1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 #include "pwrseq.h" 31 32 #define DEFAULT_CMD6_TIMEOUT_MS 500 33 34 static const unsigned int tran_exp[] = { 35 10000, 100000, 1000000, 10000000, 36 0, 0, 0, 0 37 }; 38 39 static const unsigned char tran_mant[] = { 40 0, 10, 12, 13, 15, 20, 25, 30, 41 35, 40, 45, 50, 55, 60, 70, 80, 42 }; 43 44 static const unsigned int taac_exp[] = { 45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 46 }; 47 48 static const unsigned int taac_mant[] = { 49 0, 10, 12, 13, 15, 20, 25, 30, 50 35, 40, 45, 50, 55, 60, 70, 80, 51 }; 52 53 #define UNSTUFF_BITS(resp,start,size) \ 54 ({ \ 55 const int __size = size; \ 56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 57 const int __off = 3 - ((start) / 32); \ 58 const int __shft = (start) & 31; \ 59 u32 __res; \ 60 \ 61 __res = resp[__off] >> __shft; \ 62 if (__size + __shft > 32) \ 63 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 64 __res & __mask; \ 65 }) 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 static int mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * The selection of the format here is based upon published 76 * specs from sandisk and from what people have reported. 77 */ 78 switch (card->csd.mmca_vsn) { 79 case 0: /* MMC v1.0 - v1.2 */ 80 case 1: /* MMC v1.4 */ 81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 92 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 94 break; 95 96 case 2: /* MMC v2.0 - v2.2 */ 97 case 3: /* MMC v3.1 - v3.3 */ 98 case 4: /* MMC v4 */ 99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 109 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 111 break; 112 113 default: 114 pr_err("%s: card has unknown MMCA version %d\n", 115 mmc_hostname(card->host), card->csd.mmca_vsn); 116 return -EINVAL; 117 } 118 119 return 0; 120 } 121 122 static void mmc_set_erase_size(struct mmc_card *card) 123 { 124 if (card->ext_csd.erase_group_def & 1) 125 card->erase_size = card->ext_csd.hc_erase_size; 126 else 127 card->erase_size = card->csd.erase_size; 128 129 mmc_init_erase(card); 130 } 131 132 /* 133 * Given a 128-bit response, decode to our card CSD structure. 134 */ 135 static int mmc_decode_csd(struct mmc_card *card) 136 { 137 struct mmc_csd *csd = &card->csd; 138 unsigned int e, m, a, b; 139 u32 *resp = card->raw_csd; 140 141 /* 142 * We only understand CSD structure v1.1 and v1.2. 143 * v1.2 has extra information in bits 15, 11 and 10. 144 * We also support eMMC v4.4 & v4.41. 145 */ 146 csd->structure = UNSTUFF_BITS(resp, 126, 2); 147 if (csd->structure == 0) { 148 pr_err("%s: unrecognised CSD structure version %d\n", 149 mmc_hostname(card->host), csd->structure); 150 return -EINVAL; 151 } 152 153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 154 m = UNSTUFF_BITS(resp, 115, 4); 155 e = UNSTUFF_BITS(resp, 112, 3); 156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 158 159 m = UNSTUFF_BITS(resp, 99, 4); 160 e = UNSTUFF_BITS(resp, 96, 3); 161 csd->max_dtr = tran_exp[e] * tran_mant[m]; 162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 163 164 e = UNSTUFF_BITS(resp, 47, 3); 165 m = UNSTUFF_BITS(resp, 62, 12); 166 csd->capacity = (1 + m) << (e + 2); 167 168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 176 177 if (csd->write_blkbits >= 9) { 178 a = UNSTUFF_BITS(resp, 42, 5); 179 b = UNSTUFF_BITS(resp, 37, 5); 180 csd->erase_size = (a + 1) * (b + 1); 181 csd->erase_size <<= csd->write_blkbits - 9; 182 } 183 184 return 0; 185 } 186 187 static void mmc_select_card_type(struct mmc_card *card) 188 { 189 struct mmc_host *host = card->host; 190 u8 card_type = card->ext_csd.raw_card_type; 191 u32 caps = host->caps, caps2 = host->caps2; 192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 193 unsigned int avail_type = 0; 194 195 if (caps & MMC_CAP_MMC_HIGHSPEED && 196 card_type & EXT_CSD_CARD_TYPE_HS_26) { 197 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 198 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 199 } 200 201 if (caps & MMC_CAP_MMC_HIGHSPEED && 202 card_type & EXT_CSD_CARD_TYPE_HS_52) { 203 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 204 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 205 } 206 207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 211 } 212 213 if (caps & MMC_CAP_1_2V_DDR && 214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 217 } 218 219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 221 hs200_max_dtr = MMC_HS200_MAX_DTR; 222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 223 } 224 225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 227 hs200_max_dtr = MMC_HS200_MAX_DTR; 228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 229 } 230 231 if (caps2 & MMC_CAP2_HS400_1_8V && 232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 233 hs200_max_dtr = MMC_HS200_MAX_DTR; 234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 235 } 236 237 if (caps2 & MMC_CAP2_HS400_1_2V && 238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 239 hs200_max_dtr = MMC_HS200_MAX_DTR; 240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 241 } 242 243 if ((caps2 & MMC_CAP2_HS400_ES) && 244 card->ext_csd.strobe_support && 245 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 247 248 card->ext_csd.hs_max_dtr = hs_max_dtr; 249 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 250 card->mmc_avail_type = avail_type; 251 } 252 253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 254 { 255 u8 hc_erase_grp_sz, hc_wp_grp_sz; 256 257 /* 258 * Disable these attributes by default 259 */ 260 card->ext_csd.enhanced_area_offset = -EINVAL; 261 card->ext_csd.enhanced_area_size = -EINVAL; 262 263 /* 264 * Enhanced area feature support -- check whether the eMMC 265 * card has the Enhanced area enabled. If so, export enhanced 266 * area offset and size to user by adding sysfs interface. 267 */ 268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 270 if (card->ext_csd.partition_setting_completed) { 271 hc_erase_grp_sz = 272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 273 hc_wp_grp_sz = 274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 275 276 /* 277 * calculate the enhanced data area offset, in bytes 278 */ 279 card->ext_csd.enhanced_area_offset = 280 (((unsigned long long)ext_csd[139]) << 24) + 281 (((unsigned long long)ext_csd[138]) << 16) + 282 (((unsigned long long)ext_csd[137]) << 8) + 283 (((unsigned long long)ext_csd[136])); 284 if (mmc_card_blockaddr(card)) 285 card->ext_csd.enhanced_area_offset <<= 9; 286 /* 287 * calculate the enhanced data area size, in kilobytes 288 */ 289 card->ext_csd.enhanced_area_size = 290 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 291 ext_csd[140]; 292 card->ext_csd.enhanced_area_size *= 293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 294 card->ext_csd.enhanced_area_size <<= 9; 295 } else { 296 pr_warn("%s: defines enhanced area without partition setting complete\n", 297 mmc_hostname(card->host)); 298 } 299 } 300 } 301 302 static void mmc_part_add(struct mmc_card *card, unsigned int size, 303 unsigned int part_cfg, char *name, int idx, bool ro, 304 int area_type) 305 { 306 card->part[card->nr_parts].size = size; 307 card->part[card->nr_parts].part_cfg = part_cfg; 308 sprintf(card->part[card->nr_parts].name, name, idx); 309 card->part[card->nr_parts].force_ro = ro; 310 card->part[card->nr_parts].area_type = area_type; 311 card->nr_parts++; 312 } 313 314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 315 { 316 int idx; 317 u8 hc_erase_grp_sz, hc_wp_grp_sz; 318 unsigned int part_size; 319 320 /* 321 * General purpose partition feature support -- 322 * If ext_csd has the