xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 4bc31ede)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/sysfs.h>
16 
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 #include "quirks.h"
27 #include "sd_ops.h"
28 #include "pwrseq.h"
29 
30 #define DEFAULT_CMD6_TIMEOUT_MS	500
31 #define MIN_CACHE_EN_TIMEOUT_MS 1600
32 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 	u32 *resp = card->raw_cid;
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from sandisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
82 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
83 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
84 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
85 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
86 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
87 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
88 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
89 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
90 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
91 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
92 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
93 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
100 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
101 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
102 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
103 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
104 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
105 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
106 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
107 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
108 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
109 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
110 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	return 0;
120 }
121 
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 	if (card->ext_csd.erase_group_def & 1)
125 		card->erase_size = card->ext_csd.hc_erase_size;
126 	else
127 		card->erase_size = card->csd.erase_size;
128 
129 	mmc_init_erase(card);
130 }
131 
132 /*
133  * Given a 128-bit response, decode to our card CSD structure.
134  */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 	struct mmc_csd *csd = &card->csd;
138 	unsigned int e, m, a, b;
139 	u32 *resp = card->raw_csd;
140 
141 	/*
142 	 * We only understand CSD structure v1.1 and v1.2.
143 	 * v1.2 has extra information in bits 15, 11 and 10.
144 	 * We also support eMMC v4.4 & v4.41.
145 	 */
146 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 	if (csd->structure == 0) {
148 		pr_err("%s: unrecognised CSD structure version %d\n",
149 			mmc_hostname(card->host), csd->structure);
150 		return -EINVAL;
151 	}
152 
153 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
154 	m = UNSTUFF_BITS(resp, 115, 4);
155 	e = UNSTUFF_BITS(resp, 112, 3);
156 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
158 
159 	m = UNSTUFF_BITS(resp, 99, 4);
160 	e = UNSTUFF_BITS(resp, 96, 3);
161 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
162 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
163 
164 	e = UNSTUFF_BITS(resp, 47, 3);
165 	m = UNSTUFF_BITS(resp, 62, 12);
166 	csd->capacity	  = (1 + m) << (e + 2);
167 
168 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176 
177 	if (csd->write_blkbits >= 9) {
178 		a = UNSTUFF_BITS(resp, 42, 5);
179 		b = UNSTUFF_BITS(resp, 37, 5);
180 		csd->erase_size = (a + 1) * (b + 1);
181 		csd->erase_size <<= csd->write_blkbits - 9;
182 	}
183 
184 	return 0;
185 }
186 
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 	struct mmc_host *host = card->host;
190 	u8 card_type = card->ext_csd.raw_card_type;
191 	u32 caps = host->caps, caps2 = host->caps2;
192 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 	unsigned int avail_type = 0;
194 
195 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 	}
200 
201 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 	}
206 
207 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 	}
212 
213 	if (caps & MMC_CAP_1_2V_DDR &&
214 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 	}
218 
219 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 		hs200_max_dtr = MMC_HS200_MAX_DTR;
222 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 	}
224 
225 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 		hs200_max_dtr = MMC_HS200_MAX_DTR;
228 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 	}
230 
231 	if (caps2 & MMC_CAP2_HS400_1_8V &&
232 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 		hs200_max_dtr = MMC_HS200_MAX_DTR;
234 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 	}
236 
237 	if (caps2 & MMC_CAP2_HS400_1_2V &&
238 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 		hs200_max_dtr = MMC_HS200_MAX_DTR;
240 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 	}
242 
243 	if ((caps2 & MMC_CAP2_HS400_ES) &&
244 	    card->ext_csd.strobe_support &&
245 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247 
248 	card->ext_csd.hs_max_dtr = hs_max_dtr;
249 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 	card->mmc_avail_type = avail_type;
251 }
252 
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 
257 	/*
258 	 * Disable these attributes by default
259 	 */
260 	card->ext_csd.enhanced_area_offset = -EINVAL;
261 	card->ext_csd.enhanced_area_size = -EINVAL;
262 
263 	/*
264 	 * Enhanced area feature support -- check whether the eMMC
265 	 * card has the Enhanced area enabled.  If so, export enhanced
266 	 * area offset and size to user by adding sysfs interface.
267 	 */
268 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 		if (card->ext_csd.partition_setting_completed) {
271 			hc_erase_grp_sz =
272 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 			hc_wp_grp_sz =
274 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 
276 			/*
277 			 * calculate the enhanced data area offset, in bytes
278 			 */
279 			card->ext_csd.enhanced_area_offset =
280 				(((unsigned long long)ext_csd[139]) << 24) +
281 				(((unsigned long long)ext_csd[138]) << 16) +
282 				(((unsigned long long)ext_csd[137]) << 8) +
283 				(((unsigned long long)ext_csd[136]));
284 			if (mmc_card_blockaddr(card))
285 				card->ext_csd.enhanced_area_offset <<= 9;
286 			/*
287 			 * calculate the enhanced data area size, in kilobytes
288 			 */
289 			card->ext_csd.enhanced_area_size =
290 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 				ext_csd[140];
292 			card->ext_csd.enhanced_area_size *=
293 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 			card->ext_csd.enhanced_area_size <<= 9;
295 		} else {
296 			pr_warn("%s: defines enhanced area without partition setting complete\n",
297 				mmc_hostname(card->host));
298 		}
299 	}
300 }
301 
302 static void mmc_part_add(struct mmc_card *card, u64 size,
303 			 unsigned int part_cfg, char *name, int idx, bool ro,
304 			 int area_type)
305 {
306 	card->part[card->nr_parts].size = size;
307 	card->part[card->nr_parts].part_cfg = part_cfg;
308 	sprintf(card->part[card->nr_parts].name, name, idx);
309 	card->part[card->nr_parts].force_ro = ro;
310 	card->part[card->nr_parts].area_type = area_type;
311 	card->nr_parts++;
312 }
313 
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 	int idx;
317 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 	u64 part_size;
319 
320 	/*
321 	 * General purpose partition feature support --
322 	 * If ext_csd has the size of general purpose partitions,
323 	 * set size, part_cfg, partition name in mmc_part.
324 	 */
325 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 	    EXT_CSD_PART_SUPPORT_PART_EN) {
327 		hc_erase_grp_sz =
328 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 		hc_wp_grp_sz =
330 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331 
332 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 				continue;
337 			if (card->ext_csd.partition_setting_completed == 0) {
338 				pr_warn("%s: has partition size defined without partition complete\n",
339 					mmc_hostname(card->host));
340 				break;
341 			}
342 			part_size =
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 				<< 16) +
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 				<< 8) +
347 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
349 			mmc_part_add(card, part_size << 19,
350 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
351 				"gp%d", idx, false,
352 				MMC_BLK_DATA_AREA_GP);
353 		}
354 	}
355 }
356 
357 /* Minimum partition switch timeout in milliseconds */
358 #define MMC_MIN_PART_SWITCH_TIME	300
359 
360 /*
361  * Decode extended CSD.
362  */
363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
364 {
365 	int err = 0, idx;
366 	u64 part_size;
367 	struct device_node *np;
368 	bool broken_hpi = false;
369 
370 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
371 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
372 	if (card->csd.structure == 3) {
373 		if (card->ext_csd.raw_ext_csd_structure > 2) {
374 			pr_err("%s: unrecognised EXT_CSD structure "
375 				"version %d\n", mmc_hostname(card->host),
376 					card->ext_csd.raw_ext_csd_structure);
377 			err = -EINVAL;
378 			goto out;
379 		}
380 	}
381 
382 	np = mmc_of_find_child_device(card->host, 0);
383 	if (np && of_device_is_compatible(np, "mmc-card"))
384 		broken_hpi = of_property_read_bool(np, "broken-hpi");
385 	of_node_put(np);
386 
387 	/*
388 	 * The EXT_CSD format is meant to be forward compatible. As long
389 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
390 	 * are authorized, see JEDEC JESD84-B50 section B.8.
