xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 
32 static const unsigned int tran_exp[] = {
33 	10000,		100000,		1000000,	10000000,
34 	0,		0,		0,		0
35 };
36 
37 static const unsigned char tran_mant[] = {
38 	0,	10,	12,	13,	15,	20,	25,	30,
39 	35,	40,	45,	50,	55,	60,	70,	80,
40 };
41 
42 static const unsigned int taac_exp[] = {
43 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
44 };
45 
46 static const unsigned int taac_mant[] = {
47 	0,	10,	12,	13,	15,	20,	25,	30,
48 	35,	40,	45,	50,	55,	60,	70,	80,
49 };
50 
51 #define UNSTUFF_BITS(resp,start,size)					\
52 	({								\
53 		const int __size = size;				\
54 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
55 		const int __off = 3 - ((start) / 32);			\
56 		const int __shft = (start) & 31;			\
57 		u32 __res;						\
58 									\
59 		__res = resp[__off] >> __shft;				\
60 		if (__size + __shft > 32)				\
61 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
62 		__res & __mask;						\
63 	})
64 
65 /*
66  * Given the decoded CSD structure, decode the raw CID to our CID structure.
67  */
68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 	u32 *resp = card->raw_cid;
71 
72 	/*
73 	 * The selection of the format here is based upon published
74 	 * specs from sandisk and from what people have reported.
75 	 */
76 	switch (card->csd.mmca_vsn) {
77 	case 0: /* MMC v1.0 - v1.2 */
78 	case 1: /* MMC v1.4 */
79 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
80 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
81 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
82 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
83 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
84 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
85 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
86 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
87 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
88 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
89 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
90 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
91 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
92 		break;
93 
94 	case 2: /* MMC v2.0 - v2.2 */
95 	case 3: /* MMC v3.1 - v3.3 */
96 	case 4: /* MMC v4 */
97 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
98 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
99 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
100 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
101 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
102 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
103 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
104 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
105 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
106 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
107 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
108 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
109 		break;
110 
111 	default:
112 		pr_err("%s: card has unknown MMCA version %d\n",
113 			mmc_hostname(card->host), card->csd.mmca_vsn);
114 		return -EINVAL;
115 	}
116 
117 	return 0;
118 }
119 
120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 	if (card->ext_csd.erase_group_def & 1)
123 		card->erase_size = card->ext_csd.hc_erase_size;
124 	else
125 		card->erase_size = card->csd.erase_size;
126 
127 	mmc_init_erase(card);
128 }
129 
130 /*
131  * Given a 128-bit response, decode to our card CSD structure.
132  */
133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 	struct mmc_csd *csd = &card->csd;
136 	unsigned int e, m, a, b;
137 	u32 *resp = card->raw_csd;
138 
139 	/*
140 	 * We only understand CSD structure v1.1 and v1.2.
141 	 * v1.2 has extra information in bits 15, 11 and 10.
142 	 * We also support eMMC v4.4 & v4.41.
143 	 */
144 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 	if (csd->structure == 0) {
146 		pr_err("%s: unrecognised CSD structure version %d\n",
147 			mmc_hostname(card->host), csd->structure);
148 		return -EINVAL;
149 	}
150 
151 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
152 	m = UNSTUFF_BITS(resp, 115, 4);
153 	e = UNSTUFF_BITS(resp, 112, 3);
154 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
156 
157 	m = UNSTUFF_BITS(resp, 99, 4);
158 	e = UNSTUFF_BITS(resp, 96, 3);
159 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
160 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
161 
162 	e = UNSTUFF_BITS(resp, 47, 3);
163 	m = UNSTUFF_BITS(resp, 62, 12);
164 	csd->capacity	  = (1 + m) << (e + 2);
165 
166 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174 
175 	if (csd->write_blkbits >= 9) {
176 		a = UNSTUFF_BITS(resp, 42, 5);
177 		b = UNSTUFF_BITS(resp, 37, 5);
178 		csd->erase_size = (a + 1) * (b + 1);
179 		csd->erase_size <<= csd->write_blkbits - 9;
180 	}
181 
182 	return 0;
183 }
184 
185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 	struct mmc_host *host = card->host;
188 	u8 card_type = card->ext_csd.raw_card_type;
189 	u32 caps = host->caps, caps2 = host->caps2;
190 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 	unsigned int avail_type = 0;
192 
193 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 	}
198 
199 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 	}
204 
205 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 	}
210 
211 	if (caps & MMC_CAP_1_2V_DDR &&
212 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 	}
216 
217 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 		hs200_max_dtr = MMC_HS200_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 	}
222 
223 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 		hs200_max_dtr = MMC_HS200_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 	}
228 
229 	if (caps2 & MMC_CAP2_HS400_1_8V &&
230 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 		hs200_max_dtr = MMC_HS200_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS400_1_2V &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 	}
240 
241 	if ((caps2 & MMC_CAP2_HS400_ES) &&
242 	    card->ext_csd.strobe_support &&
243 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245 
246 	card->ext_csd.hs_max_dtr = hs_max_dtr;
247 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 	card->mmc_avail_type = avail_type;
249 }
250 
251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
254 
255 	/*
256 	 * Disable these attributes by default
257 	 */
258 	card->ext_csd.enhanced_area_offset = -EINVAL;
259 	card->ext_csd.enhanced_area_size = -EINVAL;
260 
261 	/*
262 	 * Enhanced area feature support -- check whether the eMMC
263 	 * card has the Enhanced area enabled.  If so, export enhanced
264 	 * area offset and size to user by adding sysfs interface.
265 	 */
266 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 		if (card->ext_csd.partition_setting_completed) {
269 			hc_erase_grp_sz =
270 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 			hc_wp_grp_sz =
272 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273 
274 			/*
275 			 * calculate the enhanced data area offset, in bytes
276 			 */
277 			card->ext_csd.enhanced_area_offset =
278 				(((unsigned long long)ext_csd[139]) << 24) +
279 				(((unsigned long long)ext_csd[138]) << 16) +
280 				(((unsigned long long)ext_csd[137]) << 8) +
281 				(((unsigned long long)ext_csd[136]));
282 			if (mmc_card_blockaddr(card))
283 				card->ext_csd.enhanced_area_offset <<= 9;
284 			/*
285 			 * calculate the enhanced data area size, in kilobytes
286 			 */
287 			card->ext_csd.enhanced_area_size =
288 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 				ext_csd[140];
290 			card->ext_csd.enhanced_area_size *=
291 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 			card->ext_csd.enhanced_area_size <<= 9;
293 		} else {
294 			pr_warn("%s: defines enhanced area without partition setting complete\n",
295 				mmc_hostname(card->host));
296 		}
297 	}
298 }
299 
300 static void mmc_part_add(struct mmc_card *card, u64 size,
301 			 unsigned int part_cfg, char *name, int idx, bool ro,
302 			 int area_type)
303 {
304 	card->part[card->nr_parts].size = size;
305 	card->part[card->nr_parts].part_cfg = part_cfg;
306 	sprintf(card->part[card->nr_parts].name, name, idx);
307 	card->part[card->nr_parts].force_ro = ro;
308 	card->part[card->nr_parts].area_type = area_type;
309 	card->nr_parts++;
310 }
311 
312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 	int idx;
315 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 	u64 part_size;
317 
318 	/*
319 	 * General purpose partition feature support --
320 	 * If ext_csd has the size of general purpose partitions,
321 	 * set size, part_cfg, partition name in mmc_part.
322 	 */
323 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 	    EXT_CSD_PART_SUPPORT_PART_EN) {
325 		hc_erase_grp_sz =
326 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 		hc_wp_grp_sz =
328 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329 
330 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 				continue;
335 			if (card->ext_csd.partition_setting_completed == 0) {
336 				pr_warn("%s: has partition size defined without partition complete\n",
337 					mmc_hostname(card->host));
338 				break;
339 			}
340 			part_size =
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 				<< 16) +
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 				<< 8) +
345 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 			mmc_part_add(card, part_size << 19,
348 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 				"gp%d", idx, false,
350 				MMC_BLK_DATA_AREA_GP);
351 		}
352 	}
353 }
354 
355 /* Minimum partition switch timeout in milliseconds */
356 #define MMC_MIN_PART_SWITCH_TIME	300
357 
358 /*
359  * Decode extended CSD.
