xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 5c816641)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
32 
33 static const unsigned int tran_exp[] = {
34 	10000,		100000,		1000000,	10000000,
35 	0,		0,		0,		0
36 };
37 
38 static const unsigned char tran_mant[] = {
39 	0,	10,	12,	13,	15,	20,	25,	30,
40 	35,	40,	45,	50,	55,	60,	70,	80,
41 };
42 
43 static const unsigned int taac_exp[] = {
44 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
45 };
46 
47 static const unsigned int taac_mant[] = {
48 	0,	10,	12,	13,	15,	20,	25,	30,
49 	35,	40,	45,	50,	55,	60,	70,	80,
50 };
51 
52 #define UNSTUFF_BITS(resp,start,size)					\
53 	({								\
54 		const int __size = size;				\
55 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
56 		const int __off = 3 - ((start) / 32);			\
57 		const int __shft = (start) & 31;			\
58 		u32 __res;						\
59 									\
60 		__res = resp[__off] >> __shft;				\
61 		if (__size + __shft > 32)				\
62 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
63 		__res & __mask;						\
64 	})
65 
66 /*
67  * Given the decoded CSD structure, decode the raw CID to our CID structure.
68  */
69 static int mmc_decode_cid(struct mmc_card *card)
70 {
71 	u32 *resp = card->raw_cid;
72 
73 	/*
74 	 * The selection of the format here is based upon published
75 	 * specs from sandisk and from what people have reported.
76 	 */
77 	switch (card->csd.mmca_vsn) {
78 	case 0: /* MMC v1.0 - v1.2 */
79 	case 1: /* MMC v1.4 */
80 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
81 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
82 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
83 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
84 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
85 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
86 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
87 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
88 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
89 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
90 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
91 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
92 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
93 		break;
94 
95 	case 2: /* MMC v2.0 - v2.2 */
96 	case 3: /* MMC v3.1 - v3.3 */
97 	case 4: /* MMC v4 */
98 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
99 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
100 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
101 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
102 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
103 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
104 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
105 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
106 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
107 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
108 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
109 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
110 		break;
111 
112 	default:
113 		pr_err("%s: card has unknown MMCA version %d\n",
114 			mmc_hostname(card->host), card->csd.mmca_vsn);
115 		return -EINVAL;
116 	}
117 
118 	return 0;
119 }
120 
121 static void mmc_set_erase_size(struct mmc_card *card)
122 {
123 	if (card->ext_csd.erase_group_def & 1)
124 		card->erase_size = card->ext_csd.hc_erase_size;
125 	else
126 		card->erase_size = card->csd.erase_size;
127 
128 	mmc_init_erase(card);
129 }
130 
131 /*
132  * Given a 128-bit response, decode to our card CSD structure.
133  */
134 static int mmc_decode_csd(struct mmc_card *card)
135 {
136 	struct mmc_csd *csd = &card->csd;
137 	unsigned int e, m, a, b;
138 	u32 *resp = card->raw_csd;
139 
140 	/*
141 	 * We only understand CSD structure v1.1 and v1.2.
142 	 * v1.2 has extra information in bits 15, 11 and 10.
143 	 * We also support eMMC v4.4 & v4.41.
144 	 */
145 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 	if (csd->structure == 0) {
147 		pr_err("%s: unrecognised CSD structure version %d\n",
148 			mmc_hostname(card->host), csd->structure);
149 		return -EINVAL;
150 	}
151 
152 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
153 	m = UNSTUFF_BITS(resp, 115, 4);
154 	e = UNSTUFF_BITS(resp, 112, 3);
155 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
156 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
157 
158 	m = UNSTUFF_BITS(resp, 99, 4);
159 	e = UNSTUFF_BITS(resp, 96, 3);
160 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
161 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
162 
163 	e = UNSTUFF_BITS(resp, 47, 3);
164 	m = UNSTUFF_BITS(resp, 62, 12);
165 	csd->capacity	  = (1 + m) << (e + 2);
166 
167 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175 
176 	if (csd->write_blkbits >= 9) {
177 		a = UNSTUFF_BITS(resp, 42, 5);
178 		b = UNSTUFF_BITS(resp, 37, 5);
179 		csd->erase_size = (a + 1) * (b + 1);
180 		csd->erase_size <<= csd->write_blkbits - 9;
181 	}
182 
183 	return 0;
184 }
185 
186 static void mmc_select_card_type(struct mmc_card *card)
187 {
188 	struct mmc_host *host = card->host;
189 	u8 card_type = card->ext_csd.raw_card_type;
190 	u32 caps = host->caps, caps2 = host->caps2;
191 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 	unsigned int avail_type = 0;
193 
194 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 	}
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 	}
205 
206 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 	}
211 
212 	if (caps & MMC_CAP_1_2V_DDR &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 	}
217 
218 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 		hs200_max_dtr = MMC_HS200_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS400_1_8V &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_2V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 	}
241 
242 	if ((caps2 & MMC_CAP2_HS400_ES) &&
243 	    card->ext_csd.strobe_support &&
244 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246 
247 	card->ext_csd.hs_max_dtr = hs_max_dtr;
248 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 	card->mmc_avail_type = avail_type;
250 }
251 
252 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253 {
254 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
255 
256 	/*
257 	 * Disable these attributes by default
258 	 */
259 	card->ext_csd.enhanced_area_offset = -EINVAL;
260 	card->ext_csd.enhanced_area_size = -EINVAL;
261 
262 	/*
263 	 * Enhanced area feature support -- check whether the eMMC
264 	 * card has the Enhanced area enabled.  If so, export enhanced
265 	 * area offset and size to user by adding sysfs interface.
266 	 */
267 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 		if (card->ext_csd.partition_setting_completed) {
270 			hc_erase_grp_sz =
271 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 			hc_wp_grp_sz =
273 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274 
275 			/*
276 			 * calculate the enhanced data area offset, in bytes
277 			 */
278 			card->ext_csd.enhanced_area_offset =
279 				(((unsigned long long)ext_csd[139]) << 24) +
280 				(((unsigned long long)ext_csd[138]) << 16) +
281 				(((unsigned long long)ext_csd[137]) << 8) +
282 				(((unsigned long long)ext_csd[136]));
283 			if (mmc_card_blockaddr(card))
284 				card->ext_csd.enhanced_area_offset <<= 9;
285 			/*
286 			 * calculate the enhanced data area size, in kilobytes
287 			 */
288 			card->ext_csd.enhanced_area_size =
289 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 				ext_csd[140];
291 			card->ext_csd.enhanced_area_size *=
292 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 			card->ext_csd.enhanced_area_size <<= 9;
294 		} else {
295 			pr_warn("%s: defines enhanced area without partition setting complete\n",
296 				mmc_hostname(card->host));
297 		}
298 	}
299 }
300 
301 static void mmc_part_add(struct mmc_card *card, u64 size,
302 			 unsigned int part_cfg, char *name, int idx, bool ro,
303 			 int area_type)
304 {
305 	card->part[card->nr_parts].size = size;
306 	card->part[card->nr_parts].part_cfg = part_cfg;
307 	sprintf(card->part[card->nr_parts].name, name, idx);
308 	card->part[card->nr_parts].force_ro = ro;
309 	card->part[card->nr_parts].area_type = area_type;
310 	card->nr_parts++;
311 }
312 
313 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314 {
315 	int idx;
316 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 	u64 part_size;
318 
319 	/*
320 	 * General purpose partition feature support --
321 	 * If ext_csd has the size of general purpose partitions,
322 	 * set size, part_cfg, partition name in mmc_part.
323 	 */
324 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 	    EXT_CSD_PART_SUPPORT_PART_EN) {
326 		hc_erase_grp_sz =
327 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 		hc_wp_grp_sz =
329 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330 
331 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 				continue;
336 			if (card->ext_csd.partition_setting_completed == 0) {
337 				pr_warn("%s: has partition size defined without partition complete\n",
338 					mmc_hostname(card->host));
339 				break;
340 			}
341 			part_size =
342 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 				<< 16) +
344 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 				<< 8) +
346 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
348 			mmc_part_add(card, part_size << 19,
349 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 				"gp%d", idx, false,
351 				MMC_BLK_DATA_AREA_GP);
352 		}
353 	}
354 }
355 
356 /* Minimum partition switch timeout in milliseconds */
357 #define MMC_MIN_PART_SWITCH_TIME	300
358 
359 /*
360  * Decode extended CSD.
