xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 2d972b6a)
1 /*
2  *  linux/drivers/mmc/core/mmc.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 	u32 *resp = card->raw_cid;
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from sandisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
82 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
83 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
84 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
85 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
86 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
87 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
88 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
89 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
90 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
91 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
92 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
93 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
100 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
101 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
102 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
103 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
104 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
105 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
106 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
107 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
108 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
109 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
110 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	return 0;
120 }
121 
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 	if (card->ext_csd.erase_group_def & 1)
125 		card->erase_size = card->ext_csd.hc_erase_size;
126 	else
127 		card->erase_size = card->csd.erase_size;
128 
129 	mmc_init_erase(card);
130 }
131 
132 /*
133  * Given a 128-bit response, decode to our card CSD structure.
134  */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 	struct mmc_csd *csd = &card->csd;
138 	unsigned int e, m, a, b;
139 	u32 *resp = card->raw_csd;
140 
141 	/*
142 	 * We only understand CSD structure v1.1 and v1.2.
143 	 * v1.2 has extra information in bits 15, 11 and 10.
144 	 * We also support eMMC v4.4 & v4.41.
145 	 */
146 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 	if (csd->structure == 0) {
148 		pr_err("%s: unrecognised CSD structure version %d\n",
149 			mmc_hostname(card->host), csd->structure);
150 		return -EINVAL;
151 	}
152 
153 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
154 	m = UNSTUFF_BITS(resp, 115, 4);
155 	e = UNSTUFF_BITS(resp, 112, 3);
156 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
158 
159 	m = UNSTUFF_BITS(resp, 99, 4);
160 	e = UNSTUFF_BITS(resp, 96, 3);
161 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
162 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
163 
164 	e = UNSTUFF_BITS(resp, 47, 3);
165 	m = UNSTUFF_BITS(resp, 62, 12);
166 	csd->capacity	  = (1 + m) << (e + 2);
167 
168 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176 
177 	if (csd->write_blkbits >= 9) {
178 		a = UNSTUFF_BITS(resp, 42, 5);
179 		b = UNSTUFF_BITS(resp, 37, 5);
180 		csd->erase_size = (a + 1) * (b + 1);
181 		csd->erase_size <<= csd->write_blkbits - 9;
182 	}
183 
184 	return 0;
185 }
186 
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 	struct mmc_host *host = card->host;
190 	u8 card_type = card->ext_csd.raw_card_type;
191 	u32 caps = host->caps, caps2 = host->caps2;
192 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 	unsigned int avail_type = 0;
194 
195 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 	}
200 
201 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 	}
206 
207 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 	}
212 
213 	if (caps & MMC_CAP_1_2V_DDR &&
214 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 	}
218 
219 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 		hs200_max_dtr = MMC_HS200_MAX_DTR;
222 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 	}
224 
225 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 		hs200_max_dtr = MMC_HS200_MAX_DTR;
228 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 	}
230 
231 	if (caps2 & MMC_CAP2_HS400_1_8V &&
232 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 		hs200_max_dtr = MMC_HS200_MAX_DTR;
234 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 	}
236 
237 	if (caps2 & MMC_CAP2_HS400_1_2V &&
238 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 		hs200_max_dtr = MMC_HS200_MAX_DTR;
240 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 	}
242 
243 	if ((caps2 & MMC_CAP2_HS400_ES) &&
244 	    card->ext_csd.strobe_support &&
245 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247 
248 	card->ext_csd.hs_max_dtr = hs_max_dtr;
249 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 	card->mmc_avail_type = avail_type;
251 }
252 
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 
257 	/*
258 	 * Disable these attributes by default
259 	 */
260 	card->ext_csd.enhanced_area_offset = -EINVAL;
261 	card->ext_csd.enhanced_area_size = -EINVAL;
262 
263 	/*
264 	 * Enhanced area feature support -- check whether the eMMC
265 	 * card has the Enhanced area enabled.  If so, export enhanced
266 	 * area offset and size to user by adding sysfs interface.