360  */
361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362 {
363 	int err = 0, idx;
364 	u64 part_size;
365 	struct device_node *np;
366 	bool broken_hpi = false;
367 
368 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 	if (card->csd.structure == 3) {
371 		if (card->ext_csd.raw_ext_csd_structure > 2) {
372 			pr_err("%s: unrecognised EXT_CSD structure "
373 				"version %d\n", mmc_hostname(card->host),
374 					card->ext_csd.raw_ext_csd_structure);
375 			err = -EINVAL;
376 			goto out;
377 		}
378 	}
379 
380 	np = mmc_of_find_child_device(card->host, 0);
381 	if (np && of_device_is_compatible(np, "mmc-card"))
382 		broken_hpi = of_property_read_bool(np, "broken-hpi");
383 	of_node_put(np);
384 
385 	/*
386 	 * The EXT_CSD format is meant to be forward compatible. As long
387 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 	 * are authorized, see JEDEC JESD84-B50 section B.8.
389 	 */
390 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391 
392 	/* fixup device after ext_csd revision field is updated */
393 	mmc_fixup_device(card, mmc_ext_csd_fixups);
394 
395 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 	if (card->ext_csd.rev >= 2) {
400 		card->ext_csd.sectors =
401 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405 
406 		/* Cards with density > 2GiB are sector addressed */
407 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 			mmc_card_set_blockaddr(card);
409 	}
410 
411 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 	mmc_select_card_type(card);
414 
415 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 	card->ext_csd.raw_erase_timeout_mult =
417 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 	card->ext_csd.raw_hc_erase_grp_size =
419 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 	if (card->ext_csd.rev >= 3) {
421 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423 
424 		/* EXT_CSD value is in units of 10ms, but we store in ms */
425 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 
427 		/* Sleep / awake timeout in 100ns units */
428 		if (sa_shift > 0 && sa_shift <= 0x17)
429 			card->ext_csd.sa_timeout =
430 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
431 		card->ext_csd.erase_group_def =
432 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
433 		card->ext_csd.hc_erase_timeout = 300 *
434 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
435 		card->ext_csd.hc_erase_size =
436 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
437 
438 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
439 
440 		/*
441 		 * There are two boot regions of equal size, defined in
442 		 * multiples of 128K.
443 		 */
444 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
445 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
446 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
447 				mmc_part_add(card, part_size,
448 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
449 					"boot%d", idx, true,
450 					MMC_BLK_DATA_AREA_BOOT);
451 			}
452 		}
453 	}
454 
455 	card->ext_csd.raw_hc_erase_gap_size =
456 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
457 	card->ext_csd.raw_sec_trim_mult =
458 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
459 	card->ext_csd.raw_sec_erase_mult =
460 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
461 	card->ext_csd.raw_sec_feature_support =
462 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
463 	card->ext_csd.raw_trim_mult =
464 		ext_csd[EXT_CSD_TRIM_MULT];
465 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
466 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
467 	if (card->ext_csd.rev >= 4) {
468 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
469 		    EXT_CSD_PART_SETTING_COMPLETED)
470 			card->ext_csd.partition_setting_completed = 1;
471 		else
472 			card->ext_csd.partition_setting_completed = 0;
473 
474 		mmc_manage_enhanced_area(card, ext_csd);
475 
476 		mmc_manage_gp_partitions(card, ext_csd);
477 
478 		card->ext_csd.sec_trim_mult =
479 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
480 		card->ext_csd.sec_erase_mult =
481 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
482 		card->ext_csd.sec_feature_support =
483 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
484 		card->ext_csd.trim_timeout = 300 *
485 			ext_csd[EXT_CSD_TRIM_MULT];
486 
487 		/*
488 		 * Note that the call to mmc_part_add above defaults to read
489 		 * only. If this default assumption is changed, the call must
490 		 * take into account the value of boot_locked below.
491 		 */
492 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
493 		card->ext_csd.boot_ro_lockable = true;
494 
495 		/* Save power class values */
496 		card->ext_csd.raw_pwr_cl_52_195 =
497 			ext_csd[EXT_CSD_PWR_CL_52_195];
498 		card->ext_csd.raw_pwr_cl_26_195 =
499 			ext_csd[EXT_CSD_PWR_CL_26_195];
500 		card->ext_csd.raw_pwr_cl_52_360 =
501 			ext_csd[EXT_CSD_PWR_CL_52_360];
502 		card->ext_csd.raw_pwr_cl_26_360 =
503 			ext_csd[EXT_CSD_PWR_CL_26_360];
504 		card->ext_csd.raw_pwr_cl_200_195 =
505 			ext_csd[EXT_CSD_PWR_CL_200_195];
506 		card->ext_csd.raw_pwr_cl_200_360 =
507 			ext_csd[EXT_CSD_PWR_CL_200_360];
508 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
509 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
510 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
511 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
512 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
514 	}
515 
516 	if (card->ext_csd.rev >= 5) {
517 		/* Adjust production date as per JEDEC JESD84-B451 */
518 		if (card->cid.year < 2010)
519 			card->cid.year += 16;
520 
521 		/* check whether the eMMC card supports BKOPS */
522 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
523 			card->ext_csd.bkops = 1;
524 			card->ext_csd.man_bkops_en =
525 					(ext_csd[EXT_CSD_BKOPS_EN] &
526 						EXT_CSD_MANUAL_BKOPS_MASK);
527 			card->ext_csd.raw_bkops_status =
528 				ext_csd[EXT_CSD_BKOPS_STATUS];
529 			if (card->ext_csd.man_bkops_en)
530 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
531 					mmc_hostname(card->host));
532 			card->ext_csd.auto_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_AUTO_BKOPS_MASK);
535 			if (card->ext_csd.auto_bkops_en)
536 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
537 					mmc_hostname(card->host));
538 		}
539 
540 		/* check whether the eMMC card supports HPI */
541 		if (!mmc_card_broken_hpi(card) &&
542 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
543 			card->ext_csd.hpi = 1;
544 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
545 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
546 			else
547 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
548 			/*
549 			 * Indicate the maximum timeout to close
550 			 * a command interrupted by HPI
551 			 */
552 			card->ext_csd.out_of_int_time =
553 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
554 		}
555 
556 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
557 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
558 
559 		/*
560 		 * RPMB regions are defined in multiples of 128K.
561 		 */
562 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
563 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
564 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
565 				EXT_CSD_PART_CONFIG_ACC_RPMB,
566 				"rpmb", 0, false,
567 				MMC_BLK_DATA_AREA_RPMB);
568 		}
569 	}
570 
571 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
572 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
573 		card->erased_byte = 0xFF;
574 	else
575 		card->erased_byte = 0x0;
576 
577 	/* eMMC v4.5 or later */
578 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
579 	if (card->ext_csd.rev >= 6) {
580 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
581 
582 		card->ext_csd.generic_cmd6_time = 10 *
583 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
584 		card->ext_csd.power_off_longtime = 10 *
585 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
586 
587 		card->ext_csd.cache_size =
588 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
589 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
590 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
591 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
592 
593 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
594 			card->ext_csd.data_sector_size = 4096;
595 		else
596 			card->ext_csd.data_sector_size = 512;
597 
598 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
599 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
600 			card->ext_csd.data_tag_unit_size =
601 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
602 			(card->ext_csd.data_sector_size);
603 		} else {
604 			card->ext_csd.data_tag_unit_size = 0;
605 		}
606 
607 		card->ext_csd.max_packed_writes =
608 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
609 		card->ext_csd.max_packed_reads =
610 			ext_csd[EXT_CSD_MAX_PACKED_READS];
611 	} else {
612 		card->ext_csd.data_sector_size = 512;
613 	}
614 
615 	/*
616 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
617 	 * when accessing a specific field", so use it here if there is no
618 	 * PARTITION_SWITCH_TIME.