391 	 */
392 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
393 
394 	/* fixup device after ext_csd revision field is updated */
395 	mmc_fixup_device(card, mmc_ext_csd_fixups);
396 
397 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
398 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
399 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
400 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
401 	if (card->ext_csd.rev >= 2) {
402 		card->ext_csd.sectors =
403 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
404 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
405 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
406 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
407 
408 		/* Cards with density > 2GiB are sector addressed */
409 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
410 			mmc_card_set_blockaddr(card);
411 	}
412 
413 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
414 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
415 	mmc_select_card_type(card);
416 
417 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
418 	card->ext_csd.raw_erase_timeout_mult =
419 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
420 	card->ext_csd.raw_hc_erase_grp_size =
421 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
422 	card->ext_csd.raw_boot_mult =
423 		ext_csd[EXT_CSD_BOOT_MULT];
424 	if (card->ext_csd.rev >= 3) {
425 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 
428 		/* EXT_CSD value is in units of 10ms, but we store in ms */
429 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430 
431 		/* Sleep / awake timeout in 100ns units */
432 		if (sa_shift > 0 && sa_shift <= 0x17)
433 			card->ext_csd.sa_timeout =
434 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 		card->ext_csd.erase_group_def =
436 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 		card->ext_csd.hc_erase_timeout = 300 *
438 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 		card->ext_csd.hc_erase_size =
440 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441 
442 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443 
444 		/*
445 		 * There are two boot regions of equal size, defined in
446 		 * multiples of 128K.
447 		 */
448 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 				mmc_part_add(card, part_size,
452 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 					"boot%d", idx, true,
454 					MMC_BLK_DATA_AREA_BOOT);
455 			}
456 		}
457 	}
458 
459 	card->ext_csd.raw_hc_erase_gap_size =
460 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 	card->ext_csd.raw_sec_trim_mult =
462 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 	card->ext_csd.raw_sec_erase_mult =
464 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 	card->ext_csd.raw_sec_feature_support =
466 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 	card->ext_csd.raw_trim_mult =
468 		ext_csd[EXT_CSD_TRIM_MULT];
469 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 	if (card->ext_csd.rev >= 4) {
472 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 		    EXT_CSD_PART_SETTING_COMPLETED)
474 			card->ext_csd.partition_setting_completed = 1;
475 		else
476 			card->ext_csd.partition_setting_completed = 0;
477 
478 		mmc_manage_enhanced_area(card, ext_csd);
479 
480 		mmc_manage_gp_partitions(card, ext_csd);
481 
482 		card->ext_csd.sec_trim_mult =
483 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 		card->ext_csd.sec_erase_mult =
485 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 		card->ext_csd.sec_feature_support =
487 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 		card->ext_csd.trim_timeout = 300 *
489 			ext_csd[EXT_CSD_TRIM_MULT];
490 
491 		/*
492 		 * Note that the call to mmc_part_add above defaults to read
493 		 * only. If this default assumption is changed, the call must
494 		 * take into account the value of boot_locked below.
495 		 */
496 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 		card->ext_csd.boot_ro_lockable = true;
498 
499 		/* Save power class values */
500 		card->ext_csd.raw_pwr_cl_52_195 =
501 			ext_csd[EXT_CSD_PWR_CL_52_195];
502 		card->ext_csd.raw_pwr_cl_26_195 =
503 			ext_csd[EXT_CSD_PWR_CL_26_195];
504 		card->ext_csd.raw_pwr_cl_52_360 =
505 			ext_csd[EXT_CSD_PWR_CL_52_360];
506 		card->ext_csd.raw_pwr_cl_26_360 =
507 			ext_csd[EXT_CSD_PWR_CL_26_360];
508 		card->ext_csd.raw_pwr_cl_200_195 =
509 			ext_csd[EXT_CSD_PWR_CL_200_195];
510 		card->ext_csd.raw_pwr_cl_200_360 =
511 			ext_csd[EXT_CSD_PWR_CL_200_360];
512 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 	}
519 
520 	if (card->ext_csd.rev >= 5) {
521 		/* Adjust production date as per JEDEC JESD84-B451 */
522 		if (card->cid.year < 2010)
523 			card->cid.year += 16;
524 
525 		/* check whether the eMMC card supports BKOPS */
526 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 					mmc_hostname(card->host));
536 			card->ext_csd.auto_bkops_en =
537 					(ext_csd[EXT_CSD_BKOPS_EN] &
538 						EXT_CSD_AUTO_BKOPS_MASK);
539 			if (card->ext_csd.auto_bkops_en)
540 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 		}
543 
544 		/* check whether the eMMC card supports HPI */
545 		if (!mmc_card_broken_hpi(card) &&
546 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 			card->ext_csd.hpi = 1;
548 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
550 			else
551 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 			/*
553 			 * Indicate the maximum timeout to close
554 			 * a command interrupted by HPI
555 			 */
556 			card->ext_csd.out_of_int_time =
557 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 		}
559 
560 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562 
563 		/*
564 		 * RPMB regions are defined in multiples of 128K.
565 		 */
566 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 				EXT_CSD_PART_CONFIG_ACC_RPMB,
570 				"rpmb", 0, false,
571 				MMC_BLK_DATA_AREA_RPMB);
572 		}
573 	}
574 
575 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 		card->erased_byte = 0xFF;
578 	else
579 		card->erased_byte = 0x0;
580 
581 	/* eMMC v4.5 or later */
582 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 	if (card->ext_csd.rev >= 6) {
584 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585 
586 		card->ext_csd.generic_cmd6_time = 10 *
587 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 		card->ext_csd.power_off_longtime = 10 *
589 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590 
591 		card->ext_csd.cache_size =
592 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596 
597 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 			card->ext_csd.data_sector_size = 4096;
599 		else
600 			card->ext_csd.data_sector_size = 512;
601 
602 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 			card->ext_csd.data_tag_unit_size =
605 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 			(card->ext_csd.data_sector_size);
607 		} else {
608 			card->ext_csd.data_tag_unit_size = 0;
609 		}
610 
611 		card->ext_csd.max_packed_writes =
612 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 		card->ext_csd.max_packed_reads =
614 			ext_csd[EXT_CSD_MAX_PACKED_READS];
615 	} else {
616 		card->ext_csd.data_sector_size = 512;
617 	}
618 
619 	/*
620 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
621 	 * when accessing a specific field", so use it here if there is no
622 	 * PARTITION_SWITCH_TIME.
623 	 */
624 	if (!card->ext_csd.part_time)
625 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
626 	/* Some eMMC set the value too low so set a minimum */
627 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
628 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
629 
630 	/* eMMC v5 or later */
631 	if (card->ext_csd.rev >= 7) {
632 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
633 		       MMC_FIRMWARE_LEN);
634 		card->ext_csd.ffu_capable =
635 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
636 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
637 
638 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
639 		card->ext_csd.device_life_time_est_typ_a =
640 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
641 		card->ext_csd.device_life_time_est_typ_b =
642 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
643 	}
644 
645 	/* eMMC v5.1 or later */
646 	if (card->ext_csd.rev >= 8) {
647 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
648 					     EXT_CSD_CMDQ_SUPPORTED;
649 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
650 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
651 		/* Exclude inefficiently small queue depths */
652 		if (card->ext_csd.cmdq_depth <= 2) {
653 			card->ext_csd.cmdq_support = false;
654 			card->ext_csd.cmdq_depth = 0;
655 		}
656 		if (card->ext_csd.cmdq_support) {
657 			pr_debug("%s: Command Queue supported depth %u\n",
658 				 mmc_hostname(card->host),
659 				 card->ext_csd.cmdq_depth);
660 		}
661 		card->ext_csd.enhanced_rpmb_supported =
662 					(card->ext_csd.rel_param &
663 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
664 	}
665 out:
666 	return err;
667 }
668 
669 static int mmc_read_ext_csd(struct mmc_card *card)
670 {
671 	u8 *ext_csd;
672 	int err;
673 
674 	if (!mmc_can_ext_csd(card))
675 		return 0;
676 
677 	err = mmc_get_ext_csd(card, &ext_csd);
678 	if (err) {
679 		/* If the host or the card can't do the switch,
680 		 * fail more gracefully. */
681 		if ((err != -EINVAL)
682 		 && (err != -ENOSYS)
683 		 && (err != -EFAULT))
684 			return err;
685 
686 		/*
687 		 * High capacity cards should have this "magic" size
688 		 * stored in their CSD.