267 	 */
268 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 		if (card->ext_csd.partition_setting_completed) {
271 			hc_erase_grp_sz =
272 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 			hc_wp_grp_sz =
274 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 
276 			/*
277 			 * calculate the enhanced data area offset, in bytes
278 			 */
279 			card->ext_csd.enhanced_area_offset =
280 				(((unsigned long long)ext_csd[139]) << 24) +
281 				(((unsigned long long)ext_csd[138]) << 16) +
282 				(((unsigned long long)ext_csd[137]) << 8) +
283 				(((unsigned long long)ext_csd[136]));
284 			if (mmc_card_blockaddr(card))
285 				card->ext_csd.enhanced_area_offset <<= 9;
286 			/*
287 			 * calculate the enhanced data area size, in kilobytes
288 			 */
289 			card->ext_csd.enhanced_area_size =
290 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 				ext_csd[140];
292 			card->ext_csd.enhanced_area_size *=
293 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 			card->ext_csd.enhanced_area_size <<= 9;
295 		} else {
296 			pr_warn("%s: defines enhanced area without partition setting complete\n",
297 				mmc_hostname(card->host));
298 		}
299 	}
300 }
301 
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 			 unsigned int part_cfg, char *name, int idx, bool ro,
304 			 int area_type)
305 {
306 	card->part[card->nr_parts].size = size;
307 	card->part[card->nr_parts].part_cfg = part_cfg;
308 	sprintf(card->part[card->nr_parts].name, name, idx);
309 	card->part[card->nr_parts].force_ro = ro;
310 	card->part[card->nr_parts].area_type = area_type;
311 	card->nr_parts++;
312 }
313 
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 	int idx;
317 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 	unsigned int part_size;
319 
320 	/*
321 	 * General purpose partition feature support --
322 	 * If ext_csd has the size of general purpose partitions,
323 	 * set size, part_cfg, partition name in mmc_part.
324 	 */
325 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 	    EXT_CSD_PART_SUPPORT_PART_EN) {
327 		hc_erase_grp_sz =
328 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 		hc_wp_grp_sz =
330 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331 
332 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 				continue;
337 			if (card->ext_csd.partition_setting_completed == 0) {
338 				pr_warn("%s: has partition size defined without partition complete\n",
339 					mmc_hostname(card->host));
340 				break;
341 			}
342 			part_size =
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 				<< 16) +
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 				<< 8) +
347 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 			part_size *= (size_t)(hc_erase_grp_sz *
349 				hc_wp_grp_sz);
350 			mmc_part_add(card, part_size << 19,
351 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 				"gp%d", idx, false,
353 				MMC_BLK_DATA_AREA_GP);
354 		}
355 	}
356 }
357 
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME	300
360 
361 /*
362  * Decode extended CSD.
363  */
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365 {
366 	int err = 0, idx;
367 	unsigned int part_size;
368 	struct device_node *np;
369 	bool broken_hpi = false;
370 
371 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 	if (card->csd.structure == 3) {
374 		if (card->ext_csd.raw_ext_csd_structure > 2) {
375 			pr_err("%s: unrecognised EXT_CSD structure "
376 				"version %d\n", mmc_hostname(card->host),
377 					card->ext_csd.raw_ext_csd_structure);
378 			err = -EINVAL;
379 			goto out;
380 		}
381 	}
382 
383 	np = mmc_of_find_child_device(card->host, 0);
384 	if (np && of_device_is_compatible(np, "mmc-card"))
385 		broken_hpi = of_property_read_bool(np, "broken-hpi");
386 	of_node_put(np);
387 
388 	/*
389 	 * The EXT_CSD format is meant to be forward compatible. As long
390 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 	 * are authorized, see JEDEC JESD84-B50 section B.8.
