host)); 535 card->ext_csd.auto_bkops_en = 536 (ext_csd[EXT_CSD_BKOPS_EN] & 537 EXT_CSD_AUTO_BKOPS_MASK); 538 if (card->ext_csd.auto_bkops_en) 539 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 540 mmc_hostname(card->host)); 541 } 542 543 /* check whether the eMMC card supports HPI */ 544 if (!mmc_card_broken_hpi(card) && 545 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 546 card->ext_csd.hpi = 1; 547 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 548 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 549 else 550 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 551 /* 552 * Indicate the maximum timeout to close 553 * a command interrupted by HPI 554 */ 555 card->ext_csd.out_of_int_time = 556 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 557 } 558 559 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 560 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 561 562 /* 563 * RPMB regions are defined in multiples of 128K. 564 */ 565 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 566 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 567 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 568 EXT_CSD_PART_CONFIG_ACC_RPMB, 569 "rpmb", 0, false, 570 MMC_BLK_DATA_AREA_RPMB); 571 } 572 } 573 574 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 575 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 576 card->erased_byte = 0xFF; 577 else 578 card->erased_byte = 0x0; 579 580 /* eMMC v4.5 or later */ 581 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 582 if (card->ext_csd.rev >= 6) { 583 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 584 585 card->ext_csd.generic_cmd6_time = 10 * 586 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 587 card->ext_csd.power_off_longtime = 10 * 588 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 589 590 card->ext_csd.cache_size = 591 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 592 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 593 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 594 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 595 596 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 597 card->ext_csd.data_sector_size = 4096; 598 else 599 card->ext_csd.data_sector_size = 512; 600 601 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 602 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 603 card->ext_csd.data_tag_unit_size = 604 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 605 (card->ext_csd.data_sector_size); 606 } else { 607 card->ext_csd.data_tag_unit_size = 0; 608 } 609 610 card->ext_csd.max_packed_writes = 611 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 612 card->ext_csd.max_packed_reads = 613 ext_csd[EXT_CSD_MAX_PACKED_READS]; 614 } else { 615 card->ext_csd.data_sector_size = 512; 616 } 617 618 /* 619 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 620 * when accessing a specific field", so use it here if there is no 621 * PARTITION_SWITCH_TIME. 622 */ 623 if (!card->ext_csd.part_time) 624 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 625 /* Some eMMC set the value too low so set a minimum */ 626 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 627 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 628 629 /* eMMC v5 or later */ 630 if (card->ext_csd.rev >= 7) { 631 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 632 MMC_FIRMWARE_LEN); 633 card->ext_csd.ffu_capable = 634 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 635 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 636 637 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 638 card->ext_csd.device_life_time_est_typ_a = 639 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 640 card->ext_csd.device_life_time_est_typ_b = 641 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 642 } 643 644 /* eMMC v5.1 or later */ 645 if (card->ext_csd.rev >= 8) { 646 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 647 EXT_CSD_CMDQ_SUPPORTED; 648 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 649 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 650 /* Exclude inefficiently small queue depths */ 651 if (card->ext_csd.cmdq_depth <= 2) { 652 card->ext_csd.cmdq_support = false; 653 card->ext_csd.cmdq_depth = 0; 654 } 655 if (card->ext_csd.cmdq_support) { 656 pr_debug("%s: Command Queue supported depth %u\n", 657 mmc_hostname(card->host), 658 card->ext_csd.cmdq_depth); 659 } 660 card->ext_csd.enhanced_rpmb_supported = 661 (card->ext_csd.rel_param & 662 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 663 } 664 out: 665 return err; 666 } 667 668 static int mmc_read_ext_csd(struct mmc_card *card) 669 { 670 u8 *ext_csd; 671 int err; 672 673 if (!mmc_can_ext_csd(card)) 674 return 0; 675 676 err = mmc_get_ext_csd(card, &ext_csd); 677 if (err) { 678 /* If the host or the card can't do the switch, 679 * fail more gracefully. */ 680 if ((err != -EINVAL) 681 && (err != -ENOSYS) 682 && (err != -EFAULT)) 683 return err; 684 685 /* 686 * High capacity cards should have this "magic" size 687 * stored in their CSD. 688 */ 689 if (card->csd.capacity == (4096 * 512)) { 690 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 691 mmc_hostname(card->host)); 692 } else { 693 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 694 mmc_hostname(card->host)); 695 err = 0; 696 } 697 698 return err; 699 } 700 701 err = mmc_decode_ext_csd(card, ext_csd); 702 kfree(ext_csd); 703 return err; 704 } 705 706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 707 { 708 u8 *bw_ext_csd; 709 int err; 710 711 if (bus_width == MMC_BUS_WIDTH_1) 712 return 0; 713 714 err = mmc_get_ext_csd(card, &bw_ext_csd); 715 if (err) 716 return err; 717 718 /* only compare read only fields */ 719 err = !