689 		 */
690 		if (card->csd.capacity == (4096 * 512)) {
691 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
692 				mmc_hostname(card->host));
693 		} else {
694 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
695 				mmc_hostname(card->host));
696 			err = 0;
697 		}
698 
699 		return err;
700 	}
701 
702 	err = mmc_decode_ext_csd(card, ext_csd);
703 	kfree(ext_csd);
704 	return err;
705 }
706 
707 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
708 {
709 	u8 *bw_ext_csd;
710 	int err;
711 
712 	if (bus_width == MMC_BUS_WIDTH_1)
713 		return 0;
714 
715 	err = mmc_get_ext_csd(card, &bw_ext_csd);
716 	if (err)
717 		return err;
718 
719 	/* only compare read only fields */
720 	err = !((card->ext_csd.raw_partition_support ==
721 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
722 		(card->ext_csd.raw_erased_mem_count ==
723 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
724 		(card->ext_csd.rev ==
725 			bw_ext_csd[EXT_CSD_REV]) &&
726 		(card->ext_csd.raw_ext_csd_structure ==
727 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
728 		(card->ext_csd.raw_card_type ==
729 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
730 		(card->ext_csd.raw_s_a_timeout ==
731 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
732 		(card->ext_csd.raw_hc_erase_gap_size ==
733 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
734 		(card->ext_csd.raw_erase_timeout_mult ==
735 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
736 		(card->ext_csd.raw_hc_erase_grp_size ==
737 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
738 		(card->ext_csd.raw_sec_trim_mult ==
739 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
740 		(card->ext_csd.raw_sec_erase_mult ==
741 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
742 		(card->ext_csd.raw_sec_feature_support ==
743 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
744 		(card->ext_csd.raw_trim_mult ==
745 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
746 		(card->ext_csd.raw_sectors[0] ==
747 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
748 		(card->ext_csd.raw_sectors[1] ==
749 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
750 		(card->ext_csd.raw_sectors[2] ==
751 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
752 		(card->ext_csd.raw_sectors[3] ==
753 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
754 		(card->ext_csd.raw_pwr_cl_52_195 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
756 		(card->ext_csd.raw_pwr_cl_26_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
758 		(card->ext_csd.raw_pwr_cl_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_26_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
762 		(card->ext_csd.raw_pwr_cl_200_195 ==
763 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
764 		(card->ext_csd.raw_pwr_cl_200_360 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
766 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
768 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
769 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
770 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
771 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
772 
773 	if (err)
774 		err = -EINVAL;
775 
776 	kfree(bw_ext_csd);
777 	return err;
778 }
779 
780 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
781 	card->raw_cid[2], card->raw_cid[3]);
782 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
783 	card->raw_csd[2], card->raw_csd[3]);
784 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
785 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
786 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
787 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
788 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
789 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
790 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
791 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
792 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
793 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
794 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
795 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
796 	card->ext_csd.device_life_time_est_typ_a,
797 	card->ext_csd.device_life_time_est_typ_b);
798 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
799 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
800 		card->ext_csd.enhanced_area_offset);
801 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
802 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
803 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
804 	card->ext_csd.enhanced_rpmb_supported);
805 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
806 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
807 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
808 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
809 
810 static ssize_t mmc_fwrev_show(struct device *dev,
811 			      struct device_attribute *attr,
812 			      char *buf)
813 {
814 	struct mmc_card *card = mmc_dev_to_card(dev);
815 
816 	if (card->ext_csd.rev < 7)
817 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
818 	else
819 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
820 				  card->ext_csd.fwrev);
821 }
822 
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824 
825 static ssize_t mmc_dsr_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct mmc_card *card = mmc_dev_to_card(dev);
830 	struct mmc_host *host = card->host;
831 
832 	if (card->csd.dsr_imp && host->dsr_req)
833 		return sysfs_emit(buf, "0x%x\n", host->dsr);
834 	else
835 		/* return default DSR value */
836 		return sysfs_emit(buf, "0x%x\n", 0x404);
837 }
838 
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840 
841 static struct attribute *mmc_std_attrs[] = {
842 	&dev_attr_cid.attr,
843 	&dev_attr_csd.attr,
844 	&dev_attr_date.attr,
845 	&dev_attr_erase_size.attr,
846 	&dev_attr_preferred_erase_size.attr,
847 	&dev_attr_fwrev.attr,
848 	&dev_attr_ffu_capable.attr,
849 	&dev_attr_hwrev.attr,
850 	&dev_attr_manfid.attr,
851 	&dev_attr_name.attr,
852 	&dev_attr_oemid.attr,
853 	&dev_attr_prv.attr,
854 	&dev_attr_rev.attr,
855 	&dev_attr_pre_eol_info.attr,
856 	&dev_attr_life_time.attr,
857 	&dev_attr_serial.attr,
858 	&dev_attr_enhanced_area_offset.attr,
859 	&dev_attr_enhanced_area_size.attr,
860 	&dev_attr_raw_rpmb_size_mult.attr,
861 	&dev_attr_enhanced_rpmb_supported.attr,
862 	&dev_attr_rel_sectors.attr,
863 	&dev_attr_ocr.attr,
864 	&dev_attr_rca.attr,
865 	&dev_attr_dsr.attr,
866 	&dev_attr_cmdq_en.attr,
867 	NULL,
868 };
869 ATTRIBUTE_GROUPS(mmc_std);
870 
871 static struct device_type mmc_type = {
872 	.groups = mmc_std_groups,
873 };
874 
875 /*
876  * Select the PowerClass for the current bus width
877  * If power class is defined for 4/8 bit bus in the
878  * extended CSD register, select it by executing the
879  * mmc_switch command.
880  */
881 static int __mmc_select_powerclass(struct mmc_card *card,
882 				   unsigned int bus_width)
883 {
884 	struct mmc_host *host = card->host;
885 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
886 	unsigned int pwrclass_val = 0;
887 	int err = 0;
888 
889 	switch (1 << host->ios.vdd) {
890 	case MMC_VDD_165_195:
891 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
892 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
893 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
894 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
895 				ext_csd->raw_pwr_cl_52_195 :
896 				ext_csd->raw_pwr_cl_ddr_52_195;
897 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
899 		break;
900 	case MMC_VDD_27_28:
901 	case MMC_VDD_28_29:
902 	case MMC_VDD_29_30:
903 	case MMC_VDD_30_31:
904 	case MMC_VDD_31_32:
905 	case MMC_VDD_32_33:
906 	case MMC_VDD_33_34:
907 	case MMC_VDD_34_35:
908 	case MMC_VDD_35_36:
909 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
910 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
911 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
912 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
913 				ext_csd->raw_pwr_cl_52_360 :
914 				ext_csd->raw_pwr_cl_ddr_52_360;
915 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
916 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
917 				ext_csd->raw_pwr_cl_ddr_200_360 :
918 				ext_csd->raw_pwr_cl_200_360;
919 		break;
920 	default:
921 		pr_warn("%s: Voltage range not supported for power class\n",
922 			mmc_hostname(host));
923 		return -EINVAL;
924 	}
925 
926 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
928 				EXT_CSD_PWR_CL_8BIT_SHIFT;
929 	else
930 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
931 				EXT_CSD_PWR_CL_4BIT_SHIFT;
932 
933 	/* If the power class is different from the default value */
934 	if (pwrclass_val > 0) {
935 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
936 				 EXT_CSD_POWER_CLASS,
937 				 pwrclass_val,
938 				 card->ext_csd.generic_cmd6_time);
939 	}
940 
941 	return err;
942 }
943 
944 static int mmc_select_powerclass(struct mmc_card *card)
945 {
946 	struct mmc_host *host = card->host;
947 	u32 bus_width, ext_csd_bits;
948 	int err, ddr;
949 
950 	/* Power class selection is supported for versions >= 4.0 */
951 	if (!mmc_can_ext_csd(card))
952 		return 0;
953 
954 	bus_width = host->ios.bus_width;
955 	/* Power class values are defined only for 4/8 bit bus */
956 	if (bus_width == MMC_BUS_WIDTH_1)
957 		return 0;
958 
959 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
960 	if (ddr)
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
963 	else
964 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
965 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
966 
967 	err = __mmc_select_powerclass(card, ext_csd_bits);
968 	if (err)
969 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
970 			mmc_hostname(host), 1 << bus_width, ddr);
971 
972 	return err;
973 }
974 
975 /*
976  * Set the bus speed for the selected speed mode.