361  */
362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 {
364 	int err = 0, idx;
365 	u64 part_size;
366 	struct device_node *np;
367 	bool broken_hpi = false;
368 
369 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 	if (card->csd.structure == 3) {
372 		if (card->ext_csd.raw_ext_csd_structure > 2) {
373 			pr_err("%s: unrecognised EXT_CSD structure "
374 				"version %d\n", mmc_hostname(card->host),
375 					card->ext_csd.raw_ext_csd_structure);
376 			err = -EINVAL;
377 			goto out;
378 		}
379 	}
380 
381 	np = mmc_of_find_child_device(card->host, 0);
382 	if (np && of_device_is_compatible(np, "mmc-card"))
383 		broken_hpi = of_property_read_bool(np, "broken-hpi");
384 	of_node_put(np);
385 
386 	/*
387 	 * The EXT_CSD format is meant to be forward compatible. As long
388 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 	 * are authorized, see JEDEC JESD84-B50 section B.8.
390 	 */
391 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392 
393 	/* fixup device after ext_csd revision field is updated */
394 	mmc_fixup_device(card, mmc_ext_csd_fixups);
395 
396 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 	if (card->ext_csd.rev >= 2) {
401 		card->ext_csd.sectors =
402 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406 
407 		/* Cards with density > 2GiB are sector addressed */
408 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 			mmc_card_set_blockaddr(card);
410 	}
411 
412 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 	mmc_select_card_type(card);
415 
416 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 	card->ext_csd.raw_erase_timeout_mult =
418 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 	card->ext_csd.raw_hc_erase_grp_size =
420 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 	card->ext_csd.raw_boot_mult =
422 		ext_csd[EXT_CSD_BOOT_MULT];
423 	if (card->ext_csd.rev >= 3) {
424 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426 
427 		/* EXT_CSD value is in units of 10ms, but we store in ms */
428 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 
430 		/* Sleep / awake timeout in 100ns units */
431 		if (sa_shift > 0 && sa_shift <= 0x17)
432 			card->ext_csd.sa_timeout =
433 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 		card->ext_csd.erase_group_def =
435 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 		card->ext_csd.hc_erase_timeout = 300 *
437 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 		card->ext_csd.hc_erase_size =
439 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440 
441 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442 
443 		/*
444 		 * There are two boot regions of equal size, defined in
445 		 * multiples of 128K.
446 		 */
447 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 				mmc_part_add(card, part_size,
451 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 					"boot%d", idx, true,
453 					MMC_BLK_DATA_AREA_BOOT);
454 			}
455 		}
456 	}
457 
458 	card->ext_csd.raw_hc_erase_gap_size =
459 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 	card->ext_csd.raw_sec_trim_mult =
461 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 	card->ext_csd.raw_sec_erase_mult =
463 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 	card->ext_csd.raw_sec_feature_support =
465 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 	card->ext_csd.raw_trim_mult =
467 		ext_csd[EXT_CSD_TRIM_MULT];
468 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 	if (card->ext_csd.rev >= 4) {
471 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 		    EXT_CSD_PART_SETTING_COMPLETED)
473 			card->ext_csd.partition_setting_completed = 1;
474 		else
475 			card->ext_csd.partition_setting_completed = 0;
476 
477 		mmc_manage_enhanced_area(card, ext_csd);
478 
479 		mmc_manage_gp_partitions(card, ext_csd);
480 
481 		card->ext_csd.sec_trim_mult =
482 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 		card->ext_csd.sec_erase_mult =
484 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 		card->ext_csd.sec_feature_support =
486 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 		card->ext_csd.trim_timeout = 300 *
488 			ext_csd[EXT_CSD_TRIM_MULT];
489 
490 		/*
491 		 * Note that the call to mmc_part_add above defaults to read
492 		 * only. If this default assumption is changed, the call must
493 		 * take into account the value of boot_locked below.
494 		 */
495 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 		card->ext_csd.boot_ro_lockable = true;
497 
498 		/* Save power class values */
499 		card->ext_csd.raw_pwr_cl_52_195 =
500 			ext_csd[EXT_CSD_PWR_CL_52_195];
501 		card->ext_csd.raw_pwr_cl_26_195 =
502 			ext_csd[EXT_CSD_PWR_CL_26_195];
503 		card->ext_csd.raw_pwr_cl_52_360 =
504 			ext_csd[EXT_CSD_PWR_CL_52_360];
505 		card->ext_csd.raw_pwr_cl_26_360 =
506 			ext_csd[EXT_CSD_PWR_CL_26_360];
507 		card->ext_csd.raw_pwr_cl_200_195 =
508 			ext_csd[EXT_CSD_PWR_CL_200_195];
509 		card->ext_csd.raw_pwr_cl_200_360 =
510 			ext_csd[EXT_CSD_PWR_CL_200_360];
511 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 	}
518 
519 	if (card->ext_csd.rev >= 5) {
520 		/* Adjust production date as per JEDEC JESD84-B451 */
521 		if (card->cid.year < 2010)
522 			card->cid.year += 16;
523 
524 		/* check whether the eMMC card supports BKOPS */
525 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
526 			card->ext_csd.bkops = 1;
527 			card->ext_csd.man_bkops_en =
528 					(ext_csd[EXT_CSD_BKOPS_EN] &
529 						EXT_CSD_MANUAL_BKOPS_MASK);
530 			card->ext_csd.raw_bkops_status =
531 				ext_csd[EXT_CSD_BKOPS_STATUS];
532 			if (card->ext_csd.man_bkops_en)
533 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
534 					mmc_hostname(card->host));
535 			card->ext_csd.auto_bkops_en =
536 					(ext_csd[EXT_CSD_BKOPS_EN] &
537 						EXT_CSD_AUTO_BKOPS_MASK);
538 			if (card->ext_csd.auto_bkops_en)
539 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
540 					mmc_hostname(card->host));
541 		}
542 
543 		/* check whether the eMMC card supports HPI */
544 		if (!mmc_card_broken_hpi(card) &&
545 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
546 			card->ext_csd.hpi = 1;
547 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
548 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
549 			else
550 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
551 			/*
552 			 * Indicate the maximum timeout to close
553 			 * a command interrupted by HPI
554 			 */
555 			card->ext_csd.out_of_int_time =
556 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
557 		}
558 
559 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
560 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
561 
562 		/*
563 		 * RPMB regions are defined in multiples of 128K.
564 		 */
565 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
566 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
567 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
568 				EXT_CSD_PART_CONFIG_ACC_RPMB,
569 				"rpmb", 0, false,
570 				MMC_BLK_DATA_AREA_RPMB);
571 		}
572 	}
573 
574 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
575 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
576 		card->erased_byte = 0xFF;
577 	else
578 		card->erased_byte = 0x0;
579 
580 	/* eMMC v4.5 or later */
581 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
582 	if (card->ext_csd.rev >= 6) {
583 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
584 
585 		card->ext_csd.generic_cmd6_time = 10 *
586 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
587 		card->ext_csd.power_off_longtime = 10 *
588 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
589 
590 		card->ext_csd.cache_size =
591 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
592 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
595 
596 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
597 			card->ext_csd.data_sector_size = 4096;
598 		else
599 			card->ext_csd.data_sector_size = 512;
600 
601 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
602 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
603 			card->ext_csd.data_tag_unit_size =
604 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
605 			(card->ext_csd.data_sector_size);
606 		} else {
607 			card->ext_csd.data_tag_unit_size = 0;
608 		}
609 
610 		card->ext_csd.max_packed_writes =
611 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
612 		card->ext_csd.max_packed_reads =
613 			ext_csd[EXT_CSD_MAX_PACKED_READS];
614 	} else {
615 		card->ext_csd.data_sector_size = 512;
616 	}
617 
618 	/*
619 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
620 	 * when accessing a specific field", so use it here if there is no
621 	 * PARTITION_SWITCH_TIME.