size of general purpose partitions, 323 * set size, part_cfg, partition name in mmc_part. 324 */ 325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 326 EXT_CSD_PART_SUPPORT_PART_EN) { 327 hc_erase_grp_sz = 328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 329 hc_wp_grp_sz = 330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 331 332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 336 continue; 337 if (card->ext_csd.partition_setting_completed == 0) { 338 pr_warn("%s: has partition size defined without partition complete\n", 339 mmc_hostname(card->host)); 340 break; 341 } 342 part_size = 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 344 << 16) + 345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 346 << 8) + 347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 348 part_size *= (size_t)(hc_erase_grp_sz * 349 hc_wp_grp_sz); 350 mmc_part_add(card, part_size << 19, 351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 352 "gp%d", idx, false, 353 MMC_BLK_DATA_AREA_GP); 354 } 355 } 356 } 357 358 /* Minimum partition switch timeout in milliseconds */ 359 #define MMC_MIN_PART_SWITCH_TIME 300 360 361 /* 362 * Decode extended CSD. 363 */ 364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 365 { 366 int err = 0, idx; 367 unsigned int part_size; 368 struct device_node *np; 369 bool broken_hpi = false; 370 371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 373 if (card->csd.structure == 3) { 374 if (card->ext_csd.raw_ext_csd_structure > 2) { 375 pr_err("%s: unrecognised EXT_CSD structure " 376 "version %d\n", mmc_hostname(card->host), 377 card->ext_csd.raw_ext_csd_structure); 378 err = -EINVAL; 379 goto out; 380 } 381 } 382 383 np = mmc_of_find_child_device(card->host, 0); 384 if (np && of_device_is_compatible(np, "mmc-card")) 385 broken_hpi = of_property_read_bool(np, "broken-hpi"); 386 of_node_put(np); 387 388 /* 389 * The EXT_CSD format is meant to be forward compatible. As long 390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 391 * are authorized, see JEDEC JESD84-B50 section B.8. 392 */ 393 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 394 395 /* fixup device after ext_csd revision field is updated */ 396 mmc_fixup_device(card, mmc_ext_csd_fixups); 397 398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 402 if (card->ext_csd.rev >= 2) { 403 card->ext_csd.sectors = 404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 408 409 /* Cards with density > 2GiB are sector addressed */ 410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 411 mmc_card_set_blockaddr(card); 412 } 413 414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 416 mmc_select_card_type(card); 417 418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 419 card->ext_csd.raw_erase_timeout_mult = 420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 421 card->ext_csd.raw_hc_erase_grp_size = 422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 423 if (card->ext_csd.rev >= 3) { 424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 426 427 /* EXT_CSD value is in units of 10ms, but we store in ms */ 428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 429 /* Some eMMC set the value too low so set a minimum */ 430 if (card->ext_csd.part_time && 431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 433 434 /* Sleep / awake timeout in 100ns units */ 435 if (sa_shift > 0 && sa_shift <= 0x17) 436 card->ext_csd.sa_timeout = 437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 438 card->ext_csd.erase_group_def = 439 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 440 card->ext_csd.hc_erase_timeout = 300 * 441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 442 card->ext_csd.hc_erase_size = 443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 444 445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 446 447 /* 448 * There are two boot regions of equal size, defined in 449 * multiples of 128K. 450 */ 451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 454 mmc_part_add(card, part_size, 455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 456 "boot%d", idx, true, 457 MMC_BLK_DATA_AREA_BOOT); 458 } 459 } 460 } 461 462 card->ext_csd.raw_hc_erase_gap_size = 463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 464 card->ext_csd.raw_sec_trim_mult = 465 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 466 card->ext_csd.raw_sec_erase_mult = 467 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 468 card->ext_csd.raw_sec_feature_support = 469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 470 card->ext_csd.raw_trim_mult = 471 ext_csd[EXT_CSD_TRIM_MULT]; 472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 474 if (card->ext_csd.rev >= 4) { 475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 476 EXT_CSD_PART_SETTING_COMPLETED) 477 card->ext_csd.partition_setting_completed = 1; 478 else 479 card->ext_csd.partition_setting_completed = 0; 480 481 mmc_manage_enhanced_area(card, ext_csd); 482 483 mmc_manage_gp_partitions(card, ext_csd); 484 485 card->ext_csd.sec_trim_mult = 486 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 487 card->ext_csd.sec_erase_mult = 488 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 489 card->ext_csd.sec_feature_support = 490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 491 card->ext_csd.trim_timeout = 300 * 492 ext_csd[EXT_CSD_TRIM_MULT]; 493 494 /* 495 * Note that the call to mmc_part_add above defaults to read 496 * only. If this default assumption is changed, the call must 497 * take into account the value of boot_locked below. 498 */ 499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 500 card->ext_csd.boot_ro_lockable = true; 501 502 /* Save power class values */ 503 card->ext_csd.raw_pwr_cl_52_195 = 504 ext_csd[EXT_CSD_PWR_CL_52_195]; 505 card->ext_csd.raw_pwr_cl_26_195 = 506 ext_csd[EXT_CSD_PWR_CL_26_195]; 507 card->ext_csd.raw_pwr_cl_52_360 = 508 ext_csd[EXT_CSD_PWR_CL_52_360]; 509 card->ext_csd.raw_pwr_cl_26_360 = 510 ext_csd[EXT_CSD_PWR_CL_26_360]; 511 card->ext_csd.raw_pwr_cl_200_195 = 512 ext_csd[EXT_CSD_PWR_CL_200_195]; 513 card->ext_csd.raw_pwr_cl_200_360 = 514 ext_csd[EXT_CSD_PWR_CL_200_360]; 515 card->ext_csd.raw_pwr_cl_ddr_52_195 = 516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 517 card->ext_csd.raw_pwr_cl_ddr_52_360 = 518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 519 card->ext_csd.raw_pwr_cl_ddr_200_360 = 520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 521 } 522 523 if (card->ext_csd.rev >= 5) { 524 /* Adjust production date as per JEDEC JESD84-B451 */ 525 if (card->cid.year < 2010) 526 card->cid.year += 16; 527 528 /* check whether the eMMC card supports BKOPS */ 529 if (!mmc_card_broken_hpi(card) && 530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 531 card->ext_csd.bkops = 1; 532 card->ext_csd.man_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_MANUAL_BKOPS_MASK); 535 card->ext_csd.raw_bkops_status = 536 ext_csd[EXT_CSD_BKOPS_STATUS]; 537 if (card->ext_csd.man_bkops_en) 538 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 539 mmc_hostname(card->host)); 540 card->ext_csd.auto_bkops_en = 541 (ext_csd[EXT_CSD_BKOPS_EN] & 542 EXT_CSD_AUTO_BKOPS_MASK); 543 if (card->ext_csd.auto_bkops_en) 544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 545 mmc_hostname(card->host)); 546 } 547 548 /* check whether the eMMC card supports HPI */ 549 if (!mmc_card_broken_hpi(card) && 550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 551 card->ext_csd.hpi = 1; 552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 554 else 555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 556 /* 