977  */
978 static void mmc_set_bus_speed(struct mmc_card *card)
979 {
980 	unsigned int max_dtr = (unsigned int)-1;
981 
982 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
983 	     max_dtr > card->ext_csd.hs200_max_dtr)
984 		max_dtr = card->ext_csd.hs200_max_dtr;
985 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
986 		max_dtr = card->ext_csd.hs_max_dtr;
987 	else if (max_dtr > card->csd.max_dtr)
988 		max_dtr = card->csd.max_dtr;
989 
990 	mmc_set_clock(card->host, max_dtr);
991 }
992 
993 /*
994  * Select the bus width amoung 4-bit and 8-bit(SDR).
995  * If the bus width is changed successfully, return the selected width value.
996  * Zero is returned instead of error value if the wide width is not supported.
997  */
998 static int mmc_select_bus_width(struct mmc_card *card)
999 {
1000 	static unsigned ext_csd_bits[] = {
1001 		EXT_CSD_BUS_WIDTH_8,
1002 		EXT_CSD_BUS_WIDTH_4,
1003 	};
1004 	static unsigned bus_widths[] = {
1005 		MMC_BUS_WIDTH_8,
1006 		MMC_BUS_WIDTH_4,
1007 	};
1008 	struct mmc_host *host = card->host;
1009 	unsigned idx, bus_width = 0;
1010 	int err = 0;
1011 
1012 	if (!mmc_can_ext_csd(card) ||
1013 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1014 		return 0;
1015 
1016 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1017 
1018 	/*
1019 	 * Unlike SD, MMC cards dont have a configuration register to notify
1020 	 * supported bus width. So bus test command should be run to identify
1021 	 * the supported bus width or compare the ext csd values of current
1022 	 * bus width and ext csd values of 1 bit mode read earlier.
1023 	 */
1024 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1025 		/*
1026 		 * Host is capable of 8bit transfer, then switch
1027 		 * the device to work in 8bit transfer mode. If the
1028 		 * mmc switch command returns error then switch to
1029 		 * 4bit transfer mode. On success set the corresponding
1030 		 * bus width on the host.
1031 		 */
1032 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1033 				 EXT_CSD_BUS_WIDTH,
1034 				 ext_csd_bits[idx],
1035 				 card->ext_csd.generic_cmd6_time);
1036 		if (err)
1037 			continue;
1038 
1039 		bus_width = bus_widths[idx];
1040 		mmc_set_bus_width(host, bus_width);
1041 
1042 		/*
1043 		 * If controller can't handle bus width test,
1044 		 * compare ext_csd previously read in 1 bit mode
1045 		 * against ext_csd at new bus width
1046 		 */
1047 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1048 			err = mmc_compare_ext_csds(card, bus_width);
1049 		else
1050 			err = mmc_bus_test(card, bus_width);
1051 
1052 		if (!err) {
1053 			err = bus_width;
1054 			break;
1055 		} else {
1056 			pr_warn("%s: switch to bus width %d failed\n",
1057 				mmc_hostname(host), 1 << bus_width);
1058 		}
1059 	}
1060 
1061 	return err;
1062 }
1063 
1064 /*
1065  * Switch to the high-speed mode
1066  */
1067 static int mmc_select_hs(struct mmc_card *card)
1068 {
1069 	int err;
1070 
1071 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 			   true, true, MMC_CMD_RETRIES);
1075 	if (err)
1076 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 			mmc_hostname(card->host), err);
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * Activate wide bus and DDR if supported.
1084  */
1085 static int mmc_select_hs_ddr(struct mmc_card *card)
1086 {
1087 	struct mmc_host *host = card->host;
1088 	u32 bus_width, ext_csd_bits;
1089 	int err = 0;
1090 
1091 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1092 		return 0;
1093 
1094 	bus_width = host->ios.bus_width;
1095 	if (bus_width == MMC_BUS_WIDTH_1)
1096 		return 0;
1097 
1098 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1099 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1100 
1101 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1102 			   EXT_CSD_BUS_WIDTH,
1103 			   ext_csd_bits,
1104 			   card->ext_csd.generic_cmd6_time,
1105 			   MMC_TIMING_MMC_DDR52,
1106 			   true, true, MMC_CMD_RETRIES);
1107 	if (err) {
1108 		pr_err("%s: switch to bus width %d ddr failed\n",
1109 			mmc_hostname(host), 1 << bus_width);
1110 		return err;
1111 	}
1112 
1113 	/*
1114 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1115 	 * signaling.
1116 	 *
1117 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1118 	 *
1119 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1120 	 * in the JEDEC spec for DDR.
1121 	 *
1122 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1123 	 * host controller can support this, like some of the SDHCI
1124 	 * controller which connect to an eMMC device. Some of these
1125 	 * host controller still needs to use 1.8v vccq for supporting
1126 	 * DDR mode.
1127 	 *
1128 	 * So the sequence will be:
1129 	 * if (host and device can both support 1.2v IO)
1130 	 *	use 1.2v IO;
1131 	 * else if (host and device can both support 1.8v IO)
1132 	 *	use 1.8v IO;
1133 	 * so if host and device can only support 3.3v IO, this is the
1134 	 * last choice.
1135 	 *
1136 	 * WARNING: eMMC rules are NOT the same as SD DDR
1137 	 */
1138 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1139 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1140 		if (!err)
1141 			return 0;
1142 	}
1143 
1144 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1145 	    host->caps & MMC_CAP_1_8V_DDR)
1146 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1147 
1148 	/* make sure vccq is 3.3v after switching disaster */
1149 	if (err)
1150 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1151 
1152 	return err;
1153 }
1154 
1155 static int mmc_select_hs400(struct mmc_card *card)
1156 {
1157 	struct mmc_host *host = card->host;
1158 	unsigned int max_dtr;
1159 	int err = 0;
1160 	u8 val;
1161 
1162 	/*
1163 	 * HS400 mode requires 8-bit bus width
1164 	 */
1165 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1166 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1167 		return 0;
1168 
1169 	/* Switch card to HS mode */
1170 	val = EXT_CSD_TIMING_HS;
1171 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 			   EXT_CSD_HS_TIMING, val,
1173 			   card->ext_csd.generic_cmd6_time, 0,
1174 			   false, true, MMC_CMD_RETRIES);
1175 	if (err) {
1176 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1177 			mmc_hostname(host), err);
1178 		return err;
1179 	}
1180 
1181 	/* Prepare host to downgrade to HS timing */
1182 	if (host->ops->hs400_downgrade)
1183 		host->ops->hs400_downgrade(host);
1184 
1185 	/* Set host controller to HS timing */
1186 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1187 
1188 	/* Reduce frequency to HS frequency */
1189 	max_dtr = card->ext_csd.hs_max_dtr;
1190 	mmc_set_clock(host, max_dtr);
1191 
1192 	err = mmc_switch_status(card, true);
1193 	if (err)
1194 		goto out_err;
1195 
1196 	if (host->ops->hs400_prepare_ddr)
1197 		host->ops->hs400_prepare_ddr(host);
1198 
1199 	/* Switch card to DDR */
1200 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 			 EXT_CSD_BUS_WIDTH,
1202 			 EXT_CSD_DDR_BUS_WIDTH_8,
1203 			 card->ext_csd.generic_cmd6_time);
1204 	if (err) {
1205 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1206 			mmc_hostname(host), err);
1207 		return err;
1208 	}
1209 
1210 	/* Switch card to HS400 */
1211 	val = EXT_CSD_TIMING_HS400 |
1212 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1213 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 			   EXT_CSD_HS_TIMING, val,
1215 			   card->ext_csd.generic_cmd6_time, 0,
1216 			   false, true, MMC_CMD_RETRIES);
1217 	if (err) {
1218 		pr_err("%s: switch to hs400 failed, err:%d\n",
1219 			 mmc_hostname(host), err);
1220 		return err;
1221 	}
1222 
1223 	/* Set host controller to HS400 timing and frequency */
1224 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1225 	mmc_set_bus_speed(card);
1226 
1227 	if (host->ops->execute_hs400_tuning) {
1228 		mmc_retune_disable(host);
1229 		err = host->ops->execute_hs400_tuning(host, card);
1230 		mmc_retune_enable(host);
1231 		if (err)
1232 			goto out_err;
1233 	}
1234 
1235 	if (host->ops->hs400_complete)
1236 		host->ops->hs400_complete(host);
1237 
1238 	err = mmc_switch_status(card, true);
1239 	if (err)
1240 		goto out_err;
1241 
1242 	return 0;
1243 
1244 out_err:
1245 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1246 	       __func__, err);
1247 	return err;
1248 }
1249 
1250 int mmc_hs200_to_hs400(struct mmc_card *card)
1251 {
1252 	return mmc_select_hs400(card);
1253 }
1254 
1255 int mmc_hs400_to_hs200(struct mmc_card *card)
1256 {
1257 	struct mmc_host *host = card->host;
1258 	unsigned int max_dtr;
1259 	int err;
1260 	u8 val;
1261 
1262 	/* Reduce frequency to HS */
1263 	max_dtr = card->ext_csd.hs_max_dtr;
1264 	mmc_set_clock(host, max_dtr);
1265 
1266 	/* Switch HS400 to HS DDR */
1267 	val = EXT_CSD_TIMING_HS;
1268 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1269 			   val, card->ext_csd.generic_cmd6_time, 0,
1270 			   false, true, MMC_CMD_RETRIES);
1271 	if (err)
1272 		goto out_err;
1273 
1274 	if (host->ops->hs400_downgrade)
1275 		host->ops->hs400_downgrade(host);
1276 
1277 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1278 
1279 	err = mmc_switch_status(card, true);
1280 	if (err)
1281 		goto out_err;
1282 
1283 	/* Switch HS DDR to HS */
1284 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1285 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1286 			   0, false, true, MMC_CMD_RETRIES);
1287 	if (err)
1288 		goto out_err;
1289 
1290 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1291 
1292 	err = mmc_switch_status(card, true);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	/* Switch HS to HS200 */
1297 	val = EXT_CSD_TIMING_HS200 |
1298 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1299 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1300 			   val, card->ext_csd.generic_cmd6_time, 0,
1301 			   false, true, MMC_CMD_RETRIES);
1302 	if (err)
1303 		goto out_err;
1304 
1305 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1306 
1307 	/*
1308 	 * For HS200, CRC errors are not a reliable way to know the switch
1309 	 * failed. If there really is a problem, we would expect tuning will
1310 	 * fail and the result ends up the same.