622 	 */
623 	if (!card->ext_csd.part_time)
624 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
625 	/* Some eMMC set the value too low so set a minimum */
626 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
627 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
628 
629 	/* eMMC v5 or later */
630 	if (card->ext_csd.rev >= 7) {
631 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
632 		       MMC_FIRMWARE_LEN);
633 		card->ext_csd.ffu_capable =
634 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
635 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
636 
637 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
638 		card->ext_csd.device_life_time_est_typ_a =
639 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
640 		card->ext_csd.device_life_time_est_typ_b =
641 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
642 	}
643 
644 	/* eMMC v5.1 or later */
645 	if (card->ext_csd.rev >= 8) {
646 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
647 					     EXT_CSD_CMDQ_SUPPORTED;
648 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
649 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
650 		/* Exclude inefficiently small queue depths */
651 		if (card->ext_csd.cmdq_depth <= 2) {
652 			card->ext_csd.cmdq_support = false;
653 			card->ext_csd.cmdq_depth = 0;
654 		}
655 		if (card->ext_csd.cmdq_support) {
656 			pr_debug("%s: Command Queue supported depth %u\n",
657 				 mmc_hostname(card->host),
658 				 card->ext_csd.cmdq_depth);
659 		}
660 		card->ext_csd.enhanced_rpmb_supported =
661 					(card->ext_csd.rel_param &
662 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
663 	}
664 out:
665 	return err;
666 }
667 
668 static int mmc_read_ext_csd(struct mmc_card *card)
669 {
670 	u8 *ext_csd;
671 	int err;
672 
673 	if (!mmc_can_ext_csd(card))
674 		return 0;
675 
676 	err = mmc_get_ext_csd(card, &ext_csd);
677 	if (err) {
678 		/* If the host or the card can't do the switch,
679 		 * fail more gracefully. */
680 		if ((err != -EINVAL)
681 		 && (err != -ENOSYS)
682 		 && (err != -EFAULT))
683 			return err;
684 
685 		/*
686 		 * High capacity cards should have this "magic" size
687 		 * stored in their CSD.
688 		 */
689 		if (card->csd.capacity == (4096 * 512)) {
690 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
691 				mmc_hostname(card->host));
692 		} else {
693 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
694 				mmc_hostname(card->host));
695 			err = 0;
696 		}
697 
698 		return err;
699 	}
700 
701 	err = mmc_decode_ext_csd(card, ext_csd);
702 	kfree(ext_csd);
703 	return err;
704 }
705 
706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
707 {
708 	u8 *bw_ext_csd;
709 	int err;
710 
711 	if (bus_width == MMC_BUS_WIDTH_1)
712 		return 0;
713 
714 	err = mmc_get_ext_csd(card, &bw_ext_csd);
715 	if (err)
716 		return err;
717 
718 	/* only compare read only fields */
719 	err = !((card->ext_csd.raw_partition_support ==
720 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
721 		(card->ext_csd.raw_erased_mem_count ==
722 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
723 		(card->ext_csd.rev ==
724 			bw_ext_csd[EXT_CSD_REV]) &&
725 		(card->ext_csd.raw_ext_csd_structure ==
726 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
727 		(card->ext_csd.raw_card_type ==
728 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
729 		(card->ext_csd.raw_s_a_timeout ==
730 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
731 		(card->ext_csd.raw_hc_erase_gap_size ==
732 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
733 		(card->ext_csd.raw_erase_timeout_mult ==
734 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
735 		(card->ext_csd.raw_hc_erase_grp_size ==
736 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
737 		(card->ext_csd.raw_sec_trim_mult ==
738 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
739 		(card->ext_csd.raw_sec_erase_mult ==
740 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
741 		(card->ext_csd.raw_sec_feature_support ==
742 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
743 		(card->ext_csd.raw_trim_mult ==
744 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
745 		(card->ext_csd.raw_sectors[0] ==
746 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
747 		(card->ext_csd.raw_sectors[1] ==
748 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
749 		(card->ext_csd.raw_sectors[2] ==
750 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
751 		(card->ext_csd.raw_sectors[3] ==
752 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
753 		(card->ext_csd.raw_pwr_cl_52_195 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
755 		(card->ext_csd.raw_pwr_cl_26_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
757 		(card->ext_csd.raw_pwr_cl_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_26_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
761 		(card->ext_csd.raw_pwr_cl_200_195 ==
762 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
763 		(card->ext_csd.raw_pwr_cl_200_360 ==
764 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
765 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
766 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
767 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
768 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
769 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
770 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
771 
772 	if (err)
773 		err = -EINVAL;
774 
775 	kfree(bw_ext_csd);
776 	return err;
777 }
778 
779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
780 	card->raw_cid[2], card->raw_cid[3]);
781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
782 	card->raw_csd[2], card->raw_csd[3]);
783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
786 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
787 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
788 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
789 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
790 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
791 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
792 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
793 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
794 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
795 	card->ext_csd.device_life_time_est_typ_a,
796 	card->ext_csd.device_life_time_est_typ_b);
797 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
798 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
799 		card->ext_csd.enhanced_area_offset);
800 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
801 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
802 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
803 	card->ext_csd.enhanced_rpmb_supported);
804 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
805 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
806 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
807 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
808 
809 static ssize_t mmc_fwrev_show(struct device *dev,
810 			      struct device_attribute *attr,
811 			      char *buf)
812 {
813 	struct mmc_card *card = mmc_dev_to_card(dev);
814 
815 	if (card->ext_csd.rev < 7) {
816 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
817 	} else {
818 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
819 			       card->ext_csd.fwrev);
820 	}
821 }
822 
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824 
825 static ssize_t mmc_dsr_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct mmc_card *card = mmc_dev_to_card(dev);
830 	struct mmc_host *host = card->host;
831 
832 	if (card->csd.dsr_imp && host->dsr_req)
833 		return sprintf(buf, "0x%x\n", host->dsr);
834 	else
835 		/* return default DSR value */
836 		return sprintf(buf, "0x%x\n", 0x404);
837 }
838 
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840 
841 static struct attribute *mmc_std_attrs[] = {
842 	&dev_attr_cid.attr,
843 	&dev_attr_csd.attr,
844 	&dev_attr_date.attr,
845 	&dev_attr_erase_size.attr,
846 	&dev_attr_preferred_erase_size.attr,
847 	&dev_attr_fwrev.attr,
848 	&dev_attr_ffu_capable.attr,
849 	&dev_attr_hwrev.attr,
850 	&dev_attr_manfid.attr,
851 	&dev_attr_name.attr,
852 	&dev_attr_oemid.attr,
853 	&dev_attr_prv.attr,
854 	&dev_attr_rev.attr,
855 	&dev_attr_pre_eol_info.attr,
856 	&dev_attr_life_time.attr,
857 	&dev_attr_serial.attr,
858 	&dev_attr_enhanced_area_offset.attr,
859 	&dev_attr_enhanced_area_size.attr,
860 	&dev_attr_raw_rpmb_size_mult.attr,
861 	&dev_attr_enhanced_rpmb_supported.attr,
862 	&dev_attr_rel_sectors.attr,
863 	&dev_attr_ocr.attr,
864 	&dev_attr_rca.attr,
865 	&dev_attr_dsr.attr,
866 	&dev_attr_cmdq_en.attr,
867 	NULL,
868 };
869 ATTRIBUTE_GROUPS(mmc_std);
870 
871 static struct device_type mmc_type = {
872 	.groups = mmc_std_groups,
873 };
874 
875 /*
876  * Select the PowerClass for the current bus width
877  * If power class is defined for 4/8 bit bus in the
878  * extended CSD register, select it by executing the
879  * mmc_switch command.
