xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 6b66a6f2)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "sd_ops.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 
31 static const unsigned int tran_exp[] = {
32 	10000,		100000,		1000000,	10000000,
33 	0,		0,		0,		0
34 };
35 
36 static const unsigned char tran_mant[] = {
37 	0,	10,	12,	13,	15,	20,	25,	30,
38 	35,	40,	45,	50,	55,	60,	70,	80,
39 };
40 
41 static const unsigned int tacc_exp[] = {
42 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
43 };
44 
45 static const unsigned int tacc_mant[] = {
46 	0,	10,	12,	13,	15,	20,	25,	30,
47 	35,	40,	45,	50,	55,	60,	70,	80,
48 };
49 
50 static const struct mmc_fixup mmc_ext_csd_fixups[] = {
51 	/*
52 	 * Certain Hynix eMMC 4.41 cards might get broken when HPI feature
53 	 * is used so disable the HPI feature for such buggy cards.
54 	 */
55 	MMC_FIXUP_EXT_CSD_REV(CID_NAME_ANY, CID_MANFID_HYNIX,
56 			      0x014a, add_quirk, MMC_QUIRK_BROKEN_HPI, 5),
57 
58 	END_FIXUP
59 };
60 
61 #define UNSTUFF_BITS(resp,start,size)					\
62 	({								\
63 		const int __size = size;				\
64 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
65 		const int __off = 3 - ((start) / 32);			\
66 		const int __shft = (start) & 31;			\
67 		u32 __res;						\
68 									\
69 		__res = resp[__off] >> __shft;				\
70 		if (__size + __shft > 32)				\
71 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
72 		__res & __mask;						\
73 	})
74 
75 /*
76  * Given the decoded CSD structure, decode the raw CID to our CID structure.
77  */
78 static int mmc_decode_cid(struct mmc_card *card)
79 {
80 	u32 *resp = card->raw_cid;
81 
82 	/*
83 	 * The selection of the format here is based upon published
84 	 * specs from sandisk and from what people have reported.
85 	 */
86 	switch (card->csd.mmca_vsn) {
87 	case 0: /* MMC v1.0 - v1.2 */
88 	case 1: /* MMC v1.4 */
89 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
90 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
91 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
92 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
93 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
94 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
95 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
96 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
97 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
98 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
99 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
100 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
101 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
102 		break;
103 
104 	case 2: /* MMC v2.0 - v2.2 */
105 	case 3: /* MMC v3.1 - v3.3 */
106 	case 4: /* MMC v4 */
107 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
108 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
109 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
110 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
111 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
112 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
113 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
114 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
115 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
116 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
117 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
118 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
119 		break;
120 
121 	default:
122 		pr_err("%s: card has unknown MMCA version %d\n",
123 			mmc_hostname(card->host), card->csd.mmca_vsn);
124 		return -EINVAL;
125 	}
126 
127 	return 0;
128 }
129 
130 static void mmc_set_erase_size(struct mmc_card *card)
131 {
132 	if (card->ext_csd.erase_group_def & 1)
133 		card->erase_size = card->ext_csd.hc_erase_size;
134 	else
135 		card->erase_size = card->csd.erase_size;
136 
137 	mmc_init_erase(card);
138 }
139 
140 /*
141  * Given a 128-bit response, decode to our card CSD structure.
142  */
143 static int mmc_decode_csd(struct mmc_card *card)
144 {
145 	struct mmc_csd *csd = &card->csd;
146 	unsigned int e, m, a, b;
147 	u32 *resp = card->raw_csd;
148 
149 	/*
150 	 * We only understand CSD structure v1.1 and v1.2.
151 	 * v1.2 has extra information in bits 15, 11 and 10.
152 	 * We also support eMMC v4.4 & v4.41.
153 	 */
154 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
155 	if (csd->structure == 0) {
156 		pr_err("%s: unrecognised CSD structure version %d\n",
157 			mmc_hostname(card->host), csd->structure);
158 		return -EINVAL;
159 	}
160 
161 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
162 	m = UNSTUFF_BITS(resp, 115, 4);
163 	e = UNSTUFF_BITS(resp, 112, 3);
164 	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
165 	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
166 
167 	m = UNSTUFF_BITS(resp, 99, 4);
168 	e = UNSTUFF_BITS(resp, 96, 3);
169 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
170 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
171 
172 	e = UNSTUFF_BITS(resp, 47, 3);
173 	m = UNSTUFF_BITS(resp, 62, 12);
174 	csd->capacity	  = (1 + m) << (e + 2);
175 
176 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
177 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
178 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
179 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
180 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
181 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
182 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
183 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
184 
185 	if (csd->write_blkbits >= 9) {
186 		a = UNSTUFF_BITS(resp, 42, 5);
187 		b = UNSTUFF_BITS(resp, 37, 5);
188 		csd->erase_size = (a + 1) * (b + 1);
189 		csd->erase_size <<= csd->write_blkbits - 9;
190 	}
191 
192 	return 0;
193 }
194 
195 static void mmc_select_card_type(struct mmc_card *card)
196 {
197 	struct mmc_host *host = card->host;
198 	u8 card_type = card->ext_csd.raw_card_type;
199 	u32 caps = host->caps, caps2 = host->caps2;
200 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
201 	unsigned int avail_type = 0;
202 
203 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
205 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
206 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
207 	}
208 
209 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
210 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
211 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
212 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
213 	}
214 
215 	if (caps & MMC_CAP_1_8V_DDR &&
216 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
217 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
219 	}
220 
221 	if (caps & MMC_CAP_1_2V_DDR &&
222 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
223 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
224 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
225 	}
226 
227 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
228 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
229 		hs200_max_dtr = MMC_HS200_MAX_DTR;
230 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
231 	}
232 
233 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
234 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
235 		hs200_max_dtr = MMC_HS200_MAX_DTR;
236 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
237 	}
238 
239 	if (caps2 & MMC_CAP2_HS400_1_8V &&
240 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
241 		hs200_max_dtr = MMC_HS200_MAX_DTR;
242 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
243 	}
244 
245 	if (caps2 & MMC_CAP2_HS400_1_2V &&
246 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
247 		hs200_max_dtr = MMC_HS200_MAX_DTR;
248 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
249 	}
250 
251 	if ((caps2 & MMC_CAP2_HS400_ES) &&
252 	    card->ext_csd.strobe_support &&
253 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
254 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
255 
256 	card->ext_csd.hs_max_dtr = hs_max_dtr;
257 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
258 	card->mmc_avail_type = avail_type;
259 }
260 
261 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
262 {
263 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
264 
265 	/*
266 	 * Disable these attributes by default
267 	 */
268 	card->ext_csd.enhanced_area_offset = -EINVAL;
269 	card->ext_csd.enhanced_area_size = -EINVAL;
270 
271 	/*
272 	 * Enhanced area feature support -- check whether the eMMC
273 	 * card has the Enhanced area enabled.  If so, export enhanced
274 	 * area offset and size to user by adding sysfs interface.
275 	 */
276 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
277 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
278 		if (card->ext_csd.partition_setting_completed) {
279 			hc_erase_grp_sz =
280 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
281 			hc_wp_grp_sz =
282 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
283 
284 			/*
285 			 * calculate the enhanced data area offset, in bytes
286 			 */
287 			card->ext_csd.enhanced_area_offset =
288 				(((unsigned long long)ext_csd[139]) << 24) +
289 				(((unsigned long long)ext_csd[138]) << 16) +
290 				(((unsigned long long)ext_csd[137]) << 8) +
291 				(((unsigned long long)ext_csd[136]));
292 			if (mmc_card_blockaddr(card))
293 				card->ext_csd.enhanced_area_offset <<= 9;
294 			/*
295 			 * calculate the enhanced data area size, in kilobytes
296 			 */
297 			card->ext_csd.enhanced_area_size =
298 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
299 				ext_csd[140];
300 			card->ext_csd.enhanced_area_size *=
301 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
302 			card->ext_csd.enhanced_area_size <<= 9;
303 		} else {
304 			pr_warn("%s: defines enhanced area without partition setting complete\n",
305 				mmc_hostname(card->host));
306 		}
307 	}
308 }
309 
310 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
311 {
312 	int idx;
313 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
314 	unsigned int part_size;
315 
316 	/*
317 	 * General purpose partition feature support --
318 	 * If ext_csd has the size of general purpose partitions,
319 	 * set size, part_cfg, partition name in mmc_part.