1311 	 */
1312 	err = mmc_switch_status(card, false);
1313 	if (err)
1314 		goto out_err;
1315 
1316 	mmc_set_bus_speed(card);
1317 
1318 	/* Prepare tuning for HS400 mode. */
1319 	if (host->ops->prepare_hs400_tuning)
1320 		host->ops->prepare_hs400_tuning(host, &host->ios);
1321 
1322 	return 0;
1323 
1324 out_err:
1325 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1326 	       __func__, err);
1327 	return err;
1328 }
1329 
1330 static void mmc_select_driver_type(struct mmc_card *card)
1331 {
1332 	int card_drv_type, drive_strength, drv_type = 0;
1333 	int fixed_drv_type = card->host->fixed_drv_type;
1334 
1335 	card_drv_type = card->ext_csd.raw_driver_strength |
1336 			mmc_driver_type_mask(0);
1337 
1338 	if (fixed_drv_type >= 0)
1339 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1340 				 ? fixed_drv_type : 0;
1341 	else
1342 		drive_strength = mmc_select_drive_strength(card,
1343 							   card->ext_csd.hs200_max_dtr,
1344 							   card_drv_type, &drv_type);
1345 
1346 	card->drive_strength = drive_strength;
1347 
1348 	if (drv_type)
1349 		mmc_set_driver_type(card->host, drv_type);
1350 }
1351 
1352 static int mmc_select_hs400es(struct mmc_card *card)
1353 {
1354 	struct mmc_host *host = card->host;
1355 	int err = -EINVAL;
1356 	u8 val;
1357 
1358 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1359 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1360 
1361 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1362 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1363 
1364 	/* If fails try again during next card power cycle */
1365 	if (err)
1366 		goto out_err;
1367 
1368 	err = mmc_select_bus_width(card);
1369 	if (err != MMC_BUS_WIDTH_8) {
1370 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1371 			mmc_hostname(host), err);
1372 		err = err < 0 ? err : -ENOTSUPP;
1373 		goto out_err;
1374 	}
1375 
1376 	/* Switch card to HS mode */
1377 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1379 			   card->ext_csd.generic_cmd6_time, 0,
1380 			   false, true, MMC_CMD_RETRIES);
1381 	if (err) {
1382 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1383 			mmc_hostname(host), err);
1384 		goto out_err;
1385 	}
1386 
1387 	/*
1388 	 * Bump to HS timing and frequency. Some cards don't handle
1389 	 * SEND_STATUS reliably at the initial frequency.
1390 	 */
1391 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1392 	mmc_set_bus_speed(card);
1393 
1394 	err = mmc_switch_status(card, true);
1395 	if (err)
1396 		goto out_err;
1397 
1398 	/* Switch card to DDR with strobe bit */
1399 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1400 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1401 			 EXT_CSD_BUS_WIDTH,
1402 			 val,
1403 			 card->ext_csd.generic_cmd6_time);
1404 	if (err) {
1405 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1406 			mmc_hostname(host), err);
1407 		goto out_err;
1408 	}
1409 
1410 	mmc_select_driver_type(card);
1411 
1412 	/* Switch card to HS400 */
1413 	val = EXT_CSD_TIMING_HS400 |
1414 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1415 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1416 			   EXT_CSD_HS_TIMING, val,
1417 			   card->ext_csd.generic_cmd6_time, 0,
1418 			   false, true, MMC_CMD_RETRIES);
1419 	if (err) {
1420 		pr_err("%s: switch to hs400es failed, err:%d\n",
1421 			mmc_hostname(host), err);
1422 		goto out_err;
1423 	}
1424 
1425 	/* Set host controller to HS400 timing and frequency */
1426 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1427 
1428 	/* Controller enable enhanced strobe function */
1429 	host->ios.enhanced_strobe = true;
1430 	if (host->ops->hs400_enhanced_strobe)
1431 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1432 
1433 	err = mmc_switch_status(card, true);
1434 	if (err)
1435 		goto out_err;
1436 
1437 	return 0;
1438 
1439 out_err:
1440 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1441 	       __func__, err);
1442 	return err;
1443 }
1444 
1445 /*
1446  * For device supporting HS200 mode, the following sequence
1447  * should be done before executing the tuning process.
1448  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1449  * 2. switch to HS200 mode
1450  * 3. set the clock to > 52Mhz and <=200MHz
1451  */
1452 static int mmc_select_hs200(struct mmc_card *card)
1453 {
1454 	struct mmc_host *host = card->host;
1455 	unsigned int old_timing, old_signal_voltage, old_clock;
1456 	int err = -EINVAL;
1457 	u8 val;
1458 
1459 	old_signal_voltage = host->ios.signal_voltage;
1460 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1461 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1462 
1463 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1464 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1465 
1466 	/* If fails try again during next card power cycle */
1467 	if (err)
1468 		return err;
1469 
1470 	mmc_select_driver_type(card);
1471 
1472 	/*
1473 	 * Set the bus width(4 or 8) with host's support and
1474 	 * switch to HS200 mode if bus width is set successfully.
1475 	 */
1476 	err = mmc_select_bus_width(card);
1477 	if (err > 0) {
1478 		val = EXT_CSD_TIMING_HS200 |
1479 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1480 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1481 				   EXT_CSD_HS_TIMING, val,
1482 				   card->ext_csd.generic_cmd6_time, 0,
1483 				   false, true, MMC_CMD_RETRIES);
1484 		if (err)
1485 			goto err;
1486 
1487 		/*
1488 		 * Bump to HS timing and frequency. Some cards don't handle
1489 		 * SEND_STATUS reliably at the initial frequency.
1490 		 * NB: We can't move to full (HS200) speeds until after we've
1491 		 * successfully switched over.
1492 		 */
1493 		old_timing = host->ios.timing;
1494 		old_clock = host->ios.clock;
1495 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1496 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1497 
1498 		/*
1499 		 * For HS200, CRC errors are not a reliable way to know the
1500 		 * switch failed. If there really is a problem, we would expect
1501 		 * tuning will fail and the result ends up the same.