((card->ext_csd.raw_partition_support == 720 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 721 (card->ext_csd.raw_erased_mem_count == 722 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 723 (card->ext_csd.rev == 724 bw_ext_csd[EXT_CSD_REV]) && 725 (card->ext_csd.raw_ext_csd_structure == 726 bw_ext_csd[EXT_CSD_STRUCTURE]) && 727 (card->ext_csd.raw_card_type == 728 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 729 (card->ext_csd.raw_s_a_timeout == 730 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 731 (card->ext_csd.raw_hc_erase_gap_size == 732 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 733 (card->ext_csd.raw_erase_timeout_mult == 734 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 735 (card->ext_csd.raw_hc_erase_grp_size == 736 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 737 (card->ext_csd.raw_sec_trim_mult == 738 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 739 (card->ext_csd.raw_sec_erase_mult == 740 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 741 (card->ext_csd.raw_sec_feature_support == 742 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 743 (card->ext_csd.raw_trim_mult == 744 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 745 (card->ext_csd.raw_sectors[0] == 746 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 747 (card->ext_csd.raw_sectors[1] == 748 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 749 (card->ext_csd.raw_sectors[2] == 750 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 751 (card->ext_csd.raw_sectors[3] == 752 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 753 (card->ext_csd.raw_pwr_cl_52_195 == 754 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 755 (card->ext_csd.raw_pwr_cl_26_195 == 756 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 757 (card->ext_csd.raw_pwr_cl_52_360 == 758 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 759 (card->ext_csd.raw_pwr_cl_26_360 == 760 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 761 (card->ext_csd.raw_pwr_cl_200_195 == 762 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 763 (card->ext_csd.raw_pwr_cl_200_360 == 764 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 765 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 766 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 767 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 768 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 769 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 770 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 771 772 if (err) 773 err = -EINVAL; 774 775 kfree(bw_ext_csd); 776 return err; 777 } 778 779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 780 card->raw_cid[2], card->raw_cid[3]); 781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 782 card->raw_csd[2], card->raw_csd[3]); 783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 786 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 787 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 788 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 789 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 790 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 791 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 792 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 793 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 794 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 795 card->ext_csd.device_life_time_est_typ_a, 796 card->ext_csd.device_life_time_est_typ_b); 797 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 798 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 799 card->ext_csd.enhanced_area_offset); 800 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 801 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 802 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 803 card->ext_csd.enhanced_rpmb_supported); 804 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 805 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 806 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 807 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 808 809 static ssize_t mmc_fwrev_show(struct device *dev, 810 struct device_attribute *attr, 811 char *buf) 812 { 813 struct mmc_card *card = mmc_dev_to_card(dev); 814 815 if (card->ext_csd.rev < 7) { 816 return sprintf(buf, "0x%x\n", card->cid.fwrev); 817 } else { 818 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 819 card->ext_csd.fwrev); 820 } 821 } 822 823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 824 825 static ssize_t mmc_dsr_show(struct device *dev, 826 struct device_attribute *attr, 827 char *buf) 828 { 829 struct mmc_card *card = mmc_dev_to_card(dev); 830 struct mmc_host *host = card->host; 831 832 if (card->csd.dsr_imp && host->dsr_req) 833 return sprintf(buf, "0x%x\n", host->dsr); 834 else 835 /* return default DSR value */ 836 return sprintf(buf, "0x%x\n", 0x404); 837 } 838 839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 840 841 static struct attribute *mmc_std_attrs[] = { 842 &dev_attr_cid.attr, 843 &dev_attr_csd.attr, 844 &dev_attr_date.attr, 845 &dev_attr_erase_size.attr, 846 &dev_attr_preferred_erase_size.attr, 847 &dev_attr_fwrev.attr, 848 &dev_attr_ffu_capable.attr, 849 &dev_attr_hwrev.attr, 850 &dev_attr_manfid.attr, 851 &dev_attr_name.attr, 852 &dev_attr_oemid.attr, 853 &dev_attr_prv.attr, 854 &dev_attr_rev.attr, 855 &dev_attr_pre_eol_info.attr, 856 &dev_attr_life_time.attr, 857 &dev_attr_serial.attr, 858 &dev_attr_enhanced_area_offset.attr, 859 &dev_attr_enhanced_area_size.attr, 860 &dev_attr_raw_rpmb_size_mult.attr, 861 &dev_attr_enhanced_rpmb_supported.attr, 862 &dev_attr_rel_sectors.attr, 863 &dev_attr_ocr.attr, 864 &dev_attr_rca.attr, 865 &dev_attr_dsr.attr, 866 &dev_attr_cmdq_en.attr, 867 NULL, 868 }; 869 ATTRIBUTE_GROUPS(mmc_std); 870 871 static struct device_type mmc_type = { 872 .groups = mmc_std_groups, 873 }; 874 875 /* 876 * Select the PowerClass for the current bus width 877 * If power class is defined for 4/8 bit bus in the 878 * extended CSD register, select it by executing the 879 * mmc_switch command. 