1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "quirks.h" 26 #include "sd_ops.h" 27 #include "pwrseq.h" 28 29 #define DEFAULT_CMD6_TIMEOUT_MS 500 30 #define MIN_CACHE_EN_TIMEOUT_MS 1600 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 #define UNSTUFF_BITS(resp,start,size) \ 52 ({ \ 53 const int __size = size; \ 54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 55 const int __off = 3 - ((start) / 32); \ 56 const int __shft = (start) & 31; \ 57 u32 __res; \ 58 \ 59 __res = resp[__off] >> __shft; \ 60 if (__size + __shft > 32) \ 61 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 62 __res & __mask; \ 63 }) 64 65 /* 66 * Given the decoded CSD structure, decode the raw CID to our CID structure. 67 */ 68 static int mmc_decode_cid(struct mmc_card *card) 69 { 70 u32 *resp = card->raw_cid; 71 72 /* 73 * The selection of the format here is based upon published 74 * specs from sandisk and from what people have reported. 75 */ 76 switch (card->csd.mmca_vsn) { 77 case 0: /* MMC v1.0 - v1.2 */ 78 case 1: /* MMC v1.4 */ 79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 90 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 92 break; 93 94 case 2: /* MMC v2.0 - v2.2 */ 95 case 3: /* MMC v3.1 - v3.3 */ 96 case 4: /* MMC v4 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 107 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 109 break; 110 111 default: 112 pr_err("%s: card has unknown MMCA version %d\n", 113 mmc_hostname(card->host), card->csd.mmca_vsn); 114 return -EINVAL; 115 } 116 117 return 0; 118 } 119 120 static void mmc_set_erase_size(struct mmc_card *card) 121 { 122 if (card->ext_csd.erase_group_def & 1) 123 card->erase_size = card->ext_csd.hc_erase_size; 124 else 125 card->erase_size = card->csd.erase_size; 126 127 mmc_init_erase(card); 128 } 129 130 /* 131 * Given a 128-bit response, decode to our card CSD structure. 132 */ 133 static int mmc_decode_csd(struct mmc_card *card) 134 { 135 struct mmc_csd *csd = &card->csd; 136 unsigned int e, m, a, b; 137 u32 *resp = card->raw_csd; 138 139 /* 140 * We only understand CSD structure v1.1 and v1.2. 141 * v1.2 has extra information in bits 15, 11 and 10. 142 * We also support eMMC v4.4 & v4.41. 143 */ 144 csd->structure = UNSTUFF_BITS(resp, 126, 2); 145 if (csd->structure == 0) { 146 pr_err("%s: unrecognised CSD structure version %d\n", 147 mmc_hostname(card->host), csd->structure); 148 return -EINVAL; 149 } 150 151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 152 m = UNSTUFF_BITS(resp, 115, 4); 153 e = UNSTUFF_BITS(resp, 112, 3); 154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 156 157 m = UNSTUFF_BITS(resp, 99, 4); 158 e = UNSTUFF_BITS(resp, 96, 3); 159 csd->max_dtr = tran_exp[e] * tran_mant[m]; 160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 161 162 e = UNSTUFF_BITS(resp, 47, 3); 163 m = UNSTUFF_BITS(resp, 62, 12); 164 csd->capacity = (1 + m) << (e + 2); 165 166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 174 175 if (csd->write_blkbits >= 9) { 176 a = UNSTUFF_BITS(resp, 42, 5); 177 b = UNSTUFF_BITS(resp, 37, 5); 178 csd->erase_size = (a + 1) * (b + 1); 179 csd->erase_size <<= csd->write_blkbits - 9; 180 } 181 182 return 0; 183 } 184 185 static void mmc_select_card_type(struct mmc_card *card) 186 { 187 struct mmc_host *host = card->host; 188 u8 card_type = card->ext_csd.raw_card_type; 189 u32 caps = host->caps, caps2 = host->caps2; 190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 191 unsigned int avail_type = 0; 192 193 if (caps & MMC_CAP_MMC_HIGHSPEED && 194 card_type & EXT_CSD_CARD_TYPE_HS_26) { 195 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 196 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 197 } 198 199 if (caps & MMC_CAP_MMC_HIGHSPEED && 200 card_type & EXT_CSD_CARD_TYPE_HS_52) { 201 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 202 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 203 } 204 205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 209 } 210 211 if (caps & MMC_CAP_1_2V_DDR && 212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 215 } 216 217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 219 hs200_max_dtr = MMC_HS200_MAX_DTR; 220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 221 } 222 223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 225 hs200_max_dtr = MMC_HS200_MAX_DTR; 226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 227 } 228 229 if (caps2 & MMC_CAP2_HS400_1_8V && 230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 231 hs200_max_dtr = MMC_HS200_MAX_DTR; 232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 233 } 234 235 if (caps2 & MMC_CAP2_HS400_1_2V && 236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 237 hs200_max_dtr = MMC_HS200_MAX_DTR; 238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 239 } 240 241 if ((caps2 & MMC_CAP2_HS400_ES) && 242 card->ext_csd.strobe_support && 243 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 245 246 card->ext_csd.hs_max_dtr = hs_max_dtr; 247 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 248 card->mmc_avail_type = avail_type; 249 } 250 251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 252 { 253 u8 hc_erase_grp_sz, hc_wp_grp_sz; 254 255 /* 256 * Disable these attributes by default 257 */ 258 card->ext_csd.enhanced_area_offset = -EINVAL; 259 card->ext_csd.enhanced_area_size = -EINVAL; 260 261 /* 262 * Enhanced area feature support -- check whether the eMMC 263 * card has the Enhanced area enabled. If so, export enhanced 264 * area offset and size to user by adding sysfs interface. 265 */ 266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 268 if (card->ext_csd.partition_setting_completed) { 269 hc_erase_grp_sz = 270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 271 hc_wp_grp_sz = 272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 273 274 /* 275 * calculate the enhanced data area offset, in bytes 276 */ 277 card->ext_csd.enhanced_area_offset = 278 (((unsigned long long)ext_csd[139]) << 24) + 279 (((unsigned long long)ext_csd[138]) << 16) + 280 (((unsigned long long)ext_csd[137]) << 8) + 281 (((unsigned long long)ext_csd[136])); 282 if (mmc_card_blockaddr(card)) 283 card->ext_csd.enhanced_area_offset <<= 9; 284 /* 285 * calculate the enhanced data area size, in kilobytes 286 */ 287 card->ext_csd.enhanced_area_size = 288 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 289 ext_csd[140]; 290 card->ext_csd.enhanced_area_size *= 291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 292 card->ext_csd.enhanced_area_size <<= 9; 293 } else { 294 pr_warn("%s: defines enhanced area without partition setting complete\n", 295 mmc_hostname(card->host)); 296 } 297 } 298 } 299 300 static void mmc_part_add(struct mmc_card *card, u64 size, 301 unsigned int part_cfg, char *name, int idx, bool ro, 302 int area_type) 303 { 304 card->part[card->nr_parts].size = size; 305 card->part[card->nr_parts].part_cfg = part_cfg; 306 sprintf(card->part[card->nr_parts].name, name, idx); 307 card->part[card->nr_parts].force_ro = ro; 308 card->part[card->nr_parts].area_type = area_type; 309 card->nr_parts++; 310 } 311 312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 313 { 314 int idx; 315 u8 hc_erase_grp_sz, hc_wp_grp_sz; 316 u64 part_size; 317 318 /* 319 * General purpose partition feature support -- 320 * If ext_csd has the size of general purpose partitions, 321 * set size, part_cfg, partition name in mmc_part. 322 */ 323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 324 EXT_CSD_PART_SUPPORT_PART_EN) { 325 hc_erase_grp_sz = 326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 327 hc_wp_grp_sz = 328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 329 330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 334 continue; 335 if (card->ext_csd.partition_setting_completed == 0) { 336 pr_warn("%s: has partition size defined without partition complete\n", 337 mmc_hostname(card->host)); 338 break; 339 } 340 part_size = 341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 342 << 16) + 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 344 << 8) + 