392 	 */
393 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394 
395 	/* fixup device after ext_csd revision field is updated */
396 	mmc_fixup_device(card, mmc_ext_csd_fixups);
397 
398 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 	if (card->ext_csd.rev >= 2) {
403 		card->ext_csd.sectors =
404 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408 
409 		/* Cards with density > 2GiB are sector addressed */
410 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 			mmc_card_set_blockaddr(card);
412 	}
413 
414 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 	mmc_select_card_type(card);
417 
418 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 	card->ext_csd.raw_erase_timeout_mult =
420 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 	card->ext_csd.raw_hc_erase_grp_size =
422 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 	if (card->ext_csd.rev >= 3) {
424 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426 
427 		/* EXT_CSD value is in units of 10ms, but we store in ms */
428 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 		/* Some eMMC set the value too low so set a minimum */
430 		if (card->ext_csd.part_time &&
431 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433 
434 		/* Sleep / awake timeout in 100ns units */
435 		if (sa_shift > 0 && sa_shift <= 0x17)
436 			card->ext_csd.sa_timeout =
437 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 		card->ext_csd.erase_group_def =
439 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 		card->ext_csd.hc_erase_timeout = 300 *
441 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 		card->ext_csd.hc_erase_size =
443 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444 
445 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446 
447 		/*
448 		 * There are two boot regions of equal size, defined in
449 		 * multiples of 128K.
450 		 */
451 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 				mmc_part_add(card, part_size,
455 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 					"boot%d", idx, true,
457 					MMC_BLK_DATA_AREA_BOOT);
458 			}
459 		}
460 	}
461 
462 	card->ext_csd.raw_hc_erase_gap_size =
463 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 	card->ext_csd.raw_sec_trim_mult =
465 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 	card->ext_csd.raw_sec_erase_mult =
467 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 	card->ext_csd.raw_sec_feature_support =
469 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 	card->ext_csd.raw_trim_mult =
471 		ext_csd[EXT_CSD_TRIM_MULT];
472 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 	if (card->ext_csd.rev >= 4) {
475 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 		    EXT_CSD_PART_SETTING_COMPLETED)
477 			card->ext_csd.partition_setting_completed = 1;
478 		else
479 			card->ext_csd.partition_setting_completed = 0;
480 
481 		mmc_manage_enhanced_area(card, ext_csd);
482 
483 		mmc_manage_gp_partitions(card, ext_csd);
484 
485 		card->ext_csd.sec_trim_mult =
486 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 		card->ext_csd.sec_erase_mult =
488 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 		card->ext_csd.sec_feature_support =
490 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 		card->ext_csd.trim_timeout = 300 *
492 			ext_csd[EXT_CSD_TRIM_MULT];
493 
494 		/*
495 		 * Note that the call to mmc_part_add above defaults to read
496 		 * only. If this default assumption is changed, the call must
497 		 * take into account the value of boot_locked below.
498 		 */
499 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 		card->ext_csd.boot_ro_lockable = true;
501 
502 		/* Save power class values */
503 		card->ext_csd.raw_pwr_cl_52_195 =
504 			ext_csd[EXT_CSD_PWR_CL_52_195];
505 		card->ext_csd.raw_pwr_cl_26_195 =
506 			ext_csd[EXT_CSD_PWR_CL_26_195];
507 		card->ext_csd.raw_pwr_cl_52_360 =
508 			ext_csd[EXT_CSD_PWR_CL_52_360];
509 		card->ext_csd.raw_pwr_cl_26_360 =
510 			ext_csd[EXT_CSD_PWR_CL_26_360];
511 		card->ext_csd.raw_pwr_cl_200_195 =
512 			ext_csd[EXT_CSD_PWR_CL_200_195];
513 		card->ext_csd.raw_pwr_cl_200_360 =
514 			ext_csd[EXT_CSD_PWR_CL_200_360];
515 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 	}
522 
523 	if (card->ext_csd.rev >= 5) {
524 		/* Adjust production date as per JEDEC JESD84-B451 */
525 		if (card->cid.year < 2010)
526 			card->cid.year += 16;
527 
528 		/* check whether the eMMC card supports BKOPS */
529 		if (!mmc_card_broken_hpi(card) &&
530 		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 			card->ext_csd.bkops = 1;
532 			card->ext_csd.man_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_MANUAL_BKOPS_MASK);
535 			card->ext_csd.raw_bkops_status =
536 				ext_csd[EXT_CSD_BKOPS_STATUS];
537 			if (card->ext_csd.man_bkops_en)
538 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 					mmc_hostname(card->host));
540 			card->ext_csd.auto_bkops_en =
541 					(ext_csd[EXT_CSD_BKOPS_EN] &
542 						EXT_CSD_AUTO_BKOPS_MASK);
543 			if (card->ext_csd.auto_bkops_en)
544 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 					mmc_hostname(card->host));
546 		}
547 
548 		/* check whether the eMMC card supports HPI */
549 		if (!mmc_card_broken_hpi(card) &&
550 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 			card->ext_csd.hpi = 1;
552 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
554 			else
555 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 			/*
557 			 * Indicate the maximum timeout to close
558 			 * a command interrupted by HPI
559 			 */
560 			card->ext_csd.out_of_int_time =
561 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 		}
563 
564 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566 
567 		/*
568 		 * RPMB regions are defined in multiples of 128K.