619 	 */
620 	if (!card->ext_csd.part_time)
621 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
622 	/* Some eMMC set the value too low so set a minimum */
623 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
624 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
625 
626 	/* eMMC v5 or later */
627 	if (card->ext_csd.rev >= 7) {
628 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
629 		       MMC_FIRMWARE_LEN);
630 		card->ext_csd.ffu_capable =
631 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
632 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
633 
634 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
635 		card->ext_csd.device_life_time_est_typ_a =
636 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
637 		card->ext_csd.device_life_time_est_typ_b =
638 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
639 	}
640 
641 	/* eMMC v5.1 or later */
642 	if (card->ext_csd.rev >= 8) {
643 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
644 					     EXT_CSD_CMDQ_SUPPORTED;
645 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
646 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
647 		/* Exclude inefficiently small queue depths */
648 		if (card->ext_csd.cmdq_depth <= 2) {
649 			card->ext_csd.cmdq_support = false;
650 			card->ext_csd.cmdq_depth = 0;
651 		}
652 		if (card->ext_csd.cmdq_support) {
653 			pr_debug("%s: Command Queue supported depth %u\n",
654 				 mmc_hostname(card->host),
655 				 card->ext_csd.cmdq_depth);
656 		}
657 		card->ext_csd.enhanced_rpmb_supported =
658 					(card->ext_csd.rel_param &
659 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
660 	}
661 out:
662 	return err;
663 }
664 
665 static int mmc_read_ext_csd(struct mmc_card *card)
666 {
667 	u8 *ext_csd;
668 	int err;
669 
670 	if (!mmc_can_ext_csd(card))
671 		return 0;
672 
673 	err = mmc_get_ext_csd(card, &ext_csd);
674 	if (err) {
675 		/* If the host or the card can't do the switch,
676 		 * fail more gracefully. */
677 		if ((err != -EINVAL)
678 		 && (err != -ENOSYS)
679 		 && (err != -EFAULT))
680 			return err;
681 
682 		/*
683 		 * High capacity cards should have this "magic" size
684 		 * stored in their CSD.
685 		 */
686 		if (card->csd.capacity == (4096 * 512)) {
687 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
688 				mmc_hostname(card->host));
689 		} else {
690 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
691 				mmc_hostname(card->host));
692 			err = 0;
693 		}
694 
695 		return err;
696 	}
697 
698 	err = mmc_decode_ext_csd(card, ext_csd);
699 	kfree(ext_csd);
700 	return err;
701 }
702 
703 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
704 {
705 	u8 *bw_ext_csd;
706 	int err;
707 
708 	if (bus_width == MMC_BUS_WIDTH_1)
709 		return 0;
710 
711 	err = mmc_get_ext_csd(card, &bw_ext_csd);
712 	if (err)
713 		return err;
714 
715 	/* only compare read only fields */
716 	err = !((card->ext_csd.raw_partition_support ==
717 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
718 		(card->ext_csd.raw_erased_mem_count ==
719 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
720 		(card->ext_csd.rev ==
721 			bw_ext_csd[EXT_CSD_REV]) &&
722 		(card->ext_csd.raw_ext_csd_structure ==
723 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
724 		(card->ext_csd.raw_card_type ==
725 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
726 		(card->ext_csd.raw_s_a_timeout ==
727 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
728 		(card->ext_csd.raw_hc_erase_gap_size ==
729 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
730 		(card->ext_csd.raw_erase_timeout_mult ==
731 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
732 		(card->ext_csd.raw_hc_erase_grp_size ==
733 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
734 		(card->ext_csd.raw_sec_trim_mult ==
735 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sec_erase_mult ==
737 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
738 		(card->ext_csd.raw_sec_feature_support ==
739 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
740 		(card->ext_csd.raw_trim_mult ==
741 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
742 		(card->ext_csd.raw_sectors[0] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
744 		(card->ext_csd.raw_sectors[1] ==
745 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
746 		(card->ext_csd.raw_sectors[2] ==
747 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
748 		(card->ext_csd.raw_sectors[3] ==
749 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
750 		(card->ext_csd.raw_pwr_cl_52_195 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
752 		(card->ext_csd.raw_pwr_cl_26_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
754 		(card->ext_csd.raw_pwr_cl_52_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
756 		(card->ext_csd.raw_pwr_cl_26_360 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
758 		(card->ext_csd.raw_pwr_cl_200_195 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
760 		(card->ext_csd.raw_pwr_cl_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
762 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
763 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
764 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
766 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
768 
769 	if (err)
770 		err = -EINVAL;
771 
772 	kfree(bw_ext_csd);
773 	return err;
774 }
775 
776 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
777 	card->raw_cid[2], card->raw_cid[3]);
778 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
779 	card->raw_csd[2], card->raw_csd[3]);
780 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
781 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
782 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
783 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
784 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
785 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
786 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
787 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
788 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
789 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
790 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
791 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
792 	card->ext_csd.device_life_time_est_typ_a,
793 	card->ext_csd.device_life_time_est_typ_b);
794 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
795 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
796 		card->ext_csd.enhanced_area_offset);
797 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
798 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
799 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
800 	card->ext_csd.enhanced_rpmb_supported);
801 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
802 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
803 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
804 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
805 
806 static ssize_t mmc_fwrev_show(struct device *dev,
807 			      struct device_attribute *attr,
808 			      char *buf)
809 {
810 	struct mmc_card *card = mmc_dev_to_card(dev);
811 
812 	if (card->ext_csd.rev < 7) {
813 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
814 	} else {
815 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
816 			       card->ext_csd.fwrev);
817 	}
818 }
819 
820 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
821 
822 static ssize_t mmc_dsr_show(struct device *dev,
823 			    struct device_attribute *attr,
824 			    char *buf)
825 {
826 	struct mmc_card *card = mmc_dev_to_card(dev);
827 	struct mmc_host *host = card->host;
828 
829 	if (card->csd.dsr_imp && host->dsr_req)
830 		return sprintf(buf, "0x%x\n", host->dsr);
831 	else
832 		/* return default DSR value */
833 		return sprintf(buf, "0x%x\n", 0x404);
834 }
835 
836 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
837 
838 static struct attribute *mmc_std_attrs[] = {
839 	&dev_attr_cid.attr,
840 	&dev_attr_csd.attr,
841 	&dev_attr_date.attr,
842 	&dev_attr_erase_size.attr,
843 	&dev_attr_preferred_erase_size.attr,
844 	&dev_attr_fwrev.attr,
845 	&dev_attr_ffu_capable.attr,
846 	&dev_attr_hwrev.attr,
847 	&dev_attr_manfid.attr,
848 	&dev_attr_name.attr,
849 	&dev_attr_oemid.attr,
850 	&dev_attr_prv.attr,
851 	&dev_attr_rev.attr,
852 	&dev_attr_pre_eol_info.attr,
853 	&dev_attr_life_time.attr,
854 	&dev_attr_serial.attr,
855 	&dev_attr_enhanced_area_offset.attr,
856 	&dev_attr_enhanced_area_size.attr,
857 	&dev_attr_raw_rpmb_size_mult.attr,
858 	&dev_attr_enhanced_rpmb_supported.attr,
859 	&dev_attr_rel_sectors.attr,
860 	&dev_attr_ocr.attr,
861 	&dev_attr_rca.attr,
862 	&dev_attr_dsr.attr,
863 	&dev_attr_cmdq_en.attr,
864 	NULL,
865 };
866 ATTRIBUTE_GROUPS(mmc_std);
867 
868 static struct device_type mmc_type = {
869 	.groups = mmc_std_groups,
870 };
871 
872 /*
873  * Select the PowerClass for the current bus width
874  * If power class is defined for 4/8 bit bus in the
875  * extended CSD register, select it by executing the
876  * mmc_switch command.