345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 347 mmc_part_add(card, part_size << 19, 348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 349 "gp%d", idx, false, 350 MMC_BLK_DATA_AREA_GP); 351 } 352 } 353 } 354 355 /* Minimum partition switch timeout in milliseconds */ 356 #define MMC_MIN_PART_SWITCH_TIME 300 357 358 /* 359 * Decode extended CSD. 360 */ 361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 362 { 363 int err = 0, idx; 364 u64 part_size; 365 struct device_node *np; 366 bool broken_hpi = false; 367 368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 370 if (card->csd.structure == 3) { 371 if (card->ext_csd.raw_ext_csd_structure > 2) { 372 pr_err("%s: unrecognised EXT_CSD structure " 373 "version %d\n", mmc_hostname(card->host), 374 card->ext_csd.raw_ext_csd_structure); 375 err = -EINVAL; 376 goto out; 377 } 378 } 379 380 np = mmc_of_find_child_device(card->host, 0); 381 if (np && of_device_is_compatible(np, "mmc-card")) 382 broken_hpi = of_property_read_bool(np, "broken-hpi"); 383 of_node_put(np); 384 385 /* 386 * The EXT_CSD format is meant to be forward compatible. As long 387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 388 * are authorized, see JEDEC JESD84-B50 section B.8. 389 */ 390 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 391 392 /* fixup device after ext_csd revision field is updated */ 393 mmc_fixup_device(card, mmc_ext_csd_fixups); 394 395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 399 if (card->ext_csd.rev >= 2) { 400 card->ext_csd.sectors = 401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 405 406 /* Cards with density > 2GiB are sector addressed */ 407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 408 mmc_card_set_blockaddr(card); 409 } 410 411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 413 mmc_select_card_type(card); 414 415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 416 card->ext_csd.raw_erase_timeout_mult = 417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 418 card->ext_csd.raw_hc_erase_grp_size = 419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 420 if (card->ext_csd.rev >= 3) { 421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 423 424 /* EXT_CSD value is in units of 10ms, but we store in ms */ 425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 426 427 /* Sleep / awake timeout in 100ns units */ 428 if (sa_shift > 0 && sa_shift <= 0x17) 429 card->ext_csd.sa_timeout = 430 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 431 card->ext_csd.erase_group_def = 432 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 433 card->ext_csd.hc_erase_timeout = 300 * 434 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 435 card->ext_csd.hc_erase_size = 436 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 437 438 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 439 440 /* 441 * There are two boot regions of equal size, defined in 442 * multiples of 128K. 443 */ 444 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 445 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 446 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 447 mmc_part_add(card, part_size, 448 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 449 "boot%d", idx, true, 450 MMC_BLK_DATA_AREA_BOOT); 451 } 452 } 453 } 454 455 card->ext_csd.raw_hc_erase_gap_size = 456 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 457 card->ext_csd.raw_sec_trim_mult = 458 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 459 card->ext_csd.raw_sec_erase_mult = 460 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 461 card->ext_csd.raw_sec_feature_support = 462 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 463 card->ext_csd.raw_trim_mult = 464 ext_csd[EXT_CSD_TRIM_MULT]; 465 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 466 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 467 if (card->ext_csd.rev >= 4) { 468 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 469 EXT_CSD_PART_SETTING_COMPLETED) 470 card->ext_csd.partition_setting_completed = 1; 471 else 472 card->ext_csd.partition_setting_completed = 0; 473 474 mmc_manage_enhanced_area(card, ext_csd); 475 476 mmc_manage_gp_partitions(card, ext_csd); 477 478 card->ext_csd.sec_trim_mult = 479 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 480 card->ext_csd.sec_erase_mult = 481 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 482 card->ext_csd.sec_feature_support = 483 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 484 card->ext_csd.trim_timeout = 300 * 485 ext_csd[EXT_CSD_TRIM_MULT]; 486 487 /* 488 * Note that the call to mmc_part_add above defaults to read 489 * only. If this default assumption is changed, the call must 490 * take into account the value of boot_locked below. 491 */ 492 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 493 card->ext_csd.boot_ro_lockable = true; 494 495 /* Save power class values */ 496 card->ext_csd.raw_pwr_cl_52_195 = 497 ext_csd[EXT_CSD_PWR_CL_52_195]; 498 card->ext_csd.raw_pwr_cl_26_195 = 499 ext_csd[EXT_CSD_PWR_CL_26_195]; 500 card->ext_csd.raw_pwr_cl_52_360 = 501 ext_csd[EXT_CSD_PWR_CL_52_360]; 502 card->ext_csd.raw_pwr_cl_26_360 = 503 ext_csd[EXT_CSD_PWR_CL_26_360]; 504 card->ext_csd.raw_pwr_cl_200_195 = 505 ext_csd[EXT_CSD_PWR_CL_200_195]; 506 card->ext_csd.raw_pwr_cl_200_360 = 507 ext_csd[EXT_CSD_PWR_CL_200_360]; 508 card->ext_csd.raw_pwr_cl_ddr_52_195 = 509 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 510 card->ext_csd.raw_pwr_cl_ddr_52_360 = 511 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 512 card->ext_csd.raw_pwr_cl_ddr_200_360 = 513 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 514 } 515 516 if (card->ext_csd.rev >= 5) { 517 /* Adjust production date as per JEDEC JESD84-B451 */ 518 if (card->cid.year < 2010) 519 card->cid.year += 16; 520 521 /* check whether the eMMC card supports BKOPS */ 522 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 523 card->ext_csd.bkops = 1; 524 card->ext_csd.man_bkops_en = 525 (ext_csd[EXT_CSD_BKOPS_EN] & 526 EXT_CSD_MANUAL_BKOPS_MASK); 527 card->ext_csd.raw_bkops_status = 528 ext_csd[EXT_CSD_BKOPS_STATUS]; 529 if (card->ext_csd.man_bkops_en) 530 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 531 mmc_hostname(card->host)); 532 card->ext_csd.auto_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_AUTO_BKOPS_MASK); 535 if (card->ext_csd.auto_bkops_en) 536 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 537 mmc_hostname(card->host)); 538 } 539 540 /* check whether the eMMC card supports HPI */ 541 if (!mmc_card_broken_hpi(card) && 542 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 543 card->ext_csd.hpi = 1; 544 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 545 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 546 else 547 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 548 /* 549 * Indicate the maximum timeout to close 550 * a command interrupted by HPI 551 */ 552 card->ext_csd.out_of_int_time = 553 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 554 } 555 556 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 557 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 558 559 /* 560 * RPMB regions are defined in multiples of 128K. 561 */ 562 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 563 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 564 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 565 EXT_CSD_PART_CONFIG_ACC_RPMB, 566 "rpmb", 0, false, 567 MMC_BLK_DATA_AREA_RPMB); 568 } 569 } 570 571 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 572 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 573 card->erased_byte = 0xFF; 574 else 575 card->erased_byte = 0x0; 576 577 /* eMMC v4.5 or later */ 578 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 579 if (card->ext_csd.rev >= 6) { 580 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 581 582 card->ext_csd.generic_cmd6_time = 10 * 583 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 584 card->ext_csd.power_off_longtime = 10 * 585 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 586 587 