880 */ 881 static int __mmc_select_powerclass(struct mmc_card *card, 882 unsigned int bus_width) 883 { 884 struct mmc_host *host = card->host; 885 struct mmc_ext_csd *ext_csd = &card->ext_csd; 886 unsigned int pwrclass_val = 0; 887 int err = 0; 888 889 switch (1 << host->ios.vdd) { 890 case MMC_VDD_165_195: 891 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 892 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 893 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 894 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 895 ext_csd->raw_pwr_cl_52_195 : 896 ext_csd->raw_pwr_cl_ddr_52_195; 897 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 898 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 899 break; 900 case MMC_VDD_27_28: 901 case MMC_VDD_28_29: 902 case MMC_VDD_29_30: 903 case MMC_VDD_30_31: 904 case MMC_VDD_31_32: 905 case MMC_VDD_32_33: 906 case MMC_VDD_33_34: 907 case MMC_VDD_34_35: 908 case MMC_VDD_35_36: 909 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 910 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 911 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 912 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 913 ext_csd->raw_pwr_cl_52_360 : 914 ext_csd->raw_pwr_cl_ddr_52_360; 915 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 916 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 917 ext_csd->raw_pwr_cl_ddr_200_360 : 918 ext_csd->raw_pwr_cl_200_360; 919 break; 920 default: 921 pr_warn("%s: Voltage range not supported for power class\n", 922 mmc_hostname(host)); 923 return -EINVAL; 924 } 925 926 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 927 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 928 EXT_CSD_PWR_CL_8BIT_SHIFT; 929 else 930 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 931 EXT_CSD_PWR_CL_4BIT_SHIFT; 932 933 /* If the power class is different from the default value */ 934 if (pwrclass_val > 0) { 935 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 936 EXT_CSD_POWER_CLASS, 937 pwrclass_val, 938 card->ext_csd.generic_cmd6_time); 939 } 940 941 return err; 942 } 943 944 static int mmc_select_powerclass(struct mmc_card *card) 945 { 946 struct mmc_host *host = card->host; 947 u32 bus_width, ext_csd_bits; 948 int err, ddr; 949 950 /* Power class selection is supported for versions >= 4.0 */ 951 if (!mmc_can_ext_csd(card)) 952 return 0; 953 954 bus_width = host->ios.bus_width; 955 /* Power class values are defined only for 4/8 bit bus */ 956 if (bus_width == MMC_BUS_WIDTH_1) 957 return 0; 958 959 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 960 if (ddr) 961 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 962 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 963 else 964 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 965 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 966 967 err = __mmc_select_powerclass(card, ext_csd_bits); 968 if (err) 969 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 970 mmc_hostname(host), 1 << bus_width, ddr); 971 972 return err; 973 } 974 975 /* 976 * Set the bus speed for the selected speed mode. 977 */ 978 static void mmc_set_bus_speed(struct mmc_card *card) 979 { 980 unsigned int max_dtr = (unsigned int)-1; 981 982 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 983 max_dtr > card->ext_csd.hs200_max_dtr) 984 max_dtr = card->ext_csd.hs200_max_dtr; 985 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 986 max_dtr = card->ext_csd.hs_max_dtr; 987 else if (max_dtr > card->csd.max_dtr) 988 max_dtr = card->csd.max_dtr; 989 990 mmc_set_clock(card->host, max_dtr); 991 } 992 993 /* 994 * Select the bus width amoung 4-bit and 8-bit(SDR). 995 * If the bus width is changed successfully, return the selected width value. 996 * Zero is returned instead of error value if the wide width is not supported. 997 */ 998 static int mmc_select_bus_width(struct mmc_card *card) 999 { 1000 static unsigned ext_csd_bits[] = { 1001 EXT_CSD_BUS_WIDTH_8, 1002 EXT_CSD_BUS_WIDTH_4, 1003 }; 1004 static unsigned bus_widths[] = { 1005 MMC_BUS_WIDTH_8, 1006 MMC_BUS_WIDTH_4, 1007 }; 1008 struct mmc_host *host = card->host; 1009 unsigned idx, bus_width = 0; 1010 int err = 0; 1011 1012 if (!mmc_can_ext_csd(card) || 1013 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1014 return 0; 1015 1016 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1017 1018 /* 1019 * Unlike SD, MMC cards dont have a configuration register to notify 1020 * supported bus width. So bus test command should be run to identify 1021 * the supported bus width or compare the ext csd values of current 1022 * bus width and ext csd values of 1 bit mode read earlier. 1023 */ 1024 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1025 /* 1026 * Host is capable of 8bit transfer, then switch 1027 * the device to work in 8bit transfer mode. If the 1028 * mmc switch command returns error then switch to 1029 * 4bit transfer mode. On success set the corresponding 1030 * bus width on the host. 1031 */ 1032 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1033 EXT_CSD_BUS_WIDTH, 1034 ext_csd_bits[idx], 1035 card->ext_csd.generic_cmd6_time); 1036 if (err) 1037 continue; 1038 1039 bus_width = bus_widths[idx]; 1040 mmc_set_bus_width(host, bus_width); 1041 1042 /* 1043 * If controller can't handle bus width test, 1044 * compare ext_csd previously read in 1 bit mode 1045 * against ext_csd at new bus width 1046 */ 1047 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1048 err = mmc_compare_ext_csds(card, bus_width); 1049 else 1050 err = mmc_bus_test(card, bus_width); 1051 1052 if (!err) { 1053 err = bus_width; 1054 break; 1055 } else { 1056 pr_warn("%s: switch to bus width %d failed\n", 1057 mmc_hostname(host), 1 << bus_width); 1058 } 1059 } 1060 1061 return err; 1062 } 1063 1064 /* 1065 * Switch to the high-speed mode 1066 */ 1067 static int mmc_select_hs(struct mmc_card *card) 1068 { 1069 int err; 1070 1071 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1072 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1073 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1074 true, true, MMC_CMD_RETRIES); 1075 if (err) 1076 pr_warn("%s: switch to high-speed failed, err:%d\n", 1077 mmc_hostname(card->host), err); 1078 1079 return err; 1080 } 1081 1082 /* 1083 * Activate wide bus and DDR if supported. 1084 */ 1085 static int mmc_select_hs_ddr(struct mmc_card *card) 1086 { 1087 struct mmc_host *host = card->host; 1088 u32 bus_width, ext_csd_bits; 1089 int err = 0; 1090 1091 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1092 return 0; 1093 1094 bus_width = host->ios.bus_width; 1095 if (bus_width == MMC_BUS_WIDTH_1) 1096 return 0; 1097 1098 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1099 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1100 1101 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1102 EXT_CSD_BUS_WIDTH, 1103 ext_csd_bits, 1104 card->ext_csd.generic_cmd6_time, 1105 MMC_TIMING_MMC_DDR52, 1106 true, true, MMC_CMD_RETRIES); 1107 if (err) { 1108 pr_err("%s: switch to bus width %d ddr failed\n", 1109 mmc_hostname(host), 1 << bus_width); 1110 return err; 1111 } 1112 1113 /* 1114 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1115 * signaling. 