880  */
881 static int __mmc_select_powerclass(struct mmc_card *card,
882 				   unsigned int bus_width)
883 {
884 	struct mmc_host *host = card->host;
885 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
886 	unsigned int pwrclass_val = 0;
887 	int err = 0;
888 
889 	switch (1 << host->ios.vdd) {
890 	case MMC_VDD_165_195:
891 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
892 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
893 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
894 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
895 				ext_csd->raw_pwr_cl_52_195 :
896 				ext_csd->raw_pwr_cl_ddr_52_195;
897 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
899 		break;
900 	case MMC_VDD_27_28:
901 	case MMC_VDD_28_29:
902 	case MMC_VDD_29_30:
903 	case MMC_VDD_30_31:
904 	case MMC_VDD_31_32:
905 	case MMC_VDD_32_33:
906 	case MMC_VDD_33_34:
907 	case MMC_VDD_34_35:
908 	case MMC_VDD_35_36:
909 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
910 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
911 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
912 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
913 				ext_csd->raw_pwr_cl_52_360 :
914 				ext_csd->raw_pwr_cl_ddr_52_360;
915 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
916 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
917 				ext_csd->raw_pwr_cl_ddr_200_360 :
918 				ext_csd->raw_pwr_cl_200_360;
919 		break;
920 	default:
921 		pr_warn("%s: Voltage range not supported for power class\n",
922 			mmc_hostname(host));
923 		return -EINVAL;
924 	}
925 
926 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
928 				EXT_CSD_PWR_CL_8BIT_SHIFT;
929 	else
930 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
931 				EXT_CSD_PWR_CL_4BIT_SHIFT;
932 
933 	/* If the power class is different from the default value */
934 	if (pwrclass_val > 0) {
935 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
936 				 EXT_CSD_POWER_CLASS,
937 				 pwrclass_val,
938 				 card->ext_csd.generic_cmd6_time);
939 	}
940 
941 	return err;
942 }
943 
944 static int mmc_select_powerclass(struct mmc_card *card)
945 {
946 	struct mmc_host *host = card->host;
947 	u32 bus_width, ext_csd_bits;
948 	int err, ddr;
949 
950 	/* Power class selection is supported for versions >= 4.0 */
951 	if (!mmc_can_ext_csd(card))
952 		return 0;
953 
954 	bus_width = host->ios.bus_width;
955 	/* Power class values are defined only for 4/8 bit bus */
956 	if (bus_width == MMC_BUS_WIDTH_1)
957 		return 0;
958 
959 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
960 	if (ddr)
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
963 	else
964 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
965 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
966 
967 	err = __mmc_select_powerclass(card, ext_csd_bits);
968 	if (err)
969 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
970 			mmc_hostname(host), 1 << bus_width, ddr);
971 
972 	return err;
973 }
974 
975 /*
976  * Set the bus speed for the selected speed mode.
977  */
978 static void mmc_set_bus_speed(struct mmc_card *card)
979 {
980 	unsigned int max_dtr = (unsigned int)-1;
981 
982 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
983 	     max_dtr > card->ext_csd.hs200_max_dtr)
984 		max_dtr = card->ext_csd.hs200_max_dtr;
985 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
986 		max_dtr = card->ext_csd.hs_max_dtr;
987 	else if (max_dtr > card->csd.max_dtr)
988 		max_dtr = card->csd.max_dtr;
989 
990 	mmc_set_clock(card->host, max_dtr);
991 }
992 
993 /*
994  * Select the bus width amoung 4-bit and 8-bit(SDR).
995  * If the bus width is changed successfully, return the selected width value.
996  * Zero is returned instead of error value if the wide width is not supported.
997  */
998 static int mmc_select_bus_width(struct mmc_card *card)
999 {
1000 	static unsigned ext_csd_bits[] = {
1001 		EXT_CSD_BUS_WIDTH_8,
1002 		EXT_CSD_BUS_WIDTH_4,
1003 	};
1004 	static unsigned bus_widths[] = {
1005 		MMC_BUS_WIDTH_8,
1006 		MMC_BUS_WIDTH_4,
1007 	};
1008 	struct mmc_host *host = card->host;
1009 	unsigned idx, bus_width = 0;
1010 	int err = 0;
1011 
1012 	if (!mmc_can_ext_csd(card) ||
1013 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1014 		return 0;
1015 
1016 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1017 
1018 	/*
1019 	 * Unlike SD, MMC cards dont have a configuration register to notify
1020 	 * supported bus width. So bus test command should be run to identify
1021 	 * the supported bus width or compare the ext csd values of current
1022 	 * bus width and ext csd values of 1 bit mode read earlier.
1023 	 */
1024 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1025 		/*
1026 		 * Host is capable of 8bit transfer, then switch
1027 		 * the device to work in 8bit transfer mode. If the
1028 		 * mmc switch command returns error then switch to
1029 		 * 4bit transfer mode. On success set the corresponding
1030 		 * bus width on the host.
1031 		 */
1032 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1033 				 EXT_CSD_BUS_WIDTH,
1034 				 ext_csd_bits[idx],
1035 				 card->ext_csd.generic_cmd6_time);
1036 		if (err)
1037 			continue;
1038 
1039 		bus_width = bus_widths[idx];
1040 		mmc_set_bus_width(host, bus_width);
1041 
1042 		/*
1043 		 * If controller can't handle bus width test,
1044 		 * compare ext_csd previously read in 1 bit mode
1045 		 * against ext_csd at new bus width
1046 		 */
1047 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1048 			err = mmc_compare_ext_csds(card, bus_width);
1049 		else
1050 			err = mmc_bus_test(card, bus_width);
1051 
1052 		if (!err) {
1053 			err = bus_width;
1054 			break;
1055 		} else {
1056 			pr_warn("%s: switch to bus width %d failed\n",
1057 				mmc_hostname(host), 1 << bus_width);
1058 		}
1059 	}
1060 
1061 	return err;
1062 }
1063 
1064 /*
1065  * Switch to the high-speed mode
1066  */
1067 static int mmc_select_hs(struct mmc_card *card)
1068 {
1069 	int err;
1070 
1071 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 			   true, true, MMC_CMD_RETRIES);
1075 	if (err)
1076 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 			mmc_hostname(card->host), err);
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * Activate wide bus and DDR if supported.
1084  */
1085 static int mmc_select_hs_ddr(struct mmc_card *card)
1086 {
1087 	struct mmc_host *host = card->host;
1088 	u32 bus_width, ext_csd_bits;
1089 	int err = 0;
1090 
1091 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1092 		return 0;
1093 
1094 	bus_width = host->ios.bus_width;
1095 	if (bus_width == MMC_BUS_WIDTH_1)
1096 		return 0;
1097 
1098 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1099 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1100 
1101 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1102 			   EXT_CSD_BUS_WIDTH,
1103 			   ext_csd_bits,
1104 			   card->ext_csd.generic_cmd6_time,
1105 			   MMC_TIMING_MMC_DDR52,
1106 			   true, true, MMC_CMD_RETRIES);
1107 	if (err) {
1108 		pr_err("%s: switch to bus width %d ddr failed\n",
1109 			mmc_hostname(host), 1 << bus_width);
1110 		return err;
1111 	}
1112 
1113 	/*
1114 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1115 	 * signaling.
1116 	 *
1117 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1118 	 *
1119 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1120 	 * in the JEDEC spec for DDR.
1121 	 *
1122 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1123 	 * host controller can support this, like some of the SDHCI
1124 	 * controller which connect to an eMMC device. Some of these
1125 	 * host controller still needs to use 1.8v vccq for supporting
1126 	 * DDR mode.
1127 	 *
1128 	 * So the sequence will be:
1129 	 * if (host and device can both support 1.2v IO)
1130 	 *	use 1.2v IO;
1131 	 * else if (host and device can both support 1.8v IO)
1132 	 *	use 1.8v IO;
1133 	 * so if host and device can only support 3.3v IO, this is the
1134 	 * last choice.
