xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 31cb1fb4)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int tacc_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int tacc_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 	u32 *resp = card->raw_cid;
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from sandisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
82 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
83 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
84 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
85 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
86 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
87 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
88 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
89 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
90 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
91 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
92 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
93 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
100 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
101 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
102 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
103 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
104 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
105 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
106 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
107 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
108 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
109 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
110 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	return 0;
120 }
121 
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 	if (card->ext_csd.erase_group_def & 1)
125 		card->erase_size = card->ext_csd.hc_erase_size;
126 	else
127 		card->erase_size = card->csd.erase_size;
128 
129 	mmc_init_erase(card);
130 }
131 
132 /*
133  * Given a 128-bit response, decode to our card CSD structure.
134  */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 	struct mmc_csd *csd = &card->csd;
138 	unsigned int e, m, a, b;
139 	u32 *resp = card->raw_csd;
140 
141 	/*
142 	 * We only understand CSD structure v1.1 and v1.2.
143 	 * v1.2 has extra information in bits 15, 11 and 10.
144 	 * We also support eMMC v4.4 & v4.41.
145 	 */
146 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 	if (csd->structure == 0) {
148 		pr_err("%s: unrecognised CSD structure version %d\n",
149 			mmc_hostname(card->host), csd->structure);
150 		return -EINVAL;
151 	}
152 
153 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
154 	m = UNSTUFF_BITS(resp, 115, 4);
155 	e = UNSTUFF_BITS(resp, 112, 3);
156 	csd->tacc_ns	 = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
157 	csd->tacc_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
158 
159 	m = UNSTUFF_BITS(resp, 99, 4);
160 	e = UNSTUFF_BITS(resp, 96, 3);
161 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
162 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
163 
164 	e = UNSTUFF_BITS(resp, 47, 3);
165 	m = UNSTUFF_BITS(resp, 62, 12);
166 	csd->capacity	  = (1 + m) << (e + 2);
167 
168 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176 
177 	if (csd->write_blkbits >= 9) {
178 		a = UNSTUFF_BITS(resp, 42, 5);
179 		b = UNSTUFF_BITS(resp, 37, 5);
180 		csd->erase_size = (a + 1) * (b + 1);
181 		csd->erase_size <<= csd->write_blkbits - 9;
182 	}
183 
184 	return 0;
185 }
186 
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 	struct mmc_host *host = card->host;
190 	u8 card_type = card->ext_csd.raw_card_type;
191 	u32 caps = host->caps, caps2 = host->caps2;
192 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 	unsigned int avail_type = 0;
194 
195 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 	}
200 
201 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 	}
206 
207 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 	}
212 
213 	if (caps & MMC_CAP_1_2V_DDR &&
214 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 	}
218 
219 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 		hs200_max_dtr = MMC_HS200_MAX_DTR;
222 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 	}
224 
225 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 		hs200_max_dtr = MMC_HS200_MAX_DTR;
228 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 	}
230 
231 	if (caps2 & MMC_CAP2_HS400_1_8V &&
232 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 		hs200_max_dtr = MMC_HS200_MAX_DTR;
234 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 	}
236 
237 	if (caps2 & MMC_CAP2_HS400_1_2V &&
238 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 		hs200_max_dtr = MMC_HS200_MAX_DTR;
240 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 	}
242 
243 	if ((caps2 & MMC_CAP2_HS400_ES) &&
244 	    card->ext_csd.strobe_support &&
245 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247 
248 	card->ext_csd.hs_max_dtr = hs_max_dtr;
249 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 	card->mmc_avail_type = avail_type;
251 }
252 
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 
257 	/*
258 	 * Disable these attributes by default
259 	 */
260 	card->ext_csd.enhanced_area_offset = -EINVAL;
261 	card->ext_csd.enhanced_area_size = -EINVAL;
262 
263 	/*
264 	 * Enhanced area feature support -- check whether the eMMC
265 	 * card has the Enhanced area enabled.  If so, export enhanced
266 	 * area offset and size to user by adding sysfs interface.
267 	 */
268 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 		if (card->ext_csd.partition_setting_completed) {
271 			hc_erase_grp_sz =
272 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 			hc_wp_grp_sz =
274 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 
276 			/*
277 			 * calculate the enhanced data area offset, in bytes
278 			 */
279 			card->ext_csd.enhanced_area_offset =
280 				(((unsigned long long)ext_csd[139]) << 24) +
281 				(((unsigned long long)ext_csd[138]) << 16) +
282 				(((unsigned long long)ext_csd[137]) << 8) +
283 				(((unsigned long long)ext_csd[136]));
284 			if (mmc_card_blockaddr(card))
285 				card->ext_csd.enhanced_area_offset <<= 9;
286 			/*
287 			 * calculate the enhanced data area size, in kilobytes
288 			 */
289 			card->ext_csd.enhanced_area_size =
290 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 				ext_csd[140];
292 			card->ext_csd.enhanced_area_size *=
293 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 			card->ext_csd.enhanced_area_size <<= 9;
295 		} else {
296 			pr_warn("%s: defines enhanced area without partition setting complete\n",
297 				mmc_hostname(card->host));
298 		}
299 	}
300 }
301 
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 			 unsigned int part_cfg, char *name, int idx, bool ro,
304 			 int area_type)
305 {
306 	card->part[card->nr_parts].size = size;
307 	card->part[card->nr_parts].part_cfg = part_cfg;
308 	sprintf(card->part[card->nr_parts].name, name, idx);
309 	card->part[card->nr_parts].force_ro = ro;
310 	card->part[card->nr_parts].area_type = area_type;
311 	card->nr_parts++;
312 }
313 
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 	int idx;
317 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 	unsigned int part_size;
319 
320 	/*
321 	 * General purpose partition feature support --
322 	 * If ext_csd has the size of general purpose partitions,
323 	 * set size, part_cfg, partition name in mmc_part.
324 	 */
325 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 	    EXT_CSD_PART_SUPPORT_PART_EN) {
327 		hc_erase_grp_sz =
328 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 		hc_wp_grp_sz =
330 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331 
332 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 				continue;
337 			if (card->ext_csd.partition_setting_completed == 0) {
338 				pr_warn("%s: has partition size defined without partition complete\n",
339 					mmc_hostname(card->host));
340 				break;
341 			}
342 			part_size =
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 				<< 16) +
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 				<< 8) +
347 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 			part_size *= (size_t)(hc_erase_grp_sz *
349 				hc_wp_grp_sz);
350 			mmc_part_add(card, part_size << 19,
351 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 				"gp%d", idx, false,
353 				MMC_BLK_DATA_AREA_GP);
354 		}
355 	}
356 }
357 
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME	300
360 
361 /*
362  * Decode extended CSD.
363  */
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365 {
366 	int err = 0, idx;
367 	unsigned int part_size;
368 	struct device_node *np;
369 	bool broken_hpi = false;
370 
371 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 	if (card->csd.structure == 3) {
374 		if (card->ext_csd.raw_ext_csd_structure > 2) {
375 			pr_err("%s: unrecognised EXT_CSD structure "
376 				"version %d\n", mmc_hostname(card->host),
377 					card->ext_csd.raw_ext_csd_structure);
378 			err = -EINVAL;
379 			goto out;
380 		}
381 	}
382 
383 	np = mmc_of_find_child_device(card->host, 0);
384 	if (np && of_device_is_compatible(np, "mmc-card"))
385 		broken_hpi = of_property_read_bool(np, "broken-hpi");
386 	of_node_put(np);
387 
388 	/*
389 	 * The EXT_CSD format is meant to be forward compatible. As long
390 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 	 * are authorized, see JEDEC JESD84-B50 section B.8.