320 	 */
321 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
322 	    EXT_CSD_PART_SUPPORT_PART_EN) {
323 		hc_erase_grp_sz =
324 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
325 		hc_wp_grp_sz =
326 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
327 
328 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
329 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
330 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
331 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
332 				continue;
333 			if (card->ext_csd.partition_setting_completed == 0) {
334 				pr_warn("%s: has partition size defined without partition complete\n",
335 					mmc_hostname(card->host));
336 				break;
337 			}
338 			part_size =
339 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
340 				<< 16) +
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
342 				<< 8) +
343 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
344 			part_size *= (size_t)(hc_erase_grp_sz *
345 				hc_wp_grp_sz);
346 			mmc_part_add(card, part_size << 19,
347 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
348 				"gp%d", idx, false,
349 				MMC_BLK_DATA_AREA_GP);
350 		}
351 	}
352 }
353 
354 /* Minimum partition switch timeout in milliseconds */
355 #define MMC_MIN_PART_SWITCH_TIME	300
356 
357 /*
358  * Decode extended CSD.
359  */
360 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
361 {
362 	int err = 0, idx;
363 	unsigned int part_size;
364 	struct device_node *np;
365 	bool broken_hpi = false;
366 
367 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
368 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
369 	if (card->csd.structure == 3) {
370 		if (card->ext_csd.raw_ext_csd_structure > 2) {
371 			pr_err("%s: unrecognised EXT_CSD structure "
372 				"version %d\n", mmc_hostname(card->host),
373 					card->ext_csd.raw_ext_csd_structure);
374 			err = -EINVAL;
375 			goto out;
376 		}
377 	}
378 
379 	np = mmc_of_find_child_device(card->host, 0);
380 	if (np && of_device_is_compatible(np, "mmc-card"))
381 		broken_hpi = of_property_read_bool(np, "broken-hpi");
382 	of_node_put(np);
383 
384 	/*
385 	 * The EXT_CSD format is meant to be forward compatible. As long
386 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
387 	 * are authorized, see JEDEC JESD84-B50 section B.8.
388 	 */
389 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
390 
391 	/* fixup device after ext_csd revision field is updated */
392 	mmc_fixup_device(card, mmc_ext_csd_fixups);
393 
394 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
395 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
396 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
397 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
398 	if (card->ext_csd.rev >= 2) {
399 		card->ext_csd.sectors =
400 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
401 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
402 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
403 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
404 
405 		/* Cards with density > 2GiB are sector addressed */
406 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
407 			mmc_card_set_blockaddr(card);
408 	}
409 
410 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
411 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
412 	mmc_select_card_type(card);
413 
414 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
415 	card->ext_csd.raw_erase_timeout_mult =
416 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
417 	card->ext_csd.raw_hc_erase_grp_size =
418 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
419 	if (card->ext_csd.rev >= 3) {
420 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
421 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
422 
423 		/* EXT_CSD value is in units of 10ms, but we store in ms */
424 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
425 		/* Some eMMC set the value too low so set a minimum */
426 		if (card->ext_csd.part_time &&
427 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
428 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
429 
430 		/* Sleep / awake timeout in 100ns units */
431 		if (sa_shift > 0 && sa_shift <= 0x17)
432 			card->ext_csd.sa_timeout =
433 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 		card->ext_csd.erase_group_def =
435 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 		card->ext_csd.hc_erase_timeout = 300 *
437 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 		card->ext_csd.hc_erase_size =
439 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440 
441 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442 
443 		/*
444 		 * There are two boot regions of equal size, defined in
445 		 * multiples of 128K.
446 		 */
447 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 				mmc_part_add(card, part_size,
451 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 					"boot%d", idx, true,
453 					MMC_BLK_DATA_AREA_BOOT);
454 			}
455 		}
456 	}
457 
458 	card->ext_csd.raw_hc_erase_gap_size =
459 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 	card->ext_csd.raw_sec_trim_mult =
461 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 	card->ext_csd.raw_sec_erase_mult =
463 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 	card->ext_csd.raw_sec_feature_support =
465 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 	card->ext_csd.raw_trim_mult =
467 		ext_csd[EXT_CSD_TRIM_MULT];
468 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 	if (card->ext_csd.rev >= 4) {
471 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 		    EXT_CSD_PART_SETTING_COMPLETED)
473 			card->ext_csd.partition_setting_completed = 1;
474 		else
475 			card->ext_csd.partition_setting_completed = 0;
476 
477 		mmc_manage_enhanced_area(card, ext_csd);
478 
479 		mmc_manage_gp_partitions(card, ext_csd);
480 
481 		card->ext_csd.sec_trim_mult =
482 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 		card->ext_csd.sec_erase_mult =
484 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 		card->ext_csd.sec_feature_support =
486 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 		card->ext_csd.trim_timeout = 300 *
488 			ext_csd[EXT_CSD_TRIM_MULT];
489 
490 		/*
491 		 * Note that the call to mmc_part_add above defaults to read
492 		 * only. If this default assumption is changed, the call must
493 		 * take into account the value of boot_locked below.
494 		 */
495 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 		card->ext_csd.boot_ro_lockable = true;
497 
498 		/* Save power class values */
499 		card->ext_csd.raw_pwr_cl_52_195 =
500 			ext_csd[EXT_CSD_PWR_CL_52_195];
501 		card->ext_csd.raw_pwr_cl_26_195 =
502 			ext_csd[EXT_CSD_PWR_CL_26_195];
503 		card->ext_csd.raw_pwr_cl_52_360 =
504 			ext_csd[EXT_CSD_PWR_CL_52_360];
505 		card->ext_csd.raw_pwr_cl_26_360 =
506 			ext_csd[EXT_CSD_PWR_CL_26_360];
507 		card->ext_csd.raw_pwr_cl_200_195 =
508 			ext_csd[EXT_CSD_PWR_CL_200_195];
509 		card->ext_csd.raw_pwr_cl_200_360 =
510 			ext_csd[EXT_CSD_PWR_CL_200_360];
511 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 	}
518 
519 	if (card->ext_csd.rev >= 5) {
520 		/* Adjust production date as per JEDEC JESD84-B451 */
521 		if (card->cid.year < 2010)
522 			card->cid.year += 16;
523 
524 		/* check whether the eMMC card supports BKOPS */
525 		if (!mmc_card_broken_hpi(card) &&
526 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (!card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
535 					mmc_hostname(card->host));
536 		}
537 
538 		/* check whether the eMMC card supports HPI */
539 		if (!mmc_card_broken_hpi(card) &&
540 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
541 			card->ext_csd.hpi = 1;
542 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
543 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
544 			else
545 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
546 			/*
547 			 * Indicate the maximum timeout to close
548 			 * a command interrupted by HPI
549 			 */
550 			card->ext_csd.out_of_int_time =
551 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
552 		}
553 
554 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
555 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
556 
557 		/*
558 		 * RPMB regions are defined in multiples of 128K.