569 		 */
570 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 				EXT_CSD_PART_CONFIG_ACC_RPMB,
574 				"rpmb", 0, false,
575 				MMC_BLK_DATA_AREA_RPMB);
576 		}
577 	}
578 
579 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 		card->erased_byte = 0xFF;
582 	else
583 		card->erased_byte = 0x0;
584 
585 	/* eMMC v4.5 or later */
586 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 	if (card->ext_csd.rev >= 6) {
588 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589 
590 		card->ext_csd.generic_cmd6_time = 10 *
591 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 		card->ext_csd.power_off_longtime = 10 *
593 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594 
595 		card->ext_csd.cache_size =
596 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600 
601 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 			card->ext_csd.data_sector_size = 4096;
603 		else
604 			card->ext_csd.data_sector_size = 512;
605 
606 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 			card->ext_csd.data_tag_unit_size =
609 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 			(card->ext_csd.data_sector_size);
611 		} else {
612 			card->ext_csd.data_tag_unit_size = 0;
613 		}
614 
615 		card->ext_csd.max_packed_writes =
616 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 		card->ext_csd.max_packed_reads =
618 			ext_csd[EXT_CSD_MAX_PACKED_READS];
619 	} else {
620 		card->ext_csd.data_sector_size = 512;
621 	}
622 
623 	/* eMMC v5 or later */
624 	if (card->ext_csd.rev >= 7) {
625 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 		       MMC_FIRMWARE_LEN);
627 		card->ext_csd.ffu_capable =
628 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630 
631 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 		card->ext_csd.device_life_time_est_typ_a =
633 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 		card->ext_csd.device_life_time_est_typ_b =
635 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 	}
637 
638 	/* eMMC v5.1 or later */
639 	if (card->ext_csd.rev >= 8) {
640 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 					     EXT_CSD_CMDQ_SUPPORTED;
642 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 		/* Exclude inefficiently small queue depths */
645 		if (card->ext_csd.cmdq_depth <= 2) {
646 			card->ext_csd.cmdq_support = false;
647 			card->ext_csd.cmdq_depth = 0;
648 		}
649 		if (card->ext_csd.cmdq_support) {
650 			pr_debug("%s: Command Queue supported depth %u\n",
651 				 mmc_hostname(card->host),
652 				 card->ext_csd.cmdq_depth);
653 		}
654 	}
655 out:
656 	return err;
657 }
658 
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 	u8 *ext_csd;
662 	int err;
663 
664 	if (!mmc_can_ext_csd(card))
665 		return 0;
666 
667 	err = mmc_get_ext_csd(card, &ext_csd);
668 	if (err) {
669 		/* If the host or the card can't do the switch,
670 		 * fail more gracefully. */
671 		if ((err != -EINVAL)
672 		 && (err != -ENOSYS)
673 		 && (err != -EFAULT))
674 			return err;
675 
676 		/*
677 		 * High capacity cards should have this "magic" size
678 		 * stored in their CSD.