392 	 */
393 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394 
395 	/* fixup device after ext_csd revision field is updated */
396 	mmc_fixup_device(card, mmc_ext_csd_fixups);
397 
398 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 	if (card->ext_csd.rev >= 2) {
403 		card->ext_csd.sectors =
404 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408 
409 		/* Cards with density > 2GiB are sector addressed */
410 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 			mmc_card_set_blockaddr(card);
412 	}
413 
414 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 	mmc_select_card_type(card);
417 
418 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 	card->ext_csd.raw_erase_timeout_mult =
420 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 	card->ext_csd.raw_hc_erase_grp_size =
422 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 	if (card->ext_csd.rev >= 3) {
424 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426 
427 		/* EXT_CSD value is in units of 10ms, but we store in ms */
428 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 		/* Some eMMC set the value too low so set a minimum */
430 		if (card->ext_csd.part_time &&
431 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433 
434 		/* Sleep / awake timeout in 100ns units */
435 		if (sa_shift > 0 && sa_shift <= 0x17)
436 			card->ext_csd.sa_timeout =
437 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 		card->ext_csd.erase_group_def =
439 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 		card->ext_csd.hc_erase_timeout = 300 *
441 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 		card->ext_csd.hc_erase_size =
443 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444 
445 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446 
447 		/*
448 		 * There are two boot regions of equal size, defined in
449 		 * multiples of 128K.
450 		 */
451 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 				mmc_part_add(card, part_size,
455 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 					"boot%d", idx, true,
457 					MMC_BLK_DATA_AREA_BOOT);
458 			}
459 		}
460 	}
461 
462 	card->ext_csd.raw_hc_erase_gap_size =
463 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 	card->ext_csd.raw_sec_trim_mult =
465 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 	card->ext_csd.raw_sec_erase_mult =
467 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 	card->ext_csd.raw_sec_feature_support =
469 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 	card->ext_csd.raw_trim_mult =
471 		ext_csd[EXT_CSD_TRIM_MULT];
472 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 	if (card->ext_csd.rev >= 4) {
475 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 		    EXT_CSD_PART_SETTING_COMPLETED)
477 			card->ext_csd.partition_setting_completed = 1;
478 		else
479 			card->ext_csd.partition_setting_completed = 0;
480 
481 		mmc_manage_enhanced_area(card, ext_csd);
482 
483 		mmc_manage_gp_partitions(card, ext_csd);
484 
485 		card->ext_csd.sec_trim_mult =
486 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 		card->ext_csd.sec_erase_mult =
488 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 		card->ext_csd.sec_feature_support =
490 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 		card->ext_csd.trim_timeout = 300 *
492 			ext_csd[EXT_CSD_TRIM_MULT];
493 
494 		/*
495 		 * Note that the call to mmc_part_add above defaults to read
496 		 * only. If this default assumption is changed, the call must
497 		 * take into account the value of boot_locked below.
498 		 */
499 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 		card->ext_csd.boot_ro_lockable = true;
501 
502 		/* Save power class values */
503 		card->ext_csd.raw_pwr_cl_52_195 =
504 			ext_csd[EXT_CSD_PWR_CL_52_195];
505 		card->ext_csd.raw_pwr_cl_26_195 =
506 			ext_csd[EXT_CSD_PWR_CL_26_195];
507 		card->ext_csd.raw_pwr_cl_52_360 =
508 			ext_csd[EXT_CSD_PWR_CL_52_360];
509 		card->ext_csd.raw_pwr_cl_26_360 =
510 			ext_csd[EXT_CSD_PWR_CL_26_360];
511 		card->ext_csd.raw_pwr_cl_200_195 =
512 			ext_csd[EXT_CSD_PWR_CL_200_195];
513 		card->ext_csd.raw_pwr_cl_200_360 =
514 			ext_csd[EXT_CSD_PWR_CL_200_360];
515 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 	}
522 
523 	if (card->ext_csd.rev >= 5) {
524 		/* Adjust production date as per JEDEC JESD84-B451 */
525 		if (card->cid.year < 2010)
526 			card->cid.year += 16;
527 
528 		/* check whether the eMMC card supports BKOPS */
529 		if (!mmc_card_broken_hpi(card) &&
530 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 			card->ext_csd.bkops = 1;
532 			card->ext_csd.man_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_MANUAL_BKOPS_MASK);
535 			card->ext_csd.raw_bkops_status =
536 				ext_csd[EXT_CSD_BKOPS_STATUS];
537 			if (card->ext_csd.man_bkops_en)
538 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 					mmc_hostname(card->host));
540 			card->ext_csd.auto_bkops_en =
541 					(ext_csd[EXT_CSD_BKOPS_EN] &
542 						EXT_CSD_AUTO_BKOPS_MASK);
543 			if (card->ext_csd.auto_bkops_en)
544 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 					mmc_hostname(card->host));
546 		}
547 
548 		/* check whether the eMMC card supports HPI */
549 		if (!mmc_card_broken_hpi(card) &&
550 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 			card->ext_csd.hpi = 1;
552 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
554 			else
555 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 			/*
557 			 * Indicate the maximum timeout to close
558 			 * a command interrupted by HPI
559 			 */
560 			card->ext_csd.out_of_int_time =
561 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 		}
563 
564 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566 
567 		/*
568 		 * RPMB regions are defined in multiples of 128K.
569 		 */
570 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 				EXT_CSD_PART_CONFIG_ACC_RPMB,
574 				"rpmb", 0, false,
575 				MMC_BLK_DATA_AREA_RPMB);
576 		}
577 	}
578 
579 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 		card->erased_byte = 0xFF;
582 	else
583 		card->erased_byte = 0x0;
584 
585 	/* eMMC v4.5 or later */
586 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 	if (card->ext_csd.rev >= 6) {
588 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589 
590 		card->ext_csd.generic_cmd6_time = 10 *
591 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 		card->ext_csd.power_off_longtime = 10 *
593 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594 
595 		card->ext_csd.cache_size =
596 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600 
601 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 			card->ext_csd.data_sector_size = 4096;
603 		else
604 			card->ext_csd.data_sector_size = 512;
605 
606 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 			card->ext_csd.data_tag_unit_size =
609 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 			(card->ext_csd.data_sector_size);
611 		} else {
612 			card->ext_csd.data_tag_unit_size = 0;
613 		}
614 
615 		card->ext_csd.max_packed_writes =
616 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 		card->ext_csd.max_packed_reads =
618 			ext_csd[EXT_CSD_MAX_PACKED_READS];
619 	} else {
620 		card->ext_csd.data_sector_size = 512;
621 	}
622 
623 	/* eMMC v5 or later */
624 	if (card->ext_csd.rev >= 7) {
625 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 		       MMC_FIRMWARE_LEN);
627 		card->ext_csd.ffu_capable =
628 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630 
631 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 		card->ext_csd.device_life_time_est_typ_a =
633 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 		card->ext_csd.device_life_time_est_typ_b =
635 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 	}
637 
638 	/* eMMC v5.1 or later */
639 	if (card->ext_csd.rev >= 8) {
640 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 					     EXT_CSD_CMDQ_SUPPORTED;
642 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 		/* Exclude inefficiently small queue depths */
645 		if (card->ext_csd.cmdq_depth <= 2) {
646 			card->ext_csd.cmdq_support = false;
647 			card->ext_csd.cmdq_depth = 0;
648 		}
649 		if (card->ext_csd.cmdq_support) {
650 			pr_debug("%s: Command Queue supported depth %u\n",
651 				 mmc_hostname(card->host),
652 				 card->ext_csd.cmdq_depth);
653 		}
654 	}
655 out:
656 	return err;
657 }
658 
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 	u8 *ext_csd;
662 	int err;
663 
664 	if (!mmc_can_ext_csd(card))
665 		return 0;
666 
667 	err = mmc_get_ext_csd(card, &ext_csd);
668 	if (err) {
669 		/* If the host or the card can't do the switch,
670 		 * fail more gracefully. */
671 		if ((err != -EINVAL)
672 		 && (err != -ENOSYS)
673 		 && (err != -EFAULT))
674 			return err;
675 
676 		/*
677 		 * High capacity cards should have this "magic" size
678 		 * stored in their CSD.