557 * Indicate the maximum timeout to close 558 * a command interrupted by HPI 559 */ 560 card->ext_csd.out_of_int_time = 561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 562 } 563 564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 566 567 /* 568 * RPMB regions are defined in multiples of 128K. 569 */ 570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 573 EXT_CSD_PART_CONFIG_ACC_RPMB, 574 "rpmb", 0, false, 575 MMC_BLK_DATA_AREA_RPMB); 576 } 577 } 578 579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 581 card->erased_byte = 0xFF; 582 else 583 card->erased_byte = 0x0; 584 585 /* eMMC v4.5 or later */ 586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 587 if (card->ext_csd.rev >= 6) { 588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 589 590 card->ext_csd.generic_cmd6_time = 10 * 591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 592 card->ext_csd.power_off_longtime = 10 * 593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 594 595 card->ext_csd.cache_size = 596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 600 601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 602 card->ext_csd.data_sector_size = 4096; 603 else 604 card->ext_csd.data_sector_size = 512; 605 606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 608 card->ext_csd.data_tag_unit_size = 609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 610 (card->ext_csd.data_sector_size); 611 } else { 612 card->ext_csd.data_tag_unit_size = 0; 613 } 614 615 card->ext_csd.max_packed_writes = 616 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 617 card->ext_csd.max_packed_reads = 618 ext_csd[EXT_CSD_MAX_PACKED_READS]; 619 } else { 620 card->ext_csd.data_sector_size = 512; 621 } 622 623 /* eMMC v5 or later */ 624 if (card->ext_csd.rev >= 7) { 625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 626 MMC_FIRMWARE_LEN); 627 card->ext_csd.ffu_capable = 628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 630 631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 632 card->ext_csd.device_life_time_est_typ_a = 633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 634 card->ext_csd.device_life_time_est_typ_b = 635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 636 } 637 638 /* eMMC v5.1 or later */ 639 if (card->ext_csd.rev >= 8) { 640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 641 EXT_CSD_CMDQ_SUPPORTED; 642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 643 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 644 /* Exclude inefficiently small queue depths */ 645 if (card->ext_csd.cmdq_depth <= 2) { 646 card->ext_csd.cmdq_support = false; 647 card->ext_csd.cmdq_depth = 0; 648 } 649 if (card->ext_csd.cmdq_support) { 650 pr_debug("%s: Command Queue supported depth %u\n", 651 mmc_hostname(card->host), 652 card->ext_csd.cmdq_depth); 653 } 654 } 655 out: 656 return err; 657 } 658 659 static int mmc_read_ext_csd(struct mmc_card *card) 660 { 661 u8 *ext_csd; 662 int err; 663 664 if (!mmc_can_ext_csd(card)) 665 return 0; 666 667 err = mmc_get_ext_csd(card, &ext_csd); 668 if (err) { 669 /* If the host or the card can't do the switch, 670 * fail more gracefully. */ 671 if ((err != -EINVAL) 672 && (err != -ENOSYS) 673 && (err != -EFAULT)) 674 return err; 675 676 /* 677 * High capacity cards should have this "magic" size 678 * stored in their CSD. 679 */ 680 if (card->csd.capacity == (4096 * 512)) { 681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 682 mmc_hostname(card->host)); 683 } else { 684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 685 mmc_hostname(card->host)); 686 err = 0; 687 } 688 689 return err; 690 } 691 692 err = mmc_decode_ext_csd(card, ext_csd); 693 kfree(ext_csd); 694 return err; 695 } 696 697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 698 { 699 u8 *bw_ext_csd; 700 int err; 701 702 if (bus_width == MMC_BUS_WIDTH_1) 703 return 0; 704 705 err = mmc_get_ext_csd(card, &bw_ext_csd); 706 if (err) 707 return err; 708 709 /* only compare read only fields */ 710 err = !((card->ext_csd.raw_partition_support == 711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 712 (card->ext_csd.raw_erased_mem_count == 713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 714 (card->ext_csd.rev == 715 bw_ext_csd[EXT_CSD_REV]) && 716 (card->ext_csd.raw_ext_csd_structure == 717 bw_ext_csd[EXT_CSD_STRUCTURE]) && 718 (card->ext_csd.raw_card_type == 719 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 720 (card->ext_csd.raw_s_a_timeout == 721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 722 (card->ext_csd.raw_hc_erase_gap_size == 723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 724 (card->ext_csd.raw_erase_timeout_mult == 725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 726 (card->ext_csd.raw_hc_erase_grp_size == 727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 728 (card->ext_csd.raw_sec_trim_mult == 729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 730 (card->ext_csd.raw_sec_erase_mult == 731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 732 (card->ext_csd.raw_sec_feature_support == 733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 734 (card->ext_csd.raw_trim_mult == 735 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 736 (card->ext_csd.raw_sectors[0] == 737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 738 (card->ext_csd.raw_sectors[1] == 739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 740 (card->ext_csd.raw_sectors[2] == 741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 742 (card->ext_csd.raw_sectors[3] == 743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 744 (card->ext_csd.raw_pwr_cl_52_195 == 745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 746 (card->ext_csd.raw_pwr_cl_26_195 == 747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 748 (card->ext_csd.raw_pwr_cl_52_360 == 749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 750 (card->ext_csd.raw_pwr_cl_26_360 == 751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 752 (card->ext_csd.raw_pwr_cl_200_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 754 (card->ext_csd.raw_pwr_cl_200_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 756 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 758 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 760 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 762 763 if (err) 764 err = -EINVAL; 765 766 kfree(bw_ext_csd); 767 return err; 768 } 769 770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 771 card->raw_cid[2], card->raw_cid[3]); 772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 773 card->raw_csd[2], card->raw_csd[3]); 774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 786 card->ext_csd.device_life_time_est_typ_a, 787 card->ext_csd.device_life_time_est_typ_b); 788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 790 card->ext_csd.enhanced_area_offset); 791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 795 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 796 797 static ssize_t mmc_fwrev_show(struct device *dev, 798 struct device_attribute *attr, 799 char *buf) 800 { 801 struct mmc_card *card = mmc_dev_to_card(dev); 802 803 if (card->ext_csd.rev < 7) { 804 return sprintf(buf, "0x%x\n", card->cid.fwrev); 805 } else { 806 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 807 card->ext_csd.fwrev); 808 } 809 } 810 811 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 812 813 static ssize_t mmc_dsr_show(struct device *dev, 814 struct device_attribute *attr, 815 char *buf) 816 { 817 struct mmc_card *card = mmc_dev_to_card(dev); 818 struct mmc_host *host = card->host; 