559 		 */
560 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
561 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
562 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
563 				EXT_CSD_PART_CONFIG_ACC_RPMB,
564 				"rpmb", 0, false,
565 				MMC_BLK_DATA_AREA_RPMB);
566 		}
567 	}
568 
569 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
570 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
571 		card->erased_byte = 0xFF;
572 	else
573 		card->erased_byte = 0x0;
574 
575 	/* eMMC v4.5 or later */
576 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
577 	if (card->ext_csd.rev >= 6) {
578 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
579 
580 		card->ext_csd.generic_cmd6_time = 10 *
581 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
582 		card->ext_csd.power_off_longtime = 10 *
583 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
584 
585 		card->ext_csd.cache_size =
586 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
587 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
588 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
589 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
590 
591 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
592 			card->ext_csd.data_sector_size = 4096;
593 		else
594 			card->ext_csd.data_sector_size = 512;
595 
596 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
597 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
598 			card->ext_csd.data_tag_unit_size =
599 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
600 			(card->ext_csd.data_sector_size);
601 		} else {
602 			card->ext_csd.data_tag_unit_size = 0;
603 		}
604 
605 		card->ext_csd.max_packed_writes =
606 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
607 		card->ext_csd.max_packed_reads =
608 			ext_csd[EXT_CSD_MAX_PACKED_READS];
609 	} else {
610 		card->ext_csd.data_sector_size = 512;
611 	}
612 
613 	/* eMMC v5 or later */
614 	if (card->ext_csd.rev >= 7) {
615 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
616 		       MMC_FIRMWARE_LEN);
617 		card->ext_csd.ffu_capable =
618 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
619 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
620 	}
621 
622 	/* eMMC v5.1 or later */
623 	if (card->ext_csd.rev >= 8) {
624 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
625 					     EXT_CSD_CMDQ_SUPPORTED;
626 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
627 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
628 		/* Exclude inefficiently small queue depths */
629 		if (card->ext_csd.cmdq_depth <= 2) {
630 			card->ext_csd.cmdq_support = false;
631 			card->ext_csd.cmdq_depth = 0;
632 		}
633 		if (card->ext_csd.cmdq_support) {
634 			pr_debug("%s: Command Queue supported depth %u\n",
635 				 mmc_hostname(card->host),
636 				 card->ext_csd.cmdq_depth);
637 		}
638 	}
639 out:
640 	return err;
641 }
642 
643 static int mmc_read_ext_csd(struct mmc_card *card)
644 {
645 	u8 *ext_csd;
646 	int err;
647 
648 	if (!mmc_can_ext_csd(card))
649 		return 0;
650 
651 	err = mmc_get_ext_csd(card, &ext_csd);
652 	if (err) {
653 		/* If the host or the card can't do the switch,
654 		 * fail more gracefully. */
655 		if ((err != -EINVAL)
656 		 && (err != -ENOSYS)
657 		 && (err != -EFAULT))
658 			return err;
659 
660 		/*
661 		 * High capacity cards should have this "magic" size
662 		 * stored in their CSD.
663 		 */
664 		if (card->csd.capacity == (4096 * 512)) {
665 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
666 				mmc_hostname(card->host));
667 		} else {
668 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
669 				mmc_hostname(card->host));
670 			err = 0;
671 		}
672 
673 		return err;
674 	}
675 
676 	err = mmc_decode_ext_csd(card, ext_csd);
677 	kfree(ext_csd);
678 	return err;
679 }
680 
681 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
682 {
683 	u8 *bw_ext_csd;
684 	int err;
685 
686 	if (bus_width == MMC_BUS_WIDTH_1)
687 		return 0;
688 
689 	err = mmc_get_ext_csd(card, &bw_ext_csd);
690 	if (err)
691 		return err;
692 
693 	/* only compare read only fields */
694 	err = !((card->ext_csd.raw_partition_support ==
695 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
696 		(card->ext_csd.raw_erased_mem_count ==
697 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
698 		(card->ext_csd.rev ==
699 			bw_ext_csd[EXT_CSD_REV]) &&
700 		(card->ext_csd.raw_ext_csd_structure ==
701 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
702 		(card->ext_csd.raw_card_type ==
703 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
704 		(card->ext_csd.raw_s_a_timeout ==
705 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
706 		(card->ext_csd.raw_hc_erase_gap_size ==
707 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
708 		(card->ext_csd.raw_erase_timeout_mult ==
709 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
710 		(card->ext_csd.raw_hc_erase_grp_size ==
711 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
712 		(card->ext_csd.raw_sec_trim_mult ==
713 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
714 		(card->ext_csd.raw_sec_erase_mult ==
715 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
716 		(card->ext_csd.raw_sec_feature_support ==
717 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
718 		(card->ext_csd.raw_trim_mult ==
719 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
720 		(card->ext_csd.raw_sectors[0] ==
721 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
722 		(card->ext_csd.raw_sectors[1] ==
723 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
724 		(card->ext_csd.raw_sectors[2] ==
725 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
726 		(card->ext_csd.raw_sectors[3] ==
727 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
728 		(card->ext_csd.raw_pwr_cl_52_195 ==
729 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
730 		(card->ext_csd.raw_pwr_cl_26_195 ==
731 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
732 		(card->ext_csd.raw_pwr_cl_52_360 ==
733 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
734 		(card->ext_csd.raw_pwr_cl_26_360 ==
735 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
736 		(card->ext_csd.raw_pwr_cl_200_195 ==
737 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
738 		(card->ext_csd.raw_pwr_cl_200_360 ==
739 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
740 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
741 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
742 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
743 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
744 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
746 
747 	if (err)
748 		err = -EINVAL;
749 
750 	kfree(bw_ext_csd);
751 	return err;
752 }
753 
754 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
755 	card->raw_cid[2], card->raw_cid[3]);
756 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
757 	card->raw_csd[2], card->raw_csd[3]);
758 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
759 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
760 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
761 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
762 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
763 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
764 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
765 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
766 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
767 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
768 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
769 		card->ext_csd.enhanced_area_offset);
770 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
771 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
772 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
773 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
774 
775 static ssize_t mmc_fwrev_show(struct device *dev,
776 			      struct device_attribute *attr,
777 			      char *buf)
778 {
779 	struct mmc_card *card = mmc_dev_to_card(dev);
780 
781 	if (card->ext_csd.rev < 7) {
782 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
783 	} else {
784 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
785 			       card->ext_csd.fwrev);
786 	}
787 }
788 
789 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
790 
791 static ssize_t mmc_dsr_show(struct device *dev,
792 			    struct device_attribute *attr,
793 			    char *buf)
794 {
795 	struct mmc_card *card = mmc_dev_to_card(dev);
796 	struct mmc_host *host = card->host;
797 
798 	if (card->csd.dsr_imp && host->dsr_req)
799 		return sprintf(buf, "0x%x\n", host->dsr);
800 	else
801 		/* return default DSR value */
802 		return sprintf(buf, "0x%x\n", 0x404);
803 }
804 
805 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
806 
807 static struct attribute *mmc_std_attrs[] = {
808 	&dev_attr_cid.attr,
809 	&dev_attr_csd.attr,
810 	&dev_attr_date.attr,
811 	&dev_attr_erase_size.attr,
812 	&dev_attr_preferred_erase_size.attr,
813 	&dev_attr_fwrev.attr,
814 	&dev_attr_ffu_capable.attr,
815 	&dev_attr_hwrev.attr,
816 	&dev_attr_manfid.attr,
817 	&dev_attr_name.attr,
818 	&dev_attr_oemid.attr,
819 	&dev_attr_prv.attr,
820 	&dev_attr_serial.attr,
821 	&dev_attr_enhanced_area_offset.attr,
822 	&dev_attr_enhanced_area_size.attr,
823 	&dev_attr_raw_rpmb_size_mult.attr,
824 	&dev_attr_rel_sectors.attr,
825 	&dev_attr_ocr.attr,
826 	&dev_attr_dsr.attr,
827 	NULL,
828 };
829 ATTRIBUTE_GROUPS(mmc_std);
830 
831 static struct device_type mmc_type = {
832 	.groups = mmc_std_groups,
833 };
834 
835 /*
836  * Select the PowerClass for the current bus width
837  * If power class is defined for 4/8 bit bus in the
838  * extended CSD register, select it by executing the
839  * mmc_switch command.