679 		 */
680 		if (card->csd.capacity == (4096 * 512)) {
681 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 				mmc_hostname(card->host));
683 		} else {
684 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 				mmc_hostname(card->host));
686 			err = 0;
687 		}
688 
689 		return err;
690 	}
691 
692 	err = mmc_decode_ext_csd(card, ext_csd);
693 	kfree(ext_csd);
694 	return err;
695 }
696 
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 	u8 *bw_ext_csd;
700 	int err;
701 
702 	if (bus_width == MMC_BUS_WIDTH_1)
703 		return 0;
704 
705 	err = mmc_get_ext_csd(card, &bw_ext_csd);
706 	if (err)
707 		return err;
708 
709 	/* only compare read only fields */
710 	err = !((card->ext_csd.raw_partition_support ==
711 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 		(card->ext_csd.raw_erased_mem_count ==
713 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 		(card->ext_csd.rev ==
715 			bw_ext_csd[EXT_CSD_REV]) &&
716 		(card->ext_csd.raw_ext_csd_structure ==
717 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 		(card->ext_csd.raw_card_type ==
719 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 		(card->ext_csd.raw_s_a_timeout ==
721 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 		(card->ext_csd.raw_hc_erase_gap_size ==
723 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 		(card->ext_csd.raw_erase_timeout_mult ==
725 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 		(card->ext_csd.raw_hc_erase_grp_size ==
727 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 		(card->ext_csd.raw_sec_trim_mult ==
729 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 		(card->ext_csd.raw_sec_erase_mult ==
731 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 		(card->ext_csd.raw_sec_feature_support ==
733 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 		(card->ext_csd.raw_trim_mult ==
735 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sectors[0] ==
737 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 		(card->ext_csd.raw_sectors[1] ==
739 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 		(card->ext_csd.raw_sectors[2] ==
741 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 		(card->ext_csd.raw_sectors[3] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 		(card->ext_csd.raw_pwr_cl_52_195 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 		(card->ext_csd.raw_pwr_cl_26_195 ==
747 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 		(card->ext_csd.raw_pwr_cl_52_360 ==
749 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 		(card->ext_csd.raw_pwr_cl_26_360 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 		(card->ext_csd.raw_pwr_cl_200_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 		(card->ext_csd.raw_pwr_cl_200_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762 
763 	if (err)
764 		err = -EINVAL;
765 
766 	kfree(bw_ext_csd);
767 	return err;
768 }
769 
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 	card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 	card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info);
784 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
785 	card->ext_csd.device_life_time_est_typ_a,
786 	card->ext_csd.device_life_time_est_typ_b);
787 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
788 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
789 		card->ext_csd.enhanced_area_offset);
790 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
791 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
792 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
793 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
794 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
795 
796 static ssize_t mmc_fwrev_show(struct device *dev,
797 			      struct device_attribute *attr,
798 			      char *buf)
799 {
800 	struct mmc_card *card = mmc_dev_to_card(dev);
801 
802 	if (card->ext_csd.rev < 7) {
803 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
804 	} else {
805 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
806 			       card->ext_csd.fwrev);
807 	}
808 }
809 
810 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
811 
812 static ssize_t mmc_dsr_show(struct device *dev,
813 			    struct device_attribute *attr,
814 			    char *buf)
815 {
816 	struct mmc_card *card = mmc_dev_to_card(dev);
817 	struct mmc_host *host = card->host;
818 
819 	if (card->csd.dsr_imp && host->dsr_req)
820 		return sprintf(buf, "0x%x\n", host->dsr);
821 	else
822 		/* return default DSR value */
823 		return sprintf(buf, "0x%x\n", 0x404);
824 }
825 
826 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
827 
828 static struct attribute *mmc_std_attrs[] = {
829 	&dev_attr_cid.attr,
830 	&dev_attr_csd.attr,
831 	&dev_attr_date.attr,
832 	&dev_attr_erase_size.attr,
833 	&dev_attr_preferred_erase_size.attr,
834 	&dev_attr_fwrev.attr,
835 	&dev_attr_ffu_capable.attr,
836 	&dev_attr_hwrev.attr,
837 	&dev_attr_manfid.attr,
838 	&dev_attr_name.attr,
839 	&dev_attr_oemid.attr,
840 	&dev_attr_prv.attr,
841 	&dev_attr_pre_eol_info.attr,
842 	&dev_attr_life_time.attr,
843 	&dev_attr_serial.attr,
844 	&dev_attr_enhanced_area_offset.attr,
845 	&dev_attr_enhanced_area_size.attr,
846 	&dev_attr_raw_rpmb_size_mult.attr,
847 	&dev_attr_rel_sectors.attr,
848 	&dev_attr_ocr.attr,
849 	&dev_attr_dsr.attr,
850 	&dev_attr_cmdq_en.attr,
851 	NULL,
852 };
853 ATTRIBUTE_GROUPS(mmc_std);
854 
855 static struct device_type mmc_type = {
856 	.groups = mmc_std_groups,
857 };
858 
859 /*
860  * Select the PowerClass for the current bus width
861  * If power class is defined for 4/8 bit bus in the
862  * extended CSD register, select it by executing the
863  * mmc_switch command.
864  */
865 static int __mmc_select_powerclass(struct mmc_card *card,
866 				   unsigned int bus_width)
867 {
868 	struct mmc_host *host = card->host;
869 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
870 	unsigned int pwrclass_val = 0;
871 	int err = 0;
872 
873 	switch (1 << host->ios.vdd) {
874 	case MMC_VDD_165_195:
875 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
876 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
877 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
878 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
879 				ext_csd->raw_pwr_cl_52_195 :
880 				ext_csd->raw_pwr_cl_ddr_52_195;
881 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
882 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
883 		break;
884 	case MMC_VDD_27_28:
885 	case MMC_VDD_28_29:
886 	case MMC_VDD_29_30:
887 	case MMC_VDD_30_31:
888 	case MMC_VDD_31_32:
889 	case MMC_VDD_32_33:
890 	case MMC_VDD_33_34:
891 	case MMC_VDD_34_35:
892 	case MMC_VDD_35_36:
893 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
894 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
895 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
896 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
897 				ext_csd->raw_pwr_cl_52_360 :
898 				ext_csd->raw_pwr_cl_ddr_52_360;
899 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
900 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
901 				ext_csd->raw_pwr_cl_ddr_200_360 :
902 				ext_csd->raw_pwr_cl_200_360;
903 		break;
904 	default:
905 		pr_warn("%s: Voltage range not supported for power class\n",
906 			mmc_hostname(host));
907 		return -EINVAL;
908 	}
909 
910 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
911 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
912 				EXT_CSD_PWR_CL_8BIT_SHIFT;
913 	else
914 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
915 				EXT_CSD_PWR_CL_4BIT_SHIFT;
916 
917 	/* If the power class is different from the default value */
918 	if (pwrclass_val > 0) {
919 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
920 				 EXT_CSD_POWER_CLASS,
921 				 pwrclass_val,
922 				 card->ext_csd.generic_cmd6_time);
923 	}
924 
925 	return err;
926 }
927 
928 static int mmc_select_powerclass(struct mmc_card *card)
929 {
930 	struct mmc_host *host = card->host;
931 	u32 bus_width, ext_csd_bits;
932 	int err, ddr;
933 
934 	/* Power class selection is supported for versions >= 4.0 */
935 	if (!mmc_can_ext_csd(card))
936 		return 0;
937 
938 	bus_width = host->ios.bus_width;
939 	/* Power class values are defined only for 4/8 bit bus */
940 	if (bus_width == MMC_BUS_WIDTH_1)
941 		return 0;
942 
943 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
944 	if (ddr)
945 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
946 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
947 	else
948 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
949 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
950 
951 	err = __mmc_select_powerclass(card, ext_csd_bits);
952 	if (err)
953 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
954 			mmc_hostname(host), 1 << bus_width, ddr);
955 
956 	return err;
957 }
958 
959 /*
960  * Set the bus speed for the selected speed mode.