1135 	 *
1136 	 * WARNING: eMMC rules are NOT the same as SD DDR
1137 	 */
1138 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1139 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1140 		if (!err)
1141 			return 0;
1142 	}
1143 
1144 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1145 	    host->caps & MMC_CAP_1_8V_DDR)
1146 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1147 
1148 	/* make sure vccq is 3.3v after switching disaster */
1149 	if (err)
1150 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1151 
1152 	return err;
1153 }
1154 
1155 static int mmc_select_hs400(struct mmc_card *card)
1156 {
1157 	struct mmc_host *host = card->host;
1158 	unsigned int max_dtr;
1159 	int err = 0;
1160 	u8 val;
1161 
1162 	/*
1163 	 * HS400 mode requires 8-bit bus width
1164 	 */
1165 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1166 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1167 		return 0;
1168 
1169 	/* Switch card to HS mode */
1170 	val = EXT_CSD_TIMING_HS;
1171 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 			   EXT_CSD_HS_TIMING, val,
1173 			   card->ext_csd.generic_cmd6_time, 0,
1174 			   false, true, MMC_CMD_RETRIES);
1175 	if (err) {
1176 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1177 			mmc_hostname(host), err);
1178 		return err;
1179 	}
1180 
1181 	/* Prepare host to downgrade to HS timing */
1182 	if (host->ops->hs400_downgrade)
1183 		host->ops->hs400_downgrade(host);
1184 
1185 	/* Set host controller to HS timing */
1186 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1187 
1188 	/* Reduce frequency to HS frequency */
1189 	max_dtr = card->ext_csd.hs_max_dtr;
1190 	mmc_set_clock(host, max_dtr);
1191 
1192 	err = mmc_switch_status(card, true);
1193 	if (err)
1194 		goto out_err;
1195 
1196 	if (host->ops->hs400_prepare_ddr)
1197 		host->ops->hs400_prepare_ddr(host);
1198 
1199 	/* Switch card to DDR */
1200 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 			 EXT_CSD_BUS_WIDTH,
1202 			 EXT_CSD_DDR_BUS_WIDTH_8,
1203 			 card->ext_csd.generic_cmd6_time);
1204 	if (err) {
1205 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1206 			mmc_hostname(host), err);
1207 		return err;
1208 	}
1209 
1210 	/* Switch card to HS400 */
1211 	val = EXT_CSD_TIMING_HS400 |
1212 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1213 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 			   EXT_CSD_HS_TIMING, val,
1215 			   card->ext_csd.generic_cmd6_time, 0,
1216 			   false, true, MMC_CMD_RETRIES);
1217 	if (err) {
1218 		pr_err("%s: switch to hs400 failed, err:%d\n",
1219 			 mmc_hostname(host), err);
1220 		return err;
1221 	}
1222 
1223 	/* Set host controller to HS400 timing and frequency */
1224 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1225 	mmc_set_bus_speed(card);
1226 
1227 	if (host->ops->execute_hs400_tuning) {
1228 		mmc_retune_disable(host);
1229 		err = host->ops->execute_hs400_tuning(host, card);
1230 		mmc_retune_enable(host);
1231 		if (err)
1232 			goto out_err;
1233 	}
1234 
1235 	if (host->ops->hs400_complete)
1236 		host->ops->hs400_complete(host);
1237 
1238 	err = mmc_switch_status(card, true);
1239 	if (err)
1240 		goto out_err;
1241 
1242 	return 0;
1243 
1244 out_err:
1245 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1246 	       __func__, err);
1247 	return err;
1248 }
1249 
1250 int mmc_hs200_to_hs400(struct mmc_card *card)
1251 {
1252 	return mmc_select_hs400(card);
1253 }
1254 
1255 int mmc_hs400_to_hs200(struct mmc_card *card)
1256 {
1257 	struct mmc_host *host = card->host;
1258 	unsigned int max_dtr;
1259 	int err;
1260 	u8 val;
1261 
1262 	/* Reduce frequency to HS */
1263 	max_dtr = card->ext_csd.hs_max_dtr;
1264 	mmc_set_clock(host, max_dtr);
1265 
1266 	/* Switch HS400 to HS DDR */
1267 	val = EXT_CSD_TIMING_HS;
1268 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1269 			   val, card->ext_csd.generic_cmd6_time, 0,
1270 			   false, true, MMC_CMD_RETRIES);
1271 	if (err)
1272 		goto out_err;
1273 
1274 	if (host->ops->hs400_downgrade)
1275 		host->ops->hs400_downgrade(host);
1276 
1277 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1278 
1279 	err = mmc_switch_status(card, true);
1280 	if (err)
1281 		goto out_err;
1282 
1283 	/* Switch HS DDR to HS */
1284 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1285 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1286 			   0, false, true, MMC_CMD_RETRIES);
1287 	if (err)
1288 		goto out_err;
1289 
1290 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1291 
1292 	err = mmc_switch_status(card, true);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	/* Switch HS to HS200 */
1297 	val = EXT_CSD_TIMING_HS200 |
1298 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1299 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1300 			   val, card->ext_csd.generic_cmd6_time, 0,
1301 			   false, true, MMC_CMD_RETRIES);
1302 	if (err)
1303 		goto out_err;
1304 
1305 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1306 
1307 	/*
1308 	 * For HS200, CRC errors are not a reliable way to know the switch
1309 	 * failed. If there really is a problem, we would expect tuning will
1310 	 * fail and the result ends up the same.
1311 	 */
1312 	err = mmc_switch_status(card, false);
1313 	if (err)
1314 		goto out_err;
1315 
1316 	mmc_set_bus_speed(card);
1317 
1318 	/* Prepare tuning for HS400 mode. */
1319 	if (host->ops->prepare_hs400_tuning)
1320 		host->ops->prepare_hs400_tuning(host, &host->ios);
1321 
1322 	return 0;
1323 
1324 out_err:
1325 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1326 	       __func__, err);
1327 	return err;
1328 }
1329 
1330 static void mmc_select_driver_type(struct mmc_card *card)
1331 {
1332 	int card_drv_type, drive_strength, drv_type = 0;
1333 	int fixed_drv_type = card->host->fixed_drv_type;
1334 
1335 	card_drv_type = card->ext_csd.raw_driver_strength |
1336 			mmc_driver_type_mask(0);
1337 
1338 	if (fixed_drv_type >= 0)
1339 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1340 				 ? fixed_drv_type : 0;
1341 	else
1342 		drive_strength = mmc_select_drive_strength(card,
1343 							   card->ext_csd.hs200_max_dtr,
1344 							   card_drv_type, &drv_type);
1345 
1346 	card->drive_strength = drive_strength;
1347 
1348 	if (drv_type)
1349 		mmc_set_driver_type(card->host, drv_type);
1350 }
1351 
1352 static int mmc_select_hs400es(struct mmc_card *card)
1353 {
1354 	struct mmc_host *host = card->host;
1355 	int err = -EINVAL;
1356 	u8 val;
1357 
1358 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1359 		err = -ENOTSUPP;
1360 		goto out_err;
1361 	}
1362 
1363 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1364 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1365 
1366 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1367 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1368 
1369 	/* If fails try again during next card power cycle */
1370 	if (err)
1371 		goto out_err;
1372 
1373 	err = mmc_select_bus_width(card);
1374 	if (err != MMC_BUS_WIDTH_8) {
1375 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1376 			mmc_hostname(host), err);
1377 		err = err < 0 ? err : -ENOTSUPP;
1378 		goto out_err;
1379 	}
1380 
1381 	/* Switch card to HS mode */
1382 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1383 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1384 			   card->ext_csd.generic_cmd6_time, 0,
1385 			   false, true, MMC_CMD_RETRIES);
1386 	if (err) {
1387 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1388 			mmc_hostname(host), err);
1389 		goto out_err;
1390 	}
1391 
1392 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1393 	err = mmc_switch_status(card, true);
1394 	if (err)
1395 		goto out_err;
1396 
1397 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1398 
1399 	/* Switch card to DDR with strobe bit */
1400 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1401 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1402 			 EXT_CSD_BUS_WIDTH,
1403 			 val,
1404 			 card->ext_csd.generic_cmd6_time);
1405 	if (err) {
1406 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1407 			mmc_hostname(host), err);
1408 		goto out_err;
1409 	}
1410 
1411 	mmc_select_driver_type(card);
1412 
1413 	/* Switch card to HS400 */
1414 	val = EXT_CSD_TIMING_HS400 |
1415 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1416 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1417 			   EXT_CSD_HS_TIMING, val,
1418 			   card->ext_csd.generic_cmd6_time, 0,
1419 			   false, true, MMC_CMD_RETRIES);
1420 	if (err) {
1421 		pr_err("%s: switch to hs400es failed, err:%d\n",
1422 			mmc_hostname(host), err);
1423 		goto out_err;
1424 	}
1425 
1426 	/* Set host controller to HS400 timing and frequency */
1427 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1428 
1429 	/* Controller enable enhanced strobe function */
1430 	host->ios.enhanced_strobe = true;
1431 	if (host->ops->hs400_enhanced_strobe)
1432 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1433 
1434 	err = mmc_switch_status(card, true);
1435 	if (err)
1436 		goto out_err;
1437 
1438 	return 0;
1439 
1440 out_err:
1441 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1442 	       __func__, err);
1443 	return err;
1444 }
1445 
1446 /*
1447  * For device supporting HS200 mode, the following sequence
1448  * should be done before executing the tuning process.
1449  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1450  * 2. switch to HS200 mode
1451  * 3. set the clock to > 52Mhz and <=200MHz
1452  */
1453 static int mmc_select_hs200(struct mmc_card *card)
1454 {
1455 	struct mmc_host *host = card->host;
1456 	unsigned int old_timing, old_signal_voltage;
1457 	int err = -EINVAL;
1458 	u8 val;
1459 
1460 	old_signal_voltage = host->ios.signal_voltage;
1461 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1462 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1463 
1464 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1465 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1466 
1467 	/* If fails try again during next card power cycle */
1468 	if (err)
1469 		return err;
1470 
1471 	mmc_select_driver_type(card);
1472 
1473 	/*
1474 	 * Set the bus width(4 or 8) with host's support and
1475 	 * switch to HS200 mode if bus width is set successfully.