840  */
841 static int __mmc_select_powerclass(struct mmc_card *card,
842 				   unsigned int bus_width)
843 {
844 	struct mmc_host *host = card->host;
845 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
846 	unsigned int pwrclass_val = 0;
847 	int err = 0;
848 
849 	switch (1 << host->ios.vdd) {
850 	case MMC_VDD_165_195:
851 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
852 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
853 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
854 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
855 				ext_csd->raw_pwr_cl_52_195 :
856 				ext_csd->raw_pwr_cl_ddr_52_195;
857 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
858 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
859 		break;
860 	case MMC_VDD_27_28:
861 	case MMC_VDD_28_29:
862 	case MMC_VDD_29_30:
863 	case MMC_VDD_30_31:
864 	case MMC_VDD_31_32:
865 	case MMC_VDD_32_33:
866 	case MMC_VDD_33_34:
867 	case MMC_VDD_34_35:
868 	case MMC_VDD_35_36:
869 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
870 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
871 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
872 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
873 				ext_csd->raw_pwr_cl_52_360 :
874 				ext_csd->raw_pwr_cl_ddr_52_360;
875 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
876 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
877 				ext_csd->raw_pwr_cl_ddr_200_360 :
878 				ext_csd->raw_pwr_cl_200_360;
879 		break;
880 	default:
881 		pr_warn("%s: Voltage range not supported for power class\n",
882 			mmc_hostname(host));
883 		return -EINVAL;
884 	}
885 
886 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
887 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
888 				EXT_CSD_PWR_CL_8BIT_SHIFT;
889 	else
890 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
891 				EXT_CSD_PWR_CL_4BIT_SHIFT;
892 
893 	/* If the power class is different from the default value */
894 	if (pwrclass_val > 0) {
895 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
896 				 EXT_CSD_POWER_CLASS,
897 				 pwrclass_val,
898 				 card->ext_csd.generic_cmd6_time);
899 	}
900 
901 	return err;
902 }
903 
904 static int mmc_select_powerclass(struct mmc_card *card)
905 {
906 	struct mmc_host *host = card->host;
907 	u32 bus_width, ext_csd_bits;
908 	int err, ddr;
909 
910 	/* Power class selection is supported for versions >= 4.0 */
911 	if (!mmc_can_ext_csd(card))
912 		return 0;
913 
914 	bus_width = host->ios.bus_width;
915 	/* Power class values are defined only for 4/8 bit bus */
916 	if (bus_width == MMC_BUS_WIDTH_1)
917 		return 0;
918 
919 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
920 	if (ddr)
921 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
922 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
923 	else
924 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
925 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
926 
927 	err = __mmc_select_powerclass(card, ext_csd_bits);
928 	if (err)
929 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
930 			mmc_hostname(host), 1 << bus_width, ddr);
931 
932 	return err;
933 }
934 
935 /*
936  * Set the bus speed for the selected speed mode.
937  */
938 static void mmc_set_bus_speed(struct mmc_card *card)
939 {
940 	unsigned int max_dtr = (unsigned int)-1;
941 
942 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
943 	     max_dtr > card->ext_csd.hs200_max_dtr)
944 		max_dtr = card->ext_csd.hs200_max_dtr;
945 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
946 		max_dtr = card->ext_csd.hs_max_dtr;
947 	else if (max_dtr > card->csd.max_dtr)
948 		max_dtr = card->csd.max_dtr;
949 
950 	mmc_set_clock(card->host, max_dtr);
951 }
952 
953 /*
954  * Select the bus width amoung 4-bit and 8-bit(SDR).
955  * If the bus width is changed successfully, return the selected width value.
956  * Zero is returned instead of error value if the wide width is not supported.
957  */
958 static int mmc_select_bus_width(struct mmc_card *card)
959 {
960 	static unsigned ext_csd_bits[] = {
961 		EXT_CSD_BUS_WIDTH_8,
962 		EXT_CSD_BUS_WIDTH_4,
963 	};
964 	static unsigned bus_widths[] = {
965 		MMC_BUS_WIDTH_8,
966 		MMC_BUS_WIDTH_4,
967 	};
968 	struct mmc_host *host = card->host;
969 	unsigned idx, bus_width = 0;
970 	int err = 0;
971 
972 	if (!mmc_can_ext_csd(card) ||
973 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
974 		return 0;
975 
976 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
977 
978 	/*
979 	 * Unlike SD, MMC cards dont have a configuration register to notify
980 	 * supported bus width. So bus test command should be run to identify
981 	 * the supported bus width or compare the ext csd values of current
982 	 * bus width and ext csd values of 1 bit mode read earlier.
983 	 */
984 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
985 		/*
986 		 * Host is capable of 8bit transfer, then switch
987 		 * the device to work in 8bit transfer mode. If the
988 		 * mmc switch command returns error then switch to
989 		 * 4bit transfer mode. On success set the corresponding
990 		 * bus width on the host.
991 		 */
992 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
993 				 EXT_CSD_BUS_WIDTH,
994 				 ext_csd_bits[idx],
995 				 card->ext_csd.generic_cmd6_time);
996 		if (err)
997 			continue;
998 
999 		bus_width = bus_widths[idx];
1000 		mmc_set_bus_width(host, bus_width);
1001 
1002 		/*
1003 		 * If controller can't handle bus width test,
1004 		 * compare ext_csd previously read in 1 bit mode
1005 		 * against ext_csd at new bus width
1006 		 */
1007 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1008 			err = mmc_compare_ext_csds(card, bus_width);
1009 		else
1010 			err = mmc_bus_test(card, bus_width);
1011 
1012 		if (!err) {
1013 			err = bus_width;
1014 			break;
1015 		} else {
1016 			pr_warn("%s: switch to bus width %d failed\n",
1017 				mmc_hostname(host), 1 << bus_width);
1018 		}
1019 	}
1020 
1021 	return err;
1022 }
1023 
1024 /*
1025  * Switch to the high-speed mode
1026  */
1027 static int mmc_select_hs(struct mmc_card *card)
1028 {
1029 	int err;
1030 
1031 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1032 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1033 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1034 			   true, true, true);
1035 	if (err)
1036 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1037 			mmc_hostname(card->host), err);
1038 
1039 	return err;
1040 }
1041 
1042 /*
1043  * Activate wide bus and DDR if supported.
1044  */
1045 static int mmc_select_hs_ddr(struct mmc_card *card)
1046 {
1047 	struct mmc_host *host = card->host;
1048 	u32 bus_width, ext_csd_bits;
1049 	int err = 0;
1050 
1051 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1052 		return 0;
1053 
1054 	bus_width = host->ios.bus_width;
1055 	if (bus_width == MMC_BUS_WIDTH_1)
1056 		return 0;
1057 
1058 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1059 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1060 
1061 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1062 			   EXT_CSD_BUS_WIDTH,
1063 			   ext_csd_bits,
1064 			   card->ext_csd.generic_cmd6_time,
1065 			   MMC_TIMING_MMC_DDR52,
1066 			   true, true, true);
1067 	if (err) {
1068 		pr_err("%s: switch to bus width %d ddr failed\n",
1069 			mmc_hostname(host), 1 << bus_width);
1070 		return err;
1071 	}
1072 
1073 	/*
1074 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1075 	 * signaling.
1076 	 *
1077 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1078 	 *
1079 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1080 	 * in the JEDEC spec for DDR.
1081 	 *
1082 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1083 	 * host controller can support this, like some of the SDHCI
1084 	 * controller which connect to an eMMC device. Some of these
1085 	 * host controller still needs to use 1.8v vccq for supporting
1086 	 * DDR mode.
1087 	 *
1088 	 * So the sequence will be:
1089 	 * if (host and device can both support 1.2v IO)
1090 	 *	use 1.2v IO;
1091 	 * else if (host and device can both support 1.8v IO)
1092 	 *	use 1.8v IO;
1093 	 * so if host and device can only support 3.3v IO, this is the
1094 	 * last choice.