card->ext_csd.cache_size = 588 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 589 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 590 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 591 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 592 593 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 594 card->ext_csd.data_sector_size = 4096; 595 else 596 card->ext_csd.data_sector_size = 512; 597 598 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 599 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 600 card->ext_csd.data_tag_unit_size = 601 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 602 (card->ext_csd.data_sector_size); 603 } else { 604 card->ext_csd.data_tag_unit_size = 0; 605 } 606 607 card->ext_csd.max_packed_writes = 608 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 609 card->ext_csd.max_packed_reads = 610 ext_csd[EXT_CSD_MAX_PACKED_READS]; 611 } else { 612 card->ext_csd.data_sector_size = 512; 613 } 614 615 /* 616 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 617 * when accessing a specific field", so use it here if there is no 618 * PARTITION_SWITCH_TIME. 619 */ 620 if (!card->ext_csd.part_time) 621 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 622 /* Some eMMC set the value too low so set a minimum */ 623 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 624 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 625 626 /* eMMC v5 or later */ 627 if (card->ext_csd.rev >= 7) { 628 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 629 MMC_FIRMWARE_LEN); 630 card->ext_csd.ffu_capable = 631 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 632 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 633 634 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 635 card->ext_csd.device_life_time_est_typ_a = 636 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 637 card->ext_csd.device_life_time_est_typ_b = 638 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 639 } 640 641 /* eMMC v5.1 or later */ 642 if (card->ext_csd.rev >= 8) { 643 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 644 EXT_CSD_CMDQ_SUPPORTED; 645 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 646 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 647 /* Exclude inefficiently small queue depths */ 648 if (card->ext_csd.cmdq_depth <= 2) { 649 card->ext_csd.cmdq_support = false; 650 card->ext_csd.cmdq_depth = 0; 651 } 652 if (card->ext_csd.cmdq_support) { 653 pr_debug("%s: Command Queue supported depth %u\n", 654 mmc_hostname(card->host), 655 card->ext_csd.cmdq_depth); 656 } 657 card->ext_csd.enhanced_rpmb_supported = 658 (card->ext_csd.rel_param & 659 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 660 } 661 out: 662 return err; 663 } 664 665 static int mmc_read_ext_csd(struct mmc_card *card) 666 { 667 u8 *ext_csd; 668 int err; 669 670 if (!mmc_can_ext_csd(card)) 671 return 0; 672 673 err = mmc_get_ext_csd(card, &ext_csd); 674 if (err) { 675 /* If the host or the card can't do the switch, 676 * fail more gracefully. */ 677 if ((err != -EINVAL) 678 && (err != -ENOSYS) 679 && (err != -EFAULT)) 680 return err; 681 682 /* 683 * High capacity cards should have this "magic" size 684 * stored in their CSD. 685 */ 686 if (card->csd.capacity == (4096 * 512)) { 687 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 688 mmc_hostname(card->host)); 689 } else { 690 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 691 mmc_hostname(card->host)); 692 err = 0; 693 } 694 695 return err; 696 } 697 698 err = mmc_decode_ext_csd(card, ext_csd); 699 kfree(ext_csd); 700 return err; 701 } 702 703 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 704 { 705 u8 *bw_ext_csd; 706 int err; 707 708 if (bus_width == MMC_BUS_WIDTH_1) 709 return 0; 710 711 err = mmc_get_ext_csd(card, &bw_ext_csd); 712 if (err) 713 return err; 714 715 /* only compare read only fields */ 716 err = !((card->ext_csd.raw_partition_support == 717 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 718 (card->ext_csd.raw_erased_mem_count == 719 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 720 (card->ext_csd.rev == 721 bw_ext_csd[EXT_CSD_REV]) && 722 (card->ext_csd.raw_ext_csd_structure == 723 bw_ext_csd[EXT_CSD_STRUCTURE]) && 724 (card->ext_csd.raw_card_type == 725 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 726 (card->ext_csd.raw_s_a_timeout == 727 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 728 (card->ext_csd.raw_hc_erase_gap_size == 729 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 730 (card->ext_csd.raw_erase_timeout_mult == 731 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 732 (card->ext_csd.raw_hc_erase_grp_size == 733 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 734 (card->ext_csd.raw_sec_trim_mult == 735 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 736 (card->ext_csd.raw_sec_erase_mult == 737 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 738 (card->ext_csd.raw_sec_feature_support == 739 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 740 (card->ext_csd.raw_trim_mult == 741 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 742 (card->ext_csd.raw_sectors[0] == 743 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 744 (card->ext_csd.raw_sectors[1] == 745 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 746 (card->ext_csd.raw_sectors[2] == 747 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 748 (card->ext_csd.raw_sectors[3] == 749 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 750 (card->ext_csd.raw_pwr_cl_52_195 == 751 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 752 (card->ext_csd.raw_pwr_cl_26_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 754 (card->ext_csd.raw_pwr_cl_52_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 756 (card->ext_csd.raw_pwr_cl_26_360 == 757 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 758 (card->ext_csd.raw_pwr_cl_200_195 == 759 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 760 (card->ext_csd.raw_pwr_cl_200_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 762 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 763 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 764 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 765 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 766 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 767 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 768 769 if (err) 770 err = -EINVAL; 771 772 kfree(bw_ext_csd); 773 return err; 774 } 775 776 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 777 card->raw_cid[2], card->raw_cid[3]); 778 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 779 card->raw_csd[2], card->raw_csd[3]); 780 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 781 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 782 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 783 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 784 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 785 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 786 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 787 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 788 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 789 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 790 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 791 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 792 card->ext_csd.device_life_time_est_typ_a, 793 card->ext_csd.device_life_time_est_typ_b); 794 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 795 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 796 card->ext_csd.enhanced_area_offset); 797 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 798 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 799 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 800 card->ext_csd.enhanced_rpmb_supported); 801 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 802 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 803 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 804 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 805 