1502 		 */
1503 		err = mmc_switch_status(card, false);
1504 
1505 		/*
1506 		 * mmc_select_timing() assumes timing has not changed if
1507 		 * it is a switch error.
1508 		 */
1509 		if (err == -EBADMSG) {
1510 			mmc_set_clock(host, old_clock);
1511 			mmc_set_timing(host, old_timing);
1512 		}
1513 	}
1514 err:
1515 	if (err) {
1516 		/* fall back to the old signal voltage, if fails report error */
1517 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1518 			err = -EIO;
1519 
1520 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1521 		       __func__, err);
1522 	}
1523 	return err;
1524 }
1525 
1526 /*
1527  * Activate High Speed, HS200 or HS400ES mode if supported.
1528  */
1529 static int mmc_select_timing(struct mmc_card *card)
1530 {
1531 	int err = 0;
1532 
1533 	if (!mmc_can_ext_csd(card))
1534 		goto bus_speed;
1535 
1536 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1537 		err = mmc_select_hs400es(card);
1538 		goto out;
1539 	}
1540 
1541 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1542 		err = mmc_select_hs200(card);
1543 		if (err == -EBADMSG)
1544 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1545 		else
1546 			goto out;
1547 	}
1548 
1549 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1550 		err = mmc_select_hs(card);
1551 
1552 out:
1553 	if (err && err != -EBADMSG)
1554 		return err;
1555 
1556 bus_speed:
1557 	/*
1558 	 * Set the bus speed to the selected bus timing.
1559 	 * If timing is not selected, backward compatible is the default.
1560 	 */
1561 	mmc_set_bus_speed(card);
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Execute tuning sequence to seek the proper bus operating
1567  * conditions for HS200 and HS400, which sends CMD21 to the device.
1568  */
1569 static int mmc_hs200_tuning(struct mmc_card *card)
1570 {
1571 	struct mmc_host *host = card->host;
1572 
1573 	/*
1574 	 * Timing should be adjusted to the HS400 target
1575 	 * operation frequency for tuning process
1576 	 */
1577 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1578 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1579 		if (host->ops->prepare_hs400_tuning)
1580 			host->ops->prepare_hs400_tuning(host, &host->ios);
1581 
1582 	return mmc_execute_tuning(card);
1583 }
1584 
1585 /*
1586  * Handle the detection and initialisation of a card.
1587  *
1588  * In the case of a resume, "oldcard" will contain the card
1589  * we're trying to reinitialise.
1590  */
1591 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1592 	struct mmc_card *oldcard)
1593 {
1594 	struct mmc_card *card;
1595 	int err;
1596 	u32 cid[4];
1597 	u32 rocr;
1598 
1599 	WARN_ON(!host->claimed);
1600 
1601 	/* Set correct bus mode for MMC before attempting init */
1602 	if (!mmc_host_is_spi(host))
1603 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1604 
1605 	/*
1606 	 * Since we're changing the OCR value, we seem to
1607 	 * need to tell some cards to go back to the idle
1608 	 * state.  We wait 1ms to give cards time to
1609 	 * respond.
1610 	 * mmc_go_idle is needed for eMMC that are asleep
1611 	 */
1612 	mmc_go_idle(host);
1613 
1614 	/* The extra bit indicates that we support high capacity */
1615 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1616 	if (err)
1617 		goto err;
1618 
1619 	/*
1620 	 * For SPI, enable CRC as appropriate.
1621 	 */
1622 	if (mmc_host_is_spi(host)) {
1623 		err = mmc_spi_set_crc(host, use_spi_crc);
1624 		if (err)
1625 			goto err;
1626 	}
1627 
1628 	/*
1629 	 * Fetch CID from card.
1630 	 */
1631 	err = mmc_send_cid(host, cid);
1632 	if (err)
1633 		goto err;
1634 
1635 	if (oldcard) {
1636 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1637 			pr_debug("%s: Perhaps the card was replaced\n",
1638 				mmc_hostname(host));
1639 			err = -ENOENT;
1640 			goto err;
1641 		}
1642 
1643 		card = oldcard;
1644 	} else {
1645 		/*
1646 		 * Allocate card structure.
1647 		 */
1648 		card = mmc_alloc_card(host, &mmc_type);
1649 		if (IS_ERR(card)) {
1650 			err = PTR_ERR(card);
1651 			goto err;
1652 		}
1653 
1654 		card->ocr = ocr;
1655 		card->type = MMC_TYPE_MMC;
1656 		card->rca = 1;
1657 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1658 	}
1659 
1660 	/*
1661 	 * Call the optional HC's init_card function to handle quirks.
1662 	 */
1663 	if (host->ops->init_card)
1664 		host->ops->init_card(host, card);
1665 
1666 	/*
1667 	 * For native busses:  set card RCA and quit open drain mode.
1668 	 */
1669 	if (!mmc_host_is_spi(host)) {
1670 		err = mmc_set_relative_addr(card);
1671 		if (err)
1672 			goto free_card;
1673 
1674 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1675 	}
1676 
1677 	if (!oldcard) {
1678 		/*
1679 		 * Fetch CSD from card.
1680 		 */
1681 		err = mmc_send_csd(card, card->raw_csd);
1682 		if (err)
1683 			goto free_card;
1684 
1685 		err = mmc_decode_csd(card);
1686 		if (err)
1687 			goto free_card;
1688 		err = mmc_decode_cid(card);
1689 		if (err)
1690 			goto free_card;
1691 	}
1692 
1693 	/*
1694 	 * handling only for cards supporting DSR and hosts requesting
1695 	 * DSR configuration
1696 	 */
1697 	if (card->csd.dsr_imp && host->dsr_req)
1698 		mmc_set_dsr(host);
1699 
1700 	/*
1701 	 * Select card, as all following commands rely on that.
1702 	 */
1703 	if (!mmc_host_is_spi(host)) {
1704 		err = mmc_select_card(card);
1705 		if (err)
1706 			goto free_card;
1707 	}
1708 
1709 	if (!oldcard) {
1710 		/* Read extended CSD. */
1711 		err = mmc_read_ext_csd(card);
1712 		if (err)
1713 			goto free_card;
1714 
1715 		/*
1716 		 * If doing byte addressing, check if required to do sector
1717 		 * addressing.  Handle the case of <2GB cards needing sector
1718 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1719 		 * ocr register has bit 30 set for sector addressing.
1720 		 */
1721 		if (rocr & BIT(30))
1722 			mmc_card_set_blockaddr(card);
1723 
1724 		/* Erase size depends on CSD and Extended CSD */
1725 		mmc_set_erase_size(card);
1726 	}
1727 
1728 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1729 	if (card->ext_csd.rev >= 3) {
1730 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1731 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1732 				 card->ext_csd.generic_cmd6_time);
1733 
1734 		if (err && err != -EBADMSG)
1735 			goto free_card;
1736 
1737 		if (err) {
1738 			/*
1739 			 * Just disable enhanced area off & sz
1740 			 * will try to enable ERASE_GROUP_DEF
1741 			 * during next time reinit
1742 			 */
1743 			card->ext_csd.enhanced_area_offset = -EINVAL;
1744 			card->ext_csd.enhanced_area_size = -EINVAL;
1745 		} else {
1746 			card->ext_csd.erase_group_def = 1;
1747 			/*
1748 			 * enable ERASE_GRP_DEF successfully.