819 820 if (card->csd.dsr_imp && host->dsr_req) 821 return sprintf(buf, "0x%x\n", host->dsr); 822 else 823 /* return default DSR value */ 824 return sprintf(buf, "0x%x\n", 0x404); 825 } 826 827 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 828 829 static struct attribute *mmc_std_attrs[] = { 830 &dev_attr_cid.attr, 831 &dev_attr_csd.attr, 832 &dev_attr_date.attr, 833 &dev_attr_erase_size.attr, 834 &dev_attr_preferred_erase_size.attr, 835 &dev_attr_fwrev.attr, 836 &dev_attr_ffu_capable.attr, 837 &dev_attr_hwrev.attr, 838 &dev_attr_manfid.attr, 839 &dev_attr_name.attr, 840 &dev_attr_oemid.attr, 841 &dev_attr_prv.attr, 842 &dev_attr_rev.attr, 843 &dev_attr_pre_eol_info.attr, 844 &dev_attr_life_time.attr, 845 &dev_attr_serial.attr, 846 &dev_attr_enhanced_area_offset.attr, 847 &dev_attr_enhanced_area_size.attr, 848 &dev_attr_raw_rpmb_size_mult.attr, 849 &dev_attr_rel_sectors.attr, 850 &dev_attr_ocr.attr, 851 &dev_attr_dsr.attr, 852 &dev_attr_cmdq_en.attr, 853 NULL, 854 }; 855 ATTRIBUTE_GROUPS(mmc_std); 856 857 static struct device_type mmc_type = { 858 .groups = mmc_std_groups, 859 }; 860 861 /* 862 * Select the PowerClass for the current bus width 863 * If power class is defined for 4/8 bit bus in the 864 * extended CSD register, select it by executing the 865 * mmc_switch command. 866 */ 867 static int __mmc_select_powerclass(struct mmc_card *card, 868 unsigned int bus_width) 869 { 870 struct mmc_host *host = card->host; 871 struct mmc_ext_csd *ext_csd = &card->ext_csd; 872 unsigned int pwrclass_val = 0; 873 int err = 0; 874 875 switch (1 << host->ios.vdd) { 876 case MMC_VDD_165_195: 877 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 878 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 879 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 880 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 881 ext_csd->raw_pwr_cl_52_195 : 882 ext_csd->raw_pwr_cl_ddr_52_195; 883 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 884 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 885 break; 886 case MMC_VDD_27_28: 887 case MMC_VDD_28_29: 888 case MMC_VDD_29_30: 889 case MMC_VDD_30_31: 890 case MMC_VDD_31_32: 891 case MMC_VDD_32_33: 892 case MMC_VDD_33_34: 893 case MMC_VDD_34_35: 894 case MMC_VDD_35_36: 895 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 896 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 897 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 898 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 899 ext_csd->raw_pwr_cl_52_360 : 900 ext_csd->raw_pwr_cl_ddr_52_360; 901 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 902 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 903 ext_csd->raw_pwr_cl_ddr_200_360 : 904 ext_csd->raw_pwr_cl_200_360; 905 break; 906 default: 907 pr_warn("%s: Voltage range not supported for power class\n", 908 mmc_hostname(host)); 909 return -EINVAL; 910 } 911 912 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 913 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 914 EXT_CSD_PWR_CL_8BIT_SHIFT; 915 else 916 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 917 EXT_CSD_PWR_CL_4BIT_SHIFT; 918 919 /* If the power class is different from the default value */ 920 if (pwrclass_val > 0) { 921 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 922 EXT_CSD_POWER_CLASS, 923 pwrclass_val, 924 card->ext_csd.generic_cmd6_time); 925 } 926 927 return err; 928 } 929 930 static int mmc_select_powerclass(struct mmc_card *card) 931 { 932 struct mmc_host *host = card->host; 933 u32 bus_width, ext_csd_bits; 934 int err, ddr; 935 936 /* Power class selection is supported for versions >= 4.0 */ 937 if (!mmc_can_ext_csd(card)) 938 return 0; 939 940 bus_width = host->ios.bus_width; 941 /* Power class values are defined only for 4/8 bit bus */ 942 if (bus_width == MMC_BUS_WIDTH_1) 943 return 0; 944 945 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 946 if (ddr) 947 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 948 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 949 else 950 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 951 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 952 953 err = __mmc_select_powerclass(card, ext_csd_bits); 954 if (err) 955 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 956 mmc_hostname(host), 1 << bus_width, ddr); 957 958 return err; 959 } 960 961 /* 962 * Set the bus speed for the selected speed mode. 963 */ 964 static void mmc_set_bus_speed(struct mmc_card *card) 965 { 966 unsigned int max_dtr = (unsigned int)-1; 967 968 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 969 max_dtr > card->ext_csd.hs200_max_dtr) 970 max_dtr = card->ext_csd.hs200_max_dtr; 971 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 972 max_dtr = card->ext_csd.hs_max_dtr; 973 else if (max_dtr > card->csd.max_dtr) 974 max_dtr = card->csd.max_dtr; 975 976 mmc_set_clock(card->host, max_dtr); 977 } 978 979 /* 980 * Select the bus width amoung 4-bit and 8-bit(SDR). 981 * If the bus width is changed successfully, return the selected width value. 982 * Zero is returned instead of error value if the wide width is not supported. 983 */ 984 static int mmc_select_bus_width(struct mmc_card *card) 985 { 986 static unsigned ext_csd_bits[] = { 987 EXT_CSD_BUS_WIDTH_8, 988 EXT_CSD_BUS_WIDTH_4, 989 }; 990 static unsigned bus_widths[] = { 991 MMC_BUS_WIDTH_8, 992 MMC_BUS_WIDTH_4, 993 }; 994 struct mmc_host *host = card->host; 995 unsigned idx, bus_width = 0; 996 int err = 0; 997 998 if (!mmc_can_ext_csd(card) || 999 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1000 return 0; 1001 1002 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1003 1004 /* 1005 * Unlike SD, MMC cards dont have a configuration register to notify 1006 * supported bus width. So bus test command should be run to identify 1007 * the supported bus width or compare the ext csd values of current 1008 * bus width and ext csd values of 1 bit mode read earlier. 1009 */ 1010 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1011 /* 1012 * Host is capable of 8bit transfer, then switch 1013 * the device to work in 8bit transfer mode. If the 1014 * mmc switch command returns error then switch to 1015 * 4bit transfer mode. On success set the corresponding 1016 * bus width on the host. 1017 */ 1018 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1019 EXT_CSD_BUS_WIDTH, 1020 ext_csd_bits[idx], 1021 card->ext_csd.generic_cmd6_time); 1022 if (err) 1023 continue; 1024 1025 bus_width = bus_widths[idx]; 1026 mmc_set_bus_width(host, bus_width); 1027 1028 /* 1029 * If controller can't handle bus width test, 1030 * compare ext_csd previously read in 1 bit mode 1031 * against ext_csd at new bus width 1032 */ 1033 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1034 err = mmc_compare_ext_csds(card, bus_width); 1035 else 1036 err = mmc_bus_test(card, bus_width); 1037 1038 if (!err) { 1039 err = bus_width; 1040 break; 1041 } else { 1042 pr_warn("%s: switch to bus width %d failed\n", 1043 mmc_hostname(host), 1 << bus_width); 1044 } 1045 } 1046 1047 return err; 1048 } 1049 1050 /* 1051 * Switch to the high-speed mode 1052 */ 1053 static int mmc_select_hs(struct mmc_card *card) 1054 { 1055 int err; 1056 1057 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1058 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1059 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1060 true, true, true); 1061 if (err) 1062 pr_warn("%s: switch to high-speed failed, err:%d\n", 1063 mmc_hostname(card->host), err); 1064 1065 return err; 1066 } 1067 1068 /* 1069 * Activate wide bus and DDR if supported. 