961  */
962 static void mmc_set_bus_speed(struct mmc_card *card)
963 {
964 	unsigned int max_dtr = (unsigned int)-1;
965 
966 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
967 	     max_dtr > card->ext_csd.hs200_max_dtr)
968 		max_dtr = card->ext_csd.hs200_max_dtr;
969 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
970 		max_dtr = card->ext_csd.hs_max_dtr;
971 	else if (max_dtr > card->csd.max_dtr)
972 		max_dtr = card->csd.max_dtr;
973 
974 	mmc_set_clock(card->host, max_dtr);
975 }
976 
977 /*
978  * Select the bus width amoung 4-bit and 8-bit(SDR).
979  * If the bus width is changed successfully, return the selected width value.
980  * Zero is returned instead of error value if the wide width is not supported.
981  */
982 static int mmc_select_bus_width(struct mmc_card *card)
983 {
984 	static unsigned ext_csd_bits[] = {
985 		EXT_CSD_BUS_WIDTH_8,
986 		EXT_CSD_BUS_WIDTH_4,
987 	};
988 	static unsigned bus_widths[] = {
989 		MMC_BUS_WIDTH_8,
990 		MMC_BUS_WIDTH_4,
991 	};
992 	struct mmc_host *host = card->host;
993 	unsigned idx, bus_width = 0;
994 	int err = 0;
995 
996 	if (!mmc_can_ext_csd(card) ||
997 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
998 		return 0;
999 
1000 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1001 
1002 	/*
1003 	 * Unlike SD, MMC cards dont have a configuration register to notify
1004 	 * supported bus width. So bus test command should be run to identify
1005 	 * the supported bus width or compare the ext csd values of current
1006 	 * bus width and ext csd values of 1 bit mode read earlier.
1007 	 */
1008 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1009 		/*
1010 		 * Host is capable of 8bit transfer, then switch
1011 		 * the device to work in 8bit transfer mode. If the
1012 		 * mmc switch command returns error then switch to
1013 		 * 4bit transfer mode. On success set the corresponding
1014 		 * bus width on the host.
1015 		 */
1016 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1017 				 EXT_CSD_BUS_WIDTH,
1018 				 ext_csd_bits[idx],
1019 				 card->ext_csd.generic_cmd6_time);
1020 		if (err)
1021 			continue;
1022 
1023 		bus_width = bus_widths[idx];
1024 		mmc_set_bus_width(host, bus_width);
1025 
1026 		/*
1027 		 * If controller can't handle bus width test,
1028 		 * compare ext_csd previously read in 1 bit mode
1029 		 * against ext_csd at new bus width
1030 		 */
1031 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1032 			err = mmc_compare_ext_csds(card, bus_width);
1033 		else
1034 			err = mmc_bus_test(card, bus_width);
1035 
1036 		if (!err) {
1037 			err = bus_width;
1038 			break;
1039 		} else {
1040 			pr_warn("%s: switch to bus width %d failed\n",
1041 				mmc_hostname(host), 1 << bus_width);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /*
1049  * Switch to the high-speed mode
1050  */
1051 static int mmc_select_hs(struct mmc_card *card)
1052 {
1053 	int err;
1054 
1055 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1057 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1058 			   true, true, true);
1059 	if (err)
1060 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1061 			mmc_hostname(card->host), err);
1062 
1063 	return err;
1064 }
1065 
1066 /*
1067  * Activate wide bus and DDR if supported.
1068  */
1069 static int mmc_select_hs_ddr(struct mmc_card *card)
1070 {
1071 	struct mmc_host *host = card->host;
1072 	u32 bus_width, ext_csd_bits;
1073 	int err = 0;
1074 
1075 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1076 		return 0;
1077 
1078 	bus_width = host->ios.bus_width;
1079 	if (bus_width == MMC_BUS_WIDTH_1)
1080 		return 0;
1081 
1082 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1083 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1084 
1085 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 			   EXT_CSD_BUS_WIDTH,
1087 			   ext_csd_bits,
1088 			   card->ext_csd.generic_cmd6_time,
1089 			   MMC_TIMING_MMC_DDR52,
1090 			   true, true, true);
1091 	if (err) {
1092 		pr_err("%s: switch to bus width %d ddr failed\n",
1093 			mmc_hostname(host), 1 << bus_width);
1094 		return err;
1095 	}
1096 
1097 	/*
1098 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1099 	 * signaling.
1100 	 *
1101 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1102 	 *
1103 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1104 	 * in the JEDEC spec for DDR.
1105 	 *
1106 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1107 	 * host controller can support this, like some of the SDHCI
1108 	 * controller which connect to an eMMC device. Some of these
1109 	 * host controller still needs to use 1.8v vccq for supporting
1110 	 * DDR mode.
1111 	 *
1112 	 * So the sequence will be:
1113 	 * if (host and device can both support 1.2v IO)
1114 	 *	use 1.2v IO;
1115 	 * else if (host and device can both support 1.8v IO)
1116 	 *	use 1.8v IO;
1117 	 * so if host and device can only support 3.3v IO, this is the
1118 	 * last choice.