1116 * 1117 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1118 * 1119 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1120 * in the JEDEC spec for DDR. 1121 * 1122 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1123 * host controller can support this, like some of the SDHCI 1124 * controller which connect to an eMMC device. Some of these 1125 * host controller still needs to use 1.8v vccq for supporting 1126 * DDR mode. 1127 * 1128 * So the sequence will be: 1129 * if (host and device can both support 1.2v IO) 1130 * use 1.2v IO; 1131 * else if (host and device can both support 1.8v IO) 1132 * use 1.8v IO; 1133 * so if host and device can only support 3.3v IO, this is the 1134 * last choice. 1135 * 1136 * WARNING: eMMC rules are NOT the same as SD DDR 1137 */ 1138 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1139 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1140 if (!err) 1141 return 0; 1142 } 1143 1144 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1145 host->caps & MMC_CAP_1_8V_DDR) 1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1147 1148 /* make sure vccq is 3.3v after switching disaster */ 1149 if (err) 1150 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1151 1152 return err; 1153 } 1154 1155 static int mmc_select_hs400(struct mmc_card *card) 1156 { 1157 struct mmc_host *host = card->host; 1158 unsigned int max_dtr; 1159 int err = 0; 1160 u8 val; 1161 1162 /* 1163 * HS400 mode requires 8-bit bus width 1164 */ 1165 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1166 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1167 return 0; 1168 1169 /* Switch card to HS mode */ 1170 val = EXT_CSD_TIMING_HS; 1171 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1172 EXT_CSD_HS_TIMING, val, 1173 card->ext_csd.generic_cmd6_time, 0, 1174 false, true, MMC_CMD_RETRIES); 1175 if (err) { 1176 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1177 mmc_hostname(host), err); 1178 return err; 1179 } 1180 1181 /* Prepare host to downgrade to HS timing */ 1182 if (host->ops->hs400_downgrade) 1183 host->ops->hs400_downgrade(host); 1184 1185 /* Set host controller to HS timing */ 1186 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1187 1188 /* Reduce frequency to HS frequency */ 1189 max_dtr = card->ext_csd.hs_max_dtr; 1190 mmc_set_clock(host, max_dtr); 1191 1192 err = mmc_switch_status(card, true); 1193 if (err) 1194 goto out_err; 1195 1196 if (host->ops->hs400_prepare_ddr) 1197 host->ops->hs400_prepare_ddr(host); 1198 1199 /* Switch card to DDR */ 1200 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1201 EXT_CSD_BUS_WIDTH, 1202 EXT_CSD_DDR_BUS_WIDTH_8, 1203 card->ext_csd.generic_cmd6_time); 1204 if (err) { 1205 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1206 mmc_hostname(host), err); 1207 return err; 1208 } 1209 1210 /* Switch card to HS400 */ 1211 val = EXT_CSD_TIMING_HS400 | 1212 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1213 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1214 EXT_CSD_HS_TIMING, val, 1215 card->ext_csd.generic_cmd6_time, 0, 1216 false, true, MMC_CMD_RETRIES); 1217 if (err) { 1218 pr_err("%s: switch to hs400 failed, err:%d\n", 1219 mmc_hostname(host), err); 1220 return err; 1221 } 1222 1223 /* Set host controller to HS400 timing and frequency */ 1224 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1225 mmc_set_bus_speed(card); 1226 1227 if (host->ops->execute_hs400_tuning) { 1228 mmc_retune_disable(host); 1229 err = host->ops->execute_hs400_tuning(host, card); 1230 mmc_retune_enable(host); 1231 if (err) 1232 goto out_err; 1233 } 1234 1235 if (host->ops->hs400_complete) 1236 host->ops->hs400_complete(host); 1237 1238 err = mmc_switch_status(card, true); 1239 if (err) 1240 goto out_err; 1241 1242 return 0; 1243 1244 out_err: 1245 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1246 __func__, err); 1247 return err; 1248 } 1249 1250 int mmc_hs200_to_hs400(struct mmc_card *card) 1251 { 1252 return mmc_select_hs400(card); 1253 } 1254 1255 int mmc_hs400_to_hs200(struct mmc_card *card) 1256 { 1257 struct mmc_host *host = card->host; 1258 unsigned int max_dtr; 1259 int err; 1260 u8 val; 1261 1262 /* Reduce frequency to HS */ 1263 max_dtr = card->ext_csd.hs_max_dtr; 1264 mmc_set_clock(host, max_dtr); 1265 1266 /* Switch HS400 to HS DDR */ 1267 val = EXT_CSD_TIMING_HS; 1268 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1269 val, card->ext_csd.generic_cmd6_time, 0, 1270 false, true, MMC_CMD_RETRIES); 1271 if (err) 1272 goto out_err; 1273 1274 if (host->ops->hs400_downgrade) 1275 host->ops->hs400_downgrade(host); 1276 1277 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1278 1279 err = mmc_switch_status(card, true); 1280 if (err) 1281 goto out_err; 1282 1283 /* Switch HS DDR to HS */ 1284 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1285 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1286 0, false, true, MMC_CMD_RETRIES); 1287 if (err) 1288 goto out_err; 1289 1290 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1291 1292 err = mmc_switch_status(card, true); 1293 if (err) 1294 goto out_err; 1295 1296 /* Switch HS to HS200 */ 1297 val = EXT_CSD_TIMING_HS200 | 1298 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1299 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1300 val, card->ext_csd.generic_cmd6_time, 0, 1301 false, true, MMC_CMD_RETRIES); 1302 if (err) 1303 goto out_err; 1304 1305 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1306 1307 /* 1308 * For HS200, CRC errors are not a reliable way to know the switch 1309 * failed. If there really is a problem, we would expect tuning will 1310 * fail and the result ends up the same. 1311 */ 1312 err = mmc_switch_status(card, false); 1313 if (err) 1314 goto out_err; 1315 1316 mmc_set_bus_speed(card); 1317 1318 /* Prepare tuning for HS400 mode. */ 1319 if (host->ops->prepare_hs400_tuning) 1320 host->ops->prepare_hs400_tuning(host, &host->ios); 1321 1322 return 0; 1323 1324 out_err: 1325 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1326 __func__, err); 1327 return err; 1328 } 1329 1330 static void mmc_select_driver_type(struct mmc_card *card) 1331 { 1332 int card_drv_type, drive_strength, drv_type = 0; 1333 int fixed_drv_type = card->host->fixed_drv_type; 1334 1335 card_drv_type = card->ext_csd.raw_driver_strength | 1336 mmc_driver_type_mask(0); 1337 1338 if (fixed_drv_type >= 0) 1339 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1340 ? fixed_drv_type : 0; 1341 else 1342 drive_strength = mmc_select_drive_strength(card, 1343 card->ext_csd.hs200_max_dtr, 1344 card_drv_type, &drv_type); 1345 1346 card->drive_strength = drive_strength; 1347 1348 if (drv_type) 1349 mmc_set_driver_type(card->host, drv_type); 1350 } 1351 1352 static int mmc_select_hs400es(struct mmc_card *card) 1353 { 1354 struct mmc_host *host = card->host; 1355 int err = -EINVAL; 1356 u8 val; 1357 1358 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1359 err = -ENOTSUPP; 1360 goto out_err; 1361 } 1362 1363 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1364 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1365 1366 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1367 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1368 1369 /* If fails try again during next card power cycle */ 1370 if (err) 1371 goto out_err; 1372 1373 err = mmc_select_bus_width(card); 1374 if (err != MMC_BUS_WIDTH_8) { 1375 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1376 mmc_hostname(host), err); 1377 err = err < 0 ? err : -ENOTSUPP; 1378 goto out_err; 1379 } 1380 1381 /* Switch card to HS mode */ 1382 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1383 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1384 card->ext_csd.generic_cmd6_time, 0, 1385 false, true, MMC_CMD_RETRIES); 1386 if (err) { 1387 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1388 mmc_hostname(host), err); 1389 goto out_err; 1390 } 1391 1392 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1393 err = mmc_switch_status(card, true); 1394 if (err) 1395 goto out_err; 1396 1397 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1398 1399 /* Switch card to DDR with strobe bit */ 1400 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1401 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1402 EXT_CSD_BUS_WIDTH, 1403 val, 1404 card->ext_csd.generic_cmd6_time); 1405 if (err) { 1406 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1407 mmc_hostname(host), err); 1408 goto out_err; 1409 } 1410 1411 mmc_select_driver_type(card); 1412 1413 /* Switch card to HS400 */ 1414 val = EXT_CSD_TIMING_HS400 | 1415 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1416 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1417 EXT_CSD_HS_TIMING, val, 1418 card->ext_csd.generic_cmd6_time, 0, 1419 false, true, MMC_CMD_RETRIES); 1420 if (err) { 1421 pr_err("%s: switch to hs400es failed, err:%d\n", 1422 mmc_hostname(host), err); 1423 goto out_err; 1424 } 1425 1426 /* Set host controller to HS400 timing and frequency */ 1427 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1428 1429 /* Controller enable enhanced strobe function */ 1430 host->ios.enhanced_strobe = true; 1431 if (host->ops->hs400_enhanced_strobe) 1432 host->ops->hs400_enhanced_strobe(host, &host->ios); 1433 1434 err = mmc_switch_status(card, true); 1435 if (err) 1436 goto out_err; 1437 1438 return 0; 1439 1440 out_err: 1441 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1442 __func__, err); 1443 return err; 1444 } 1445 1446 /* 1447 * For device supporting HS200 mode, the following sequence 1448 * should be done before executing the tuning process. 1449 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1450 * 2. switch to HS200 mode 1451 * 3. set the clock to > 52Mhz and <=200MHz 1452 */ 1453 static int mmc_select_hs200(struct mmc_card *card) 1454 { 1455 struct mmc_host *host = card->host; 1456 unsigned int old_timing, old_signal_voltage; 1457 int err = -EINVAL; 1458 u8 val; 1459 1460 old_signal_voltage = host->ios.signal_voltage; 1461 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1462 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1463 1464 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1465 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1466 1467 /* If fails try again during next card power cycle */ 1468 if (err) 1469 return err; 1470 1471 mmc_select_driver_type(card); 1472 1473 /* 1474 * Set the bus width(4 or 8) with host's support and 1475 * switch to HS200 mode if bus width is set successfully. 1476 */ 1477 err = mmc_select_bus_width(card); 1478 if (err > 0) { 1479 val = EXT_CSD_TIMING_HS200 | 1480 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1481 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1482 EXT_CSD_HS_TIMING, val, 1483 card->ext_csd.generic_cmd6_time, 0, 1484 false, true, MMC_CMD_RETRIES); 1485 if (err) 1486 goto err; 1487 old_timing = host->ios.timing; 1488 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1489 1490 /* 1491 * For HS200, CRC errors are not a reliable way to know the 1492 * switch failed. If there really is a problem, we would expect 1493 * tuning will fail and the result ends up the same. 1494 */ 1495 err = mmc_switch_status(card, false); 1496 1497 /* 1498 * mmc_select_timing() assumes timing has not changed if 1499 * it is a switch error. 1500 */ 1501 if (err == -EBADMSG) 1502 mmc_set_timing(host, old_timing); 1503 } 1504 err: 1505 if (err) { 1506 /* fall back to the old signal voltage, if fails report error */ 1507 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1508 err = -EIO; 1509 1510 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1511 __func__, err); 1512 } 1513 return err; 1514 } 1515 1516 /* 1517 * Activate High Speed, HS200 or HS400ES mode if supported. 1518 */ 1519 static int mmc_select_timing(struct mmc_card *card) 1520 { 1521 int err = 0; 1522 1523 if (!mmc_can_ext_csd(card)) 1524 goto bus_speed; 1525 1526 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1527 err = mmc_select_hs400es(card); 1528 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1529 err = mmc_select_hs200(card); 1530 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1531 err = mmc_select_hs(card); 1532 1533 if (err && err != -EBADMSG) 1534 return err; 1535 1536 bus_speed: 1537 /* 1538 * Set the bus speed to the selected bus timing. 1539 * If timing is not selected, backward compatible is the default. 1540 */ 1541 mmc_set_bus_speed(card); 1542 return 0; 1543 } 1544 1545 /* 1546 * Execute tuning sequence to seek the proper bus operating 1547 * conditions for HS200 and HS400, which sends CMD21 to the device. 