1095 	 *
1096 	 * WARNING: eMMC rules are NOT the same as SD DDR
1097 	 */
1098 	err = -EINVAL;
1099 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1100 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1101 
1102 	if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1103 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1104 
1105 	/* make sure vccq is 3.3v after switching disaster */
1106 	if (err)
1107 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1108 
1109 	return err;
1110 }
1111 
1112 static int mmc_select_hs400(struct mmc_card *card)
1113 {
1114 	struct mmc_host *host = card->host;
1115 	unsigned int max_dtr;
1116 	int err = 0;
1117 	u8 val;
1118 
1119 	/*
1120 	 * HS400 mode requires 8-bit bus width
1121 	 */
1122 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1123 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1124 		return 0;
1125 
1126 	/* Switch card to HS mode */
1127 	val = EXT_CSD_TIMING_HS;
1128 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1129 			   EXT_CSD_HS_TIMING, val,
1130 			   card->ext_csd.generic_cmd6_time, 0,
1131 			   true, false, true);
1132 	if (err) {
1133 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1134 			mmc_hostname(host), err);
1135 		return err;
1136 	}
1137 
1138 	/* Set host controller to HS timing */
1139 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1140 
1141 	/* Reduce frequency to HS frequency */
1142 	max_dtr = card->ext_csd.hs_max_dtr;
1143 	mmc_set_clock(host, max_dtr);
1144 
1145 	err = mmc_switch_status(card);
1146 	if (err)
1147 		goto out_err;
1148 
1149 	/* Switch card to DDR */
1150 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1151 			 EXT_CSD_BUS_WIDTH,
1152 			 EXT_CSD_DDR_BUS_WIDTH_8,
1153 			 card->ext_csd.generic_cmd6_time);
1154 	if (err) {
1155 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1156 			mmc_hostname(host), err);
1157 		return err;
1158 	}
1159 
1160 	/* Switch card to HS400 */
1161 	val = EXT_CSD_TIMING_HS400 |
1162 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1163 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1164 			   EXT_CSD_HS_TIMING, val,
1165 			   card->ext_csd.generic_cmd6_time, 0,
1166 			   true, false, true);
1167 	if (err) {
1168 		pr_err("%s: switch to hs400 failed, err:%d\n",
1169 			 mmc_hostname(host), err);
1170 		return err;
1171 	}
1172 
1173 	/* Set host controller to HS400 timing and frequency */
1174 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1175 	mmc_set_bus_speed(card);
1176 
1177 	err = mmc_switch_status(card);
1178 	if (err)
1179 		goto out_err;
1180 
1181 	return 0;
1182 
1183 out_err:
1184 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1185 	       __func__, err);
1186 	return err;
1187 }
1188 
1189 int mmc_hs200_to_hs400(struct mmc_card *card)
1190 {
1191 	return mmc_select_hs400(card);
1192 }
1193 
1194 int mmc_hs400_to_hs200(struct mmc_card *card)
1195 {
1196 	struct mmc_host *host = card->host;
1197 	unsigned int max_dtr;
1198 	int err;
1199 	u8 val;
1200 
1201 	/* Reduce frequency to HS */
1202 	max_dtr = card->ext_csd.hs_max_dtr;
1203 	mmc_set_clock(host, max_dtr);
1204 
1205 	/* Switch HS400 to HS DDR */
1206 	val = EXT_CSD_TIMING_HS;
1207 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1208 			   val, card->ext_csd.generic_cmd6_time, 0,
1209 			   true, false, true);
1210 	if (err)
1211 		goto out_err;
1212 
1213 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1214 
1215 	err = mmc_switch_status(card);
1216 	if (err)
1217 		goto out_err;
1218 
1219 	/* Switch HS DDR to HS */
1220 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1221 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1222 			   0, true, false, true);
1223 	if (err)
1224 		goto out_err;
1225 
1226 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1227 
1228 	err = mmc_switch_status(card);
1229 	if (err)
1230 		goto out_err;
1231 
1232 	/* Switch HS to HS200 */
1233 	val = EXT_CSD_TIMING_HS200 |
1234 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1235 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1236 			   val, card->ext_csd.generic_cmd6_time, 0,
1237 			   true, false, true);
1238 	if (err)
1239 		goto out_err;
1240 
1241 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1242 
1243 	/*
1244 	 * For HS200, CRC errors are not a reliable way to know the switch
1245 	 * failed. If there really is a problem, we would expect tuning will
1246 	 * fail and the result ends up the same.
1247 	 */
1248 	err = __mmc_switch_status(card, false);
1249 	if (err)
1250 		goto out_err;
1251 
1252 	mmc_set_bus_speed(card);
1253 
1254 	return 0;
1255 
1256 out_err:
1257 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1258 	       __func__, err);
1259 	return err;
1260 }
1261 
1262 static int mmc_select_hs400es(struct mmc_card *card)
1263 {
1264 	struct mmc_host *host = card->host;
1265 	int err = 0;
1266 	u8 val;
1267 
1268 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1269 		err = -ENOTSUPP;
1270 		goto out_err;
1271 	}
1272 
1273 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1274 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1275 
1276 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1277 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1278 
1279 	/* If fails try again during next card power cycle */
1280 	if (err)
1281 		goto out_err;
1282 
1283 	err = mmc_select_bus_width(card);
1284 	if (err < 0)
1285 		goto out_err;
1286 
1287 	/* Switch card to HS mode */
1288 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1289 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1290 			   card->ext_csd.generic_cmd6_time, 0,
1291 			   true, false, true);
1292 	if (err) {
1293 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1294 			mmc_hostname(host), err);
1295 		goto out_err;
1296 	}
1297 
1298 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1299 	err = mmc_switch_status(card);
1300 	if (err)
1301 		goto out_err;
1302 
1303 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1304 
1305 	/* Switch card to DDR with strobe bit */
1306 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1307 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1308 			 EXT_CSD_BUS_WIDTH,
1309 			 val,
1310 			 card->ext_csd.generic_cmd6_time);
1311 	if (err) {
1312 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1313 			mmc_hostname(host), err);
1314 		goto out_err;
1315 	}
1316 
1317 	/* Switch card to HS400 */
1318 	val = EXT_CSD_TIMING_HS400 |
1319 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1320 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1321 			   EXT_CSD_HS_TIMING, val,
1322 			   card->ext_csd.generic_cmd6_time, 0,
1323 			   true, false, true);
1324 	if (err) {
1325 		pr_err("%s: switch to hs400es failed, err:%d\n",
1326 			mmc_hostname(host), err);
1327 		goto out_err;
1328 	}
1329 
1330 	/* Set host controller to HS400 timing and frequency */
1331 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1332 
1333 	/* Controller enable enhanced strobe function */
1334 	host->ios.enhanced_strobe = true;
1335 	if (host->ops->hs400_enhanced_strobe)
1336 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1337 
1338 	err = mmc_switch_status(card);
1339 	if (err)
1340 		goto out_err;
1341 
1342 	return 0;
1343 
1344 out_err:
1345 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1346 	       __func__, err);
1347 	return err;
1348 }
1349 
1350 static void mmc_select_driver_type(struct mmc_card *card)
1351 {
1352 	int card_drv_type, drive_strength, drv_type;
1353 
1354 	card_drv_type = card->ext_csd.raw_driver_strength |
1355 			mmc_driver_type_mask(0);
1356 
1357 	drive_strength = mmc_select_drive_strength(card,
1358 						   card->ext_csd.hs200_max_dtr,
1359 						   card_drv_type, &drv_type);
1360 
1361 	card->drive_strength = drive_strength;
1362 
1363 	if (drv_type)
1364 		mmc_set_driver_type(card->host, drv_type);
1365 }
1366 
1367 /*
1368  * For device supporting HS200 mode, the following sequence
1369  * should be done before executing the tuning process.
1370  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1371  * 2. switch to HS200 mode
1372  * 3. set the clock to > 52Mhz and <=200MHz
1373  */
1374 static int mmc_select_hs200(struct mmc_card *card)
1375 {
1376 	struct mmc_host *host = card->host;
1377 	unsigned int old_timing, old_signal_voltage;
1378 	int err = -EINVAL;
1379 	u8 val;
1380 
1381 	old_signal_voltage = host->ios.signal_voltage;
1382 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1383 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1384 
1385 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1386 		err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1387 
1388 	/* If fails try again during next card power cycle */
1389 	if (err)
1390 		return err;
1391 
1392 	mmc_select_driver_type(card);
1393 
1394 	/*
1395 	 * Set the bus width(4 or 8) with host's support and
1396 	 * switch to HS200 mode if bus width is set successfully.