877  */
878 static int __mmc_select_powerclass(struct mmc_card *card,
879 				   unsigned int bus_width)
880 {
881 	struct mmc_host *host = card->host;
882 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
883 	unsigned int pwrclass_val = 0;
884 	int err = 0;
885 
886 	switch (1 << host->ios.vdd) {
887 	case MMC_VDD_165_195:
888 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
889 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
890 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
891 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
892 				ext_csd->raw_pwr_cl_52_195 :
893 				ext_csd->raw_pwr_cl_ddr_52_195;
894 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
895 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
896 		break;
897 	case MMC_VDD_27_28:
898 	case MMC_VDD_28_29:
899 	case MMC_VDD_29_30:
900 	case MMC_VDD_30_31:
901 	case MMC_VDD_31_32:
902 	case MMC_VDD_32_33:
903 	case MMC_VDD_33_34:
904 	case MMC_VDD_34_35:
905 	case MMC_VDD_35_36:
906 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
907 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
908 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
909 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
910 				ext_csd->raw_pwr_cl_52_360 :
911 				ext_csd->raw_pwr_cl_ddr_52_360;
912 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
913 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
914 				ext_csd->raw_pwr_cl_ddr_200_360 :
915 				ext_csd->raw_pwr_cl_200_360;
916 		break;
917 	default:
918 		pr_warn("%s: Voltage range not supported for power class\n",
919 			mmc_hostname(host));
920 		return -EINVAL;
921 	}
922 
923 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
924 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
925 				EXT_CSD_PWR_CL_8BIT_SHIFT;
926 	else
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
928 				EXT_CSD_PWR_CL_4BIT_SHIFT;
929 
930 	/* If the power class is different from the default value */
931 	if (pwrclass_val > 0) {
932 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
933 				 EXT_CSD_POWER_CLASS,
934 				 pwrclass_val,
935 				 card->ext_csd.generic_cmd6_time);
936 	}
937 
938 	return err;
939 }
940 
941 static int mmc_select_powerclass(struct mmc_card *card)
942 {
943 	struct mmc_host *host = card->host;
944 	u32 bus_width, ext_csd_bits;
945 	int err, ddr;
946 
947 	/* Power class selection is supported for versions >= 4.0 */
948 	if (!mmc_can_ext_csd(card))
949 		return 0;
950 
951 	bus_width = host->ios.bus_width;
952 	/* Power class values are defined only for 4/8 bit bus */
953 	if (bus_width == MMC_BUS_WIDTH_1)
954 		return 0;
955 
956 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
957 	if (ddr)
958 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
959 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
960 	else
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
963 
964 	err = __mmc_select_powerclass(card, ext_csd_bits);
965 	if (err)
966 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
967 			mmc_hostname(host), 1 << bus_width, ddr);
968 
969 	return err;
970 }
971 
972 /*
973  * Set the bus speed for the selected speed mode.
974  */
975 static void mmc_set_bus_speed(struct mmc_card *card)
976 {
977 	unsigned int max_dtr = (unsigned int)-1;
978 
979 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
980 	     max_dtr > card->ext_csd.hs200_max_dtr)
981 		max_dtr = card->ext_csd.hs200_max_dtr;
982 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
983 		max_dtr = card->ext_csd.hs_max_dtr;
984 	else if (max_dtr > card->csd.max_dtr)
985 		max_dtr = card->csd.max_dtr;
986 
987 	mmc_set_clock(card->host, max_dtr);
988 }
989 
990 /*
991  * Select the bus width amoung 4-bit and 8-bit(SDR).
992  * If the bus width is changed successfully, return the selected width value.
993  * Zero is returned instead of error value if the wide width is not supported.
994  */
995 static int mmc_select_bus_width(struct mmc_card *card)
996 {
997 	static unsigned ext_csd_bits[] = {
998 		EXT_CSD_BUS_WIDTH_8,
999 		EXT_CSD_BUS_WIDTH_4,
1000 	};
1001 	static unsigned bus_widths[] = {
1002 		MMC_BUS_WIDTH_8,
1003 		MMC_BUS_WIDTH_4,
1004 	};
1005 	struct mmc_host *host = card->host;
1006 	unsigned idx, bus_width = 0;
1007 	int err = 0;
1008 
1009 	if (!mmc_can_ext_csd(card) ||
1010 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1011 		return 0;
1012 
1013 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1014 
1015 	/*
1016 	 * Unlike SD, MMC cards dont have a configuration register to notify
1017 	 * supported bus width. So bus test command should be run to identify
1018 	 * the supported bus width or compare the ext csd values of current
1019 	 * bus width and ext csd values of 1 bit mode read earlier.
1020 	 */
1021 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1022 		/*
1023 		 * Host is capable of 8bit transfer, then switch
1024 		 * the device to work in 8bit transfer mode. If the
1025 		 * mmc switch command returns error then switch to
1026 		 * 4bit transfer mode. On success set the corresponding
1027 		 * bus width on the host.
1028 		 */
1029 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1030 				 EXT_CSD_BUS_WIDTH,
1031 				 ext_csd_bits[idx],
1032 				 card->ext_csd.generic_cmd6_time);
1033 		if (err)
1034 			continue;
1035 
1036 		bus_width = bus_widths[idx];
1037 		mmc_set_bus_width(host, bus_width);
1038 
1039 		/*
1040 		 * If controller can't handle bus width test,
1041 		 * compare ext_csd previously read in 1 bit mode
1042 		 * against ext_csd at new bus width
1043 		 */
1044 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1045 			err = mmc_compare_ext_csds(card, bus_width);
1046 		else
1047 			err = mmc_bus_test(card, bus_width);
1048 
1049 		if (!err) {
1050 			err = bus_width;
1051 			break;
1052 		} else {
1053 			pr_warn("%s: switch to bus width %d failed\n",
1054 				mmc_hostname(host), 1 << bus_width);
1055 		}
1056 	}
1057 
1058 	return err;
1059 }
1060 
1061 /*
1062  * Switch to the high-speed mode
1063  */
1064 static int mmc_select_hs(struct mmc_card *card)
1065 {
1066 	int err;
1067 
1068 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1069 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1070 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1071 			   true, true);
1072 	if (err)
1073 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1074 			mmc_hostname(card->host), err);
1075 
1076 	return err;
1077 }
1078 
1079 /*
1080  * Activate wide bus and DDR if supported.
1081  */
1082 static int mmc_select_hs_ddr(struct mmc_card *card)
1083 {
1084 	struct mmc_host *host = card->host;
1085 	u32 bus_width, ext_csd_bits;
1086 	int err = 0;
1087 
1088 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1089 		return 0;
1090 
1091 	bus_width = host->ios.bus_width;
1092 	if (bus_width == MMC_BUS_WIDTH_1)
1093 		return 0;
1094 
1095 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1096 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1097 
1098 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1099 			   EXT_CSD_BUS_WIDTH,
1100 			   ext_csd_bits,
1101 			   card->ext_csd.generic_cmd6_time,
1102 			   MMC_TIMING_MMC_DDR52,
1103 			   true, true);
1104 	if (err) {
1105 		pr_err("%s: switch to bus width %d ddr failed\n",
1106 			mmc_hostname(host), 1 << bus_width);
1107 		return err;
1108 	}
1109 
1110 	/*
1111 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1112 	 * signaling.
1113 	 *
1114 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1115 	 *
1116 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1117 	 * in the JEDEC spec for DDR.
1118 	 *
1119 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1120 	 * host controller can support this, like some of the SDHCI
1121 	 * controller which connect to an eMMC device. Some of these
1122 	 * host controller still needs to use 1.8v vccq for supporting
1123 	 * DDR mode.
1124 	 *
1125 	 * So the sequence will be:
1126 	 * if (host and device can both support 1.2v IO)
1127 	 *	use 1.2v IO;
1128 	 * else if (host and device can both support 1.8v IO)
1129 	 *	use 1.8v IO;
1130 	 * so if host and device can only support 3.3v IO, this is the
1131 	 * last choice.