1548 */ 1549 static int mmc_hs200_tuning(struct mmc_card *card) 1550 { 1551 struct mmc_host *host = card->host; 1552 1553 /* 1554 * Timing should be adjusted to the HS400 target 1555 * operation frequency for tuning process 1556 */ 1557 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1558 host->ios.bus_width == MMC_BUS_WIDTH_8) 1559 if (host->ops->prepare_hs400_tuning) 1560 host->ops->prepare_hs400_tuning(host, &host->ios); 1561 1562 return mmc_execute_tuning(card); 1563 } 1564 1565 /* 1566 * Handle the detection and initialisation of a card. 1567 * 1568 * In the case of a resume, "oldcard" will contain the card 1569 * we're trying to reinitialise. 1570 */ 1571 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1572 struct mmc_card *oldcard) 1573 { 1574 struct mmc_card *card; 1575 int err; 1576 u32 cid[4]; 1577 u32 rocr; 1578 1579 WARN_ON(!host->claimed); 1580 1581 /* Set correct bus mode for MMC before attempting init */ 1582 if (!mmc_host_is_spi(host)) 1583 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1584 1585 /* 1586 * Since we're changing the OCR value, we seem to 1587 * need to tell some cards to go back to the idle 1588 * state. We wait 1ms to give cards time to 1589 * respond. 1590 * mmc_go_idle is needed for eMMC that are asleep 1591 */ 1592 mmc_go_idle(host); 1593 1594 /* The extra bit indicates that we support high capacity */ 1595 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1596 if (err) 1597 goto err; 1598 1599 /* 1600 * For SPI, enable CRC as appropriate. 1601 */ 1602 if (mmc_host_is_spi(host)) { 1603 err = mmc_spi_set_crc(host, use_spi_crc); 1604 if (err) 1605 goto err; 1606 } 1607 1608 /* 1609 * Fetch CID from card. 1610 */ 1611 err = mmc_send_cid(host, cid); 1612 if (err) 1613 goto err; 1614 1615 if (oldcard) { 1616 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1617 pr_debug("%s: Perhaps the card was replaced\n", 1618 mmc_hostname(host)); 1619 err = -ENOENT; 1620 goto err; 1621 } 1622 1623 card = oldcard; 1624 } else { 1625 /* 1626 * Allocate card structure. 1627 */ 1628 card = mmc_alloc_card(host, &mmc_type); 1629 if (IS_ERR(card)) { 1630 err = PTR_ERR(card); 1631 goto err; 1632 } 1633 1634 card->ocr = ocr; 1635 card->type = MMC_TYPE_MMC; 1636 card->rca = 1; 1637 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1638 } 1639 1640 /* 1641 * Call the optional HC's init_card function to handle quirks. 1642 */ 1643 if (host->ops->init_card) 1644 host->ops->init_card(host, card); 1645 1646 /* 1647 * For native busses: set card RCA and quit open drain mode. 1648 */ 1649 if (!mmc_host_is_spi(host)) { 1650 err = mmc_set_relative_addr(card); 1651 if (err) 1652 goto free_card; 1653 1654 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1655 } 1656 1657 if (!oldcard) { 1658 /* 1659 * Fetch CSD from card. 1660 */ 1661 err = mmc_send_csd(card, card->raw_csd); 1662 if (err) 1663 goto free_card; 1664 1665 err = mmc_decode_csd(card); 1666 if (err) 1667 goto free_card; 1668 err = mmc_decode_cid(card); 1669 if (err) 1670 goto free_card; 1671 } 1672 1673 /* 1674 * handling only for cards supporting DSR and hosts requesting 1675 * DSR configuration 1676 */ 1677 if (card->csd.dsr_imp && host->dsr_req) 1678 mmc_set_dsr(host); 1679 1680 /* 1681 * Select card, as all following commands rely on that. 1682 */ 1683 if (!mmc_host_is_spi(host)) { 1684 err = mmc_select_card(card); 1685 if (err) 1686 goto free_card; 1687 } 1688 1689 if (!oldcard) { 1690 /* Read extended CSD. */ 1691 err = mmc_read_ext_csd(card); 1692 if (err) 1693 goto free_card; 1694 1695 /* 1696 * If doing byte addressing, check if required to do sector 1697 * addressing. Handle the case of <2GB cards needing sector 1698 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1699 * ocr register has bit 30 set for sector addressing. 1700 */ 1701 if (rocr & BIT(30)) 1702 mmc_card_set_blockaddr(card); 1703 1704 /* Erase size depends on CSD and Extended CSD */ 1705 mmc_set_erase_size(card); 1706 } 1707 1708 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1709 if (card->ext_csd.rev >= 3) { 1710 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1711 EXT_CSD_ERASE_GROUP_DEF, 1, 1712 card->ext_csd.generic_cmd6_time); 1713 1714 if (err && err != -EBADMSG) 1715 goto free_card; 1716 1717 if (err) { 1718 /* 1719 * Just disable enhanced area off & sz 1720 * will try to enable ERASE_GROUP_DEF 1721 * during next time reinit 1722 */ 1723 card->ext_csd.enhanced_area_offset = -EINVAL; 1724 card->ext_csd.enhanced_area_size = -EINVAL; 1725 } else { 1726 card->ext_csd.erase_group_def = 1; 1727 /* 1728 * enable ERASE_GRP_DEF successfully. 1729 * This will affect the erase size, so 1730 * here need to reset erase size 1731 */ 1732 mmc_set_erase_size(card); 1733 } 1734 } 1735 1736 /* 1737 * Ensure eMMC user default partition is enabled 1738 */ 1739 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1740 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1741 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1742 card->ext_csd.part_config, 1743 card->ext_csd.part_time); 1744 if (err && err != -EBADMSG) 1745 goto free_card; 1746 } 1747 1748 /* 1749 * Enable power_off_notification byte in the ext_csd register 1750 */ 1751 if (card->ext_csd.rev >= 6) { 1752 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1753 EXT_CSD_POWER_OFF_NOTIFICATION, 1754 EXT_CSD_POWER_ON, 1755 card->ext_csd.generic_cmd6_time); 1756 if (err && err != -EBADMSG) 1757 goto free_card; 1758 1759 /* 1760 * The err can be -EBADMSG or 0, 1761 * so check for success and update the flag 1762 */ 1763 if (!err) 1764 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1765 } 1766 1767 /* set erase_arg */ 1768 if (mmc_can_discard(card)) 1769 card->erase_arg = MMC_DISCARD_ARG; 1770 else if (mmc_can_trim(card)) 1771 card->erase_arg = MMC_TRIM_ARG; 1772 else 1773 card->erase_arg = MMC_ERASE_ARG; 1774 1775 /* 1776 * Select timing interface 1777 */ 1778 err = mmc_select_timing(card); 1779 if (err) 1780 goto free_card; 1781 1782 if (mmc_card_hs200(card)) { 1783 host->doing_init_tune = 1; 1784 1785 err = mmc_hs200_tuning(card); 1786 if (!err) 1787 err = mmc_select_hs400(card); 1788 1789 host->doing_init_tune = 0; 1790 1791 if (err) 1792 goto free_card; 1793 1794 } else if (!mmc_card_hs400es(card)) { 1795 /* Select the desired bus width optionally */ 1796 err = mmc_select_bus_width(card); 1797 if (err > 0 && mmc_card_hs(card)) { 1798 err = mmc_select_hs_ddr(card); 1799 if (err) 1800 goto free_card; 1801 } 1802 } 1803 1804 /* 1805 * Choose the power class with selected bus interface 1806 */ 1807 mmc_select_powerclass(card); 1808 1809 /* 1810 * Enable HPI feature (if supported) 1811 */ 1812 if (card->ext_csd.hpi) { 1813 