1119 	 *
1120 	 * WARNING: eMMC rules are NOT the same as SD DDR
1121 	 */
1122 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1123 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1124 		if (!err)
1125 			return 0;
1126 	}
1127 
1128 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1129 	    host->caps & MMC_CAP_1_8V_DDR)
1130 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1131 
1132 	/* make sure vccq is 3.3v after switching disaster */
1133 	if (err)
1134 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1135 
1136 	return err;
1137 }
1138 
1139 static int mmc_select_hs400(struct mmc_card *card)
1140 {
1141 	struct mmc_host *host = card->host;
1142 	unsigned int max_dtr;
1143 	int err = 0;
1144 	u8 val;
1145 
1146 	/*
1147 	 * HS400 mode requires 8-bit bus width
1148 	 */
1149 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1150 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1151 		return 0;
1152 
1153 	/* Switch card to HS mode */
1154 	val = EXT_CSD_TIMING_HS;
1155 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1156 			   EXT_CSD_HS_TIMING, val,
1157 			   card->ext_csd.generic_cmd6_time, 0,
1158 			   true, false, true);
1159 	if (err) {
1160 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1161 			mmc_hostname(host), err);
1162 		return err;
1163 	}
1164 
1165 	/* Set host controller to HS timing */
1166 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1167 
1168 	/* Reduce frequency to HS frequency */
1169 	max_dtr = card->ext_csd.hs_max_dtr;
1170 	mmc_set_clock(host, max_dtr);
1171 
1172 	err = mmc_switch_status(card);
1173 	if (err)
1174 		goto out_err;
1175 
1176 	/* Switch card to DDR */
1177 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1178 			 EXT_CSD_BUS_WIDTH,
1179 			 EXT_CSD_DDR_BUS_WIDTH_8,
1180 			 card->ext_csd.generic_cmd6_time);
1181 	if (err) {
1182 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1183 			mmc_hostname(host), err);
1184 		return err;
1185 	}
1186 
1187 	/* Switch card to HS400 */
1188 	val = EXT_CSD_TIMING_HS400 |
1189 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1190 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 			   EXT_CSD_HS_TIMING, val,
1192 			   card->ext_csd.generic_cmd6_time, 0,
1193 			   true, false, true);
1194 	if (err) {
1195 		pr_err("%s: switch to hs400 failed, err:%d\n",
1196 			 mmc_hostname(host), err);
1197 		return err;
1198 	}
1199 
1200 	/* Set host controller to HS400 timing and frequency */
1201 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1202 	mmc_set_bus_speed(card);
1203 
1204 	err = mmc_switch_status(card);
1205 	if (err)
1206 		goto out_err;
1207 
1208 	return 0;
1209 
1210 out_err:
1211 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1212 	       __func__, err);
1213 	return err;
1214 }
1215 
1216 int mmc_hs200_to_hs400(struct mmc_card *card)
1217 {
1218 	return mmc_select_hs400(card);
1219 }
1220 
1221 int mmc_hs400_to_hs200(struct mmc_card *card)
1222 {
1223 	struct mmc_host *host = card->host;
1224 	unsigned int max_dtr;
1225 	int err;
1226 	u8 val;
1227 
1228 	/* Reduce frequency to HS */
1229 	max_dtr = card->ext_csd.hs_max_dtr;
1230 	mmc_set_clock(host, max_dtr);
1231 
1232 	/* Switch HS400 to HS DDR */
1233 	val = EXT_CSD_TIMING_HS;
1234 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1235 			   val, card->ext_csd.generic_cmd6_time, 0,
1236 			   true, false, true);
1237 	if (err)
1238 		goto out_err;
1239 
1240 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1241 
1242 	err = mmc_switch_status(card);
1243 	if (err)
1244 		goto out_err;
1245 
1246 	/* Switch HS DDR to HS */
1247 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1248 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1249 			   0, true, false, true);
1250 	if (err)
1251 		goto out_err;
1252 
1253 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1254 
1255 	err = mmc_switch_status(card);
1256 	if (err)
1257 		goto out_err;
1258 
1259 	/* Switch HS to HS200 */
1260 	val = EXT_CSD_TIMING_HS200 |
1261 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1262 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1263 			   val, card->ext_csd.generic_cmd6_time, 0,
1264 			   true, false, true);
1265 	if (err)
1266 		goto out_err;
1267 
1268 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1269 
1270 	/*
1271 	 * For HS200, CRC errors are not a reliable way to know the switch
1272 	 * failed. If there really is a problem, we would expect tuning will
1273 	 * fail and the result ends up the same.
1274 	 */
1275 	err = __mmc_switch_status(card, false);
1276 	if (err)
1277 		goto out_err;
1278 
1279 	mmc_set_bus_speed(card);
1280 
1281 	return 0;
1282 
1283 out_err:
1284 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1285 	       __func__, err);
1286 	return err;
1287 }
1288 
1289 static int mmc_select_hs400es(struct mmc_card *card)
1290 {
1291 	struct mmc_host *host = card->host;
1292 	int err = 0;
1293 	u8 val;
1294 
1295 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1296 		err = -ENOTSUPP;
1297 		goto out_err;
1298 	}
1299 
1300 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1301 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1302 
1303 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1304 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1305 
1306 	/* If fails try again during next card power cycle */
1307 	if (err)
1308 		goto out_err;
1309 
1310 	err = mmc_select_bus_width(card);
1311 	if (err < 0)
1312 		goto out_err;
1313 
1314 	/* Switch card to HS mode */
1315 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1316 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1317 			   card->ext_csd.generic_cmd6_time, 0,
1318 			   true, false, true);
1319 	if (err) {
1320 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1321 			mmc_hostname(host), err);
1322 		goto out_err;
1323 	}
1324 
1325 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1326 	err = mmc_switch_status(card);
1327 	if (err)
1328 		goto out_err;
1329 
1330 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1331 
1332 	/* Switch card to DDR with strobe bit */
1333 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1334 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1335 			 EXT_CSD_BUS_WIDTH,
1336 			 val,
1337 			 card->ext_csd.generic_cmd6_time);
1338 	if (err) {
1339 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1340 			mmc_hostname(host), err);
1341 		goto out_err;
1342 	}
1343 
1344 	/* Switch card to HS400 */
1345 	val = EXT_CSD_TIMING_HS400 |
1346 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1347 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1348 			   EXT_CSD_HS_TIMING, val,
1349 			   card->ext_csd.generic_cmd6_time, 0,
1350 			   true, false, true);
1351 	if (err) {
1352 		pr_err("%s: switch to hs400es failed, err:%d\n",
1353 			mmc_hostname(host), err);
1354 		goto out_err;
1355 	}
1356 
1357 	/* Set host controller to HS400 timing and frequency */
1358 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1359 
1360 	/* Controller enable enhanced strobe function */
1361 	host->ios.enhanced_strobe = true;
1362 	if (host->ops->hs400_enhanced_strobe)
1363 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1364 
1365 	err = mmc_switch_status(card);
1366 	if (err)
1367 		goto out_err;
1368 
1369 	return 0;
1370 
1371 out_err:
1372 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1373 	       __func__, err);
1374 	return err;
1375 }
1376 
1377 static void mmc_select_driver_type(struct mmc_card *card)
1378 {
1379 	int card_drv_type, drive_strength, drv_type;
1380 
1381 	card_drv_type = card->ext_csd.raw_driver_strength |
1382 			mmc_driver_type_mask(0);
1383 
1384 	drive_strength = mmc_select_drive_strength(card,
1385 						   card->ext_csd.hs200_max_dtr,
1386 						   card_drv_type, &drv_type);
1387 
1388 	card->drive_strength = drive_strength;
1389 
1390 	if (drv_type)
1391 		mmc_set_driver_type(card->host, drv_type);
1392 }
1393 
1394 /*
1395  * For device supporting HS200 mode, the following sequence
1396  * should be done before executing the tuning process.
1397  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1398  * 2. switch to HS200 mode
1399  * 3. set the clock to > 52Mhz and <=200MHz
1400  */
1401 static int mmc_select_hs200(struct mmc_card *card)
1402 {
1403 	struct mmc_host *host = card->host;
1404 	unsigned int old_timing, old_signal_voltage;
1405 	int err = -EINVAL;
1406 	u8 val;
1407 
1408 	old_signal_voltage = host->ios.signal_voltage;
1409 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1410 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1411 
1412 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1413 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1414 
1415 	/* If fails try again during next card power cycle */
1416 	if (err)
1417 		return err;
1418 
1419 	mmc_select_driver_type(card);
1420 
1421 	/*
1422 	 * Set the bus width(4 or 8) with host's support and
1423 	 * switch to HS200 mode if bus width is set successfully.
1424 	 */
1425 	err = mmc_select_bus_width(card);
1426 	if (err > 0) {
1427 		val = EXT_CSD_TIMING_HS200 |
1428 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1429 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1430 				   EXT_CSD_HS_TIMING, val,
1431 				   card->ext_csd.generic_cmd6_time, 0,
1432 				   true, false, true);
1433 		if (err)
1434 			goto err;
1435 		old_timing = host->ios.timing;
1436 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1437 
1438 		/*
1439 		 * For HS200, CRC errors are not a reliable way to know the
1440 		 * switch failed. If there really is a problem, we would expect
1441 		 * tuning will fail and the result ends up the same.