1070 */ 1071 static int mmc_select_hs_ddr(struct mmc_card *card) 1072 { 1073 struct mmc_host *host = card->host; 1074 u32 bus_width, ext_csd_bits; 1075 int err = 0; 1076 1077 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1078 return 0; 1079 1080 bus_width = host->ios.bus_width; 1081 if (bus_width == MMC_BUS_WIDTH_1) 1082 return 0; 1083 1084 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1085 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1086 1087 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1088 EXT_CSD_BUS_WIDTH, 1089 ext_csd_bits, 1090 card->ext_csd.generic_cmd6_time, 1091 MMC_TIMING_MMC_DDR52, 1092 true, true, true); 1093 if (err) { 1094 pr_err("%s: switch to bus width %d ddr failed\n", 1095 mmc_hostname(host), 1 << bus_width); 1096 return err; 1097 } 1098 1099 /* 1100 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1101 * signaling. 1102 * 1103 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1104 * 1105 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1106 * in the JEDEC spec for DDR. 1107 * 1108 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1109 * host controller can support this, like some of the SDHCI 1110 * controller which connect to an eMMC device. Some of these 1111 * host controller still needs to use 1.8v vccq for supporting 1112 * DDR mode. 1113 * 1114 * So the sequence will be: 1115 * if (host and device can both support 1.2v IO) 1116 * use 1.2v IO; 1117 * else if (host and device can both support 1.8v IO) 1118 * use 1.8v IO; 1119 * so if host and device can only support 3.3v IO, this is the 1120 * last choice. 1121 * 1122 * WARNING: eMMC rules are NOT the same as SD DDR 1123 */ 1124 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1125 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1126 if (!err) 1127 return 0; 1128 } 1129 1130 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1131 host->caps & MMC_CAP_1_8V_DDR) 1132 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1133 1134 /* make sure vccq is 3.3v after switching disaster */ 1135 if (err) 1136 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1137 1138 return err; 1139 } 1140 1141 static int mmc_select_hs400(struct mmc_card *card) 1142 { 1143 struct mmc_host *host = card->host; 1144 unsigned int max_dtr; 1145 int err = 0; 1146 u8 val; 1147 1148 /* 1149 * HS400 mode requires 8-bit bus width 1150 */ 1151 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1152 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1153 return 0; 1154 1155 /* Switch card to HS mode */ 1156 val = EXT_CSD_TIMING_HS; 1157 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1158 EXT_CSD_HS_TIMING, val, 1159 card->ext_csd.generic_cmd6_time, 0, 1160 true, false, true); 1161 if (err) { 1162 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1163 mmc_hostname(host), err); 1164 return err; 1165 } 1166 1167 /* Set host controller to HS timing */ 1168 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1169 1170 /* Reduce frequency to HS frequency */ 1171 max_dtr = card->ext_csd.hs_max_dtr; 1172 mmc_set_clock(host, max_dtr); 1173 1174 err = mmc_switch_status(card); 1175 if (err) 1176 goto out_err; 1177 1178 /* Switch card to DDR */ 1179 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1180 EXT_CSD_BUS_WIDTH, 1181 EXT_CSD_DDR_BUS_WIDTH_8, 1182 card->ext_csd.generic_cmd6_time); 1183 if (err) { 1184 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1185 mmc_hostname(host), err); 1186 return err; 1187 } 1188 1189 /* Switch card to HS400 */ 1190 val = EXT_CSD_TIMING_HS400 | 1191 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1192 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1193 EXT_CSD_HS_TIMING, val, 1194 card->ext_csd.generic_cmd6_time, 0, 1195 true, false, true); 1196 if (err) { 1197 pr_err("%s: switch to hs400 failed, err:%d\n", 1198 mmc_hostname(host), err); 1199 return err; 1200 } 1201 1202 /* Set host controller to HS400 timing and frequency */ 1203 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1204 mmc_set_bus_speed(card); 1205 1206 err = mmc_switch_status(card); 1207 if (err) 1208 goto out_err; 1209 1210 return 0; 1211 1212 out_err: 1213 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1214 __func__, err); 1215 return err; 1216 } 1217 1218 int mmc_hs200_to_hs400(struct mmc_card *card) 1219 { 1220 return mmc_select_hs400(card); 1221 } 1222 1223 int mmc_hs400_to_hs200(struct mmc_card *card) 1224 { 1225 struct mmc_host *host = card->host; 1226 unsigned int max_dtr; 1227 int err; 1228 u8 val; 1229 1230 /* Reduce frequency to HS */ 1231 max_dtr = card->ext_csd.hs_max_dtr; 1232 mmc_set_clock(host, max_dtr); 1233 1234 /* Switch HS400 to HS DDR */ 1235 val = EXT_CSD_TIMING_HS; 1236 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1237 val, card->ext_csd.generic_cmd6_time, 0, 1238 true, false, true); 1239 if (err) 1240 goto out_err; 1241 1242 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1243 1244 err = mmc_switch_status(card); 1245 if (err) 1246 goto out_err; 1247 1248 /* Switch HS DDR to HS */ 1249 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1250 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1251 0, true, false, true); 1252 if (err) 1253 goto out_err; 1254 1255 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1256 1257 err = mmc_switch_status(card); 1258 if (err) 1259 goto out_err; 1260 1261 /* Switch HS to HS200 */ 1262 val = EXT_CSD_TIMING_HS200 | 1263 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1264 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1265 val, card->ext_csd.generic_cmd6_time, 0, 1266 true, false, true); 1267 if (err) 1268 goto out_err; 1269 1270 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1271 1272 /* 1273 * For HS200, CRC errors are not a reliable way to know the switch 1274 * failed. If there really is a problem, we would expect tuning will 1275 * fail and the result ends up the same. 1276 */ 1277 err = __mmc_switch_status(card, false); 1278 if (err) 1279 goto out_err; 1280 1281 mmc_set_bus_speed(card); 1282 1283 return 0; 1284 1285 out_err: 1286 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1287 __func__, err); 1288 return err; 1289 } 1290 1291 static void mmc_select_driver_type(struct mmc_card *card) 1292 { 1293 int card_drv_type, drive_strength, drv_type = 0; 1294 int fixed_drv_type = card->host->fixed_drv_type; 1295 1296 card_drv_type = card->ext_csd.raw_driver_strength | 1297 mmc_driver_type_mask(0); 1298 1299 if (fixed_drv_type >= 0) 1300 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1301 ? fixed_drv_type : 0; 1302 else 1303 drive_strength = mmc_select_drive_strength(card, 1304 card->ext_csd.hs200_max_dtr, 1305 card_drv_type, &drv_type); 1306 1307 card->drive_strength = drive_strength; 1308 1309 if (drv_type) 1310 mmc_set_driver_type(card->host, drv_type); 1311 } 1312 1313 static int mmc_select_hs400es(struct mmc_card *card) 1314 { 1315 struct mmc_host *host = card->host; 1316 int err = -EINVAL; 1317 u8 val; 1318 1319 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1320 err = -ENOTSUPP; 1321 goto out_err; 1322 } 1323 1324 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1325 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1326 1327 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1328 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1329 1330 /* If fails try again during next card power cycle */ 1331 if (err) 1332 goto out_err; 1333 1334 err = mmc_select_bus_width(card); 1335 if (err < 0) 1336 goto out_err; 1337 1338 /* Switch card to HS mode */ 1339 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1340 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1341 