806 static ssize_t mmc_fwrev_show(struct device *dev, 807 struct device_attribute *attr, 808 char *buf) 809 { 810 struct mmc_card *card = mmc_dev_to_card(dev); 811 812 if (card->ext_csd.rev < 7) { 813 return sprintf(buf, "0x%x\n", card->cid.fwrev); 814 } else { 815 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 816 card->ext_csd.fwrev); 817 } 818 } 819 820 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 821 822 static ssize_t mmc_dsr_show(struct device *dev, 823 struct device_attribute *attr, 824 char *buf) 825 { 826 struct mmc_card *card = mmc_dev_to_card(dev); 827 struct mmc_host *host = card->host; 828 829 if (card->csd.dsr_imp && host->dsr_req) 830 return sprintf(buf, "0x%x\n", host->dsr); 831 else 832 /* return default DSR value */ 833 return sprintf(buf, "0x%x\n", 0x404); 834 } 835 836 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 837 838 static struct attribute *mmc_std_attrs[] = { 839 &dev_attr_cid.attr, 840 &dev_attr_csd.attr, 841 &dev_attr_date.attr, 842 &dev_attr_erase_size.attr, 843 &dev_attr_preferred_erase_size.attr, 844 &dev_attr_fwrev.attr, 845 &dev_attr_ffu_capable.attr, 846 &dev_attr_hwrev.attr, 847 &dev_attr_manfid.attr, 848 &dev_attr_name.attr, 849 &dev_attr_oemid.attr, 850 &dev_attr_prv.attr, 851 &dev_attr_rev.attr, 852 &dev_attr_pre_eol_info.attr, 853 &dev_attr_life_time.attr, 854 &dev_attr_serial.attr, 855 &dev_attr_enhanced_area_offset.attr, 856 &dev_attr_enhanced_area_size.attr, 857 &dev_attr_raw_rpmb_size_mult.attr, 858 &dev_attr_enhanced_rpmb_supported.attr, 859 &dev_attr_rel_sectors.attr, 860 &dev_attr_ocr.attr, 861 &dev_attr_rca.attr, 862 &dev_attr_dsr.attr, 863 &dev_attr_cmdq_en.attr, 864 NULL, 865 }; 866 ATTRIBUTE_GROUPS(mmc_std); 867 868 static struct device_type mmc_type = { 869 .groups = mmc_std_groups, 870 }; 871 872 /* 873 * Select the PowerClass for the current bus width 874 * If power class is defined for 4/8 bit bus in the 875 * extended CSD register, select it by executing the 876 * mmc_switch command. 877 */ 878 static int __mmc_select_powerclass(struct mmc_card *card, 879 unsigned int bus_width) 880 { 881 struct mmc_host *host = card->host; 882 struct mmc_ext_csd *ext_csd = &card->ext_csd; 883 unsigned int pwrclass_val = 0; 884 int err = 0; 885 886 switch (1 << host->ios.vdd) { 887 case MMC_VDD_165_195: 888 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 889 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 890 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 891 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 892 ext_csd->raw_pwr_cl_52_195 : 893 ext_csd->raw_pwr_cl_ddr_52_195; 894 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 895 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 896 break; 897 case MMC_VDD_27_28: 898 case MMC_VDD_28_29: 899 case MMC_VDD_29_30: 900 case MMC_VDD_30_31: 901 case MMC_VDD_31_32: 902 case MMC_VDD_32_33: 903 case MMC_VDD_33_34: 904 case MMC_VDD_34_35: 905 case MMC_VDD_35_36: 906 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 907 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 908 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 909 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 910 ext_csd->raw_pwr_cl_52_360 : 911 ext_csd->raw_pwr_cl_ddr_52_360; 912 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 913 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 914 ext_csd->raw_pwr_cl_ddr_200_360 : 915 ext_csd->raw_pwr_cl_200_360; 916 break; 917 default: 918 pr_warn("%s: Voltage range not supported for power class\n", 919 mmc_hostname(host)); 920 return -EINVAL; 921 } 922 923 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 924 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 925 EXT_CSD_PWR_CL_8BIT_SHIFT; 926 else 927 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 928 EXT_CSD_PWR_CL_4BIT_SHIFT; 929 930 /* If the power class is different from the default value */ 931 if (pwrclass_val > 0) { 932 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 933 EXT_CSD_POWER_CLASS, 934 pwrclass_val, 935 card->ext_csd.generic_cmd6_time); 936 } 937 938 return err; 939 } 940 941 static int mmc_select_powerclass(struct mmc_card *card) 942 { 943 struct mmc_host *host = card->host; 944 u32 bus_width, ext_csd_bits; 945 int err, ddr; 946 947 /* Power class selection is supported for versions >= 4.0 */ 948 if (!mmc_can_ext_csd(card)) 949 return 0; 950 951 bus_width = host->ios.bus_width; 952 /* Power class values are defined only for 4/8 bit bus */ 953 if (bus_width == MMC_BUS_WIDTH_1) 954 return 0; 955 956 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 957 if (ddr) 958 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 959 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 960 else 961 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 962 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 963 964 err = __mmc_select_powerclass(card, ext_csd_bits); 965 if (err) 966 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 967 mmc_hostname(host), 1 << bus_width, ddr); 968 969 return err; 970 } 971 972 /* 973 * Set the bus speed for the selected speed mode. 974 */ 975 static void mmc_set_bus_speed(struct mmc_card *card) 976 { 977 unsigned int max_dtr = (unsigned int)-1; 978 979 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 980 max_dtr > card->ext_csd.hs200_max_dtr) 981 max_dtr = card->ext_csd.hs200_max_dtr; 982 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 983 max_dtr = card->ext_csd.hs_max_dtr; 984 else if (max_dtr > card->csd.max_dtr) 985 max_dtr = card->csd.max_dtr; 986 987 mmc_set_clock(card->host, max_dtr); 988 } 989 990 /* 991 * Select the bus width amoung 4-bit and 8-bit(SDR). 992 * If the bus width is changed successfully, return the selected width value. 993 * Zero is returned instead of error value if the wide width is not supported. 994 */ 995 static int mmc_select_bus_width(struct mmc_card *card) 996 { 997 static unsigned ext_csd_bits[] = { 998 EXT_CSD_BUS_WIDTH_8, 999 EXT_CSD_BUS_WIDTH_4, 1000 }; 1001 static unsigned bus_widths[] = { 1002 MMC_BUS_WIDTH_8, 1003 MMC_BUS_WIDTH_4, 1004 }; 1005 struct mmc_host *host = card->host; 1006 unsigned idx, bus_width = 0; 1007 int err = 0; 1008 1009 if (!mmc_can_ext_csd(card) || 1010 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1011 return 0; 1012 1013 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1014 1015 /* 1016 * Unlike SD, MMC cards dont have a configuration register to notify 1017 * supported bus width. So bus test command should be run to identify 1018 * the supported bus width or compare the ext csd values of current 1019 * bus width and ext csd values of 1 bit mode read earlier. 1020 */ 1021 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1022 /* 1023 * Host is capable of 8bit transfer, then switch 1024 * the device to work in 8bit transfer mode. If the 1025 * mmc switch command returns error then switch to 1026 * 4bit transfer mode. On success set the corresponding 1027 * bus width on the host. 1028 */ 1029 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1030 EXT_CSD_BUS_WIDTH, 1031 ext_csd_bits[idx], 1032 card->ext_csd.generic_cmd6_time); 1033 if (err) 1034 continue; 1035 1036 bus_width = bus_widths[idx]; 1037 mmc_set_bus_width(host, bus_width); 1038 1039 /* 1040 * If controller can't handle bus width test, 1041 * compare ext_csd previously read in 1 bit mode 1042 * against ext_csd at new bus width 1043 */ 1044 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1045 err = mmc_compare_ext_csds(card, bus_width); 1046 else 1047 err = mmc_bus_test(card, bus_width); 1048 1049 if (!err) { 1050 err = bus_width; 1051 break; 1052 } else { 1053 pr_warn("%s: switch to bus width %d failed\n", 1054 mmc_hostname(host), 1 << bus_width); 1055 } 1056 } 1057 1058 return err; 1059 } 1060 1061 /* 1062 * Switch to the high-speed mode 1063 */ 1064 static int mmc_select_hs(struct mmc_card *card) 1065 { 1066 int err; 1067 1068 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1069 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1070 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1071 true, true); 1072 if (err) 1073 pr_warn("%s: switch to high-speed failed, err:%d\n", 1074 mmc_hostname(card->host), err); 1075 1076 return err; 1077 } 1078 1079 /* 1080 * Activate wide bus and DDR if supported. 