1442 		 */
1443 		err = __mmc_switch_status(card, false);
1444 
1445 		/*
1446 		 * mmc_select_timing() assumes timing has not changed if
1447 		 * it is a switch error.
1448 		 */
1449 		if (err == -EBADMSG)
1450 			mmc_set_timing(host, old_timing);
1451 	}
1452 err:
1453 	if (err) {
1454 		/* fall back to the old signal voltage, if fails report error */
1455 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1456 			err = -EIO;
1457 
1458 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1459 		       __func__, err);
1460 	}
1461 	return err;
1462 }
1463 
1464 /*
1465  * Activate High Speed, HS200 or HS400ES mode if supported.
1466  */
1467 static int mmc_select_timing(struct mmc_card *card)
1468 {
1469 	int err = 0;
1470 
1471 	if (!mmc_can_ext_csd(card))
1472 		goto bus_speed;
1473 
1474 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1475 		err = mmc_select_hs400es(card);
1476 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1477 		err = mmc_select_hs200(card);
1478 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1479 		err = mmc_select_hs(card);
1480 
1481 	if (err && err != -EBADMSG)
1482 		return err;
1483 
1484 bus_speed:
1485 	/*
1486 	 * Set the bus speed to the selected bus timing.
1487 	 * If timing is not selected, backward compatible is the default.
1488 	 */
1489 	mmc_set_bus_speed(card);
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Execute tuning sequence to seek the proper bus operating
1495  * conditions for HS200 and HS400, which sends CMD21 to the device.
1496  */
1497 static int mmc_hs200_tuning(struct mmc_card *card)
1498 {
1499 	struct mmc_host *host = card->host;
1500 
1501 	/*
1502 	 * Timing should be adjusted to the HS400 target
1503 	 * operation frequency for tuning process
1504 	 */
1505 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1506 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1507 		if (host->ops->prepare_hs400_tuning)
1508 			host->ops->prepare_hs400_tuning(host, &host->ios);
1509 
1510 	return mmc_execute_tuning(card);
1511 }
1512 
1513 /*
1514  * Handle the detection and initialisation of a card.
1515  *
1516  * In the case of a resume, "oldcard" will contain the card
1517  * we're trying to reinitialise.
1518  */
1519 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1520 	struct mmc_card *oldcard)
1521 {
1522 	struct mmc_card *card;
1523 	int err;
1524 	u32 cid[4];
1525 	u32 rocr;
1526 
1527 	WARN_ON(!host->claimed);
1528 
1529 	/* Set correct bus mode for MMC before attempting init */
1530 	if (!mmc_host_is_spi(host))
1531 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1532 
1533 	/*
1534 	 * Since we're changing the OCR value, we seem to
1535 	 * need to tell some cards to go back to the idle
1536 	 * state.  We wait 1ms to give cards time to
1537 	 * respond.
1538 	 * mmc_go_idle is needed for eMMC that are asleep
1539 	 */
1540 	mmc_go_idle(host);
1541 
1542 	/* The extra bit indicates that we support high capacity */
1543 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1544 	if (err)
1545 		goto err;
1546 
1547 	/*
1548 	 * For SPI, enable CRC as appropriate.
1549 	 */
1550 	if (mmc_host_is_spi(host)) {
1551 		err = mmc_spi_set_crc(host, use_spi_crc);
1552 		if (err)
1553 			goto err;
1554 	}
1555 
1556 	/*
1557 	 * Fetch CID from card.
1558 	 */
1559 	err = mmc_send_cid(host, cid);
1560 	if (err)
1561 		goto err;
1562 
1563 	if (oldcard) {
1564 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1565 			err = -ENOENT;
1566 			goto err;
1567 		}
1568 
1569 		card = oldcard;
1570 	} else {
1571 		/*
1572 		 * Allocate card structure.
1573 		 */
1574 		card = mmc_alloc_card(host, &mmc_type);
1575 		if (IS_ERR(card)) {
1576 			err = PTR_ERR(card);
1577 			goto err;
1578 		}
1579 
1580 		card->ocr = ocr;
1581 		card->type = MMC_TYPE_MMC;
1582 		card->rca = 1;
1583 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1584 	}
1585 
1586 	/*
1587 	 * Call the optional HC's init_card function to handle quirks.
1588 	 */
1589 	if (host->ops->init_card)
1590 		host->ops->init_card(host, card);
1591 
1592 	/*
1593 	 * For native busses:  set card RCA and quit open drain mode.
1594 	 */
1595 	if (!mmc_host_is_spi(host)) {
1596 		err = mmc_set_relative_addr(card);
1597 		if (err)
1598 			goto free_card;
1599 
1600 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1601 	}
1602 
1603 	if (!oldcard) {
1604 		/*
1605 		 * Fetch CSD from card.
1606 		 */
1607 		err = mmc_send_csd(card, card->raw_csd);
1608 		if (err)
1609 			goto free_card;
1610 
1611 		err = mmc_decode_csd(card);
1612 		if (err)
1613 			goto free_card;
1614 		err = mmc_decode_cid(card);
1615 		if (err)
1616 			goto free_card;
1617 	}
1618 
1619 	/*
1620 	 * handling only for cards supporting DSR and hosts requesting
1621 	 * DSR configuration
1622 	 */
1623 	if (card->csd.dsr_imp && host->dsr_req)
1624 		mmc_set_dsr(host);
1625 
1626 	/*
1627 	 * Select card, as all following commands rely on that.
1628 	 */
1629 	if (!mmc_host_is_spi(host)) {
1630 		err = mmc_select_card(card);
1631 		if (err)
1632 			goto free_card;
1633 	}
1634 
1635 	if (!oldcard) {
1636 		/* Read extended CSD. */
1637 		err = mmc_read_ext_csd(card);
1638 		if (err)
1639 			goto free_card;
1640 
1641 		/*
1642 		 * If doing byte addressing, check if required to do sector
1643 		 * addressing.  Handle the case of <2GB cards needing sector
1644 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1645 		 * ocr register has bit 30 set for sector addressing.
1646 		 */
1647 		if (rocr & BIT(30))
1648 			mmc_card_set_blockaddr(card);
1649 
1650 		/* Erase size depends on CSD and Extended CSD */
1651 		mmc_set_erase_size(card);
1652 	}
1653 
1654 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1655 	if (card->ext_csd.rev >= 3) {
1656 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1657 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1658 				 card->ext_csd.generic_cmd6_time);
1659 
1660 		if (err && err != -EBADMSG)
1661 			goto free_card;
1662 
1663 		if (err) {
1664 			err = 0;
1665 			/*
1666 			 * Just disable enhanced area off & sz
1667 			 * will try to enable ERASE_GROUP_DEF
1668 			 * during next time reinit
1669 			 */
1670 			card->ext_csd.enhanced_area_offset = -EINVAL;
1671 			card->ext_csd.enhanced_area_size = -EINVAL;
1672 		} else {
1673 			card->ext_csd.erase_group_def = 1;
1674 			/*
1675 			 * enable ERASE_GRP_DEF successfully.