1476 	 */
1477 	err = mmc_select_bus_width(card);
1478 	if (err > 0) {
1479 		val = EXT_CSD_TIMING_HS200 |
1480 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1481 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1482 				   EXT_CSD_HS_TIMING, val,
1483 				   card->ext_csd.generic_cmd6_time, 0,
1484 				   false, true, MMC_CMD_RETRIES);
1485 		if (err)
1486 			goto err;
1487 		old_timing = host->ios.timing;
1488 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1489 
1490 		/*
1491 		 * For HS200, CRC errors are not a reliable way to know the
1492 		 * switch failed. If there really is a problem, we would expect
1493 		 * tuning will fail and the result ends up the same.
1494 		 */
1495 		err = mmc_switch_status(card, false);
1496 
1497 		/*
1498 		 * mmc_select_timing() assumes timing has not changed if
1499 		 * it is a switch error.
1500 		 */
1501 		if (err == -EBADMSG)
1502 			mmc_set_timing(host, old_timing);
1503 	}
1504 err:
1505 	if (err) {
1506 		/* fall back to the old signal voltage, if fails report error */
1507 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1508 			err = -EIO;
1509 
1510 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1511 		       __func__, err);
1512 	}
1513 	return err;
1514 }
1515 
1516 /*
1517  * Activate High Speed, HS200 or HS400ES mode if supported.
1518  */
1519 static int mmc_select_timing(struct mmc_card *card)
1520 {
1521 	int err = 0;
1522 
1523 	if (!mmc_can_ext_csd(card))
1524 		goto bus_speed;
1525 
1526 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1527 		err = mmc_select_hs400es(card);
1528 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1529 		err = mmc_select_hs200(card);
1530 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1531 		err = mmc_select_hs(card);
1532 
1533 	if (err && err != -EBADMSG)
1534 		return err;
1535 
1536 bus_speed:
1537 	/*
1538 	 * Set the bus speed to the selected bus timing.
1539 	 * If timing is not selected, backward compatible is the default.
1540 	 */
1541 	mmc_set_bus_speed(card);
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Execute tuning sequence to seek the proper bus operating
1547  * conditions for HS200 and HS400, which sends CMD21 to the device.
1548  */
1549 static int mmc_hs200_tuning(struct mmc_card *card)
1550 {
1551 	struct mmc_host *host = card->host;
1552 
1553 	/*
1554 	 * Timing should be adjusted to the HS400 target
1555 	 * operation frequency for tuning process
1556 	 */
1557 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1558 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1559 		if (host->ops->prepare_hs400_tuning)
1560 			host->ops->prepare_hs400_tuning(host, &host->ios);
1561 
1562 	return mmc_execute_tuning(card);
1563 }
1564 
1565 /*
1566  * Handle the detection and initialisation of a card.
1567  *
1568  * In the case of a resume, "oldcard" will contain the card
1569  * we're trying to reinitialise.
1570  */
1571 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1572 	struct mmc_card *oldcard)
1573 {
1574 	struct mmc_card *card;
1575 	int err;
1576 	u32 cid[4];
1577 	u32 rocr;
1578 
1579 	WARN_ON(!host->claimed);
1580 
1581 	/* Set correct bus mode for MMC before attempting init */
1582 	if (!mmc_host_is_spi(host))
1583 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1584 
1585 	/*
1586 	 * Since we're changing the OCR value, we seem to
1587 	 * need to tell some cards to go back to the idle
1588 	 * state.  We wait 1ms to give cards time to
1589 	 * respond.
1590 	 * mmc_go_idle is needed for eMMC that are asleep
1591 	 */
1592 	mmc_go_idle(host);
1593 
1594 	/* The extra bit indicates that we support high capacity */
1595 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1596 	if (err)
1597 		goto err;
1598 
1599 	/*
1600 	 * For SPI, enable CRC as appropriate.
1601 	 */
1602 	if (mmc_host_is_spi(host)) {
1603 		err = mmc_spi_set_crc(host, use_spi_crc);
1604 		if (err)
1605 			goto err;
1606 	}
1607 
1608 	/*
1609 	 * Fetch CID from card.
1610 	 */
1611 	err = mmc_send_cid(host, cid);
1612 	if (err)
1613 		goto err;
1614 
1615 	if (oldcard) {
1616 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1617 			pr_debug("%s: Perhaps the card was replaced\n",
1618 				mmc_hostname(host));
1619 			err = -ENOENT;
1620 			goto err;
1621 		}
1622 
1623 		card = oldcard;
1624 	} else {
1625 		/*
1626 		 * Allocate card structure.
1627 		 */
1628 		card = mmc_alloc_card(host, &mmc_type);
1629 		if (IS_ERR(card)) {
1630 			err = PTR_ERR(card);
1631 			goto err;
1632 		}
1633 
1634 		card->ocr = ocr;
1635 		card->type = MMC_TYPE_MMC;
1636 		card->rca = 1;
1637 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1638 	}
1639 
1640 	/*
1641 	 * Call the optional HC's init_card function to handle quirks.
1642 	 */
1643 	if (host->ops->init_card)
1644 		host->ops->init_card(host, card);
1645 
1646 	/*
1647 	 * For native busses:  set card RCA and quit open drain mode.
1648 	 */
1649 	if (!mmc_host_is_spi(host)) {
1650 		err = mmc_set_relative_addr(card);
1651 		if (err)
1652 			goto free_card;
1653 
1654 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1655 	}
1656 
1657 	if (!oldcard) {
1658 		/*
1659 		 * Fetch CSD from card.
1660 		 */
1661 		err = mmc_send_csd(card, card->raw_csd);
1662 		if (err)
1663 			goto free_card;
1664 
1665 		err = mmc_decode_csd(card);
1666 		if (err)
1667 			goto free_card;
1668 		err = mmc_decode_cid(card);
1669 		if (err)
1670 			goto free_card;
1671 	}
1672 
1673 	/*
1674 	 * handling only for cards supporting DSR and hosts requesting
1675 	 * DSR configuration
1676 	 */
1677 	if (card->csd.dsr_imp && host->dsr_req)
1678 		mmc_set_dsr(host);
1679 
1680 	/*
1681 	 * Select card, as all following commands rely on that.
1682 	 */
1683 	if (!mmc_host_is_spi(host)) {
1684 		err = mmc_select_card(card);
1685 		if (err)
1686 			goto free_card;
1687 	}
1688 
1689 	if (!oldcard) {
1690 		/* Read extended CSD. */
1691 		err = mmc_read_ext_csd(card);
1692 		if (err)
1693 			goto free_card;
1694 
1695 		/*
1696 		 * If doing byte addressing, check if required to do sector
1697 		 * addressing.  Handle the case of <2GB cards needing sector
1698 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1699 		 * ocr register has bit 30 set for sector addressing.
1700 		 */
1701 		if (rocr & BIT(30))
1702 			mmc_card_set_blockaddr(card);
1703 
1704 		/* Erase size depends on CSD and Extended CSD */
1705 		mmc_set_erase_size(card);
1706 	}
1707 
1708 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1709 	if (card->ext_csd.rev >= 3) {
1710 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1712 				 card->ext_csd.generic_cmd6_time);
1713 
1714 		if (err && err != -EBADMSG)
1715 			goto free_card;
1716 
1717 		if (err) {
1718 			/*
1719 			 * Just disable enhanced area off & sz
1720 			 * will try to enable ERASE_GROUP_DEF
1721 			 * during next time reinit
1722 			 */
1723 			card->ext_csd.enhanced_area_offset = -EINVAL;
1724 			card->ext_csd.enhanced_area_size = -EINVAL;
1725 		} else {
1726 			card->ext_csd.erase_group_def = 1;
1727 			/*
1728 			 * enable ERASE_GRP_DEF successfully.