1081 */ 1082 static int mmc_select_hs_ddr(struct mmc_card *card) 1083 { 1084 struct mmc_host *host = card->host; 1085 u32 bus_width, ext_csd_bits; 1086 int err = 0; 1087 1088 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1089 return 0; 1090 1091 bus_width = host->ios.bus_width; 1092 if (bus_width == MMC_BUS_WIDTH_1) 1093 return 0; 1094 1095 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1096 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1097 1098 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1099 EXT_CSD_BUS_WIDTH, 1100 ext_csd_bits, 1101 card->ext_csd.generic_cmd6_time, 1102 MMC_TIMING_MMC_DDR52, 1103 true, true); 1104 if (err) { 1105 pr_err("%s: switch to bus width %d ddr failed\n", 1106 mmc_hostname(host), 1 << bus_width); 1107 return err; 1108 } 1109 1110 /* 1111 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1112 * signaling. 1113 * 1114 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1115 * 1116 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1117 * in the JEDEC spec for DDR. 1118 * 1119 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1120 * host controller can support this, like some of the SDHCI 1121 * controller which connect to an eMMC device. Some of these 1122 * host controller still needs to use 1.8v vccq for supporting 1123 * DDR mode. 1124 * 1125 * So the sequence will be: 1126 * if (host and device can both support 1.2v IO) 1127 * use 1.2v IO; 1128 * else if (host and device can both support 1.8v IO) 1129 * use 1.8v IO; 1130 * so if host and device can only support 3.3v IO, this is the 1131 * last choice. 1132 * 1133 * WARNING: eMMC rules are NOT the same as SD DDR 1134 */ 1135 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1136 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1137 if (!err) 1138 return 0; 1139 } 1140 1141 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1142 host->caps & MMC_CAP_1_8V_DDR) 1143 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1144 1145 /* make sure vccq is 3.3v after switching disaster */ 1146 if (err) 1147 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1148 1149 return err; 1150 } 1151 1152 static int mmc_select_hs400(struct mmc_card *card) 1153 { 1154 struct mmc_host *host = card->host; 1155 unsigned int max_dtr; 1156 int err = 0; 1157 u8 val; 1158 1159 /* 1160 * HS400 mode requires 8-bit bus width 1161 */ 1162 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1163 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1164 return 0; 1165 1166 /* Switch card to HS mode */ 1167 val = EXT_CSD_TIMING_HS; 1168 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1169 EXT_CSD_HS_TIMING, val, 1170 card->ext_csd.generic_cmd6_time, 0, 1171 false, true); 1172 if (err) { 1173 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1174 mmc_hostname(host), err); 1175 return err; 1176 } 1177 1178 /* Prepare host to downgrade to HS timing */ 1179 if (host->ops->hs400_downgrade) 1180 host->ops->hs400_downgrade(host); 1181 1182 /* Set host controller to HS timing */ 1183 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1184 1185 /* Reduce frequency to HS frequency */ 1186 max_dtr = card->ext_csd.hs_max_dtr; 1187 mmc_set_clock(host, max_dtr); 1188 1189 err = mmc_switch_status(card, true); 1190 if (err) 1191 goto out_err; 1192 1193 if (host->ops->hs400_prepare_ddr) 1194 host->ops->hs400_prepare_ddr(host); 1195 1196 /* Switch card to DDR */ 1197 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1198 EXT_CSD_BUS_WIDTH, 1199 EXT_CSD_DDR_BUS_WIDTH_8, 1200 card->ext_csd.generic_cmd6_time); 1201 if (err) { 1202 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1203 mmc_hostname(host), err); 1204 return err; 1205 } 1206 1207 /* Switch card to HS400 */ 1208 val = EXT_CSD_TIMING_HS400 | 1209 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1210 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1211 EXT_CSD_HS_TIMING, val, 1212 card->ext_csd.generic_cmd6_time, 0, 1213 false, true); 1214 if (err) { 1215 pr_err("%s: switch to hs400 failed, err:%d\n", 1216 mmc_hostname(host), err); 1217 return err; 1218 } 1219 1220 /* Set host controller to HS400 timing and frequency */ 1221 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1222 mmc_set_bus_speed(card); 1223 1224 if (host->ops->hs400_complete) 1225 host->ops->hs400_complete(host); 1226 1227 err = mmc_switch_status(card, true); 1228 if (err) 1229 goto out_err; 1230 1231 return 0; 1232 1233 out_err: 1234 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1235 __func__, err); 1236 return err; 1237 } 1238 1239 int mmc_hs200_to_hs400(struct mmc_card *card) 1240 { 1241 return mmc_select_hs400(card); 1242 } 1243 1244 int mmc_hs400_to_hs200(struct mmc_card *card) 1245 { 1246 struct mmc_host *host = card->host; 1247 unsigned int max_dtr; 1248 int err; 1249 u8 val; 1250 1251 /* Reduce frequency to HS */ 1252 max_dtr = card->ext_csd.hs_max_dtr; 1253 mmc_set_clock(host, max_dtr); 1254 1255 /* Switch HS400 to HS DDR */ 1256 val = EXT_CSD_TIMING_HS; 1257 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1258 val, card->ext_csd.generic_cmd6_time, 0, 1259 false, true); 1260 if (err) 1261 goto out_err; 1262 1263 if (host->ops->hs400_downgrade) 1264 host->ops->hs400_downgrade(host); 1265 1266 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1267 1268 err = mmc_switch_status(card, true); 1269 if (err) 1270 goto out_err; 1271 1272 /* Switch HS DDR to HS */ 1273 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1274 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1275 0, false, true); 1276 if (err) 1277 goto out_err; 1278 1279 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1280 1281 err = mmc_switch_status(card, true); 1282 if (err) 1283 goto out_err; 1284 1285 /* Switch HS to HS200 */ 1286 val = EXT_CSD_TIMING_HS200 | 1287 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1289 val, card->ext_csd.generic_cmd6_time, 0, 1290 false, true); 1291 if (err) 1292 goto out_err; 1293 1294 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1295 1296 /* 1297 * For HS200, CRC errors are not a reliable way to know the switch 1298 * failed. If there really is a problem, we would expect tuning will 1299 * fail and the result ends up the same. 1300 */ 1301 err = mmc_switch_status(card, false); 1302 if (err) 1303 goto out_err; 1304 1305 mmc_set_bus_speed(card); 1306 1307 /* Prepare tuning for HS400 mode. */ 1308 if (host->ops->prepare_hs400_tuning) 1309 host->ops->prepare_hs400_tuning(host, &host->ios); 1310 1311 return 0; 1312 1313 out_err: 1314 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1315 __func__, err); 1316 return err; 1317 } 1318 1319 static void mmc_select_driver_type(struct mmc_card *card) 1320 { 1321 int card_drv_type, drive_strength, drv_type = 0; 1322 int fixed_drv_type = card->host->fixed_drv_type; 1323 1324 card_drv_type = card->ext_csd.raw_driver_strength | 1325 mmc_driver_type_mask(0); 1326 1327 if (fixed_drv_type >= 0) 1328 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1329 ? fixed_drv_type : 0; 1330 else 1331 drive_strength = mmc_select_drive_strength(card, 1332 card->ext_csd.hs200_max_dtr, 1333 card_drv_type, &drv_type); 1334 1335 card->drive_strength = drive_strength; 1336 1337 if (drv_type) 1338 mmc_set_driver_type(card->host, drv_type); 1339 } 1340 1341 static int mmc_select_hs400es(struct mmc_card *card) 1342 { 1343 struct mmc_host *host = card->host; 1344 int err = -EINVAL; 1345 u8 val; 1346 1347 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1348 err = -ENOTSUPP; 1349 goto out_err; 1350 } 1351 1352 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1353 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1354 1355 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1356 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1357 1358 /* If fails try again during next card power cycle */ 1359 if (err) 1360 goto out_err; 1361 1362 err = mmc_select_bus_width(card); 1363 if (err != MMC_BUS_WIDTH_8) { 1364 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1365 mmc_hostname(host), err); 1366 err = err < 0 ? err : -ENOTSUPP; 1367 goto out_err; 1368 } 1369 1370 /* Switch card to HS mode */ 1371 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1372 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1373 card->ext_csd.generic_cmd6_time, 0, 1374 false, true); 1375 if (err) { 1376 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1377 mmc_hostname(host), err); 1378 goto out_err; 1379 } 1380 1381 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1382 err = mmc_switch_status(card, true); 1383 if (err) 1384 goto out_err; 1385 1386 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1387 1388 /* Switch card to DDR with strobe bit */ 1389 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1390 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1391 EXT_CSD_BUS_WIDTH, 1392 val, 1393 card->ext_csd.generic_cmd6_time); 1394 if (err) { 1395 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1396 mmc_hostname(host), err); 1397 goto out_err; 1398 } 1399 1400 mmc_select_driver_type(card); 1401 1402 /* Switch card to HS400 */ 1403 val = EXT_CSD_TIMING_HS400 | 1404 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1405 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1406 EXT_CSD_HS_TIMING, val, 1407 card->ext_csd.generic_cmd6_time, 0, 1408 false, true); 1409 if (err) { 1410 pr_err("%s: switch to hs400es failed, err:%d\n", 1411 mmc_hostname(host), err); 1412 goto out_err; 1413 } 1414 1415 /* Set host controller to HS400 timing and frequency */ 1416 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1417 1418 /* Controller enable enhanced strobe function */ 1419 host->ios.enhanced_strobe = true; 1420 if (host->ops->hs400_enhanced_strobe) 1421 host->ops->hs400_enhanced_strobe(host, &host->ios); 1422 1423 err = mmc_switch_status(card, true); 1424 if (err) 1425 goto out_err; 1426 1427 return 0; 1428 1429 out_err: 1430 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1431 __func__, err); 1432 return err; 1433 } 1434 1435 /* 1436 * For device supporting HS200 mode, the following sequence 1437 * should be done before executing the tuning process. 1438 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1439 * 2. switch to HS200 mode 1440 * 3. set the clock to > 52Mhz and <=200MHz 1441 */ 1442 static int mmc_select_hs200(struct mmc_card *card) 1443 { 1444 struct mmc_host *host = card->host; 1445 unsigned int old_timing, old_signal_voltage; 1446 int err = -EINVAL; 1447 u8 val; 1448 1449 old_signal_voltage = host->ios.signal_voltage; 1450 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1451 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1452 1453 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1454 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1455 1456 /* If fails try again during next card power cycle */ 1457 if (err) 1458 return err; 1459 1460 mmc_select_driver_type(card); 1461 1462 /* 1463 * Set the bus width(4 or 8) with host's support and 1464 * switch to HS200 mode if bus width is set successfully. 1465 */ 1466 err = mmc_select_bus_width(card); 1467 if (err > 0) { 1468 val = EXT_CSD_TIMING_HS200 | 1469 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1470 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1471 EXT_CSD_HS_TIMING, val, 1472 card->ext_csd.generic_cmd6_time, 0, 1473 false, true); 1474 if (err) 1475 goto err; 1476 old_timing = host->ios.timing; 1477 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1478 1479 /* 1480 * For HS200, CRC errors are not a reliable way to know the 1481 * switch failed. If there really is a problem, we would expect 1482 * tuning will fail and the result ends up the same. 1483 */ 1484 err = mmc_switch_status(card, false); 1485 1486 /* 1487 * mmc_select_timing() assumes timing has not changed if 1488 * it is a switch error. 1489 */ 1490 if (err == -EBADMSG) 1491 mmc_set_timing(host, old_timing); 1492 } 1493 err: 1494 if (err) { 1495 /* fall back to the old signal voltage, if fails report error */ 1496 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1497 err = -EIO; 1498 1499 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1500 __func__, err); 1501 } 1502 return err; 1503 } 1504 1505 /* 1506 * Activate High Speed, HS200 or HS400ES mode if supported. 1507 */ 1508 static int mmc_select_timing(struct mmc_card *card) 1509 { 1510 int err = 0; 1511 1512 if (!mmc_can_ext_csd(card)) 1513 goto bus_speed; 1514 1515 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1516 err = mmc_select_hs400es(card); 1517 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1518 err = mmc_select_hs200(card); 1519 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1520 err = mmc_select_hs(card); 1521 1522 if (err && err != -EBADMSG) 1523 return err; 1524 1525 bus_speed: 1526 /* 1527 * Set the bus speed to the selected bus timing. 1528 * If timing is not selected, backward compatible is the default. 1529 */ 1530 mmc_set_bus_speed(card); 1531 return 0; 1532 } 1533 1534 /* 1535 * Execute tuning sequence to seek the proper bus operating 1536 * conditions for HS200 and HS400, which sends CMD21 to the device. 1537 */ 1538 static int mmc_hs200_tuning(struct mmc_card *card) 1539 { 1540 struct mmc_host *host = card->host; 1541 1542 /* 1543 * Timing should be adjusted to the HS400 target 1544 * operation frequency for tuning process 1545 */ 1546 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1547 host->ios.bus_width == MMC_BUS_WIDTH_8) 1548 if (host->ops->prepare_hs400_tuning) 1549 host->ops->prepare_hs400_tuning(host, &host->ios); 1550 1551 return mmc_execute_tuning(card); 1552 } 1553 1554 /* 1555 * Handle the detection and initialisation of a card. 1556 * 1557 * In the case of a resume, "oldcard" will contain the card 1558 * we're trying to reinitialise. 1559 */ 1560 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1561 struct mmc_card *oldcard) 1562 { 1563 struct mmc_card *card; 1564 int err; 1565 u32 cid[4]; 1566 u32 rocr; 1567 1568 WARN_ON(!host->claimed); 1569 1570 /* Set correct bus mode for MMC before attempting init */ 1571 if (!mmc_host_is_spi(host)) 1572 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1573 1574 /* 1575 * Since we're changing the OCR value, we seem to 1576 * need to tell some cards to go back to the idle 1577 * state. We wait 1ms to give cards time to 1578 * respond. 1579 * mmc_go_idle is needed for eMMC that are asleep 1580 */ 1581 mmc_go_idle(host); 1582 1583 /* The extra bit indicates that we support high capacity */ 1584 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1585 if (err) 1586 goto err; 1587 1588 /* 1589 * For SPI, enable CRC as appropriate. 1590 */ 1591 if (mmc_host_is_spi(host)) { 1592 err = mmc_spi_set_crc(host, use_spi_crc); 1593 if (err) 1594 goto err; 1595 } 1596 1597 /* 1598 * Fetch CID from card. 1599 */ 1600 err = mmc_send_cid(host, cid); 1601 if (err) 1602 goto err; 1603 1604 if (oldcard) { 1605 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1606 pr_debug("%s: Perhaps the card was replaced\n", 1607 mmc_hostname(host)); 1608 err = -ENOENT; 1609 goto err; 1610 } 1611 1612 card = oldcard; 1613 } else { 1614 /* 1615 * Allocate card structure. 1616 */ 1617 card = mmc_alloc_card(host, &mmc_type); 1618 if (IS_ERR(card)) { 1619 err = PTR_ERR(card); 1620 goto err; 1621 } 1622 1623 card->ocr = ocr; 1624 card->type = MMC_TYPE_MMC; 1625 card->rca = 1; 1626 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1627 } 1628 1629 /* 1630 * Call the optional HC's init_card function to handle quirks. 