1749 			 * This will affect the erase size, so
1750 			 * here need to reset erase size
1751 			 */
1752 			mmc_set_erase_size(card);
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * Ensure eMMC user default partition is enabled
1758 	 */
1759 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1760 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1761 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1762 				 card->ext_csd.part_config,
1763 				 card->ext_csd.part_time);
1764 		if (err && err != -EBADMSG)
1765 			goto free_card;
1766 	}
1767 
1768 	/*
1769 	 * Enable power_off_notification byte in the ext_csd register
1770 	 */
1771 	if (card->ext_csd.rev >= 6) {
1772 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1773 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1774 				 EXT_CSD_POWER_ON,
1775 				 card->ext_csd.generic_cmd6_time);
1776 		if (err && err != -EBADMSG)
1777 			goto free_card;
1778 
1779 		/*
1780 		 * The err can be -EBADMSG or 0,
1781 		 * so check for success and update the flag
1782 		 */
1783 		if (!err)
1784 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1785 	}
1786 
1787 	/* set erase_arg */
1788 	if (mmc_can_discard(card))
1789 		card->erase_arg = MMC_DISCARD_ARG;
1790 	else if (mmc_can_trim(card))
1791 		card->erase_arg = MMC_TRIM_ARG;
1792 	else
1793 		card->erase_arg = MMC_ERASE_ARG;
1794 
1795 	/*
1796 	 * Select timing interface
1797 	 */
1798 	err = mmc_select_timing(card);
1799 	if (err)
1800 		goto free_card;
1801 
1802 	if (mmc_card_hs200(card)) {
1803 		host->doing_init_tune = 1;
1804 
1805 		err = mmc_hs200_tuning(card);
1806 		if (!err)
1807 			err = mmc_select_hs400(card);
1808 
1809 		host->doing_init_tune = 0;
1810 
1811 		if (err)
1812 			goto free_card;
1813 
1814 	} else if (!mmc_card_hs400es(card)) {
1815 		/* Select the desired bus width optionally */
1816 		err = mmc_select_bus_width(card);
1817 		if (err > 0 && mmc_card_hs(card)) {
1818 			err = mmc_select_hs_ddr(card);
1819 			if (err)
1820 				goto free_card;
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * Choose the power class with selected bus interface
1826 	 */
1827 	mmc_select_powerclass(card);
1828 
1829 	/*
1830 	 * Enable HPI feature (if supported)
1831 	 */
1832 	if (card->ext_csd.hpi) {
1833 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1834 				EXT_CSD_HPI_MGMT, 1,
1835 				card->ext_csd.generic_cmd6_time);
1836 		if (err && err != -EBADMSG)
1837 			goto free_card;
1838 		if (err) {
1839 			pr_warn("%s: Enabling HPI failed\n",
1840 				mmc_hostname(card->host));
1841 			card->ext_csd.hpi_en = 0;
1842 		} else {
1843 			card->ext_csd.hpi_en = 1;
1844 		}
1845 	}
1846 
1847 	/*
1848 	 * If cache size is higher than 0, this indicates the existence of cache
1849 	 * and it can be turned on. Note that some eMMCs from Micron has been
1850 	 * reported to need ~800 ms timeout, while enabling the cache after
1851 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1852 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1853 	 */
1854 	if (card->ext_csd.cache_size > 0) {
1855 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1856 
1857 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1858 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1859 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1860 		if (err && err != -EBADMSG)
1861 			goto free_card;
1862 
1863 		/*
1864 		 * Only if no error, cache is turned on successfully.
1865 		 */
1866 		if (err) {
1867 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1868 				mmc_hostname(card->host), err);
1869 			card->ext_csd.cache_ctrl = 0;
1870 		} else {
1871 			card->ext_csd.cache_ctrl = 1;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1877 	 * be used with Command Queue.
1878 	 */
1879 	card->ext_csd.cmdq_en = false;
1880 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1881 		err = mmc_cmdq_enable(card);
1882 		if (err && err != -EBADMSG)
1883 			goto free_card;
1884 		if (err) {
1885 			pr_warn("%s: Enabling CMDQ failed\n",
1886 				mmc_hostname(card->host));
1887 			card->ext_csd.cmdq_support = false;
1888 			card->ext_csd.cmdq_depth = 0;
1889 		}
1890 	}
1891 	/*
1892 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1893 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1894 	 * Command Queue.
1895 	 */
1896 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1897 
1898 	if (host->cqe_ops && !host->cqe_enabled) {
1899 		err = host->cqe_ops->cqe_enable(host, card);
1900 		if (!err) {
1901 			host->cqe_enabled = true;
1902 
1903 			if (card->ext_csd.cmdq_en) {
1904 				pr_info("%s: Command Queue Engine enabled\n",
1905 					mmc_hostname(host));
1906 			} else {
1907 				host->hsq_enabled = true;
1908 				pr_info("%s: Host Software Queue enabled\n",
1909 					mmc_hostname(host));
1910 			}
1911 		}
1912 	}
1913 
1914 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1915 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1916 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1917 			mmc_hostname(host));
1918 		err = -EINVAL;
1919 		goto free_card;
1920 	}
1921 
1922 	if (!oldcard)
1923 		host->card = card;
1924 
1925 	return 0;
1926 
1927 free_card:
1928 	if (!oldcard)
1929 		mmc_remove_card(card);
1930 err:
1931 	return err;
1932 }
1933 
1934 static int mmc_can_sleep(struct mmc_card *card)
1935 {
1936 	return card->ext_csd.rev >= 3;
1937 }
1938 
1939 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1940 {
1941 	struct mmc_host *host = cb_data;
1942 
1943 	*busy = host->ops->card_busy(host);
1944 	return 0;
1945 }
1946 
1947 static int mmc_sleep(struct mmc_host *host)
1948 {
1949 	struct mmc_command cmd = {};
1950 	struct mmc_card *card = host->card;
1951 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1952 	bool use_r1b_resp;
1953 	int err;
1954 
1955 	/* Re-tuning can't be done once the card is deselected */
1956 	mmc_retune_hold(host);
1957 
1958 	err = mmc_deselect_cards(host);
1959 	if (err)
1960 		goto out_release;
1961 
1962 	cmd.opcode = MMC_SLEEP_AWAKE;
1963 	cmd.arg = card->rca << 16;
1964 	cmd.arg |= 1 << 15;
1965 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1966 
1967 	err = mmc_wait_for_cmd(host, &cmd, 0);
1968 	if (err)
1969 		goto out_release;
1970 
1971 	/*
1972 	 * If the host does not wait while the card signals busy, then we can
1973 	 * try to poll, but only if the host supports HW polling, as the
1974 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1975 	 * to wait the sleep/awake timeout.
1976 	 */
1977 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1978 		goto out_release;
1979 
1980 	if (!host->ops->card_busy) {
1981 		mmc_delay(timeout_ms);
1982 		goto out_release;
1983 	}
1984 
1985 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1986 
1987 out_release:
1988 	mmc_retune_release(host);
1989 	return err;
1990 }
1991 
1992 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1993 {
1994 	return card &&
1995 		mmc_card_mmc(card) &&
1996 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1997 }
1998 
1999 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2000 {
2001 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2002 	int err;
2003 
2004 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2005 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2006 		timeout = card->ext_csd.power_off_longtime;
2007 
2008 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2009 			EXT_CSD_POWER_OFF_NOTIFICATION,
2010 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2011 	if (err)
2012 		pr_err("%s: Power Off Notification timed out, %u\n",
2013 		       mmc_hostname(card->host), timeout);
2014 
2015 	/* Disable the power off notification after the switch operation. */
2016 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2017 
2018 	return err;
2019 }
2020 
2021 /*
2022  * Host is being removed. Free up the current card.
2023  */
2024 static void mmc_remove(struct mmc_host *host)
2025 {
2026 	mmc_remove_card(host->card);
2027 	host->card = NULL;
2028 }
2029 
2030 /*
2031  * Card detection - card is alive.
2032  */
2033 static int mmc_alive(struct mmc_host *host)
2034 {
2035 	return mmc_send_status(host->card, NULL);
2036 }
2037 
2038 /*
2039  * Card detection callback from host.
2040  */
2041 static void mmc_detect(struct mmc_host *host)
2042 {
2043 	int err;
2044 
2045 	mmc_get_card(host->card, NULL);
2046 
2047 	/*
2048 	 * Just check if our card has been removed.
2049 	 */
2050 	err = _mmc_detect_card_removed(host);
2051 
2052 	mmc_put_card(host->card, NULL);
2053 
2054 	if (err) {
2055 		mmc_remove(host);
2056 
2057 		mmc_claim_host(host);
2058 		mmc_detach_bus(host);
2059 		mmc_power_off(host);
2060 		mmc_release_host(host);
2061 	}
2062 }
2063 
2064 static bool _mmc_cache_enabled(struct mmc_host *host)
2065 {
2066 	return host->card->ext_csd.cache_size > 0 &&
2067 	       host->card->ext_csd.cache_ctrl & 1;
2068 }
2069 
2070 /*
2071  * Flush the internal cache of the eMMC to non-volatile storage.