card->ext_csd.generic_cmd6_time, 0, 1342 true, false, true); 1343 if (err) { 1344 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1345 mmc_hostname(host), err); 1346 goto out_err; 1347 } 1348 1349 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1350 err = mmc_switch_status(card); 1351 if (err) 1352 goto out_err; 1353 1354 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1355 1356 /* Switch card to DDR with strobe bit */ 1357 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1358 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1359 EXT_CSD_BUS_WIDTH, 1360 val, 1361 card->ext_csd.generic_cmd6_time); 1362 if (err) { 1363 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1364 mmc_hostname(host), err); 1365 goto out_err; 1366 } 1367 1368 mmc_select_driver_type(card); 1369 1370 /* Switch card to HS400 */ 1371 val = EXT_CSD_TIMING_HS400 | 1372 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1373 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1374 EXT_CSD_HS_TIMING, val, 1375 card->ext_csd.generic_cmd6_time, 0, 1376 true, false, true); 1377 if (err) { 1378 pr_err("%s: switch to hs400es failed, err:%d\n", 1379 mmc_hostname(host), err); 1380 goto out_err; 1381 } 1382 1383 /* Set host controller to HS400 timing and frequency */ 1384 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1385 1386 /* Controller enable enhanced strobe function */ 1387 host->ios.enhanced_strobe = true; 1388 if (host->ops->hs400_enhanced_strobe) 1389 host->ops->hs400_enhanced_strobe(host, &host->ios); 1390 1391 err = mmc_switch_status(card); 1392 if (err) 1393 goto out_err; 1394 1395 return 0; 1396 1397 out_err: 1398 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1399 __func__, err); 1400 return err; 1401 } 1402 1403 /* 1404 * For device supporting HS200 mode, the following sequence 1405 * should be done before executing the tuning process. 1406 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1407 * 2. switch to HS200 mode 1408 * 3. set the clock to > 52Mhz and <=200MHz 1409 */ 1410 static int mmc_select_hs200(struct mmc_card *card) 1411 { 1412 struct mmc_host *host = card->host; 1413 unsigned int old_timing, old_signal_voltage; 1414 int err = -EINVAL; 1415 u8 val; 1416 1417 old_signal_voltage = host->ios.signal_voltage; 1418 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1419 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1420 1421 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1422 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1423 1424 /* If fails try again during next card power cycle */ 1425 if (err) 1426 return err; 1427 1428 mmc_select_driver_type(card); 1429 1430 /* 1431 * Set the bus width(4 or 8) with host's support and 1432 * switch to HS200 mode if bus width is set successfully. 1433 */ 1434 err = mmc_select_bus_width(card); 1435 if (err > 0) { 1436 val = EXT_CSD_TIMING_HS200 | 1437 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1438 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1439 EXT_CSD_HS_TIMING, val, 1440 card->ext_csd.generic_cmd6_time, 0, 1441 true, false, true); 1442 if (err) 1443 goto err; 1444 old_timing = host->ios.timing; 1445 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1446 1447 /* 1448 * For HS200, CRC errors are not a reliable way to know the 1449 * switch failed. If there really is a problem, we would expect 1450 * tuning will fail and the result ends up the same. 1451 */ 1452 err = __mmc_switch_status(card, false); 1453 1454 /* 1455 * mmc_select_timing() assumes timing has not changed if 1456 * it is a switch error. 1457 */ 1458 if (err == -EBADMSG) 1459 mmc_set_timing(host, old_timing); 1460 } 1461 err: 1462 if (err) { 1463 /* fall back to the old signal voltage, if fails report error */ 1464 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1465 err = -EIO; 1466 1467 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1468 __func__, err); 1469 } 1470 return err; 1471 } 1472 1473 /* 1474 * Activate High Speed, HS200 or HS400ES mode if supported. 1475 */ 1476 static int mmc_select_timing(struct mmc_card *card) 1477 { 1478 int err = 0; 1479 1480 if (!mmc_can_ext_csd(card)) 1481 goto bus_speed; 1482 1483 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1484 err = mmc_select_hs400es(card); 1485 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1486 err = mmc_select_hs200(card); 1487 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1488 err = mmc_select_hs(card); 1489 1490 if (err && err != -EBADMSG) 1491 return err; 1492 1493 bus_speed: 1494 /* 1495 * Set the bus speed to the selected bus timing. 1496 * If timing is not selected, backward compatible is the default. 1497 */ 1498 mmc_set_bus_speed(card); 1499 return 0; 1500 } 1501 1502 /* 1503 * Execute tuning sequence to seek the proper bus operating 1504 * conditions for HS200 and HS400, which sends CMD21 to the device. 1505 */ 1506 static int mmc_hs200_tuning(struct mmc_card *card) 1507 { 1508 struct mmc_host *host = card->host; 1509 1510 /* 1511 * Timing should be adjusted to the HS400 target 1512 * operation frequency for tuning process 1513 */ 1514 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1515 host->ios.bus_width == MMC_BUS_WIDTH_8) 1516 if (host->ops->prepare_hs400_tuning) 1517 host->ops->prepare_hs400_tuning(host, &host->ios); 1518 1519 return mmc_execute_tuning(card); 1520 } 1521 1522 /* 1523 * Handle the detection and initialisation of a card. 1524 * 1525 * In the case of a resume, "oldcard" will contain the card 1526 * we're trying to reinitialise. 1527 */ 1528 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1529 struct mmc_card *oldcard) 1530 { 1531 struct mmc_card *card; 1532 int err; 1533 u32 cid[4]; 1534 u32 rocr; 1535 1536 WARN_ON(!host->claimed); 1537 1538 /* Set correct bus mode for MMC before attempting init */ 1539 if (!mmc_host_is_spi(host)) 1540 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1541 1542 /* 1543 * Since we're changing the OCR value, we seem to 1544 * need to tell some cards to go back to the idle 1545 * state. We wait 1ms to give cards time to 1546 * respond. 1547 * mmc_go_idle is needed for eMMC that are asleep 1548 */ 1549 mmc_go_idle(host); 1550 1551 /* The extra bit indicates that we support high capacity */ 1552 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1553 if (err) 1554 goto err; 1555 1556 /* 1557 * For SPI, enable CRC as appropriate. 1558 */ 1559 if (mmc_host_is_spi(host)) { 1560 err = mmc_spi_set_crc(host, use_spi_crc); 1561 if (err) 1562 goto err; 1563 } 1564 1565 /* 1566 * Fetch CID from card. 1567 */ 1568 err = mmc_send_cid(host, cid); 1569 if (err) 1570 goto err; 1571 1572 if (oldcard) { 1573 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1574 err = -ENOENT; 1575 goto err; 1576 } 1577 1578 card = oldcard; 1579 } else { 1580 /* 1581 * Allocate card structure. 1582 */ 1583 card = mmc_alloc_card(host, &mmc_type); 1584 if (IS_ERR(card)) { 1585 err = PTR_ERR(card); 1586 goto err; 1587 } 1588 1589 card->ocr = ocr; 1590 card->type = MMC_TYPE_MMC; 1591 card->rca = 1; 1592 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1593 } 1594 1595 /* 1596 * Call the optional HC's init_card function to handle quirks. 