1729 			 * This will affect the erase size, so
1730 			 * here need to reset erase size
1731 			 */
1732 			mmc_set_erase_size(card);
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * Ensure eMMC user default partition is enabled
1738 	 */
1739 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1740 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1741 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1742 				 card->ext_csd.part_config,
1743 				 card->ext_csd.part_time);
1744 		if (err && err != -EBADMSG)
1745 			goto free_card;
1746 	}
1747 
1748 	/*
1749 	 * Enable power_off_notification byte in the ext_csd register
1750 	 */
1751 	if (card->ext_csd.rev >= 6) {
1752 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1753 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1754 				 EXT_CSD_POWER_ON,
1755 				 card->ext_csd.generic_cmd6_time);
1756 		if (err && err != -EBADMSG)
1757 			goto free_card;
1758 
1759 		/*
1760 		 * The err can be -EBADMSG or 0,
1761 		 * so check for success and update the flag
1762 		 */
1763 		if (!err)
1764 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1765 	}
1766 
1767 	/* set erase_arg */
1768 	if (mmc_can_discard(card))
1769 		card->erase_arg = MMC_DISCARD_ARG;
1770 	else if (mmc_can_trim(card))
1771 		card->erase_arg = MMC_TRIM_ARG;
1772 	else
1773 		card->erase_arg = MMC_ERASE_ARG;
1774 
1775 	/*
1776 	 * Select timing interface
1777 	 */
1778 	err = mmc_select_timing(card);
1779 	if (err)
1780 		goto free_card;
1781 
1782 	if (mmc_card_hs200(card)) {
1783 		host->doing_init_tune = 1;
1784 
1785 		err = mmc_hs200_tuning(card);
1786 		if (!err)
1787 			err = mmc_select_hs400(card);
1788 
1789 		host->doing_init_tune = 0;
1790 
1791 		if (err)
1792 			goto free_card;
1793 
1794 	} else if (!mmc_card_hs400es(card)) {
1795 		/* Select the desired bus width optionally */
1796 		err = mmc_select_bus_width(card);
1797 		if (err > 0 && mmc_card_hs(card)) {
1798 			err = mmc_select_hs_ddr(card);
1799 			if (err)
1800 				goto free_card;
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * Choose the power class with selected bus interface
1806 	 */
1807 	mmc_select_powerclass(card);
1808 
1809 	/*
1810 	 * Enable HPI feature (if supported)
1811 	 */
1812 	if (card->ext_csd.hpi) {
1813 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1814 				EXT_CSD_HPI_MGMT, 1,
1815 				card->ext_csd.generic_cmd6_time);
1816 		if (err && err != -EBADMSG)
1817 			goto free_card;
1818 		if (err) {
1819 			pr_warn("%s: Enabling HPI failed\n",
1820 				mmc_hostname(card->host));
1821 			card->ext_csd.hpi_en = 0;
1822 		} else {
1823 			card->ext_csd.hpi_en = 1;
1824 		}
1825 	}
1826 
1827 	/*
1828 	 * If cache size is higher than 0, this indicates the existence of cache
1829 	 * and it can be turned on. Note that some eMMCs from Micron has been
1830 	 * reported to need ~800 ms timeout, while enabling the cache after
1831 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1832 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1833 	 */
1834 	if (card->ext_csd.cache_size > 0) {
1835 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1836 
1837 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1838 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1839 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1840 		if (err && err != -EBADMSG)
1841 			goto free_card;
1842 
1843 		/*
1844 		 * Only if no error, cache is turned on successfully.
1845 		 */
1846 		if (err) {
1847 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1848 				mmc_hostname(card->host), err);
1849 			card->ext_csd.cache_ctrl = 0;
1850 		} else {
1851 			card->ext_csd.cache_ctrl = 1;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1857 	 * be used with Command Queue.
1858 	 */
1859 	card->ext_csd.cmdq_en = false;
1860 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1861 		err = mmc_cmdq_enable(card);
1862 		if (err && err != -EBADMSG)
1863 			goto free_card;
1864 		if (err) {
1865 			pr_warn("%s: Enabling CMDQ failed\n",
1866 				mmc_hostname(card->host));
1867 			card->ext_csd.cmdq_support = false;
1868 			card->ext_csd.cmdq_depth = 0;
1869 		}
1870 	}
1871 	/*
1872 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1873 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1874 	 * Command Queue.
1875 	 */
1876 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1877 
1878 	if (host->cqe_ops && !host->cqe_enabled) {
1879 		err = host->cqe_ops->cqe_enable(host, card);
1880 		if (!err) {
1881 			host->cqe_enabled = true;
1882 
1883 			if (card->ext_csd.cmdq_en) {
1884 				pr_info("%s: Command Queue Engine enabled\n",
1885 					mmc_hostname(host));
1886 			} else {
1887 				host->hsq_enabled = true;
1888 				pr_info("%s: Host Software Queue enabled\n",
1889 					mmc_hostname(host));
1890 			}
1891 		}
1892 	}
1893 
1894 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1895 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1896 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1897 			mmc_hostname(host));
1898 		err = -EINVAL;
1899 		goto free_card;
1900 	}
1901 
1902 	if (!oldcard)
1903 		host->card = card;
1904 
1905 	return 0;
1906 
1907 free_card:
1908 	if (!oldcard)
1909 		mmc_remove_card(card);
1910 err:
1911 	return err;
1912 }
1913 
1914 static int mmc_can_sleep(struct mmc_card *card)
1915 {
1916 	return card->ext_csd.rev >= 3;
1917 }
1918 
1919 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1920 {
1921 	struct mmc_host *host = cb_data;
1922 
1923 	*busy = host->ops->card_busy(host);
1924 	return 0;
1925 }
1926 
1927 static int mmc_sleep(struct mmc_host *host)
1928 {
1929 	struct mmc_command cmd = {};
1930 	struct mmc_card *card = host->card;
1931 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1932 	bool use_r1b_resp;
1933 	int err;
1934 
1935 	/* Re-tuning can't be done once the card is deselected */
1936 	mmc_retune_hold(host);
1937 
1938 	err = mmc_deselect_cards(host);
1939 	if (err)
1940 		goto out_release;
1941 
1942 	cmd.opcode = MMC_SLEEP_AWAKE;
1943 	cmd.arg = card->rca << 16;
1944 	cmd.arg |= 1 << 15;
1945 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1946 
1947 	err = mmc_wait_for_cmd(host, &cmd, 0);
1948 	if (err)
1949 		goto out_release;
1950 
1951 	/*
1952 	 * If the host does not wait while the card signals busy, then we can
1953 	 * try to poll, but only if the host supports HW polling, as the
1954 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1955 	 * to wait the sleep/awake timeout.
1956 	 */
1957 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1958 		goto out_release;
1959 
1960 	if (!host->ops->card_busy) {
1961 		mmc_delay(timeout_ms);
1962 		goto out_release;
1963 	}
1964 
1965 	err = __mmc_poll_for_busy(host, timeout_ms, &mmc_sleep_busy_cb, host);
1966 
1967 out_release:
1968 	mmc_retune_release(host);
1969 	return err;
1970 }
1971 
1972 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1973 {
1974 	return card &&
1975 		mmc_card_mmc(card) &&
1976 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1977 }
1978 
1979 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1980 {
1981 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1982 	int err;
1983 
1984 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1985 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1986 		timeout = card->ext_csd.power_off_longtime;
1987 
1988 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1989 			EXT_CSD_POWER_OFF_NOTIFICATION,
1990 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1991 	if (err)
1992 		pr_err("%s: Power Off Notification timed out, %u\n",
1993 		       mmc_hostname(card->host), timeout);
1994 
1995 	/* Disable the power off notification after the switch operation. */
1996 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1997 
1998 	return err;
1999 }
2000 
2001 /*
2002  * Host is being removed. Free up the current card.
2003  */
2004 static void mmc_remove(struct mmc_host *host)
2005 {
2006 	mmc_remove_card(host->card);
2007 	host->card = NULL;
2008 }
2009 
2010 /*
2011  * Card detection - card is alive.
2012  */
2013 static int mmc_alive(struct mmc_host *host)
2014 {
2015 	return mmc_send_status(host->card, NULL);
2016 }
2017 
2018 /*
2019  * Card detection callback from host.
2020  */
2021 static void mmc_detect(struct mmc_host *host)
2022 {
2023 	int err;
2024 
2025 	mmc_get_card(host->card, NULL);
2026 
2027 	/*
2028 	 * Just check if our card has been removed.
2029 	 */
2030 	err = _mmc_detect_card_removed(host);
2031 
2032 	mmc_put_card(host->card, NULL);
2033 
2034 	if (err) {
2035 		mmc_remove(host);
2036 
2037 		mmc_claim_host(host);
2038 		mmc_detach_bus(host);
2039 		mmc_power_off(host);
2040 		mmc_release_host(host);
2041 	}
2042 }
2043 
2044 static bool _mmc_cache_enabled(struct mmc_host *host)
2045 {
2046 	return host->card->ext_csd.cache_size > 0 &&
2047 	       host->card->ext_csd.cache_ctrl & 1;
2048 }
2049 
2050 /*
2051  * Flush the internal cache of the eMMC to non-volatile storage.