2072  */
2073 static int _mmc_flush_cache(struct mmc_host *host)
2074 {
2075 	int err = 0;
2076 
2077 	if (_mmc_cache_enabled(host)) {
2078 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2079 				 EXT_CSD_FLUSH_CACHE, 1,
2080 				 CACHE_FLUSH_TIMEOUT_MS);
2081 		if (err)
2082 			pr_err("%s: cache flush error %d\n",
2083 			       mmc_hostname(host), err);
2084 	}
2085 
2086 	return err;
2087 }
2088 
2089 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2090 {
2091 	int err = 0;
2092 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2093 					EXT_CSD_POWER_OFF_LONG;
2094 
2095 	mmc_claim_host(host);
2096 
2097 	if (mmc_card_suspended(host->card))
2098 		goto out;
2099 
2100 	err = _mmc_flush_cache(host);
2101 	if (err)
2102 		goto out;
2103 
2104 	if (mmc_can_poweroff_notify(host->card) &&
2105 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2106 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2107 		err = mmc_poweroff_notify(host->card, notify_type);
2108 	else if (mmc_can_sleep(host->card))
2109 		err = mmc_sleep(host);
2110 	else if (!mmc_host_is_spi(host))
2111 		err = mmc_deselect_cards(host);
2112 
2113 	if (!err) {
2114 		mmc_power_off(host);
2115 		mmc_card_set_suspended(host->card);
2116 	}
2117 out:
2118 	mmc_release_host(host);
2119 	return err;
2120 }
2121 
2122 /*
2123  * Suspend callback
2124  */
2125 static int mmc_suspend(struct mmc_host *host)
2126 {
2127 	int err;
2128 
2129 	err = _mmc_suspend(host, true);
2130 	if (!err) {
2131 		pm_runtime_disable(&host->card->dev);
2132 		pm_runtime_set_suspended(&host->card->dev);
2133 	}
2134 
2135 	return err;
2136 }
2137 
2138 /*
2139  * This function tries to determine if the same card is still present
2140  * and, if so, restore all state to it.
2141  */
2142 static int _mmc_resume(struct mmc_host *host)
2143 {
2144 	int err = 0;
2145 
2146 	mmc_claim_host(host);
2147 
2148 	if (!mmc_card_suspended(host->card))
2149 		goto out;
2150 
2151 	mmc_power_up(host, host->card->ocr);
2152 	err = mmc_init_card(host, host->card->ocr, host->card);
2153 	mmc_card_clr_suspended(host->card);
2154 
2155 out:
2156 	mmc_release_host(host);
2157 	return err;
2158 }
2159 
2160 /*
2161  * Shutdown callback
2162  */
2163 static int mmc_shutdown(struct mmc_host *host)
2164 {
2165 	int err = 0;
2166 
2167 	/*
2168 	 * In a specific case for poweroff notify, we need to resume the card
2169 	 * before we can shutdown it properly.
2170 	 */
2171 	if (mmc_can_poweroff_notify(host->card) &&
2172 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2173 		err = _mmc_resume(host);
2174 
2175 	if (!err)
2176 		err = _mmc_suspend(host, false);
2177 
2178 	return err;
2179 }
2180 
2181 /*
2182  * Callback for resume.
2183  */
2184 static int mmc_resume(struct mmc_host *host)
2185 {
2186 	pm_runtime_enable(&host->card->dev);
2187 	return 0;
2188 }
2189 
2190 /*
2191  * Callback for runtime_suspend.
2192  */
2193 static int mmc_runtime_suspend(struct mmc_host *host)
2194 {
2195 	int err;
2196 
2197 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2198 		return 0;
2199 
2200 	err = _mmc_suspend(host, true);
2201 	if (err)
2202 		pr_err("%s: error %d doing aggressive suspend\n",
2203 			mmc_hostname(host), err);
2204 
2205 	return err;
2206 }
2207 
2208 /*
2209  * Callback for runtime_resume.
2210  */
2211 static int mmc_runtime_resume(struct mmc_host *host)
2212 {
2213 	int err;
2214 
2215 	err = _mmc_resume(host);
2216 	if (err && err != -ENOMEDIUM)
2217 		pr_err("%s: error %d doing runtime resume\n",
2218 			mmc_hostname(host), err);
2219 
2220 	return 0;
2221 }
2222 
2223 static int mmc_can_reset(struct mmc_card *card)
2224 {
2225 	u8 rst_n_function;
2226 
2227 	rst_n_function = card->ext_csd.rst_n_function;
2228 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2229 		return 0;
2230 	return 1;
2231 }
2232 
2233 static int _mmc_hw_reset(struct mmc_host *host)
2234 {
2235 	struct mmc_card *card = host->card;
2236 
2237 	/*
2238 	 * In the case of recovery, we can't expect flushing the cache to work
2239 	 * always, but we have a go and ignore errors.
2240 	 */
2241 	_mmc_flush_cache(host);
2242 
2243 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2244 	     mmc_can_reset(card)) {
2245 		/* If the card accept RST_n signal, send it. */
2246 		mmc_set_clock(host, host->f_init);
2247 		host->ops->hw_reset(host);
2248 		/* Set initial state and call mmc_set_ios */
2249 		mmc_set_initial_state(host);
2250 	} else {
2251 		/* Do a brute force power cycle */
2252 		mmc_power_cycle(host, card->ocr);
2253 		mmc_pwrseq_reset(host);
2254 	}
2255 	return mmc_init_card(host, card->ocr, card);
2256 }
2257 
2258 static const struct mmc_bus_ops mmc_ops = {
2259 	.remove = mmc_remove,
2260 	.detect = mmc_detect,
2261 	.suspend = mmc_suspend,
2262 	.resume = mmc_resume,
2263 	.runtime_suspend = mmc_runtime_suspend,
2264 	.runtime_resume = mmc_runtime_resume,
2265 	.alive = mmc_alive,
2266 	.shutdown = mmc_shutdown,
2267 	.hw_reset = _mmc_hw_reset,
2268 	.cache_enabled = _mmc_cache_enabled,
2269 	.flush_cache = _mmc_flush_cache,
2270 };
2271 
2272 /*
2273  * Starting point for MMC card init.
2274  */
2275 int mmc_attach_mmc(struct mmc_host *host)
2276 {
2277 	int err;
2278 	u32 ocr, rocr;
2279 
2280 	WARN_ON(!host->claimed);
2281 
2282 	/* Set correct bus mode for MMC before attempting attach */
2283 	if (!mmc_host_is_spi(host))
2284 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2285 
2286 	err = mmc_send_op_cond(host, 0, &ocr);
2287 	if (err)
2288 		return err;
2289 
2290 	mmc_attach_bus(host, &mmc_ops);
2291 	if (host->ocr_avail_mmc)
2292 		host->ocr_avail = host->ocr_avail_mmc;
2293 
2294 	/*
2295 	 * We need to get OCR a different way for SPI.
2296 	 */
2297 	if (mmc_host_is_spi(host)) {
2298 		err = mmc_spi_read_ocr(host, 1, &ocr);
2299 		if (err)
2300 			goto err;
2301 	}
2302 
2303 	rocr = mmc_select_voltage(host, ocr);
2304 
2305 	/*
2306 	 * Can we support the voltage of the card?
2307 	 */
2308 	if (!rocr) {
2309 		err = -EINVAL;
2310 		goto err;
2311 	}
2312 
2313 	/*
2314 	 * Detect and init the card.
2315 	 */
2316 	err = mmc_init_card(host, rocr, NULL);
2317 	if (err)
2318 		goto err;
2319 
2320 	mmc_release_host(host);
2321 	err = mmc_add_card(host->card);
2322 	if (err)
2323 		goto remove_card;
2324 
2325 	mmc_claim_host(host);
2326 	return 0;
2327 
2328 remove_card:
2329 	mmc_remove_card(host->card);
2330 	mmc_claim_host(host);
2331 	host->card = NULL;
2332 err:
2333 	mmc_detach_bus(host);
2334 
2335 	pr_err("%s: error %d whilst initialising MMC card\n",
2336 		mmc_hostname(host), err);
2337 
2338 	return err;
2339 }
2340