1597 */ 1598 if (host->ops->init_card) 1599 host->ops->init_card(host, card); 1600 1601 /* 1602 * For native busses: set card RCA and quit open drain mode. 1603 */ 1604 if (!mmc_host_is_spi(host)) { 1605 err = mmc_set_relative_addr(card); 1606 if (err) 1607 goto free_card; 1608 1609 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1610 } 1611 1612 if (!oldcard) { 1613 /* 1614 * Fetch CSD from card. 1615 */ 1616 err = mmc_send_csd(card, card->raw_csd); 1617 if (err) 1618 goto free_card; 1619 1620 err = mmc_decode_csd(card); 1621 if (err) 1622 goto free_card; 1623 err = mmc_decode_cid(card); 1624 if (err) 1625 goto free_card; 1626 } 1627 1628 /* 1629 * handling only for cards supporting DSR and hosts requesting 1630 * DSR configuration 1631 */ 1632 if (card->csd.dsr_imp && host->dsr_req) 1633 mmc_set_dsr(host); 1634 1635 /* 1636 * Select card, as all following commands rely on that. 1637 */ 1638 if (!mmc_host_is_spi(host)) { 1639 err = mmc_select_card(card); 1640 if (err) 1641 goto free_card; 1642 } 1643 1644 if (!oldcard) { 1645 /* Read extended CSD. */ 1646 err = mmc_read_ext_csd(card); 1647 if (err) 1648 goto free_card; 1649 1650 /* 1651 * If doing byte addressing, check if required to do sector 1652 * addressing. Handle the case of <2GB cards needing sector 1653 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1654 * ocr register has bit 30 set for sector addressing. 1655 */ 1656 if (rocr & BIT(30)) 1657 mmc_card_set_blockaddr(card); 1658 1659 /* Erase size depends on CSD and Extended CSD */ 1660 mmc_set_erase_size(card); 1661 } 1662 1663 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1664 if (card->ext_csd.rev >= 3) { 1665 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1666 EXT_CSD_ERASE_GROUP_DEF, 1, 1667 card->ext_csd.generic_cmd6_time); 1668 1669 if (err && err != -EBADMSG) 1670 goto free_card; 1671 1672 if (err) { 1673 err = 0; 1674 /* 1675 * Just disable enhanced area off & sz 1676 * will try to enable ERASE_GROUP_DEF 1677 * during next time reinit 1678 */ 1679 card->ext_csd.enhanced_area_offset = -EINVAL; 1680 card->ext_csd.enhanced_area_size = -EINVAL; 1681 } else { 1682 card->ext_csd.erase_group_def = 1; 1683 /* 1684 * enable ERASE_GRP_DEF successfully. 1685 * This will affect the erase size, so 1686 * here need to reset erase size 1687 */ 1688 mmc_set_erase_size(card); 1689 } 1690 } 1691 1692 /* 1693 * Ensure eMMC user default partition is enabled 1694 */ 1695 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1696 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1697 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1698 card->ext_csd.part_config, 1699 card->ext_csd.part_time); 1700 if (err && err != -EBADMSG) 1701 goto free_card; 1702 } 1703 1704 /* 1705 * Enable power_off_notification byte in the ext_csd register 1706 */ 1707 if (card->ext_csd.rev >= 6) { 1708 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1709 EXT_CSD_POWER_OFF_NOTIFICATION, 1710 EXT_CSD_POWER_ON, 1711 card->ext_csd.generic_cmd6_time); 1712 if (err && err != -EBADMSG) 1713 goto free_card; 1714 1715 /* 1716 * The err can be -EBADMSG or 0, 1717 * so check for success and update the flag 1718 */ 1719 if (!err) 1720 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1721 } 1722 1723 /* 1724 * Select timing interface 1725 */ 1726 err = mmc_select_timing(card); 1727 if (err) 1728 goto free_card; 1729 1730 if (mmc_card_hs200(card)) { 1731 err = mmc_hs200_tuning(card); 1732 if (err) 1733 goto free_card; 1734 1735 err = mmc_select_hs400(card); 1736 if (err) 1737 goto free_card; 1738 } else if (!mmc_card_hs400es(card)) { 1739 /* Select the desired bus width optionally */ 1740 err = mmc_select_bus_width(card); 1741 if (err > 0 && mmc_card_hs(card)) { 1742 err = mmc_select_hs_ddr(card); 1743 if (err) 1744 goto free_card; 1745 } 1746 } 1747 1748 /* 1749 * Choose the power class with selected bus interface 1750 */ 1751 mmc_select_powerclass(card); 1752 1753 /* 1754 * Enable HPI feature (if supported) 1755 */ 1756 if (card->ext_csd.hpi) { 1757 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1758 EXT_CSD_HPI_MGMT, 1, 1759 card->ext_csd.generic_cmd6_time); 1760 if (err && err != -EBADMSG) 1761 goto free_card; 1762 if (err) { 1763 pr_warn("%s: Enabling HPI failed\n", 1764 mmc_hostname(card->host)); 1765 err = 0; 1766 } else 1767 card->ext_csd.hpi_en = 1; 1768 } 1769 1770 /* 1771 * If cache size is higher than 0, this indicates 1772 * the existence of cache and it can be turned on. 1773 */ 1774 if (!mmc_card_broken_hpi(card) && 1775 card->ext_csd.cache_size > 0) { 1776 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1777 EXT_CSD_CACHE_CTRL, 1, 1778 card->ext_csd.generic_cmd6_time); 1779 if (err && err != -EBADMSG) 1780 goto free_card; 1781 1782 /* 1783 * Only if no error, cache is turned on successfully. 1784 */ 1785 if (err) { 1786 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1787 mmc_hostname(card->host), err); 1788 card->ext_csd.cache_ctrl = 0; 1789 err = 0; 1790 } else { 1791 card->ext_csd.cache_ctrl = 1; 1792 } 1793 } 1794 1795 /* 1796 * Enable Command Queue if supported. Note that Packed Commands cannot 1797 * be used with Command Queue. 1798 */ 1799 card->ext_csd.cmdq_en = false; 1800 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1801 err = mmc_cmdq_enable(card); 1802 if (err && err != -EBADMSG) 1803 goto free_card; 1804 if (err) { 1805 pr_warn("%s: Enabling CMDQ failed\n", 1806 mmc_hostname(card->host)); 1807 card->ext_csd.cmdq_support = false; 1808 card->ext_csd.cmdq_depth = 0; 1809 err = 0; 1810 } 1811 } 1812 /* 1813 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1814 * disabled for a time, so a flag is needed to indicate to re-enable the 1815 * Command Queue. 1816 */ 1817 card->reenable_cmdq = card->ext_csd.cmdq_en; 1818 1819 if (card->ext_csd.cmdq_en && !host->cqe_enabled) { 1820 err = host->cqe_ops->cqe_enable(host, card); 1821 if (err) { 1822 pr_err("%s: Failed to enable CQE, error %d\n", 1823 mmc_hostname(host), err); 1824 } else { 1825 host->cqe_enabled = true; 1826 pr_info("%s: Command Queue Engine enabled\n", 1827 mmc_hostname(host)); 1828 } 1829 } 1830 1831 if (!oldcard) 1832 host->card = card; 1833 1834 return 0; 1835 1836 free_card: 1837 if (!oldcard) 1838 mmc_remove_card(card); 1839 err: 1840 return err; 1841 } 1842 1843 static int mmc_can_sleep(struct mmc_card *card) 1844 { 1845 return (card && card->ext_csd.rev >= 3); 1846 } 1847 1848 static int mmc_sleep(struct mmc_host *host) 1849 { 1850 struct mmc_command cmd = {}; 1851 struct mmc_card *card = host->card; 1852 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1853 int err; 1854 1855 /* Re-tuning can't be done once the card is deselected */ 1856 mmc_retune_hold(host); 1857 1858 err = mmc_deselect_cards(host); 1859 if (err) 1860 goto out_release; 1861 1862 cmd.opcode = MMC_SLEEP_AWAKE; 1863 cmd.arg = card->rca << 16; 1864 cmd.arg |= 1 << 15; 1865 1866 /* 1867 * If the max_busy_timeout of the host is specified, validate it against 1868 * the sleep cmd timeout. A failure means we need to prevent the host 1869 * from doing hw busy detection, which is done by converting to a R1 1870 * response instead of a R1B. 1871 */ 1872 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1873 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1874 } else { 1875 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1876 cmd.busy_timeout = timeout_ms; 1877 } 1878 1879 err = mmc_wait_for_cmd(host, &cmd, 0); 1880 if (err) 1881 goto out_release; 1882 1883 /* 1884 * If the host does not wait while the card signals busy, then we will 1885 * will have to wait the sleep/awake timeout. Note, we cannot use the 1886 * SEND_STATUS command to poll the status because that command (and most 1887 * others) is invalid while the card sleeps. 