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1814 EXT_CSD_HPI_MGMT, 1, 1815 card->ext_csd.generic_cmd6_time); 1816 if (err && err != -EBADMSG) 1817 goto free_card; 1818 if (err) { 1819 pr_warn("%s: Enabling HPI failed\n", 1820 mmc_hostname(card->host)); 1821 card->ext_csd.hpi_en = 0; 1822 } else { 1823 card->ext_csd.hpi_en = 1; 1824 } 1825 } 1826 1827 /* 1828 * If cache size is higher than 0, this indicates the existence of cache 1829 * and it can be turned on. Note that some eMMCs from Micron has been 1830 * reported to need ~800 ms timeout, while enabling the cache after 1831 * sudden power failure tests. Let's extend the timeout to a minimum of 1832 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1833 */ 1834 if (card->ext_csd.cache_size > 0) { 1835 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1836 1837 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1838 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1839 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1840 if (err && err != -EBADMSG) 1841 goto free_card; 1842 1843 /* 1844 * Only if no error, cache is turned on successfully. 1845 */ 1846 if (err) { 1847 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1848 mmc_hostname(card->host), err); 1849 card->ext_csd.cache_ctrl = 0; 1850 } else { 1851 card->ext_csd.cache_ctrl = 1; 1852 } 1853 } 1854 1855 /* 1856 * Enable Command Queue if supported. Note that Packed Commands cannot 1857 * be used with Command Queue. 1858 */ 1859 card->ext_csd.cmdq_en = false; 1860 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1861 err = mmc_cmdq_enable(card); 1862 if (err && err != -EBADMSG) 1863 goto free_card; 1864 if (err) { 1865 pr_warn("%s: Enabling CMDQ failed\n", 1866 mmc_hostname(card->host)); 1867 card->ext_csd.cmdq_support = false; 1868 card->ext_csd.cmdq_depth = 0; 1869 } 1870 } 1871 /* 1872 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1873 * disabled for a time, so a flag is needed to indicate to re-enable the 1874 * Command Queue. 1875 */ 1876 card->reenable_cmdq = card->ext_csd.cmdq_en; 1877 1878 if (host->cqe_ops && !host->cqe_enabled) { 1879 err = host->cqe_ops->cqe_enable(host, card); 1880 if (!err) { 1881 host->cqe_enabled = true; 1882 1883 if (card->ext_csd.cmdq_en) { 1884 pr_info("%s: Command Queue Engine enabled\n", 1885 mmc_hostname(host)); 1886 } else { 1887 host->hsq_enabled = true; 1888 pr_info("%s: Host Software Queue enabled\n", 1889 mmc_hostname(host)); 1890 } 1891 } 1892 } 1893 1894 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1895 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1896 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1897 mmc_hostname(host)); 1898 err = -EINVAL; 1899 goto free_card; 1900 } 1901 1902 if (!oldcard) 1903 host->card = card; 1904 1905 return 0; 1906 1907 free_card: 1908 if (!oldcard) 1909 mmc_remove_card(card); 1910 err: 1911 return err; 1912 } 1913 1914 static int mmc_can_sleep(struct mmc_card *card) 1915 { 1916 return card->ext_csd.rev >= 3; 1917 } 1918 1919 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1920 { 1921 struct mmc_host *host = cb_data; 1922 1923 *busy = host->ops->card_busy(host); 1924 return 0; 1925 } 1926 1927 static int mmc_sleep(struct mmc_host *host) 1928 { 1929 struct mmc_command cmd = {}; 1930 struct mmc_card *card = host->card; 1931 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1932 bool use_r1b_resp; 1933 int err; 1934 1935 /* Re-tuning can't be done once the card is deselected */ 1936 mmc_retune_hold(host); 1937 1938 err = mmc_deselect_cards(host); 1939 if (err) 1940 goto out_release; 1941 1942 cmd.opcode = MMC_SLEEP_AWAKE; 1943 cmd.arg = card->rca << 16; 1944 cmd.arg |= 1 << 15; 1945 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1946 1947 err = mmc_wait_for_cmd(host, &cmd, 0); 1948 if (err) 1949 goto out_release; 1950 1951 /* 1952 * If the host does not wait while the card signals busy, then we can 1953 * try to poll, but only if the host supports HW polling, as the 1954 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1955 * to wait the sleep/awake timeout. 1956 */ 1957 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 1958 goto out_release; 1959 1960 if (!host->ops->card_busy) { 1961 mmc_delay(timeout_ms); 1962 goto out_release; 1963 } 1964 1965 err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host); 1966 1967 out_release: 1968 mmc_retune_release(host); 1969 return err; 1970 } 1971 1972 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1973 { 1974 return card && 1975 mmc_card_mmc(card) && 1976 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1977 } 1978 1979 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1980 { 1981 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1982 int err; 1983 1984 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1985 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1986 timeout = card->ext_csd.power_off_longtime; 1987 1988 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1989 EXT_CSD_POWER_OFF_NOTIFICATION, 1990 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 1991 if (err) 1992 pr_err("%s: Power Off Notification timed out, %u\n", 1993 mmc_hostname(card->host), timeout); 1994 1995 /* Disable the power off notification after the switch operation. */ 1996 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1997 1998 return err; 1999 } 2000 2001 /* 2002 * Host is being removed. Free up the current card. 2003 */ 2004 static void mmc_remove(struct mmc_host *host) 2005 { 2006 mmc_remove_card(host->card); 2007 host->card = NULL; 2008 } 2009 2010 /* 2011 * Card detection - card is alive. 2012 */ 2013 static int mmc_alive(struct mmc_host *host) 2014 { 2015 return mmc_send_status(host->card, NULL); 2016 } 2017 2018 /* 2019 * Card detection callback from host. 2020 */ 2021 static void mmc_detect(struct mmc_host *host) 2022 { 2023 int err; 2024 2025 mmc_get_card(host->card, NULL); 2026 2027 /* 2028 * Just check if our card has been removed. 2029 */ 2030 err = _mmc_detect_card_removed(host); 2031 2032 mmc_put_card(host->card, NULL); 2033 2034 if (err) { 2035 mmc_remove(host); 2036 2037 mmc_claim_host(host); 2038 mmc_detach_bus(host); 2039 mmc_power_off(host); 2040 mmc_release_host(host); 2041 } 2042 } 2043 2044 static bool _mmc_cache_enabled(struct mmc_host *host) 2045 { 2046 return host->card->ext_csd.cache_size > 0 && 2047 host->card->ext_csd.cache_ctrl & 1; 2048 } 2049 2050 /* 2051 * Flush the internal cache of the eMMC to non-volatile storage. 