1676 			 * This will affect the erase size, so
1677 			 * here need to reset erase size
1678 			 */
1679 			mmc_set_erase_size(card);
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * Ensure eMMC user default partition is enabled
1685 	 */
1686 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1687 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1688 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1689 				 card->ext_csd.part_config,
1690 				 card->ext_csd.part_time);
1691 		if (err && err != -EBADMSG)
1692 			goto free_card;
1693 	}
1694 
1695 	/*
1696 	 * Enable power_off_notification byte in the ext_csd register
1697 	 */
1698 	if (card->ext_csd.rev >= 6) {
1699 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1700 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1701 				 EXT_CSD_POWER_ON,
1702 				 card->ext_csd.generic_cmd6_time);
1703 		if (err && err != -EBADMSG)
1704 			goto free_card;
1705 
1706 		/*
1707 		 * The err can be -EBADMSG or 0,
1708 		 * so check for success and update the flag
1709 		 */
1710 		if (!err)
1711 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1712 	}
1713 
1714 	/*
1715 	 * Select timing interface
1716 	 */
1717 	err = mmc_select_timing(card);
1718 	if (err)
1719 		goto free_card;
1720 
1721 	if (mmc_card_hs200(card)) {
1722 		err = mmc_hs200_tuning(card);
1723 		if (err)
1724 			goto free_card;
1725 
1726 		err = mmc_select_hs400(card);
1727 		if (err)
1728 			goto free_card;
1729 	} else if (!mmc_card_hs400es(card)) {
1730 		/* Select the desired bus width optionally */
1731 		err = mmc_select_bus_width(card);
1732 		if (err > 0 && mmc_card_hs(card)) {
1733 			err = mmc_select_hs_ddr(card);
1734 			if (err)
1735 				goto free_card;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Choose the power class with selected bus interface
1741 	 */
1742 	mmc_select_powerclass(card);
1743 
1744 	/*
1745 	 * Enable HPI feature (if supported)
1746 	 */
1747 	if (card->ext_csd.hpi) {
1748 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1749 				EXT_CSD_HPI_MGMT, 1,
1750 				card->ext_csd.generic_cmd6_time);
1751 		if (err && err != -EBADMSG)
1752 			goto free_card;
1753 		if (err) {
1754 			pr_warn("%s: Enabling HPI failed\n",
1755 				mmc_hostname(card->host));
1756 			err = 0;
1757 		} else
1758 			card->ext_csd.hpi_en = 1;
1759 	}
1760 
1761 	/*
1762 	 * If cache size is higher than 0, this indicates
1763 	 * the existence of cache and it can be turned on.
1764 	 */
1765 	if (!mmc_card_broken_hpi(card) &&
1766 	    card->ext_csd.cache_size > 0) {
1767 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1768 				EXT_CSD_CACHE_CTRL, 1,
1769 				card->ext_csd.generic_cmd6_time);
1770 		if (err && err != -EBADMSG)
1771 			goto free_card;
1772 
1773 		/*
1774 		 * Only if no error, cache is turned on successfully.
1775 		 */
1776 		if (err) {
1777 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1778 				mmc_hostname(card->host), err);
1779 			card->ext_csd.cache_ctrl = 0;
1780 			err = 0;
1781 		} else {
1782 			card->ext_csd.cache_ctrl = 1;
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1788 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1789 	 * Command Queue.
1790 	 */
1791 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1792 
1793 	/*
1794 	 * The mandatory minimum values are defined for packed command.
1795 	 * read: 5, write: 3
1796 	 */
1797 	if (card->ext_csd.max_packed_writes >= 3 &&
1798 	    card->ext_csd.max_packed_reads >= 5 &&
1799 	    host->caps2 & MMC_CAP2_PACKED_CMD) {
1800 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1801 				EXT_CSD_EXP_EVENTS_CTRL,
1802 				EXT_CSD_PACKED_EVENT_EN,
1803 				card->ext_csd.generic_cmd6_time);
1804 		if (err && err != -EBADMSG)
1805 			goto free_card;
1806 		if (err) {
1807 			pr_warn("%s: Enabling packed event failed\n",
1808 				mmc_hostname(card->host));
1809 			card->ext_csd.packed_event_en = 0;
1810 			err = 0;
1811 		} else {
1812 			card->ext_csd.packed_event_en = 1;
1813 		}
1814 	}
1815 
1816 	if (!oldcard)
1817 		host->card = card;
1818 
1819 	return 0;
1820 
1821 free_card:
1822 	if (!oldcard)
1823 		mmc_remove_card(card);
1824 err:
1825 	return err;
1826 }
1827 
1828 static int mmc_can_sleep(struct mmc_card *card)
1829 {
1830 	return (card && card->ext_csd.rev >= 3);
1831 }
1832 
1833 static int mmc_sleep(struct mmc_host *host)
1834 {
1835 	struct mmc_command cmd = {};
1836 	struct mmc_card *card = host->card;
1837 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1838 	int err;
1839 
1840 	/* Re-tuning can't be done once the card is deselected */
1841 	mmc_retune_hold(host);
1842 
1843 	err = mmc_deselect_cards(host);
1844 	if (err)
1845 		goto out_release;
1846 
1847 	cmd.opcode = MMC_SLEEP_AWAKE;
1848 	cmd.arg = card->rca << 16;
1849 	cmd.arg |= 1 << 15;
1850 
1851 	/*
1852 	 * If the max_busy_timeout of the host is specified, validate it against
1853 	 * the sleep cmd timeout. A failure means we need to prevent the host
1854 	 * from doing hw busy detection, which is done by converting to a R1
1855 	 * response instead of a R1B.
1856 	 */
1857 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1858 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1859 	} else {
1860 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1861 		cmd.busy_timeout = timeout_ms;
1862 	}
1863 
1864 	err = mmc_wait_for_cmd(host, &cmd, 0);
1865 	if (err)
1866 		goto out_release;
1867 
1868 	/*
1869 	 * If the host does not wait while the card signals busy, then we will
1870 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1871 	 * SEND_STATUS command to poll the status because that command (and most
1872 	 * others) is invalid while the card sleeps.
1873 	 */
1874 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1875 		mmc_delay(timeout_ms);
1876 
1877 out_release:
1878 	mmc_retune_release(host);
1879 	return err;
1880 }
1881 
1882 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1883 {
1884 	return card &&
1885 		mmc_card_mmc(card) &&
1886 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1887 }
1888 
1889 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1890 {
1891 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1892 	int err;
1893 
1894 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1895 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1896 		timeout = card->ext_csd.power_off_longtime;
1897 
1898 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1899 			EXT_CSD_POWER_OFF_NOTIFICATION,
1900 			notify_type, timeout, 0, true, false, false);
1901 	if (err)
1902 		pr_err("%s: Power Off Notification timed out, %u\n",
1903 		       mmc_hostname(card->host), timeout);
1904 
1905 	/* Disable the power off notification after the switch operation. */
1906 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1907 
1908 	return err;
1909 }
1910 
1911 /*
1912  * Host is being removed. Free up the current card.
1913  */
1914 static void mmc_remove(struct mmc_host *host)
1915 {
1916 	mmc_remove_card(host->card);
1917 	host->card = NULL;
1918 }
1919 
1920 /*
1921  * Card detection - card is alive.
1922  */
1923 static int mmc_alive(struct mmc_host *host)
1924 {
1925 	return mmc_send_status(host->card, NULL);
1926 }
1927 
1928 /*
1929  * Card detection callback from host.
1930  */
1931 static void mmc_detect(struct mmc_host *host)
1932 {
1933 	int err;
1934 
1935 	mmc_get_card(host->card);
1936 
1937 	/*
1938 	 * Just check if our card has been removed.