679 		 */
680 		if (card->csd.capacity == (4096 * 512)) {
681 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 				mmc_hostname(card->host));
683 		} else {
684 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 				mmc_hostname(card->host));
686 			err = 0;
687 		}
688 
689 		return err;
690 	}
691 
692 	err = mmc_decode_ext_csd(card, ext_csd);
693 	kfree(ext_csd);
694 	return err;
695 }
696 
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 	u8 *bw_ext_csd;
700 	int err;
701 
702 	if (bus_width == MMC_BUS_WIDTH_1)
703 		return 0;
704 
705 	err = mmc_get_ext_csd(card, &bw_ext_csd);
706 	if (err)
707 		return err;
708 
709 	/* only compare read only fields */
710 	err = !((card->ext_csd.raw_partition_support ==
711 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 		(card->ext_csd.raw_erased_mem_count ==
713 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 		(card->ext_csd.rev ==
715 			bw_ext_csd[EXT_CSD_REV]) &&
716 		(card->ext_csd.raw_ext_csd_structure ==
717 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 		(card->ext_csd.raw_card_type ==
719 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 		(card->ext_csd.raw_s_a_timeout ==
721 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 		(card->ext_csd.raw_hc_erase_gap_size ==
723 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 		(card->ext_csd.raw_erase_timeout_mult ==
725 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 		(card->ext_csd.raw_hc_erase_grp_size ==
727 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 		(card->ext_csd.raw_sec_trim_mult ==
729 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 		(card->ext_csd.raw_sec_erase_mult ==
731 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 		(card->ext_csd.raw_sec_feature_support ==
733 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 		(card->ext_csd.raw_trim_mult ==
735 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 		(card->ext_csd.raw_sectors[0] ==
737 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 		(card->ext_csd.raw_sectors[1] ==
739 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 		(card->ext_csd.raw_sectors[2] ==
741 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 		(card->ext_csd.raw_sectors[3] ==
743 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 		(card->ext_csd.raw_pwr_cl_52_195 ==
745 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 		(card->ext_csd.raw_pwr_cl_26_195 ==
747 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 		(card->ext_csd.raw_pwr_cl_52_360 ==
749 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 		(card->ext_csd.raw_pwr_cl_26_360 ==
751 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 		(card->ext_csd.raw_pwr_cl_200_195 ==
753 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 		(card->ext_csd.raw_pwr_cl_200_360 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762 
763 	if (err)
764 		err = -EINVAL;
765 
766 	kfree(bw_ext_csd);
767 	return err;
768 }
769 
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 	card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 	card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 	card->ext_csd.device_life_time_est_typ_a,
787 	card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 		card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
797 
798 static ssize_t mmc_fwrev_show(struct device *dev,
799 			      struct device_attribute *attr,
800 			      char *buf)
801 {
802 	struct mmc_card *card = mmc_dev_to_card(dev);
803 
804 	if (card->ext_csd.rev < 7) {
805 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
806 	} else {
807 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 			       card->ext_csd.fwrev);
809 	}
810 }
811 
812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
813 
814 static ssize_t mmc_dsr_show(struct device *dev,
815 			    struct device_attribute *attr,
816 			    char *buf)
817 {
818 	struct mmc_card *card = mmc_dev_to_card(dev);
819 	struct mmc_host *host = card->host;
820 
821 	if (card->csd.dsr_imp && host->dsr_req)
822 		return sprintf(buf, "0x%x\n", host->dsr);
823 	else
824 		/* return default DSR value */
825 		return sprintf(buf, "0x%x\n", 0x404);
826 }
827 
828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
829 
830 static struct attribute *mmc_std_attrs[] = {
831 	&dev_attr_cid.attr,
832 	&dev_attr_csd.attr,
833 	&dev_attr_date.attr,
834 	&dev_attr_erase_size.attr,
835 	&dev_attr_preferred_erase_size.attr,
836 	&dev_attr_fwrev.attr,
837 	&dev_attr_ffu_capable.attr,
838 	&dev_attr_hwrev.attr,
839 	&dev_attr_manfid.attr,
840 	&dev_attr_name.attr,
841 	&dev_attr_oemid.attr,
842 	&dev_attr_prv.attr,
843 	&dev_attr_rev.attr,
844 	&dev_attr_pre_eol_info.attr,
845 	&dev_attr_life_time.attr,
846 	&dev_attr_serial.attr,
847 	&dev_attr_enhanced_area_offset.attr,
848 	&dev_attr_enhanced_area_size.attr,
849 	&dev_attr_raw_rpmb_size_mult.attr,
850 	&dev_attr_rel_sectors.attr,
851 	&dev_attr_ocr.attr,
852 	&dev_attr_rca.attr,
853 	&dev_attr_dsr.attr,
854 	&dev_attr_cmdq_en.attr,
855 	NULL,
856 };
857 ATTRIBUTE_GROUPS(mmc_std);
858 
859 static struct device_type mmc_type = {
860 	.groups = mmc_std_groups,
861 };
862 
863 /*
864  * Select the PowerClass for the current bus width
865  * If power class is defined for 4/8 bit bus in the
866  * extended CSD register, select it by executing the
867  * mmc_switch command.