1132 	 *
1133 	 * WARNING: eMMC rules are NOT the same as SD DDR
1134 	 */
1135 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1136 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1137 		if (!err)
1138 			return 0;
1139 	}
1140 
1141 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1142 	    host->caps & MMC_CAP_1_8V_DDR)
1143 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1144 
1145 	/* make sure vccq is 3.3v after switching disaster */
1146 	if (err)
1147 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1148 
1149 	return err;
1150 }
1151 
1152 static int mmc_select_hs400(struct mmc_card *card)
1153 {
1154 	struct mmc_host *host = card->host;
1155 	unsigned int max_dtr;
1156 	int err = 0;
1157 	u8 val;
1158 
1159 	/*
1160 	 * HS400 mode requires 8-bit bus width
1161 	 */
1162 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1163 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1164 		return 0;
1165 
1166 	/* Switch card to HS mode */
1167 	val = EXT_CSD_TIMING_HS;
1168 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1169 			   EXT_CSD_HS_TIMING, val,
1170 			   card->ext_csd.generic_cmd6_time, 0,
1171 			   false, true);
1172 	if (err) {
1173 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1174 			mmc_hostname(host), err);
1175 		return err;
1176 	}
1177 
1178 	/* Prepare host to downgrade to HS timing */
1179 	if (host->ops->hs400_downgrade)
1180 		host->ops->hs400_downgrade(host);
1181 
1182 	/* Set host controller to HS timing */
1183 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1184 
1185 	/* Reduce frequency to HS frequency */
1186 	max_dtr = card->ext_csd.hs_max_dtr;
1187 	mmc_set_clock(host, max_dtr);
1188 
1189 	err = mmc_switch_status(card, true);
1190 	if (err)
1191 		goto out_err;
1192 
1193 	if (host->ops->hs400_prepare_ddr)
1194 		host->ops->hs400_prepare_ddr(host);
1195 
1196 	/* Switch card to DDR */
1197 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1198 			 EXT_CSD_BUS_WIDTH,
1199 			 EXT_CSD_DDR_BUS_WIDTH_8,
1200 			 card->ext_csd.generic_cmd6_time);
1201 	if (err) {
1202 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1203 			mmc_hostname(host), err);
1204 		return err;
1205 	}
1206 
1207 	/* Switch card to HS400 */
1208 	val = EXT_CSD_TIMING_HS400 |
1209 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1210 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1211 			   EXT_CSD_HS_TIMING, val,
1212 			   card->ext_csd.generic_cmd6_time, 0,
1213 			   false, true);
1214 	if (err) {
1215 		pr_err("%s: switch to hs400 failed, err:%d\n",
1216 			 mmc_hostname(host), err);
1217 		return err;
1218 	}
1219 
1220 	/* Set host controller to HS400 timing and frequency */
1221 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1222 	mmc_set_bus_speed(card);
1223 
1224 	if (host->ops->hs400_complete)
1225 		host->ops->hs400_complete(host);
1226 
1227 	err = mmc_switch_status(card, true);
1228 	if (err)
1229 		goto out_err;
1230 
1231 	return 0;
1232 
1233 out_err:
1234 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1235 	       __func__, err);
1236 	return err;
1237 }
1238 
1239 int mmc_hs200_to_hs400(struct mmc_card *card)
1240 {
1241 	return mmc_select_hs400(card);
1242 }
1243 
1244 int mmc_hs400_to_hs200(struct mmc_card *card)
1245 {
1246 	struct mmc_host *host = card->host;
1247 	unsigned int max_dtr;
1248 	int err;
1249 	u8 val;
1250 
1251 	/* Reduce frequency to HS */
1252 	max_dtr = card->ext_csd.hs_max_dtr;
1253 	mmc_set_clock(host, max_dtr);
1254 
1255 	/* Switch HS400 to HS DDR */
1256 	val = EXT_CSD_TIMING_HS;
1257 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1258 			   val, card->ext_csd.generic_cmd6_time, 0,
1259 			   false, true);
1260 	if (err)
1261 		goto out_err;
1262 
1263 	if (host->ops->hs400_downgrade)
1264 		host->ops->hs400_downgrade(host);
1265 
1266 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1267 
1268 	err = mmc_switch_status(card, true);
1269 	if (err)
1270 		goto out_err;
1271 
1272 	/* Switch HS DDR to HS */
1273 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1274 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1275 			   0, false, true);
1276 	if (err)
1277 		goto out_err;
1278 
1279 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1280 
1281 	err = mmc_switch_status(card, true);
1282 	if (err)
1283 		goto out_err;
1284 
1285 	/* Switch HS to HS200 */
1286 	val = EXT_CSD_TIMING_HS200 |
1287 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1288 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1289 			   val, card->ext_csd.generic_cmd6_time, 0,
1290 			   false, true);
1291 	if (err)
1292 		goto out_err;
1293 
1294 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1295 
1296 	/*
1297 	 * For HS200, CRC errors are not a reliable way to know the switch
1298 	 * failed. If there really is a problem, we would expect tuning will
1299 	 * fail and the result ends up the same.
1300 	 */
1301 	err = mmc_switch_status(card, false);
1302 	if (err)
1303 		goto out_err;
1304 
1305 	mmc_set_bus_speed(card);
1306 
1307 	/* Prepare tuning for HS400 mode. */
1308 	if (host->ops->prepare_hs400_tuning)
1309 		host->ops->prepare_hs400_tuning(host, &host->ios);
1310 
1311 	return 0;
1312 
1313 out_err:
1314 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1315 	       __func__, err);
1316 	return err;
1317 }
1318 
1319 static void mmc_select_driver_type(struct mmc_card *card)
1320 {
1321 	int card_drv_type, drive_strength, drv_type = 0;
1322 	int fixed_drv_type = card->host->fixed_drv_type;
1323 
1324 	card_drv_type = card->ext_csd.raw_driver_strength |
1325 			mmc_driver_type_mask(0);
1326 
1327 	if (fixed_drv_type >= 0)
1328 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1329 				 ? fixed_drv_type : 0;
1330 	else
1331 		drive_strength = mmc_select_drive_strength(card,
1332 							   card->ext_csd.hs200_max_dtr,
1333 							   card_drv_type, &drv_type);
1334 
1335 	card->drive_strength = drive_strength;
1336 
1337 	if (drv_type)
1338 		mmc_set_driver_type(card->host, drv_type);
1339 }
1340 
1341 static int mmc_select_hs400es(struct mmc_card *card)
1342 {
1343 	struct mmc_host *host = card->host;
1344 	int err = -EINVAL;
1345 	u8 val;
1346 
1347 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1348 		err = -ENOTSUPP;
1349 		goto out_err;
1350 	}
1351 
1352 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1353 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1354 
1355 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1356 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1357 
1358 	/* If fails try again during next card power cycle */
1359 	if (err)
1360 		goto out_err;
1361 
1362 	err = mmc_select_bus_width(card);
1363 	if (err != MMC_BUS_WIDTH_8) {
1364 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1365 			mmc_hostname(host), err);
1366 		err = err < 0 ? err : -ENOTSUPP;
1367 		goto out_err;
1368 	}
1369 
1370 	/* Switch card to HS mode */
1371 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1372 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1373 			   card->ext_csd.generic_cmd6_time, 0,
1374 			   false, true);
1375 	if (err) {
1376 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1377 			mmc_hostname(host), err);
1378 		goto out_err;
1379 	}
1380 
1381 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1382 	err = mmc_switch_status(card, true);
1383 	if (err)
1384 		goto out_err;
1385 
1386 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1387 
1388 	/* Switch card to DDR with strobe bit */
1389 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1390 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1391 			 EXT_CSD_BUS_WIDTH,
1392 			 val,
1393 			 card->ext_csd.generic_cmd6_time);
1394 	if (err) {
1395 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1396 			mmc_hostname(host), err);
1397 		goto out_err;
1398 	}
1399 
1400 	mmc_select_driver_type(card);
1401 
1402 	/* Switch card to HS400 */
1403 	val = EXT_CSD_TIMING_HS400 |
1404 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1405 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1406 			   EXT_CSD_HS_TIMING, val,
1407 			   card->ext_csd.generic_cmd6_time, 0,
1408 			   false, true);
1409 	if (err) {
1410 		pr_err("%s: switch to hs400es failed, err:%d\n",
1411 			mmc_hostname(host), err);
1412 		goto out_err;
1413 	}
1414 
1415 	/* Set host controller to HS400 timing and frequency */
1416 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1417 
1418 	/* Controller enable enhanced strobe function */
1419 	host->ios.enhanced_strobe = true;
1420 	if (host->ops->hs400_enhanced_strobe)
1421 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1422 
1423 	err = mmc_switch_status(card, true);
1424 	if (err)
1425 		goto out_err;
1426 
1427 	return 0;
1428 
1429 out_err:
1430 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1431 	       __func__, err);
1432 	return err;
1433 }
1434 
1435 /*
1436  * For device supporting HS200 mode, the following sequence
1437  * should be done before executing the tuning process.
1438  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1439  * 2. switch to HS200 mode
1440  * 3. set the clock to > 52Mhz and <=200MHz
1441  */
1442 static int mmc_select_hs200(struct mmc_card *card)
1443 {
1444 	struct mmc_host *host = card->host;
1445 	unsigned int old_timing, old_signal_voltage;
1446 	int err = -EINVAL;
1447 	u8 val;
1448 
1449 	old_signal_voltage = host->ios.signal_voltage;
1450 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1451 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1452 
1453 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1454 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1455 
1456 	/* If fails try again during next card power cycle */
1457 	if (err)
1458 		return err;
1459 
1460 	mmc_select_driver_type(card);
1461 
1462 	/*
1463 	 * Set the bus width(4 or 8) with host's support and
1464 	 * switch to HS200 mode if bus width is set successfully.