1397 	 */
1398 	err = mmc_select_bus_width(card);
1399 	if (err > 0) {
1400 		val = EXT_CSD_TIMING_HS200 |
1401 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1402 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1403 				   EXT_CSD_HS_TIMING, val,
1404 				   card->ext_csd.generic_cmd6_time, 0,
1405 				   true, false, true);
1406 		if (err)
1407 			goto err;
1408 		old_timing = host->ios.timing;
1409 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1410 
1411 		/*
1412 		 * For HS200, CRC errors are not a reliable way to know the
1413 		 * switch failed. If there really is a problem, we would expect
1414 		 * tuning will fail and the result ends up the same.
1415 		 */
1416 		err = __mmc_switch_status(card, false);
1417 
1418 		/*
1419 		 * mmc_select_timing() assumes timing has not changed if
1420 		 * it is a switch error.
1421 		 */
1422 		if (err == -EBADMSG)
1423 			mmc_set_timing(host, old_timing);
1424 	}
1425 err:
1426 	if (err) {
1427 		/* fall back to the old signal voltage, if fails report error */
1428 		if (__mmc_set_signal_voltage(host, old_signal_voltage))
1429 			err = -EIO;
1430 
1431 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1432 		       __func__, err);
1433 	}
1434 	return err;
1435 }
1436 
1437 /*
1438  * Activate High Speed, HS200 or HS400ES mode if supported.
1439  */
1440 static int mmc_select_timing(struct mmc_card *card)
1441 {
1442 	int err = 0;
1443 
1444 	if (!mmc_can_ext_csd(card))
1445 		goto bus_speed;
1446 
1447 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1448 		err = mmc_select_hs400es(card);
1449 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1450 		err = mmc_select_hs200(card);
1451 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1452 		err = mmc_select_hs(card);
1453 
1454 	if (err && err != -EBADMSG)
1455 		return err;
1456 
1457 bus_speed:
1458 	/*
1459 	 * Set the bus speed to the selected bus timing.
1460 	 * If timing is not selected, backward compatible is the default.
1461 	 */
1462 	mmc_set_bus_speed(card);
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Execute tuning sequence to seek the proper bus operating
1468  * conditions for HS200 and HS400, which sends CMD21 to the device.
1469  */
1470 static int mmc_hs200_tuning(struct mmc_card *card)
1471 {
1472 	struct mmc_host *host = card->host;
1473 
1474 	/*
1475 	 * Timing should be adjusted to the HS400 target
1476 	 * operation frequency for tuning process
1477 	 */
1478 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1479 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1480 		if (host->ops->prepare_hs400_tuning)
1481 			host->ops->prepare_hs400_tuning(host, &host->ios);
1482 
1483 	return mmc_execute_tuning(card);
1484 }
1485 
1486 /*
1487  * Handle the detection and initialisation of a card.
1488  *
1489  * In the case of a resume, "oldcard" will contain the card
1490  * we're trying to reinitialise.
1491  */
1492 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1493 	struct mmc_card *oldcard)
1494 {
1495 	struct mmc_card *card;
1496 	int err;
1497 	u32 cid[4];
1498 	u32 rocr;
1499 
1500 	WARN_ON(!host->claimed);
1501 
1502 	/* Set correct bus mode for MMC before attempting init */
1503 	if (!mmc_host_is_spi(host))
1504 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1505 
1506 	/*
1507 	 * Since we're changing the OCR value, we seem to
1508 	 * need to tell some cards to go back to the idle
1509 	 * state.  We wait 1ms to give cards time to
1510 	 * respond.
1511 	 * mmc_go_idle is needed for eMMC that are asleep
1512 	 */
1513 	mmc_go_idle(host);
1514 
1515 	/* The extra bit indicates that we support high capacity */
1516 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1517 	if (err)
1518 		goto err;
1519 
1520 	/*
1521 	 * For SPI, enable CRC as appropriate.
1522 	 */
1523 	if (mmc_host_is_spi(host)) {
1524 		err = mmc_spi_set_crc(host, use_spi_crc);
1525 		if (err)
1526 			goto err;
1527 	}
1528 
1529 	/*
1530 	 * Fetch CID from card.
1531 	 */
1532 	if (mmc_host_is_spi(host))
1533 		err = mmc_send_cid(host, cid);
1534 	else
1535 		err = mmc_all_send_cid(host, cid);
1536 	if (err)
1537 		goto err;
1538 
1539 	if (oldcard) {
1540 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1541 			err = -ENOENT;
1542 			goto err;
1543 		}
1544 
1545 		card = oldcard;
1546 	} else {
1547 		/*
1548 		 * Allocate card structure.
1549 		 */
1550 		card = mmc_alloc_card(host, &mmc_type);
1551 		if (IS_ERR(card)) {
1552 			err = PTR_ERR(card);
1553 			goto err;
1554 		}
1555 
1556 		card->ocr = ocr;
1557 		card->type = MMC_TYPE_MMC;
1558 		card->rca = 1;
1559 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1560 	}
1561 
1562 	/*
1563 	 * Call the optional HC's init_card function to handle quirks.
1564 	 */
1565 	if (host->ops->init_card)
1566 		host->ops->init_card(host, card);
1567 
1568 	/*
1569 	 * For native busses:  set card RCA and quit open drain mode.
1570 	 */
1571 	if (!mmc_host_is_spi(host)) {
1572 		err = mmc_set_relative_addr(card);
1573 		if (err)
1574 			goto free_card;
1575 
1576 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1577 	}
1578 
1579 	if (!oldcard) {
1580 		/*
1581 		 * Fetch CSD from card.
1582 		 */
1583 		err = mmc_send_csd(card, card->raw_csd);
1584 		if (err)
1585 			goto free_card;
1586 
1587 		err = mmc_decode_csd(card);
1588 		if (err)
1589 			goto free_card;
1590 		err = mmc_decode_cid(card);
1591 		if (err)
1592 			goto free_card;
1593 	}
1594 
1595 	/*
1596 	 * handling only for cards supporting DSR and hosts requesting
1597 	 * DSR configuration
1598 	 */
1599 	if (card->csd.dsr_imp && host->dsr_req)
1600 		mmc_set_dsr(host);
1601 
1602 	/*
1603 	 * Select card, as all following commands rely on that.
1604 	 */
1605 	if (!mmc_host_is_spi(host)) {
1606 		err = mmc_select_card(card);
1607 		if (err)
1608 			goto free_card;
1609 	}
1610 
1611 	if (!oldcard) {
1612 		/* Read extended CSD. */
1613 		err = mmc_read_ext_csd(card);
1614 		if (err)
1615 			goto free_card;
1616 
1617 		/*
1618 		 * If doing byte addressing, check if required to do sector
1619 		 * addressing.  Handle the case of <2GB cards needing sector
1620 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1621 		 * ocr register has bit 30 set for sector addressing.
1622 		 */
1623 		if (rocr & BIT(30))
1624 			mmc_card_set_blockaddr(card);
1625 
1626 		/* Erase size depends on CSD and Extended CSD */
1627 		mmc_set_erase_size(card);
1628 	}
1629 
1630 	/*
1631 	 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1632 	 * bit.  This bit will be lost every time after a reset or power off.
1633 	 */
1634 	if (card->ext_csd.partition_setting_completed ||
1635 	    (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1636 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1637 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1638 				 card->ext_csd.generic_cmd6_time);
1639 
1640 		if (err && err != -EBADMSG)
1641 			goto free_card;
1642 
1643 		if (err) {
1644 			err = 0;
1645 			/*
1646 			 * Just disable enhanced area off & sz
1647 			 * will try to enable ERASE_GROUP_DEF
1648 			 * during next time reinit
1649 			 */
1650 			card->ext_csd.enhanced_area_offset = -EINVAL;
1651 			card->ext_csd.enhanced_area_size = -EINVAL;
1652 		} else {
1653 			card->ext_csd.erase_group_def = 1;
1654 			/*
1655 			 * enable ERASE_GRP_DEF successfully.