2052 */ 2053 static int _mmc_flush_cache(struct mmc_host *host) 2054 { 2055 int err = 0; 2056 2057 if (_mmc_cache_enabled(host)) { 2058 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2059 EXT_CSD_FLUSH_CACHE, 1, 2060 CACHE_FLUSH_TIMEOUT_MS); 2061 if (err) 2062 pr_err("%s: cache flush error %d\n", 2063 mmc_hostname(host), err); 2064 } 2065 2066 return err; 2067 } 2068 2069 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2070 { 2071 int err = 0; 2072 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2073 EXT_CSD_POWER_OFF_LONG; 2074 2075 mmc_claim_host(host); 2076 2077 if (mmc_card_suspended(host->card)) 2078 goto out; 2079 2080 err = _mmc_flush_cache(host); 2081 if (err) 2082 goto out; 2083 2084 if (mmc_can_poweroff_notify(host->card) && 2085 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2086 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2087 err = mmc_poweroff_notify(host->card, notify_type); 2088 else if (mmc_can_sleep(host->card)) 2089 err = mmc_sleep(host); 2090 else if (!mmc_host_is_spi(host)) 2091 err = mmc_deselect_cards(host); 2092 2093 if (!err) { 2094 mmc_power_off(host); 2095 mmc_card_set_suspended(host->card); 2096 } 2097 out: 2098 mmc_release_host(host); 2099 return err; 2100 } 2101 2102 /* 2103 * Suspend callback 2104 */ 2105 static int mmc_suspend(struct mmc_host *host) 2106 { 2107 int err; 2108 2109 err = _mmc_suspend(host, true); 2110 if (!err) { 2111 pm_runtime_disable(&host->card->dev); 2112 pm_runtime_set_suspended(&host->card->dev); 2113 } 2114 2115 return err; 2116 } 2117 2118 /* 2119 * This function tries to determine if the same card is still present 2120 * and, if so, restore all state to it. 2121 */ 2122 static int _mmc_resume(struct mmc_host *host) 2123 { 2124 int err = 0; 2125 2126 mmc_claim_host(host); 2127 2128 if (!mmc_card_suspended(host->card)) 2129 goto out; 2130 2131 mmc_power_up(host, host->card->ocr); 2132 err = mmc_init_card(host, host->card->ocr, host->card); 2133 mmc_card_clr_suspended(host->card); 2134 2135 out: 2136 mmc_release_host(host); 2137 return err; 2138 } 2139 2140 /* 2141 * Shutdown callback 2142 */ 2143 static int mmc_shutdown(struct mmc_host *host) 2144 { 2145 int err = 0; 2146 2147 /* 2148 * In a specific case for poweroff notify, we need to resume the card 2149 * before we can shutdown it properly. 2150 */ 2151 if (mmc_can_poweroff_notify(host->card) && 2152 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2153 err = _mmc_resume(host); 2154 2155 if (!err) 2156 err = _mmc_suspend(host, false); 2157 2158 return err; 2159 } 2160 2161 /* 2162 * Callback for resume. 2163 */ 2164 static int mmc_resume(struct mmc_host *host) 2165 { 2166 pm_runtime_enable(&host->card->dev); 2167 return 0; 2168 } 2169 2170 /* 2171 * Callback for runtime_suspend. 2172 */ 2173 static int mmc_runtime_suspend(struct mmc_host *host) 2174 { 2175 int err; 2176 2177 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2178 return 0; 2179 2180 err = _mmc_suspend(host, true); 2181 if (err) 2182 pr_err("%s: error %d doing aggressive suspend\n", 2183 mmc_hostname(host), err); 2184 2185 return err; 2186 } 2187 2188 /* 2189 * Callback for runtime_resume. 2190 */ 2191 static int mmc_runtime_resume(struct mmc_host *host) 2192 { 2193 int err; 2194 2195 err = _mmc_resume(host); 2196 if (err && err != -ENOMEDIUM) 2197 pr_err("%s: error %d doing runtime resume\n", 2198 mmc_hostname(host), err); 2199 2200 return 0; 2201 } 2202 2203 static int mmc_can_reset(struct mmc_card *card) 2204 { 2205 u8 rst_n_function; 2206 2207 rst_n_function = card->ext_csd.rst_n_function; 2208 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2209 return 0; 2210 return 1; 2211 } 2212 2213 static int _mmc_hw_reset(struct mmc_host *host) 2214 { 2215 struct mmc_card *card = host->card; 2216 2217 /* 2218 * In the case of recovery, we can't expect flushing the cache to work 2219 * always, but we have a go and ignore errors. 2220 */ 2221 _mmc_flush_cache(host); 2222 2223 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2224 mmc_can_reset(card)) { 2225 /* If the card accept RST_n signal, send it. */ 2226 mmc_set_clock(host, host->f_init); 2227 host->ops->hw_reset(host); 2228 /* Set initial state and call mmc_set_ios */ 2229 mmc_set_initial_state(host); 2230 } else { 2231 /* Do a brute force power cycle */ 2232 mmc_power_cycle(host, card->ocr); 2233 mmc_pwrseq_reset(host); 2234 } 2235 return mmc_init_card(host, card->ocr, card); 2236 } 2237 2238 static const struct mmc_bus_ops mmc_ops = { 2239 .remove = mmc_remove, 2240 .detect = mmc_detect, 2241 .suspend = mmc_suspend, 2242 .resume = mmc_resume, 2243 .runtime_suspend = mmc_runtime_suspend, 2244 .runtime_resume = mmc_runtime_resume, 2245 .alive = mmc_alive, 2246 .shutdown = mmc_shutdown, 2247 .hw_reset = _mmc_hw_reset, 2248 .cache_enabled = _mmc_cache_enabled, 2249 .flush_cache = _mmc_flush_cache, 2250 }; 2251 2252 /* 2253 * Starting point for MMC card init. 2254 */ 2255 int mmc_attach_mmc(struct mmc_host *host) 2256 { 2257 int err; 2258 u32 ocr, rocr; 2259 2260 WARN_ON(!host->claimed); 2261 2262 /* Set correct bus mode for MMC before attempting attach */ 2263 if (!mmc_host_is_spi(host)) 2264 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2265 2266 err = mmc_send_op_cond(host, 0, &ocr); 2267 if (err) 2268 return err; 2269 2270 mmc_attach_bus(host, &mmc_ops); 2271 if (host->ocr_avail_mmc) 2272 host->ocr_avail = host->ocr_avail_mmc; 2273 2274 /* 2275 * We need to get OCR a different way for SPI. 2276 */ 2277 if (mmc_host_is_spi(host)) { 2278 err = mmc_spi_read_ocr(host, 1, &ocr); 2279 if (err) 2280 goto err; 2281 } 2282 2283 rocr = mmc_select_voltage(host, ocr); 2284 2285 /* 2286 * Can we support the voltage of the card? 2287 */ 2288 if (!rocr) { 2289 err = -EINVAL; 2290 goto err; 2291 } 2292 2293 /* 2294 * Detect and init the card. 2295 */ 2296 err = mmc_init_card(host, rocr, NULL); 2297 if (err) 2298 goto err; 2299 2300 mmc_release_host(host); 2301 err = mmc_add_card(host->card); 2302 if (err) 2303 goto remove_card; 2304 2305 mmc_claim_host(host); 2306 return 0; 2307 2308 remove_card: 2309 mmc_remove_card(host->card); 2310 mmc_claim_host(host); 2311 host->card = NULL; 2312 err: 2313 mmc_detach_bus(host); 2314 2315 pr_err("%s: error %d whilst initialising MMC card\n", 2316 mmc_hostname(host), err); 2317 2318 return err; 2319 } 2320