1465 	 */
1466 	err = mmc_select_bus_width(card);
1467 	if (err > 0) {
1468 		val = EXT_CSD_TIMING_HS200 |
1469 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1470 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1471 				   EXT_CSD_HS_TIMING, val,
1472 				   card->ext_csd.generic_cmd6_time, 0,
1473 				   false, true);
1474 		if (err)
1475 			goto err;
1476 		old_timing = host->ios.timing;
1477 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1478 
1479 		/*
1480 		 * For HS200, CRC errors are not a reliable way to know the
1481 		 * switch failed. If there really is a problem, we would expect
1482 		 * tuning will fail and the result ends up the same.
1483 		 */
1484 		err = mmc_switch_status(card, false);
1485 
1486 		/*
1487 		 * mmc_select_timing() assumes timing has not changed if
1488 		 * it is a switch error.
1489 		 */
1490 		if (err == -EBADMSG)
1491 			mmc_set_timing(host, old_timing);
1492 	}
1493 err:
1494 	if (err) {
1495 		/* fall back to the old signal voltage, if fails report error */
1496 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1497 			err = -EIO;
1498 
1499 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1500 		       __func__, err);
1501 	}
1502 	return err;
1503 }
1504 
1505 /*
1506  * Activate High Speed, HS200 or HS400ES mode if supported.
1507  */
1508 static int mmc_select_timing(struct mmc_card *card)
1509 {
1510 	int err = 0;
1511 
1512 	if (!mmc_can_ext_csd(card))
1513 		goto bus_speed;
1514 
1515 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1516 		err = mmc_select_hs400es(card);
1517 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1518 		err = mmc_select_hs200(card);
1519 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1520 		err = mmc_select_hs(card);
1521 
1522 	if (err && err != -EBADMSG)
1523 		return err;
1524 
1525 bus_speed:
1526 	/*
1527 	 * Set the bus speed to the selected bus timing.
1528 	 * If timing is not selected, backward compatible is the default.
1529 	 */
1530 	mmc_set_bus_speed(card);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Execute tuning sequence to seek the proper bus operating
1536  * conditions for HS200 and HS400, which sends CMD21 to the device.
1537  */
1538 static int mmc_hs200_tuning(struct mmc_card *card)
1539 {
1540 	struct mmc_host *host = card->host;
1541 
1542 	/*
1543 	 * Timing should be adjusted to the HS400 target
1544 	 * operation frequency for tuning process
1545 	 */
1546 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1547 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1548 		if (host->ops->prepare_hs400_tuning)
1549 			host->ops->prepare_hs400_tuning(host, &host->ios);
1550 
1551 	return mmc_execute_tuning(card);
1552 }
1553 
1554 /*
1555  * Handle the detection and initialisation of a card.
1556  *
1557  * In the case of a resume, "oldcard" will contain the card
1558  * we're trying to reinitialise.
1559  */
1560 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1561 	struct mmc_card *oldcard)
1562 {
1563 	struct mmc_card *card;
1564 	int err;
1565 	u32 cid[4];
1566 	u32 rocr;
1567 
1568 	WARN_ON(!host->claimed);
1569 
1570 	/* Set correct bus mode for MMC before attempting init */
1571 	if (!mmc_host_is_spi(host))
1572 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1573 
1574 	/*
1575 	 * Since we're changing the OCR value, we seem to
1576 	 * need to tell some cards to go back to the idle
1577 	 * state.  We wait 1ms to give cards time to
1578 	 * respond.
1579 	 * mmc_go_idle is needed for eMMC that are asleep
1580 	 */
1581 	mmc_go_idle(host);
1582 
1583 	/* The extra bit indicates that we support high capacity */
1584 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1585 	if (err)
1586 		goto err;
1587 
1588 	/*
1589 	 * For SPI, enable CRC as appropriate.
1590 	 */
1591 	if (mmc_host_is_spi(host)) {
1592 		err = mmc_spi_set_crc(host, use_spi_crc);
1593 		if (err)
1594 			goto err;
1595 	}
1596 
1597 	/*
1598 	 * Fetch CID from card.
1599 	 */
1600 	err = mmc_send_cid(host, cid);
1601 	if (err)
1602 		goto err;
1603 
1604 	if (oldcard) {
1605 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1606 			pr_debug("%s: Perhaps the card was replaced\n",
1607 				mmc_hostname(host));
1608 			err = -ENOENT;
1609 			goto err;
1610 		}
1611 
1612 		card = oldcard;
1613 	} else {
1614 		/*
1615 		 * Allocate card structure.
1616 		 */
1617 		card = mmc_alloc_card(host, &mmc_type);
1618 		if (IS_ERR(card)) {
1619 			err = PTR_ERR(card);
1620 			goto err;
1621 		}
1622 
1623 		card->ocr = ocr;
1624 		card->type = MMC_TYPE_MMC;
1625 		card->rca = 1;
1626 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1627 	}
1628 
1629 	/*
1630 	 * Call the optional HC's init_card function to handle quirks.
1631 	 */
1632 	if (host->ops->init_card)
1633 		host->ops->init_card(host, card);
1634 
1635 	/*
1636 	 * For native busses:  set card RCA and quit open drain mode.
1637 	 */
1638 	if (!mmc_host_is_spi(host)) {
1639 		err = mmc_set_relative_addr(card);
1640 		if (err)
1641 			goto free_card;
1642 
1643 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1644 	}
1645 
1646 	if (!oldcard) {
1647 		/*
1648 		 * Fetch CSD from card.
1649 		 */
1650 		err = mmc_send_csd(card, card->raw_csd);
1651 		if (err)
1652 			goto free_card;
1653 
1654 		err = mmc_decode_csd(card);
1655 		if (err)
1656 			goto free_card;
1657 		err = mmc_decode_cid(card);
1658 		if (err)
1659 			goto free_card;
1660 	}
1661 
1662 	/*
1663 	 * handling only for cards supporting DSR and hosts requesting
1664 	 * DSR configuration
1665 	 */
1666 	if (card->csd.dsr_imp && host->dsr_req)
1667 		mmc_set_dsr(host);
1668 
1669 	/*
1670 	 * Select card, as all following commands rely on that.
1671 	 */
1672 	if (!mmc_host_is_spi(host)) {
1673 		err = mmc_select_card(card);
1674 		if (err)
1675 			goto free_card;
1676 	}
1677 
1678 	if (!oldcard) {
1679 		/* Read extended CSD. */
1680 		err = mmc_read_ext_csd(card);
1681 		if (err)
1682 			goto free_card;
1683 
1684 		/*
1685 		 * If doing byte addressing, check if required to do sector
1686 		 * addressing.  Handle the case of <2GB cards needing sector
1687 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1688 		 * ocr register has bit 30 set for sector addressing.
1689 		 */
1690 		if (rocr & BIT(30))
1691 			mmc_card_set_blockaddr(card);
1692 
1693 		/* Erase size depends on CSD and Extended CSD */
1694 		mmc_set_erase_size(card);
1695 	}
1696 
1697 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1698 	if (card->ext_csd.rev >= 3) {
1699 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1700 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1701 				 card->ext_csd.generic_cmd6_time);
1702 
1703 		if (err && err != -EBADMSG)
1704 			goto free_card;
1705 
1706 		if (err) {
1707 			/*
1708 			 * Just disable enhanced area off & sz
1709 			 * will try to enable ERASE_GROUP_DEF
1710 			 * during next time reinit
1711 			 */
1712 			card->ext_csd.enhanced_area_offset = -EINVAL;
1713 			card->ext_csd.enhanced_area_size = -EINVAL;
1714 		} else {
1715 			card->ext_csd.erase_group_def = 1;
1716 			/*
1717 			 * enable ERASE_GRP_DEF successfully.