1888 */ 1889 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1890 mmc_delay(timeout_ms); 1891 1892 out_release: 1893 mmc_retune_release(host); 1894 return err; 1895 } 1896 1897 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1898 { 1899 return card && 1900 mmc_card_mmc(card) && 1901 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1902 } 1903 1904 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1905 { 1906 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1907 int err; 1908 1909 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1910 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1911 timeout = card->ext_csd.power_off_longtime; 1912 1913 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1914 EXT_CSD_POWER_OFF_NOTIFICATION, 1915 notify_type, timeout, 0, true, false, false); 1916 if (err) 1917 pr_err("%s: Power Off Notification timed out, %u\n", 1918 mmc_hostname(card->host), timeout); 1919 1920 /* Disable the power off notification after the switch operation. */ 1921 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1922 1923 return err; 1924 } 1925 1926 /* 1927 * Host is being removed. Free up the current card. 1928 */ 1929 static void mmc_remove(struct mmc_host *host) 1930 { 1931 mmc_remove_card(host->card); 1932 host->card = NULL; 1933 } 1934 1935 /* 1936 * Card detection - card is alive. 1937 */ 1938 static int mmc_alive(struct mmc_host *host) 1939 { 1940 return mmc_send_status(host->card, NULL); 1941 } 1942 1943 /* 1944 * Card detection callback from host. 1945 */ 1946 static void mmc_detect(struct mmc_host *host) 1947 { 1948 int err; 1949 1950 mmc_get_card(host->card, NULL); 1951 1952 /* 1953 * Just check if our card has been removed. 1954 */ 1955 err = _mmc_detect_card_removed(host); 1956 1957 mmc_put_card(host->card, NULL); 1958 1959 if (err) { 1960 mmc_remove(host); 1961 1962 mmc_claim_host(host); 1963 mmc_detach_bus(host); 1964 mmc_power_off(host); 1965 mmc_release_host(host); 1966 } 1967 } 1968 1969 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 1970 { 1971 int err = 0; 1972 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 1973 EXT_CSD_POWER_OFF_LONG; 1974 1975 mmc_claim_host(host); 1976 1977 if (mmc_card_suspended(host->card)) 1978 goto out; 1979 1980 if (mmc_card_doing_bkops(host->card)) { 1981 err = mmc_stop_bkops(host->card); 1982 if (err) 1983 goto out; 1984 } 1985 1986 err = mmc_flush_cache(host->card); 1987 if (err) 1988 goto out; 1989 1990 if (mmc_can_poweroff_notify(host->card) && 1991 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 1992 err = mmc_poweroff_notify(host->card, notify_type); 1993 else if (mmc_can_sleep(host->card)) 1994 err = mmc_sleep(host); 1995 else if (!mmc_host_is_spi(host)) 1996 err = mmc_deselect_cards(host); 1997 1998 if (!err) { 1999 mmc_power_off(host); 2000 mmc_card_set_suspended(host->card); 2001 } 2002 out: 2003 mmc_release_host(host); 2004 return err; 2005 } 2006 2007 /* 2008 * Suspend callback 2009 */ 2010 static int mmc_suspend(struct mmc_host *host) 2011 { 2012 int err; 2013 2014 err = _mmc_suspend(host, true); 2015 if (!err) { 2016 pm_runtime_disable(&host->card->dev); 2017 pm_runtime_set_suspended(&host->card->dev); 2018 } 2019 2020 return err; 2021 } 2022 2023 /* 2024 * This function tries to determine if the same card is still present 2025 * and, if so, restore all state to it. 2026 */ 2027 static int _mmc_resume(struct mmc_host *host) 2028 { 2029 int err = 0; 2030 2031 mmc_claim_host(host); 2032 2033 if (!mmc_card_suspended(host->card)) 2034 goto out; 2035 2036 mmc_power_up(host, host->card->ocr); 2037 err = mmc_init_card(host, host->card->ocr, host->card); 2038 mmc_card_clr_suspended(host->card); 2039 2040 out: 2041 mmc_release_host(host); 2042 return err; 2043 } 2044 2045 /* 2046 * Shutdown callback 2047 */ 2048 static int mmc_shutdown(struct mmc_host *host) 2049 { 2050 int err = 0; 2051 2052 /* 2053 * In a specific case for poweroff notify, we need to resume the card 2054 * before we can shutdown it properly. 2055 */ 2056 if (mmc_can_poweroff_notify(host->card) && 2057 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2058 err = _mmc_resume(host); 2059 2060 if (!err) 2061 err = _mmc_suspend(host, false); 2062 2063 return err; 2064 } 2065 2066 /* 2067 * Callback for resume. 2068 */ 2069 static int mmc_resume(struct mmc_host *host) 2070 { 2071 pm_runtime_enable(&host->card->dev); 2072 return 0; 2073 } 2074 2075 /* 2076 * Callback for runtime_suspend. 2077 */ 2078 static int mmc_runtime_suspend(struct mmc_host *host) 2079 { 2080 int err; 2081 2082 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2083 return 0; 2084 2085 err = _mmc_suspend(host, true); 2086 if (err) 2087 pr_err("%s: error %d doing aggressive suspend\n", 2088 mmc_hostname(host), err); 2089 2090 return err; 2091 } 2092 2093 /* 2094 * Callback for runtime_resume. 2095 */ 2096 static int mmc_runtime_resume(struct mmc_host *host) 2097 { 2098 int err; 2099 2100 err = _mmc_resume(host); 2101 if (err && err != -ENOMEDIUM) 2102 pr_err("%s: error %d doing runtime resume\n", 2103 mmc_hostname(host), err); 2104 2105 return 0; 2106 } 2107 2108 static int mmc_can_reset(struct mmc_card *card) 2109 { 2110 u8 rst_n_function; 2111 2112 rst_n_function = card->ext_csd.rst_n_function; 2113 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2114 return 0; 2115 return 1; 2116 } 2117 2118 static int mmc_reset(struct mmc_host *host) 2119 { 2120 struct mmc_card *card = host->card; 2121 2122 /* 2123 * In the case of recovery, we can't expect flushing the cache to work 2124 * always, but we have a go and ignore errors. 2125 */ 2126 mmc_flush_cache(host->card); 2127 2128 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2129 mmc_can_reset(card)) { 2130 /* If the card accept RST_n signal, send it. */ 2131 mmc_set_clock(host, host->f_init); 2132 host->ops->hw_reset(host); 2133 /* Set initial state and call mmc_set_ios */ 2134 mmc_set_initial_state(host); 2135 } else { 2136 /* Do a brute force power cycle */ 2137 mmc_power_cycle(host, card->ocr); 2138 mmc_pwrseq_reset(host); 2139 } 2140 return mmc_init_card(host, card->ocr, card); 2141 } 2142 2143 static const struct mmc_bus_ops mmc_ops = { 2144 .remove = mmc_remove, 2145 .detect = mmc_detect, 2146 .suspend = mmc_suspend, 2147 .resume = mmc_resume, 2148 .runtime_suspend = mmc_runtime_suspend, 2149 .runtime_resume = mmc_runtime_resume, 2150 .alive = mmc_alive, 2151 .shutdown = mmc_shutdown, 2152 .reset = mmc_reset, 2153 }; 2154 2155 /* 2156 * Starting point for MMC card init. 2157 */ 2158 int mmc_attach_mmc(struct mmc_host *host) 2159 { 2160 int err; 2161 u32 ocr, rocr; 2162 2163 WARN_ON(!host->claimed); 2164 2165 /* Set correct bus mode for MMC before attempting attach */ 2166 if (!mmc_host_is_spi(host)) 2167 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2168 2169 err = mmc_send_op_cond(host, 0, &ocr); 2170 if (err) 2171 return err; 2172 2173 mmc_attach_bus(host, &mmc_ops); 2174 if (host->ocr_avail_mmc) 2175 host->ocr_avail = host->ocr_avail_mmc; 2176 2177 /* 2178 * We need to get OCR a different way for SPI. 2179 */ 2180 if (mmc_host_is_spi(host)) { 2181 err = mmc_spi_read_ocr(host, 1, &ocr); 2182 if (err) 2183 goto err; 2184 } 2185 2186 rocr = mmc_select_voltage(host, ocr); 2187 2188 /* 2189 * Can we support the voltage of the card? 2190 */ 2191 if (!rocr) { 2192 err = -EINVAL; 2193 goto err; 2194 } 2195 2196 /* 2197 * Detect and init the card. 2198 */ 2199 err = mmc_init_card(host, rocr, NULL); 2200 if (err) 2201 goto err; 2202 2203 mmc_release_host(host); 2204 err = mmc_add_card(host->card); 2205 if (err) 2206 goto remove_card; 2207 2208 mmc_claim_host(host); 2209 return 0; 2210 2211 remove_card: 2212 mmc_remove_card(host->card); 2213 mmc_claim_host(host); 2214 host->card = NULL; 2215 err: 2216 mmc_detach_bus(host); 2217 2218 pr_err("%s: error %d whilst initialising MMC card\n", 2219 mmc_hostname(host), err); 2220 2221 return err; 2222 } 2223