1656 			 * This will affect the erase size, so
1657 			 * here need to reset erase size
1658 			 */
1659 			mmc_set_erase_size(card);
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * Ensure eMMC user default partition is enabled
1665 	 */
1666 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1667 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1668 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1669 				 card->ext_csd.part_config,
1670 				 card->ext_csd.part_time);
1671 		if (err && err != -EBADMSG)
1672 			goto free_card;
1673 	}
1674 
1675 	/*
1676 	 * Enable power_off_notification byte in the ext_csd register
1677 	 */
1678 	if (card->ext_csd.rev >= 6) {
1679 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1680 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1681 				 EXT_CSD_POWER_ON,
1682 				 card->ext_csd.generic_cmd6_time);
1683 		if (err && err != -EBADMSG)
1684 			goto free_card;
1685 
1686 		/*
1687 		 * The err can be -EBADMSG or 0,
1688 		 * so check for success and update the flag
1689 		 */
1690 		if (!err)
1691 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1692 	}
1693 
1694 	/*
1695 	 * Select timing interface
1696 	 */
1697 	err = mmc_select_timing(card);
1698 	if (err)
1699 		goto free_card;
1700 
1701 	if (mmc_card_hs200(card)) {
1702 		err = mmc_hs200_tuning(card);
1703 		if (err)
1704 			goto free_card;
1705 
1706 		err = mmc_select_hs400(card);
1707 		if (err)
1708 			goto free_card;
1709 	} else if (mmc_card_hs(card)) {
1710 		/* Select the desired bus width optionally */
1711 		err = mmc_select_bus_width(card);
1712 		if (err > 0) {
1713 			err = mmc_select_hs_ddr(card);
1714 			if (err)
1715 				goto free_card;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * Choose the power class with selected bus interface
1721 	 */
1722 	mmc_select_powerclass(card);
1723 
1724 	/*
1725 	 * Enable HPI feature (if supported)
1726 	 */
1727 	if (card->ext_csd.hpi) {
1728 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1729 				EXT_CSD_HPI_MGMT, 1,
1730 				card->ext_csd.generic_cmd6_time);
1731 		if (err && err != -EBADMSG)
1732 			goto free_card;
1733 		if (err) {
1734 			pr_warn("%s: Enabling HPI failed\n",
1735 				mmc_hostname(card->host));
1736 			err = 0;
1737 		} else
1738 			card->ext_csd.hpi_en = 1;
1739 	}
1740 
1741 	/*
1742 	 * If cache size is higher than 0, this indicates
1743 	 * the existence of cache and it can be turned on.
1744 	 */
1745 	if (!mmc_card_broken_hpi(card) &&
1746 	    card->ext_csd.cache_size > 0) {
1747 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1748 				EXT_CSD_CACHE_CTRL, 1,
1749 				card->ext_csd.generic_cmd6_time);
1750 		if (err && err != -EBADMSG)
1751 			goto free_card;
1752 
1753 		/*
1754 		 * Only if no error, cache is turned on successfully.
1755 		 */
1756 		if (err) {
1757 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1758 				mmc_hostname(card->host), err);
1759 			card->ext_csd.cache_ctrl = 0;
1760 			err = 0;
1761 		} else {
1762 			card->ext_csd.cache_ctrl = 1;
1763 		}
1764 	}
1765 
1766 	/*
1767 	 * The mandatory minimum values are defined for packed command.
1768 	 * read: 5, write: 3
1769 	 */
1770 	if (card->ext_csd.max_packed_writes >= 3 &&
1771 	    card->ext_csd.max_packed_reads >= 5 &&
1772 	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1773 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1774 				EXT_CSD_EXP_EVENTS_CTRL,
1775 				EXT_CSD_PACKED_EVENT_EN,
1776 				card->ext_csd.generic_cmd6_time);
1777 		if (err && err != -EBADMSG)
1778 			goto free_card;
1779 		if (err) {
1780 			pr_warn("%s: Enabling packed event failed\n",
1781 				mmc_hostname(card->host));
1782 			card->ext_csd.packed_event_en = 0;
1783 			err = 0;
1784 		} else {
1785 			card->ext_csd.packed_event_en = 1;
1786 		}
1787 	}
1788 
1789 	if (!oldcard)
1790 		host->card = card;
1791 
1792 	return 0;
1793 
1794 free_card:
1795 	if (!oldcard)
1796 		mmc_remove_card(card);
1797 err:
1798 	return err;
1799 }
1800 
1801 static int mmc_can_sleep(struct mmc_card *card)
1802 {
1803 	return (card && card->ext_csd.rev >= 3);
1804 }
1805 
1806 static int mmc_sleep(struct mmc_host *host)
1807 {
1808 	struct mmc_command cmd = {0};
1809 	struct mmc_card *card = host->card;
1810 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1811 	int err;
1812 
1813 	/* Re-tuning can't be done once the card is deselected */
1814 	mmc_retune_hold(host);
1815 
1816 	err = mmc_deselect_cards(host);
1817 	if (err)
1818 		goto out_release;
1819 
1820 	cmd.opcode = MMC_SLEEP_AWAKE;
1821 	cmd.arg = card->rca << 16;
1822 	cmd.arg |= 1 << 15;
1823 
1824 	/*
1825 	 * If the max_busy_timeout of the host is specified, validate it against
1826 	 * the sleep cmd timeout. A failure means we need to prevent the host
1827 	 * from doing hw busy detection, which is done by converting to a R1
1828 	 * response instead of a R1B.
1829 	 */
1830 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1831 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1832 	} else {
1833 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1834 		cmd.busy_timeout = timeout_ms;
1835 	}
1836 
1837 	err = mmc_wait_for_cmd(host, &cmd, 0);
1838 	if (err)
1839 		goto out_release;
1840 
1841 	/*
1842 	 * If the host does not wait while the card signals busy, then we will
1843 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1844 	 * SEND_STATUS command to poll the status because that command (and most
1845 	 * others) is invalid while the card sleeps.
1846 	 */
1847 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1848 		mmc_delay(timeout_ms);
1849 
1850 out_release:
1851 	mmc_retune_release(host);
1852 	return err;
1853 }
1854 
1855 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1856 {
1857 	return card &&
1858 		mmc_card_mmc(card) &&
1859 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1860 }
1861 
1862 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1863 {
1864 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1865 	int err;
1866 
1867 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1868 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1869 		timeout = card->ext_csd.power_off_longtime;
1870 
1871 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1872 			EXT_CSD_POWER_OFF_NOTIFICATION,
1873 			notify_type, timeout, 0, true, false, false);
1874 	if (err)
1875 		pr_err("%s: Power Off Notification timed out, %u\n",
1876 		       mmc_hostname(card->host), timeout);
1877 
1878 	/* Disable the power off notification after the switch operation. */
1879 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1880 
1881 	return err;
1882 }
1883 
1884 /*
1885  * Host is being removed. Free up the current card.
1886  */
1887 static void mmc_remove(struct mmc_host *host)
1888 {
1889 	mmc_remove_card(host->card);
1890 	host->card = NULL;
1891 }
1892 
1893 /*
1894  * Card detection - card is alive.
1895  */
1896 static int mmc_alive(struct mmc_host *host)
1897 {
1898 	return mmc_send_status(host->card, NULL);
1899 }
1900 
1901 /*
1902  * Card detection callback from host.
1903  */
1904 static void mmc_detect(struct mmc_host *host)
1905 {
1906 	int err;
1907 
1908 	mmc_get_card(host->card);
1909 
1910 	/*
1911 	 * Just check if our card has been removed.