2052  */
2053 static int _mmc_flush_cache(struct mmc_host *host)
2054 {
2055 	int err = 0;
2056 
2057 	if (_mmc_cache_enabled(host)) {
2058 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2059 				 EXT_CSD_FLUSH_CACHE, 1,
2060 				 CACHE_FLUSH_TIMEOUT_MS);
2061 		if (err)
2062 			pr_err("%s: cache flush error %d\n",
2063 			       mmc_hostname(host), err);
2064 	}
2065 
2066 	return err;
2067 }
2068 
2069 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2070 {
2071 	int err = 0;
2072 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2073 					EXT_CSD_POWER_OFF_LONG;
2074 
2075 	mmc_claim_host(host);
2076 
2077 	if (mmc_card_suspended(host->card))
2078 		goto out;
2079 
2080 	err = _mmc_flush_cache(host);
2081 	if (err)
2082 		goto out;
2083 
2084 	if (mmc_can_poweroff_notify(host->card) &&
2085 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2086 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2087 		err = mmc_poweroff_notify(host->card, notify_type);
2088 	else if (mmc_can_sleep(host->card))
2089 		err = mmc_sleep(host);
2090 	else if (!mmc_host_is_spi(host))
2091 		err = mmc_deselect_cards(host);
2092 
2093 	if (!err) {
2094 		mmc_power_off(host);
2095 		mmc_card_set_suspended(host->card);
2096 	}
2097 out:
2098 	mmc_release_host(host);
2099 	return err;
2100 }
2101 
2102 /*
2103  * Suspend callback
2104  */
2105 static int mmc_suspend(struct mmc_host *host)
2106 {
2107 	int err;
2108 
2109 	err = _mmc_suspend(host, true);
2110 	if (!err) {
2111 		pm_runtime_disable(&host->card->dev);
2112 		pm_runtime_set_suspended(&host->card->dev);
2113 	}
2114 
2115 	return err;
2116 }
2117 
2118 /*
2119  * This function tries to determine if the same card is still present
2120  * and, if so, restore all state to it.
2121  */
2122 static int _mmc_resume(struct mmc_host *host)
2123 {
2124 	int err = 0;
2125 
2126 	mmc_claim_host(host);
2127 
2128 	if (!mmc_card_suspended(host->card))
2129 		goto out;
2130 
2131 	mmc_power_up(host, host->card->ocr);
2132 	err = mmc_init_card(host, host->card->ocr, host->card);
2133 	mmc_card_clr_suspended(host->card);
2134 
2135 out:
2136 	mmc_release_host(host);
2137 	return err;
2138 }
2139 
2140 /*
2141  * Shutdown callback
2142  */
2143 static int mmc_shutdown(struct mmc_host *host)
2144 {
2145 	int err = 0;
2146 
2147 	/*
2148 	 * In a specific case for poweroff notify, we need to resume the card
2149 	 * before we can shutdown it properly.
2150 	 */
2151 	if (mmc_can_poweroff_notify(host->card) &&
2152 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2153 		err = _mmc_resume(host);
2154 
2155 	if (!err)
2156 		err = _mmc_suspend(host, false);
2157 
2158 	return err;
2159 }
2160 
2161 /*
2162  * Callback for resume.
2163  */
2164 static int mmc_resume(struct mmc_host *host)
2165 {
2166 	pm_runtime_enable(&host->card->dev);
2167 	return 0;
2168 }
2169 
2170 /*
2171  * Callback for runtime_suspend.
2172  */
2173 static int mmc_runtime_suspend(struct mmc_host *host)
2174 {
2175 	int err;
2176 
2177 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2178 		return 0;
2179 
2180 	err = _mmc_suspend(host, true);
2181 	if (err)
2182 		pr_err("%s: error %d doing aggressive suspend\n",
2183 			mmc_hostname(host), err);
2184 
2185 	return err;
2186 }
2187 
2188 /*
2189  * Callback for runtime_resume.
2190  */
2191 static int mmc_runtime_resume(struct mmc_host *host)
2192 {
2193 	int err;
2194 
2195 	err = _mmc_resume(host);
2196 	if (err && err != -ENOMEDIUM)
2197 		pr_err("%s: error %d doing runtime resume\n",
2198 			mmc_hostname(host), err);
2199 
2200 	return 0;
2201 }
2202 
2203 static int mmc_can_reset(struct mmc_card *card)
2204 {
2205 	u8 rst_n_function;
2206 
2207 	rst_n_function = card->ext_csd.rst_n_function;
2208 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2209 		return 0;
2210 	return 1;
2211 }
2212 
2213 static int _mmc_hw_reset(struct mmc_host *host)
2214 {
2215 	struct mmc_card *card = host->card;
2216 
2217 	/*
2218 	 * In the case of recovery, we can't expect flushing the cache to work
2219 	 * always, but we have a go and ignore errors.
2220 	 */
2221 	_mmc_flush_cache(host);
2222 
2223 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2224 	     mmc_can_reset(card)) {
2225 		/* If the card accept RST_n signal, send it. */
2226 		mmc_set_clock(host, host->f_init);
2227 		host->ops->hw_reset(host);
2228 		/* Set initial state and call mmc_set_ios */
2229 		mmc_set_initial_state(host);
2230 	} else {
2231 		/* Do a brute force power cycle */
2232 		mmc_power_cycle(host, card->ocr);
2233 		mmc_pwrseq_reset(host);
2234 	}
2235 	return mmc_init_card(host, card->ocr, card);
2236 }
2237 
2238 static const struct mmc_bus_ops mmc_ops = {
2239 	.remove = mmc_remove,
2240 	.detect = mmc_detect,
2241 	.suspend = mmc_suspend,
2242 	.resume = mmc_resume,
2243 	.runtime_suspend = mmc_runtime_suspend,
2244 	.runtime_resume = mmc_runtime_resume,
2245 	.alive = mmc_alive,
2246 	.shutdown = mmc_shutdown,
2247 	.hw_reset = _mmc_hw_reset,
2248 	.cache_enabled = _mmc_cache_enabled,
2249 	.flush_cache = _mmc_flush_cache,
2250 };
2251 
2252 /*
2253  * Starting point for MMC card init.
2254  */
2255 int mmc_attach_mmc(struct mmc_host *host)
2256 {
2257 	int err;
2258 	u32 ocr, rocr;
2259 
2260 	WARN_ON(!host->claimed);
2261 
2262 	/* Set correct bus mode for MMC before attempting attach */
2263 	if (!mmc_host_is_spi(host))
2264 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2265 
2266 	err = mmc_send_op_cond(host, 0, &ocr);
2267 	if (err)
2268 		return err;
2269 
2270 	mmc_attach_bus(host, &mmc_ops);
2271 	if (host->ocr_avail_mmc)
2272 		host->ocr_avail = host->ocr_avail_mmc;
2273 
2274 	/*
2275 	 * We need to get OCR a different way for SPI.
2276 	 */
2277 	if (mmc_host_is_spi(host)) {
2278 		err = mmc_spi_read_ocr(host, 1, &ocr);
2279 		if (err)
2280 			goto err;
2281 	}
2282 
2283 	rocr = mmc_select_voltage(host, ocr);
2284 
2285 	/*
2286 	 * Can we support the voltage of the card?
2287 	 */
2288 	if (!rocr) {
2289 		err = -EINVAL;
2290 		goto err;
2291 	}
2292 
2293 	/*
2294 	 * Detect and init the card.
2295 	 */
2296 	err = mmc_init_card(host, rocr, NULL);
2297 	if (err)
2298 		goto err;
2299 
2300 	mmc_release_host(host);
2301 	err = mmc_add_card(host->card);
2302 	if (err)
2303 		goto remove_card;
2304 
2305 	mmc_claim_host(host);
2306 	return 0;
2307 
2308 remove_card:
2309 	mmc_remove_card(host->card);
2310 	mmc_claim_host(host);
2311 	host->card = NULL;
2312 err:
2313 	mmc_detach_bus(host);
2314 
2315 	pr_err("%s: error %d whilst initialising MMC card\n",
2316 		mmc_hostname(host), err);
2317 
2318 	return err;
2319 }
2320