1631 */ 1632 if (host->ops->init_card) 1633 host->ops->init_card(host, card); 1634 1635 /* 1636 * For native busses: set card RCA and quit open drain mode. 1637 */ 1638 if (!mmc_host_is_spi(host)) { 1639 err = mmc_set_relative_addr(card); 1640 if (err) 1641 goto free_card; 1642 1643 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1644 } 1645 1646 if (!oldcard) { 1647 /* 1648 * Fetch CSD from card. 1649 */ 1650 err = mmc_send_csd(card, card->raw_csd); 1651 if (err) 1652 goto free_card; 1653 1654 err = mmc_decode_csd(card); 1655 if (err) 1656 goto free_card; 1657 err = mmc_decode_cid(card); 1658 if (err) 1659 goto free_card; 1660 } 1661 1662 /* 1663 * handling only for cards supporting DSR and hosts requesting 1664 * DSR configuration 1665 */ 1666 if (card->csd.dsr_imp && host->dsr_req) 1667 mmc_set_dsr(host); 1668 1669 /* 1670 * Select card, as all following commands rely on that. 1671 */ 1672 if (!mmc_host_is_spi(host)) { 1673 err = mmc_select_card(card); 1674 if (err) 1675 goto free_card; 1676 } 1677 1678 if (!oldcard) { 1679 /* Read extended CSD. */ 1680 err = mmc_read_ext_csd(card); 1681 if (err) 1682 goto free_card; 1683 1684 /* 1685 * If doing byte addressing, check if required to do sector 1686 * addressing. Handle the case of <2GB cards needing sector 1687 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1688 * ocr register has bit 30 set for sector addressing. 1689 */ 1690 if (rocr & BIT(30)) 1691 mmc_card_set_blockaddr(card); 1692 1693 /* Erase size depends on CSD and Extended CSD */ 1694 mmc_set_erase_size(card); 1695 } 1696 1697 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1698 if (card->ext_csd.rev >= 3) { 1699 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1700 EXT_CSD_ERASE_GROUP_DEF, 1, 1701 card->ext_csd.generic_cmd6_time); 1702 1703 if (err && err != -EBADMSG) 1704 goto free_card; 1705 1706 if (err) { 1707 /* 1708 * Just disable enhanced area off & sz 1709 * will try to enable ERASE_GROUP_DEF 1710 * during next time reinit 1711 */ 1712 card->ext_csd.enhanced_area_offset = -EINVAL; 1713 card->ext_csd.enhanced_area_size = -EINVAL; 1714 } else { 1715 card->ext_csd.erase_group_def = 1; 1716 /* 1717 * enable ERASE_GRP_DEF successfully. 1718 * This will affect the erase size, so 1719 * here need to reset erase size 1720 */ 1721 mmc_set_erase_size(card); 1722 } 1723 } 1724 1725 /* 1726 * Ensure eMMC user default partition is enabled 1727 */ 1728 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1729 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1730 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1731 card->ext_csd.part_config, 1732 card->ext_csd.part_time); 1733 if (err && err != -EBADMSG) 1734 goto free_card; 1735 } 1736 1737 /* 1738 * Enable power_off_notification byte in the ext_csd register 1739 */ 1740 if (card->ext_csd.rev >= 6) { 1741 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1742 EXT_CSD_POWER_OFF_NOTIFICATION, 1743 EXT_CSD_POWER_ON, 1744 card->ext_csd.generic_cmd6_time); 1745 if (err && err != -EBADMSG) 1746 goto free_card; 1747 1748 /* 1749 * The err can be -EBADMSG or 0, 1750 * so check for success and update the flag 1751 */ 1752 if (!err) 1753 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1754 } 1755 1756 /* set erase_arg */ 1757 if (mmc_can_discard(card)) 1758 card->erase_arg = MMC_DISCARD_ARG; 1759 else if (mmc_can_trim(card)) 1760 card->erase_arg = MMC_TRIM_ARG; 1761 else 1762 card->erase_arg = MMC_ERASE_ARG; 1763 1764 /* 1765 * Select timing interface 1766 */ 1767 err = mmc_select_timing(card); 1768 if (err) 1769 goto free_card; 1770 1771 if (mmc_card_hs200(card)) { 1772 host->doing_init_tune = 1; 1773 1774 err = mmc_hs200_tuning(card); 1775 if (!err) 1776 err = mmc_select_hs400(card); 1777 1778 host->doing_init_tune = 0; 1779 1780 if (err) 1781 goto free_card; 1782 1783 } else if (!mmc_card_hs400es(card)) { 1784 /* Select the desired bus width optionally */ 1785 err = mmc_select_bus_width(card); 1786 if (err > 0 && mmc_card_hs(card)) { 1787 err = mmc_select_hs_ddr(card); 1788 if (err) 1789 goto free_card; 1790 } 1791 } 1792 1793 /* 1794 * Choose the power class with selected bus interface 1795 */ 1796 mmc_select_powerclass(card); 1797 1798 /* 1799 * Enable HPI feature (if supported) 1800 */ 1801 if (card->ext_csd.hpi) { 1802 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1803 EXT_CSD_HPI_MGMT, 1, 1804 card->ext_csd.generic_cmd6_time); 1805 if (err && err != -EBADMSG) 1806 goto free_card; 1807 if (err) { 1808 pr_warn("%s: Enabling HPI failed\n", 1809 mmc_hostname(card->host)); 1810 card->ext_csd.hpi_en = 0; 1811 } else { 1812 card->ext_csd.hpi_en = 1; 1813 } 1814 } 1815 1816 /* 1817 * If cache size is higher than 0, this indicates the existence of cache 1818 * and it can be turned on. Note that some eMMCs from Micron has been 1819 * reported to need ~800 ms timeout, while enabling the cache after 1820 * sudden power failure tests. Let's extend the timeout to a minimum of 1821 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1822 */ 1823 if (card->ext_csd.cache_size > 0) { 1824 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1825 1826 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1827 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1828 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1829 if (err && err != -EBADMSG) 1830 goto free_card; 1831 1832 /* 1833 * Only if no error, cache is turned on successfully. 1834 */ 1835 if (err) { 1836 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1837 mmc_hostname(card->host), err); 1838 card->ext_csd.cache_ctrl = 0; 1839 } else { 1840 card->ext_csd.cache_ctrl = 1; 1841 } 1842 } 1843 1844 /* 1845 * Enable Command Queue if supported. Note that Packed Commands cannot 1846 * be used with Command Queue. 1847 */ 1848 card->ext_csd.cmdq_en = false; 1849 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1850 err = mmc_cmdq_enable(card); 1851 if (err && err != -EBADMSG) 1852 goto free_card; 1853 if (err) { 1854 pr_warn("%s: Enabling CMDQ failed\n", 1855 mmc_hostname(card->host)); 1856 card->ext_csd.cmdq_support = false; 1857 card->ext_csd.cmdq_depth = 0; 1858 } 1859 } 1860 /* 1861 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1862 * disabled for a time, so a flag is needed to indicate to re-enable the 1863 * Command Queue. 1864 */ 1865 card->reenable_cmdq = card->ext_csd.cmdq_en; 1866 1867 if (host->cqe_ops && !host->cqe_enabled) { 1868 err = host->cqe_ops->cqe_enable(host, card); 1869 if (!err) { 1870 host->cqe_enabled = true; 1871 1872 if (card->ext_csd.cmdq_en) { 1873 pr_info("%s: Command Queue Engine enabled\n", 1874 mmc_hostname(host)); 1875 } else { 1876 host->hsq_enabled = true; 1877 pr_info("%s: Host Software Queue enabled\n", 1878 mmc_hostname(host)); 1879 } 1880 } 1881 } 1882 1883 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1884 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1885 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1886 mmc_hostname(host)); 1887 err = -EINVAL; 1888 goto free_card; 1889 } 1890 1891 if (!oldcard) 1892 host->card = card; 1893 1894 return 0; 1895 1896 free_card: 1897 if (!oldcard) 1898 mmc_remove_card(card); 1899 err: 1900 return err; 1901 } 1902 1903 static int mmc_can_sleep(struct mmc_card *card) 1904 { 1905 return card->ext_csd.rev >= 3; 1906 } 1907 1908 static int mmc_sleep(struct mmc_host *host) 1909 { 1910 struct mmc_command cmd = {}; 1911 struct mmc_card *card = host->card; 1912 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1913 int err; 1914 1915 /* Re-tuning can't be done once the card is deselected */ 1916 mmc_retune_hold(host); 1917 1918 err = mmc_deselect_cards(host); 1919 if (err) 1920 goto out_release; 1921 1922 cmd.opcode = MMC_SLEEP_AWAKE; 1923 cmd.arg = card->rca << 16; 1924 cmd.arg |= 1 << 15; 1925 1926 /* 1927 * If the max_busy_timeout of the host is specified, validate it against 1928 * the sleep cmd timeout. A failure means we need to prevent the host 1929 * from doing hw busy detection, which is done by converting to a R1 1930 * response instead of a R1B. Note, some hosts requires R1B, which also 1931 * means they are on their own when it comes to deal with the busy 1932 * timeout. 1933 */ 1934 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && 1935 (timeout_ms > host->max_busy_timeout)) { 1936 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1937 } else { 1938 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1939 cmd.busy_timeout = timeout_ms; 1940 } 1941 1942 err = mmc_wait_for_cmd(host, &cmd, 0); 1943 if (err) 1944 goto out_release; 1945 1946 /* 1947 * If the host does not wait while the card signals busy, then we will 1948 * will have to wait the sleep/awake timeout. Note, we cannot use the 1949 * SEND_STATUS command to poll the status because that command (and most 1950 * others) is invalid while the card sleeps. 