1912 	 */
1913 	err = _mmc_detect_card_removed(host);
1914 
1915 	mmc_put_card(host->card);
1916 
1917 	if (err) {
1918 		mmc_remove(host);
1919 
1920 		mmc_claim_host(host);
1921 		mmc_detach_bus(host);
1922 		mmc_power_off(host);
1923 		mmc_release_host(host);
1924 	}
1925 }
1926 
1927 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1928 {
1929 	int err = 0;
1930 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1931 					EXT_CSD_POWER_OFF_LONG;
1932 
1933 	mmc_claim_host(host);
1934 
1935 	if (mmc_card_suspended(host->card))
1936 		goto out;
1937 
1938 	if (mmc_card_doing_bkops(host->card)) {
1939 		err = mmc_stop_bkops(host->card);
1940 		if (err)
1941 			goto out;
1942 	}
1943 
1944 	err = mmc_flush_cache(host->card);
1945 	if (err)
1946 		goto out;
1947 
1948 	if (mmc_can_poweroff_notify(host->card) &&
1949 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1950 		err = mmc_poweroff_notify(host->card, notify_type);
1951 	else if (mmc_can_sleep(host->card))
1952 		err = mmc_sleep(host);
1953 	else if (!mmc_host_is_spi(host))
1954 		err = mmc_deselect_cards(host);
1955 
1956 	if (!err) {
1957 		mmc_power_off(host);
1958 		mmc_card_set_suspended(host->card);
1959 	}
1960 out:
1961 	mmc_release_host(host);
1962 	return err;
1963 }
1964 
1965 /*
1966  * Suspend callback
1967  */
1968 static int mmc_suspend(struct mmc_host *host)
1969 {
1970 	int err;
1971 
1972 	err = _mmc_suspend(host, true);
1973 	if (!err) {
1974 		pm_runtime_disable(&host->card->dev);
1975 		pm_runtime_set_suspended(&host->card->dev);
1976 	}
1977 
1978 	return err;
1979 }
1980 
1981 /*
1982  * This function tries to determine if the same card is still present
1983  * and, if so, restore all state to it.
1984  */
1985 static int _mmc_resume(struct mmc_host *host)
1986 {
1987 	int err = 0;
1988 
1989 	mmc_claim_host(host);
1990 
1991 	if (!mmc_card_suspended(host->card))
1992 		goto out;
1993 
1994 	mmc_power_up(host, host->card->ocr);
1995 	err = mmc_init_card(host, host->card->ocr, host->card);
1996 	mmc_card_clr_suspended(host->card);
1997 
1998 out:
1999 	mmc_release_host(host);
2000 	return err;
2001 }
2002 
2003 /*
2004  * Shutdown callback
2005  */
2006 static int mmc_shutdown(struct mmc_host *host)
2007 {
2008 	int err = 0;
2009 
2010 	/*
2011 	 * In a specific case for poweroff notify, we need to resume the card
2012 	 * before we can shutdown it properly.
2013 	 */
2014 	if (mmc_can_poweroff_notify(host->card) &&
2015 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2016 		err = _mmc_resume(host);
2017 
2018 	if (!err)
2019 		err = _mmc_suspend(host, false);
2020 
2021 	return err;
2022 }
2023 
2024 /*
2025  * Callback for resume.
2026  */
2027 static int mmc_resume(struct mmc_host *host)
2028 {
2029 	pm_runtime_enable(&host->card->dev);
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Callback for runtime_suspend.
2035  */
2036 static int mmc_runtime_suspend(struct mmc_host *host)
2037 {
2038 	int err;
2039 
2040 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2041 		return 0;
2042 
2043 	err = _mmc_suspend(host, true);
2044 	if (err)
2045 		pr_err("%s: error %d doing aggressive suspend\n",
2046 			mmc_hostname(host), err);
2047 
2048 	return err;
2049 }
2050 
2051 /*
2052  * Callback for runtime_resume.
2053  */
2054 static int mmc_runtime_resume(struct mmc_host *host)
2055 {
2056 	int err;
2057 
2058 	err = _mmc_resume(host);
2059 	if (err && err != -ENOMEDIUM)
2060 		pr_err("%s: error %d doing runtime resume\n",
2061 			mmc_hostname(host), err);
2062 
2063 	return 0;
2064 }
2065 
2066 int mmc_can_reset(struct mmc_card *card)
2067 {
2068 	u8 rst_n_function;
2069 
2070 	rst_n_function = card->ext_csd.rst_n_function;
2071 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2072 		return 0;
2073 	return 1;
2074 }
2075 EXPORT_SYMBOL(mmc_can_reset);
2076 
2077 static int mmc_reset(struct mmc_host *host)
2078 {
2079 	struct mmc_card *card = host->card;
2080 
2081 	/*
2082 	 * In the case of recovery, we can't expect flushing the cache to work
2083 	 * always, but we have a go and ignore errors.
2084 	 */
2085 	mmc_flush_cache(host->card);
2086 
2087 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2088 	     mmc_can_reset(card)) {
2089 		/* If the card accept RST_n signal, send it. */
2090 		mmc_set_clock(host, host->f_init);
2091 		host->ops->hw_reset(host);
2092 		/* Set initial state and call mmc_set_ios */
2093 		mmc_set_initial_state(host);
2094 	} else {
2095 		/* Do a brute force power cycle */
2096 		mmc_power_cycle(host, card->ocr);
2097 	}
2098 	return mmc_init_card(host, card->ocr, card);
2099 }
2100 
2101 static const struct mmc_bus_ops mmc_ops = {
2102 	.remove = mmc_remove,
2103 	.detect = mmc_detect,
2104 	.suspend = mmc_suspend,
2105 	.resume = mmc_resume,
2106 	.runtime_suspend = mmc_runtime_suspend,
2107 	.runtime_resume = mmc_runtime_resume,
2108 	.alive = mmc_alive,
2109 	.shutdown = mmc_shutdown,
2110 	.reset = mmc_reset,
2111 };
2112 
2113 /*
2114  * Starting point for MMC card init.
2115  */
2116 int mmc_attach_mmc(struct mmc_host *host)
2117 {
2118 	int err;
2119 	u32 ocr, rocr;
2120 
2121 	WARN_ON(!host->claimed);
2122 
2123 	/* Set correct bus mode for MMC before attempting attach */
2124 	if (!mmc_host_is_spi(host))
2125 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2126 
2127 	err = mmc_send_op_cond(host, 0, &ocr);
2128 	if (err)
2129 		return err;
2130 
2131 	mmc_attach_bus(host, &mmc_ops);
2132 	if (host->ocr_avail_mmc)
2133 		host->ocr_avail = host->ocr_avail_mmc;
2134 
2135 	/*
2136 	 * We need to get OCR a different way for SPI.
2137 	 */
2138 	if (mmc_host_is_spi(host)) {
2139 		err = mmc_spi_read_ocr(host, 1, &ocr);
2140 		if (err)
2141 			goto err;
2142 	}
2143 
2144 	rocr = mmc_select_voltage(host, ocr);
2145 
2146 	/*
2147 	 * Can we support the voltage of the card?
2148 	 */
2149 	if (!rocr) {
2150 		err = -EINVAL;
2151 		goto err;
2152 	}
2153 
2154 	/*
2155 	 * Detect and init the card.
2156 	 */
2157 	err = mmc_init_card(host, rocr, NULL);
2158 	if (err)
2159 		goto err;
2160 
2161 	mmc_release_host(host);
2162 	err = mmc_add_card(host->card);
2163 	if (err)
2164 		goto remove_card;
2165 
2166 	mmc_claim_host(host);
2167 	return 0;
2168 
2169 remove_card:
2170 	mmc_remove_card(host->card);
2171 	mmc_claim_host(host);
2172 	host->card = NULL;
2173 err:
2174 	mmc_detach_bus(host);
2175 
2176 	pr_err("%s: error %d whilst initialising MMC card\n",
2177 		mmc_hostname(host), err);
2178 
2179 	return err;
2180 }
2181