1718 			 * This will affect the erase size, so
1719 			 * here need to reset erase size
1720 			 */
1721 			mmc_set_erase_size(card);
1722 		}
1723 	}
1724 
1725 	/*
1726 	 * Ensure eMMC user default partition is enabled
1727 	 */
1728 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1729 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1730 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1731 				 card->ext_csd.part_config,
1732 				 card->ext_csd.part_time);
1733 		if (err && err != -EBADMSG)
1734 			goto free_card;
1735 	}
1736 
1737 	/*
1738 	 * Enable power_off_notification byte in the ext_csd register
1739 	 */
1740 	if (card->ext_csd.rev >= 6) {
1741 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1742 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1743 				 EXT_CSD_POWER_ON,
1744 				 card->ext_csd.generic_cmd6_time);
1745 		if (err && err != -EBADMSG)
1746 			goto free_card;
1747 
1748 		/*
1749 		 * The err can be -EBADMSG or 0,
1750 		 * so check for success and update the flag
1751 		 */
1752 		if (!err)
1753 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1754 	}
1755 
1756 	/* set erase_arg */
1757 	if (mmc_can_discard(card))
1758 		card->erase_arg = MMC_DISCARD_ARG;
1759 	else if (mmc_can_trim(card))
1760 		card->erase_arg = MMC_TRIM_ARG;
1761 	else
1762 		card->erase_arg = MMC_ERASE_ARG;
1763 
1764 	/*
1765 	 * Select timing interface
1766 	 */
1767 	err = mmc_select_timing(card);
1768 	if (err)
1769 		goto free_card;
1770 
1771 	if (mmc_card_hs200(card)) {
1772 		host->doing_init_tune = 1;
1773 
1774 		err = mmc_hs200_tuning(card);
1775 		if (!err)
1776 			err = mmc_select_hs400(card);
1777 
1778 		host->doing_init_tune = 0;
1779 
1780 		if (err)
1781 			goto free_card;
1782 
1783 	} else if (!mmc_card_hs400es(card)) {
1784 		/* Select the desired bus width optionally */
1785 		err = mmc_select_bus_width(card);
1786 		if (err > 0 && mmc_card_hs(card)) {
1787 			err = mmc_select_hs_ddr(card);
1788 			if (err)
1789 				goto free_card;
1790 		}
1791 	}
1792 
1793 	/*
1794 	 * Choose the power class with selected bus interface
1795 	 */
1796 	mmc_select_powerclass(card);
1797 
1798 	/*
1799 	 * Enable HPI feature (if supported)
1800 	 */
1801 	if (card->ext_csd.hpi) {
1802 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1803 				EXT_CSD_HPI_MGMT, 1,
1804 				card->ext_csd.generic_cmd6_time);
1805 		if (err && err != -EBADMSG)
1806 			goto free_card;
1807 		if (err) {
1808 			pr_warn("%s: Enabling HPI failed\n",
1809 				mmc_hostname(card->host));
1810 			card->ext_csd.hpi_en = 0;
1811 		} else {
1812 			card->ext_csd.hpi_en = 1;
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * If cache size is higher than 0, this indicates the existence of cache
1818 	 * and it can be turned on. Note that some eMMCs from Micron has been
1819 	 * reported to need ~800 ms timeout, while enabling the cache after
1820 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1821 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1822 	 */
1823 	if (card->ext_csd.cache_size > 0) {
1824 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1825 
1826 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1827 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1828 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1829 		if (err && err != -EBADMSG)
1830 			goto free_card;
1831 
1832 		/*
1833 		 * Only if no error, cache is turned on successfully.
1834 		 */
1835 		if (err) {
1836 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1837 				mmc_hostname(card->host), err);
1838 			card->ext_csd.cache_ctrl = 0;
1839 		} else {
1840 			card->ext_csd.cache_ctrl = 1;
1841 		}
1842 	}
1843 
1844 	/*
1845 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1846 	 * be used with Command Queue.
1847 	 */
1848 	card->ext_csd.cmdq_en = false;
1849 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1850 		err = mmc_cmdq_enable(card);
1851 		if (err && err != -EBADMSG)
1852 			goto free_card;
1853 		if (err) {
1854 			pr_warn("%s: Enabling CMDQ failed\n",
1855 				mmc_hostname(card->host));
1856 			card->ext_csd.cmdq_support = false;
1857 			card->ext_csd.cmdq_depth = 0;
1858 		}
1859 	}
1860 	/*
1861 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1862 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1863 	 * Command Queue.
1864 	 */
1865 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1866 
1867 	if (host->cqe_ops && !host->cqe_enabled) {
1868 		err = host->cqe_ops->cqe_enable(host, card);
1869 		if (!err) {
1870 			host->cqe_enabled = true;
1871 
1872 			if (card->ext_csd.cmdq_en) {
1873 				pr_info("%s: Command Queue Engine enabled\n",
1874 					mmc_hostname(host));
1875 			} else {
1876 				host->hsq_enabled = true;
1877 				pr_info("%s: Host Software Queue enabled\n",
1878 					mmc_hostname(host));
1879 			}
1880 		}
1881 	}
1882 
1883 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1884 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1885 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1886 			mmc_hostname(host));
1887 		err = -EINVAL;
1888 		goto free_card;
1889 	}
1890 
1891 	if (!oldcard)
1892 		host->card = card;
1893 
1894 	return 0;
1895 
1896 free_card:
1897 	if (!oldcard)
1898 		mmc_remove_card(card);
1899 err:
1900 	return err;
1901 }
1902 
1903 static int mmc_can_sleep(struct mmc_card *card)
1904 {
1905 	return card->ext_csd.rev >= 3;
1906 }
1907 
1908 static int mmc_sleep(struct mmc_host *host)
1909 {
1910 	struct mmc_command cmd = {};
1911 	struct mmc_card *card = host->card;
1912 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1913 	int err;
1914 
1915 	/* Re-tuning can't be done once the card is deselected */
1916 	mmc_retune_hold(host);
1917 
1918 	err = mmc_deselect_cards(host);
1919 	if (err)
1920 		goto out_release;
1921 
1922 	cmd.opcode = MMC_SLEEP_AWAKE;
1923 	cmd.arg = card->rca << 16;
1924 	cmd.arg |= 1 << 15;
1925 
1926 	/*
1927 	 * If the max_busy_timeout of the host is specified, validate it against
1928 	 * the sleep cmd timeout. A failure means we need to prevent the host
1929 	 * from doing hw busy detection, which is done by converting to a R1
1930 	 * response instead of a R1B. Note, some hosts requires R1B, which also
1931 	 * means they are on their own when it comes to deal with the busy
1932 	 * timeout.
1933 	 */
1934 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1935 	    (timeout_ms > host->max_busy_timeout)) {
1936 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1937 	} else {
1938 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1939 		cmd.busy_timeout = timeout_ms;
1940 	}
1941 
1942 	err = mmc_wait_for_cmd(host, &cmd, 0);
1943 	if (err)
1944 		goto out_release;
1945 
1946 	/*
1947 	 * If the host does not wait while the card signals busy, then we will
1948 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1949 	 * SEND_STATUS command to poll the status because that command (and most
1950 	 * others) is invalid while the card sleeps.
1951 	 */
1952 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1953 		mmc_delay(timeout_ms);
1954 
1955 out_release:
1956 	mmc_retune_release(host);
1957 	return err;
1958 }
1959 
1960 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1961 {
1962 	return card &&
1963 		mmc_card_mmc(card) &&
1964 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1965 }
1966 
1967 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1968 {
1969 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1970 	int err;
1971 
1972 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1973 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1974 		timeout = card->ext_csd.power_off_longtime;
1975 
1976 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1977 			EXT_CSD_POWER_OFF_NOTIFICATION,
1978 			notify_type, timeout, 0, false, false);
1979 	if (err)
1980 		pr_err("%s: Power Off Notification timed out, %u\n",
1981 		       mmc_hostname(card->host), timeout);
1982 
1983 	/* Disable the power off notification after the switch operation. */
1984 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1985 
1986 	return err;
1987 }
1988 
1989 /*
1990  * Host is being removed. Free up the current card.
1991  */
1992 static void mmc_remove(struct mmc_host *host)
1993 {
1994 	mmc_remove_card(host->card);
1995 	host->card = NULL;
1996 }
1997 
1998 /*
1999  * Card detection - card is alive.