1939 	 */
1940 	err = _mmc_detect_card_removed(host);
1941 
1942 	mmc_put_card(host->card);
1943 
1944 	if (err) {
1945 		mmc_remove(host);
1946 
1947 		mmc_claim_host(host);
1948 		mmc_detach_bus(host);
1949 		mmc_power_off(host);
1950 		mmc_release_host(host);
1951 	}
1952 }
1953 
1954 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1955 {
1956 	int err = 0;
1957 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1958 					EXT_CSD_POWER_OFF_LONG;
1959 
1960 	mmc_claim_host(host);
1961 
1962 	if (mmc_card_suspended(host->card))
1963 		goto out;
1964 
1965 	if (mmc_card_doing_bkops(host->card)) {
1966 		err = mmc_stop_bkops(host->card);
1967 		if (err)
1968 			goto out;
1969 	}
1970 
1971 	err = mmc_flush_cache(host->card);
1972 	if (err)
1973 		goto out;
1974 
1975 	if (mmc_can_poweroff_notify(host->card) &&
1976 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1977 		err = mmc_poweroff_notify(host->card, notify_type);
1978 	else if (mmc_can_sleep(host->card))
1979 		err = mmc_sleep(host);
1980 	else if (!mmc_host_is_spi(host))
1981 		err = mmc_deselect_cards(host);
1982 
1983 	if (!err) {
1984 		mmc_power_off(host);
1985 		mmc_card_set_suspended(host->card);
1986 	}
1987 out:
1988 	mmc_release_host(host);
1989 	return err;
1990 }
1991 
1992 /*
1993  * Suspend callback
1994  */
1995 static int mmc_suspend(struct mmc_host *host)
1996 {
1997 	int err;
1998 
1999 	err = _mmc_suspend(host, true);
2000 	if (!err) {
2001 		pm_runtime_disable(&host->card->dev);
2002 		pm_runtime_set_suspended(&host->card->dev);
2003 	}
2004 
2005 	return err;
2006 }
2007 
2008 /*
2009  * This function tries to determine if the same card is still present
2010  * and, if so, restore all state to it.
2011  */
2012 static int _mmc_resume(struct mmc_host *host)
2013 {
2014 	int err = 0;
2015 
2016 	mmc_claim_host(host);
2017 
2018 	if (!mmc_card_suspended(host->card))
2019 		goto out;
2020 
2021 	mmc_power_up(host, host->card->ocr);
2022 	err = mmc_init_card(host, host->card->ocr, host->card);
2023 	mmc_card_clr_suspended(host->card);
2024 
2025 out:
2026 	mmc_release_host(host);
2027 	return err;
2028 }
2029 
2030 /*
2031  * Shutdown callback
2032  */
2033 static int mmc_shutdown(struct mmc_host *host)
2034 {
2035 	int err = 0;
2036 
2037 	/*
2038 	 * In a specific case for poweroff notify, we need to resume the card
2039 	 * before we can shutdown it properly.
2040 	 */
2041 	if (mmc_can_poweroff_notify(host->card) &&
2042 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2043 		err = _mmc_resume(host);
2044 
2045 	if (!err)
2046 		err = _mmc_suspend(host, false);
2047 
2048 	return err;
2049 }
2050 
2051 /*
2052  * Callback for resume.
2053  */
2054 static int mmc_resume(struct mmc_host *host)
2055 {
2056 	pm_runtime_enable(&host->card->dev);
2057 	return 0;
2058 }
2059 
2060 /*
2061  * Callback for runtime_suspend.
2062  */
2063 static int mmc_runtime_suspend(struct mmc_host *host)
2064 {
2065 	int err;
2066 
2067 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2068 		return 0;
2069 
2070 	err = _mmc_suspend(host, true);
2071 	if (err)
2072 		pr_err("%s: error %d doing aggressive suspend\n",
2073 			mmc_hostname(host), err);
2074 
2075 	return err;
2076 }
2077 
2078 /*
2079  * Callback for runtime_resume.
2080  */
2081 static int mmc_runtime_resume(struct mmc_host *host)
2082 {
2083 	int err;
2084 
2085 	err = _mmc_resume(host);
2086 	if (err && err != -ENOMEDIUM)
2087 		pr_err("%s: error %d doing runtime resume\n",
2088 			mmc_hostname(host), err);
2089 
2090 	return 0;
2091 }
2092 
2093 static int mmc_can_reset(struct mmc_card *card)
2094 {
2095 	u8 rst_n_function;
2096 
2097 	rst_n_function = card->ext_csd.rst_n_function;
2098 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2099 		return 0;
2100 	return 1;
2101 }
2102 
2103 static int mmc_reset(struct mmc_host *host)
2104 {
2105 	struct mmc_card *card = host->card;
2106 
2107 	/*
2108 	 * In the case of recovery, we can't expect flushing the cache to work
2109 	 * always, but we have a go and ignore errors.
2110 	 */
2111 	mmc_flush_cache(host->card);
2112 
2113 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2114 	     mmc_can_reset(card)) {
2115 		/* If the card accept RST_n signal, send it. */
2116 		mmc_set_clock(host, host->f_init);
2117 		host->ops->hw_reset(host);
2118 		/* Set initial state and call mmc_set_ios */
2119 		mmc_set_initial_state(host);
2120 	} else {
2121 		/* Do a brute force power cycle */
2122 		mmc_power_cycle(host, card->ocr);
2123 		mmc_pwrseq_reset(host);
2124 	}
2125 	return mmc_init_card(host, card->ocr, card);
2126 }
2127 
2128 static const struct mmc_bus_ops mmc_ops = {
2129 	.remove = mmc_remove,
2130 	.detect = mmc_detect,
2131 	.suspend = mmc_suspend,
2132 	.resume = mmc_resume,
2133 	.runtime_suspend = mmc_runtime_suspend,
2134 	.runtime_resume = mmc_runtime_resume,
2135 	.alive = mmc_alive,
2136 	.shutdown = mmc_shutdown,
2137 	.reset = mmc_reset,
2138 };
2139 
2140 /*
2141  * Starting point for MMC card init.
2142  */
2143 int mmc_attach_mmc(struct mmc_host *host)
2144 {
2145 	int err;
2146 	u32 ocr, rocr;
2147 
2148 	WARN_ON(!host->claimed);
2149 
2150 	/* Set correct bus mode for MMC before attempting attach */
2151 	if (!mmc_host_is_spi(host))
2152 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2153 
2154 	err = mmc_send_op_cond(host, 0, &ocr);
2155 	if (err)
2156 		return err;
2157 
2158 	mmc_attach_bus(host, &mmc_ops);
2159 	if (host->ocr_avail_mmc)
2160 		host->ocr_avail = host->ocr_avail_mmc;
2161 
2162 	/*
2163 	 * We need to get OCR a different way for SPI.
2164 	 */
2165 	if (mmc_host_is_spi(host)) {
2166 		err = mmc_spi_read_ocr(host, 1, &ocr);
2167 		if (err)
2168 			goto err;
2169 	}
2170 
2171 	rocr = mmc_select_voltage(host, ocr);
2172 
2173 	/*
2174 	 * Can we support the voltage of the card?
2175 	 */
2176 	if (!rocr) {
2177 		err = -EINVAL;
2178 		goto err;
2179 	}
2180 
2181 	/*
2182 	 * Detect and init the card.
2183 	 */
2184 	err = mmc_init_card(host, rocr, NULL);
2185 	if (err)
2186 		goto err;
2187 
2188 	mmc_release_host(host);
2189 	err = mmc_add_card(host->card);
2190 	if (err)
2191 		goto remove_card;
2192 
2193 	mmc_claim_host(host);
2194 	return 0;
2195 
2196 remove_card:
2197 	mmc_remove_card(host->card);
2198 	mmc_claim_host(host);
2199 	host->card = NULL;
2200 err:
2201 	mmc_detach_bus(host);
2202 
2203 	pr_err("%s: error %d whilst initialising MMC card\n",
2204 		mmc_hostname(host), err);
2205 
2206 	return err;
2207 }
2208