1951 */ 1952 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1953 mmc_delay(timeout_ms); 1954 1955 out_release: 1956 mmc_retune_release(host); 1957 return err; 1958 } 1959 1960 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1961 { 1962 return card && 1963 mmc_card_mmc(card) && 1964 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1965 } 1966 1967 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1968 { 1969 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1970 int err; 1971 1972 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1973 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1974 timeout = card->ext_csd.power_off_longtime; 1975 1976 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1977 EXT_CSD_POWER_OFF_NOTIFICATION, 1978 notify_type, timeout, 0, false, false); 1979 if (err) 1980 pr_err("%s: Power Off Notification timed out, %u\n", 1981 mmc_hostname(card->host), timeout); 1982 1983 /* Disable the power off notification after the switch operation. */ 1984 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1985 1986 return err; 1987 } 1988 1989 /* 1990 * Host is being removed. Free up the current card. 1991 */ 1992 static void mmc_remove(struct mmc_host *host) 1993 { 1994 mmc_remove_card(host->card); 1995 host->card = NULL; 1996 } 1997 1998 /* 1999 * Card detection - card is alive. 2000 */ 2001 static int mmc_alive(struct mmc_host *host) 2002 { 2003 return mmc_send_status(host->card, NULL); 2004 } 2005 2006 /* 2007 * Card detection callback from host. 2008 */ 2009 static void mmc_detect(struct mmc_host *host) 2010 { 2011 int err; 2012 2013 mmc_get_card(host->card, NULL); 2014 2015 /* 2016 * Just check if our card has been removed. 2017 */ 2018 err = _mmc_detect_card_removed(host); 2019 2020 mmc_put_card(host->card, NULL); 2021 2022 if (err) { 2023 mmc_remove(host); 2024 2025 mmc_claim_host(host); 2026 mmc_detach_bus(host); 2027 mmc_power_off(host); 2028 mmc_release_host(host); 2029 } 2030 } 2031 2032 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2033 { 2034 int err = 0; 2035 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2036 EXT_CSD_POWER_OFF_LONG; 2037 2038 mmc_claim_host(host); 2039 2040 if (mmc_card_suspended(host->card)) 2041 goto out; 2042 2043 err = mmc_flush_cache(host->card); 2044 if (err) 2045 goto out; 2046 2047 if (mmc_can_poweroff_notify(host->card) && 2048 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2049 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2050 err = mmc_poweroff_notify(host->card, notify_type); 2051 else if (mmc_can_sleep(host->card)) 2052 err = mmc_sleep(host); 2053 else if (!mmc_host_is_spi(host)) 2054 err = mmc_deselect_cards(host); 2055 2056 if (!err) { 2057 mmc_power_off(host); 2058 mmc_card_set_suspended(host->card); 2059 } 2060 out: 2061 mmc_release_host(host); 2062 return err; 2063 } 2064 2065 /* 2066 * Suspend callback 2067 */ 2068 static int mmc_suspend(struct mmc_host *host) 2069 { 2070 int err; 2071 2072 err = _mmc_suspend(host, true); 2073 if (!err) { 2074 pm_runtime_disable(&host->card->dev); 2075 pm_runtime_set_suspended(&host->card->dev); 2076 } 2077 2078 return err; 2079 } 2080 2081 /* 2082 * This function tries to determine if the same card is still present 2083 * and, if so, restore all state to it. 2084 */ 2085 static int _mmc_resume(struct mmc_host *host) 2086 { 2087 int err = 0; 2088 2089 mmc_claim_host(host); 2090 2091 if (!mmc_card_suspended(host->card)) 2092 goto out; 2093 2094 mmc_power_up(host, host->card->ocr); 2095 err = mmc_init_card(host, host->card->ocr, host->card); 2096 mmc_card_clr_suspended(host->card); 2097 2098 out: 2099 mmc_release_host(host); 2100 return err; 2101 } 2102 2103 /* 2104 * Shutdown callback 2105 */ 2106 static int mmc_shutdown(struct mmc_host *host) 2107 { 2108 int err = 0; 2109 2110 /* 2111 * In a specific case for poweroff notify, we need to resume the card 2112 * before we can shutdown it properly. 2113 */ 2114 if (mmc_can_poweroff_notify(host->card) && 2115 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2116 err = _mmc_resume(host); 2117 2118 if (!err) 2119 err = _mmc_suspend(host, false); 2120 2121 return err; 2122 } 2123 2124 /* 2125 * Callback for resume. 2126 */ 2127 static int mmc_resume(struct mmc_host *host) 2128 { 2129 pm_runtime_enable(&host->card->dev); 2130 return 0; 2131 } 2132 2133 /* 2134 * Callback for runtime_suspend. 2135 */ 2136 static int mmc_runtime_suspend(struct mmc_host *host) 2137 { 2138 int err; 2139 2140 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2141 return 0; 2142 2143 err = _mmc_suspend(host, true); 2144 if (err) 2145 pr_err("%s: error %d doing aggressive suspend\n", 2146 mmc_hostname(host), err); 2147 2148 return err; 2149 } 2150 2151 /* 2152 * Callback for runtime_resume. 2153 */ 2154 static int mmc_runtime_resume(struct mmc_host *host) 2155 { 2156 int err; 2157 2158 err = _mmc_resume(host); 2159 if (err && err != -ENOMEDIUM) 2160 pr_err("%s: error %d doing runtime resume\n", 2161 mmc_hostname(host), err); 2162 2163 return 0; 2164 } 2165 2166 static int mmc_can_reset(struct mmc_card *card) 2167 { 2168 u8 rst_n_function; 2169 2170 rst_n_function = card->ext_csd.rst_n_function; 2171 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2172 return 0; 2173 return 1; 2174 } 2175 2176 static int _mmc_hw_reset(struct mmc_host *host) 2177 { 2178 struct mmc_card *card = host->card; 2179 2180 /* 2181 * In the case of recovery, we can't expect flushing the cache to work 2182 * always, but we have a go and ignore errors. 2183 */ 2184 mmc_flush_cache(host->card); 2185 2186 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2187 mmc_can_reset(card)) { 2188 /* If the card accept RST_n signal, send it. */ 2189 mmc_set_clock(host, host->f_init); 2190 host->ops->hw_reset(host); 2191 /* Set initial state and call mmc_set_ios */ 2192 mmc_set_initial_state(host); 2193 } else { 2194 /* Do a brute force power cycle */ 2195 mmc_power_cycle(host, card->ocr); 2196 mmc_pwrseq_reset(host); 2197 } 2198 return mmc_init_card(host, card->ocr, card); 2199 } 2200 2201 static const struct mmc_bus_ops mmc_ops = { 2202 .remove = mmc_remove, 2203 .detect = mmc_detect, 2204 .suspend = mmc_suspend, 2205 .resume = mmc_resume, 2206 .runtime_suspend = mmc_runtime_suspend, 2207 .runtime_resume = mmc_runtime_resume, 2208 .alive = mmc_alive, 2209 .shutdown = mmc_shutdown, 2210 .hw_reset = _mmc_hw_reset, 2211 }; 2212 2213 /* 2214 * Starting point for MMC card init. 2215 */ 2216 int mmc_attach_mmc(struct mmc_host *host) 2217 { 2218 int err; 2219 u32 ocr, rocr; 2220 2221 WARN_ON(!host->claimed); 2222 2223 /* Set correct bus mode for MMC before attempting attach */ 2224 if (!mmc_host_is_spi(host)) 2225 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2226 2227 err = mmc_send_op_cond(host, 0, &ocr); 2228 if (err) 2229 return err; 2230 2231 mmc_attach_bus(host, &mmc_ops); 2232 if (host->ocr_avail_mmc) 2233 host->ocr_avail = host->ocr_avail_mmc; 2234 2235 /* 2236 * We need to get OCR a different way for SPI. 2237 */ 2238 if (mmc_host_is_spi(host)) { 2239 err = mmc_spi_read_ocr(host, 1, &ocr); 2240 if (err) 2241 goto err; 2242 } 2243 2244 rocr = mmc_select_voltage(host, ocr); 2245 2246 /* 2247 * Can we support the voltage of the card? 2248 */ 2249 if (!rocr) { 2250 err = -EINVAL; 2251 goto err; 2252 } 2253 2254 /* 2255 * Detect and init the card. 2256 */ 2257 err = mmc_init_card(host, rocr, NULL); 2258 if (err) 2259 goto err; 2260 2261 mmc_release_host(host); 2262 err = mmc_add_card(host->card); 2263 if (err) 2264 goto remove_card; 2265 2266 mmc_claim_host(host); 2267 return 0; 2268 2269 remove_card: 2270 mmc_remove_card(host->card); 2271 mmc_claim_host(host); 2272 host->card = NULL; 2273 err: 2274 mmc_detach_bus(host); 2275 2276 pr_err("%s: error %d whilst initialising MMC card\n", 2277 mmc_hostname(host), err); 2278 2279 return err; 2280 } 2281