2000  */
2001 static int mmc_alive(struct mmc_host *host)
2002 {
2003 	return mmc_send_status(host->card, NULL);
2004 }
2005 
2006 /*
2007  * Card detection callback from host.
2008  */
2009 static void mmc_detect(struct mmc_host *host)
2010 {
2011 	int err;
2012 
2013 	mmc_get_card(host->card, NULL);
2014 
2015 	/*
2016 	 * Just check if our card has been removed.
2017 	 */
2018 	err = _mmc_detect_card_removed(host);
2019 
2020 	mmc_put_card(host->card, NULL);
2021 
2022 	if (err) {
2023 		mmc_remove(host);
2024 
2025 		mmc_claim_host(host);
2026 		mmc_detach_bus(host);
2027 		mmc_power_off(host);
2028 		mmc_release_host(host);
2029 	}
2030 }
2031 
2032 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2033 {
2034 	int err = 0;
2035 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2036 					EXT_CSD_POWER_OFF_LONG;
2037 
2038 	mmc_claim_host(host);
2039 
2040 	if (mmc_card_suspended(host->card))
2041 		goto out;
2042 
2043 	err = mmc_flush_cache(host->card);
2044 	if (err)
2045 		goto out;
2046 
2047 	if (mmc_can_poweroff_notify(host->card) &&
2048 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2049 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2050 		err = mmc_poweroff_notify(host->card, notify_type);
2051 	else if (mmc_can_sleep(host->card))
2052 		err = mmc_sleep(host);
2053 	else if (!mmc_host_is_spi(host))
2054 		err = mmc_deselect_cards(host);
2055 
2056 	if (!err) {
2057 		mmc_power_off(host);
2058 		mmc_card_set_suspended(host->card);
2059 	}
2060 out:
2061 	mmc_release_host(host);
2062 	return err;
2063 }
2064 
2065 /*
2066  * Suspend callback
2067  */
2068 static int mmc_suspend(struct mmc_host *host)
2069 {
2070 	int err;
2071 
2072 	err = _mmc_suspend(host, true);
2073 	if (!err) {
2074 		pm_runtime_disable(&host->card->dev);
2075 		pm_runtime_set_suspended(&host->card->dev);
2076 	}
2077 
2078 	return err;
2079 }
2080 
2081 /*
2082  * This function tries to determine if the same card is still present
2083  * and, if so, restore all state to it.
2084  */
2085 static int _mmc_resume(struct mmc_host *host)
2086 {
2087 	int err = 0;
2088 
2089 	mmc_claim_host(host);
2090 
2091 	if (!mmc_card_suspended(host->card))
2092 		goto out;
2093 
2094 	mmc_power_up(host, host->card->ocr);
2095 	err = mmc_init_card(host, host->card->ocr, host->card);
2096 	mmc_card_clr_suspended(host->card);
2097 
2098 out:
2099 	mmc_release_host(host);
2100 	return err;
2101 }
2102 
2103 /*
2104  * Shutdown callback
2105  */
2106 static int mmc_shutdown(struct mmc_host *host)
2107 {
2108 	int err = 0;
2109 
2110 	/*
2111 	 * In a specific case for poweroff notify, we need to resume the card
2112 	 * before we can shutdown it properly.
2113 	 */
2114 	if (mmc_can_poweroff_notify(host->card) &&
2115 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2116 		err = _mmc_resume(host);
2117 
2118 	if (!err)
2119 		err = _mmc_suspend(host, false);
2120 
2121 	return err;
2122 }
2123 
2124 /*
2125  * Callback for resume.
2126  */
2127 static int mmc_resume(struct mmc_host *host)
2128 {
2129 	pm_runtime_enable(&host->card->dev);
2130 	return 0;
2131 }
2132 
2133 /*
2134  * Callback for runtime_suspend.
2135  */
2136 static int mmc_runtime_suspend(struct mmc_host *host)
2137 {
2138 	int err;
2139 
2140 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2141 		return 0;
2142 
2143 	err = _mmc_suspend(host, true);
2144 	if (err)
2145 		pr_err("%s: error %d doing aggressive suspend\n",
2146 			mmc_hostname(host), err);
2147 
2148 	return err;
2149 }
2150 
2151 /*
2152  * Callback for runtime_resume.
2153  */
2154 static int mmc_runtime_resume(struct mmc_host *host)
2155 {
2156 	int err;
2157 
2158 	err = _mmc_resume(host);
2159 	if (err && err != -ENOMEDIUM)
2160 		pr_err("%s: error %d doing runtime resume\n",
2161 			mmc_hostname(host), err);
2162 
2163 	return 0;
2164 }
2165 
2166 static int mmc_can_reset(struct mmc_card *card)
2167 {
2168 	u8 rst_n_function;
2169 
2170 	rst_n_function = card->ext_csd.rst_n_function;
2171 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2172 		return 0;
2173 	return 1;
2174 }
2175 
2176 static int _mmc_hw_reset(struct mmc_host *host)
2177 {
2178 	struct mmc_card *card = host->card;
2179 
2180 	/*
2181 	 * In the case of recovery, we can't expect flushing the cache to work
2182 	 * always, but we have a go and ignore errors.
2183 	 */
2184 	mmc_flush_cache(host->card);
2185 
2186 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2187 	     mmc_can_reset(card)) {
2188 		/* If the card accept RST_n signal, send it. */
2189 		mmc_set_clock(host, host->f_init);
2190 		host->ops->hw_reset(host);
2191 		/* Set initial state and call mmc_set_ios */
2192 		mmc_set_initial_state(host);
2193 	} else {
2194 		/* Do a brute force power cycle */
2195 		mmc_power_cycle(host, card->ocr);
2196 		mmc_pwrseq_reset(host);
2197 	}
2198 	return mmc_init_card(host, card->ocr, card);
2199 }
2200 
2201 static const struct mmc_bus_ops mmc_ops = {
2202 	.remove = mmc_remove,
2203 	.detect = mmc_detect,
2204 	.suspend = mmc_suspend,
2205 	.resume = mmc_resume,
2206 	.runtime_suspend = mmc_runtime_suspend,
2207 	.runtime_resume = mmc_runtime_resume,
2208 	.alive = mmc_alive,
2209 	.shutdown = mmc_shutdown,
2210 	.hw_reset = _mmc_hw_reset,
2211 };
2212 
2213 /*
2214  * Starting point for MMC card init.
2215  */
2216 int mmc_attach_mmc(struct mmc_host *host)
2217 {
2218 	int err;
2219 	u32 ocr, rocr;
2220 
2221 	WARN_ON(!host->claimed);
2222 
2223 	/* Set correct bus mode for MMC before attempting attach */
2224 	if (!mmc_host_is_spi(host))
2225 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2226 
2227 	err = mmc_send_op_cond(host, 0, &ocr);
2228 	if (err)
2229 		return err;
2230 
2231 	mmc_attach_bus(host, &mmc_ops);
2232 	if (host->ocr_avail_mmc)
2233 		host->ocr_avail = host->ocr_avail_mmc;
2234 
2235 	/*
2236 	 * We need to get OCR a different way for SPI.
2237 	 */
2238 	if (mmc_host_is_spi(host)) {
2239 		err = mmc_spi_read_ocr(host, 1, &ocr);
2240 		if (err)
2241 			goto err;
2242 	}
2243 
2244 	rocr = mmc_select_voltage(host, ocr);
2245 
2246 	/*
2247 	 * Can we support the voltage of the card?
2248 	 */
2249 	if (!rocr) {
2250 		err = -EINVAL;
2251 		goto err;
2252 	}
2253 
2254 	/*
2255 	 * Detect and init the card.
2256 	 */
2257 	err = mmc_init_card(host, rocr, NULL);
2258 	if (err)
2259 		goto err;
2260 
2261 	mmc_release_host(host);
2262 	err = mmc_add_card(host->card);
2263 	if (err)
2264 		goto remove_card;
2265 
2266 	mmc_claim_host(host);
2267 	return 0;
2268 
2269 remove_card:
2270 	mmc_remove_card(host->card);
2271 	mmc_claim_host(host);
2272 	host->card = NULL;
2273 err:
2274 	mmc_detach_bus(host);
2275 
2276 	pr_err("%s: error %d whilst initialising MMC card\n",
2277 		mmc_hostname(host), err);
2278 
2279 	return err;
2280 }
2281