868  */
869 static int __mmc_select_powerclass(struct mmc_card *card,
870 				   unsigned int bus_width)
871 {
872 	struct mmc_host *host = card->host;
873 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 	unsigned int pwrclass_val = 0;
875 	int err = 0;
876 
877 	switch (1 << host->ios.vdd) {
878 	case MMC_VDD_165_195:
879 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 				ext_csd->raw_pwr_cl_52_195 :
884 				ext_csd->raw_pwr_cl_ddr_52_195;
885 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
887 		break;
888 	case MMC_VDD_27_28:
889 	case MMC_VDD_28_29:
890 	case MMC_VDD_29_30:
891 	case MMC_VDD_30_31:
892 	case MMC_VDD_31_32:
893 	case MMC_VDD_32_33:
894 	case MMC_VDD_33_34:
895 	case MMC_VDD_34_35:
896 	case MMC_VDD_35_36:
897 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 				ext_csd->raw_pwr_cl_52_360 :
902 				ext_csd->raw_pwr_cl_ddr_52_360;
903 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 				ext_csd->raw_pwr_cl_ddr_200_360 :
906 				ext_csd->raw_pwr_cl_200_360;
907 		break;
908 	default:
909 		pr_warn("%s: Voltage range not supported for power class\n",
910 			mmc_hostname(host));
911 		return -EINVAL;
912 	}
913 
914 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 				EXT_CSD_PWR_CL_8BIT_SHIFT;
917 	else
918 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 				EXT_CSD_PWR_CL_4BIT_SHIFT;
920 
921 	/* If the power class is different from the default value */
922 	if (pwrclass_val > 0) {
923 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 				 EXT_CSD_POWER_CLASS,
925 				 pwrclass_val,
926 				 card->ext_csd.generic_cmd6_time);
927 	}
928 
929 	return err;
930 }
931 
932 static int mmc_select_powerclass(struct mmc_card *card)
933 {
934 	struct mmc_host *host = card->host;
935 	u32 bus_width, ext_csd_bits;
936 	int err, ddr;
937 
938 	/* Power class selection is supported for versions >= 4.0 */
939 	if (!mmc_can_ext_csd(card))
940 		return 0;
941 
942 	bus_width = host->ios.bus_width;
943 	/* Power class values are defined only for 4/8 bit bus */
944 	if (bus_width == MMC_BUS_WIDTH_1)
945 		return 0;
946 
947 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
948 	if (ddr)
949 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
951 	else
952 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
954 
955 	err = __mmc_select_powerclass(card, ext_csd_bits);
956 	if (err)
957 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 			mmc_hostname(host), 1 << bus_width, ddr);
959 
960 	return err;
961 }
962 
963 /*
964  * Set the bus speed for the selected speed mode.
965  */
966 static void mmc_set_bus_speed(struct mmc_card *card)
967 {
968 	unsigned int max_dtr = (unsigned int)-1;
969 
970 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 	     max_dtr > card->ext_csd.hs200_max_dtr)
972 		max_dtr = card->ext_csd.hs200_max_dtr;
973 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 		max_dtr = card->ext_csd.hs_max_dtr;
975 	else if (max_dtr > card->csd.max_dtr)
976 		max_dtr = card->csd.max_dtr;
977 
978 	mmc_set_clock(card->host, max_dtr);
979 }
980 
981 /*
982  * Select the bus width amoung 4-bit and 8-bit(SDR).
983  * If the bus width is changed successfully, return the selected width value.
984  * Zero is returned instead of error value if the wide width is not supported.
985  */
986 static int mmc_select_bus_width(struct mmc_card *card)
987 {
988 	static unsigned ext_csd_bits[] = {
989 		EXT_CSD_BUS_WIDTH_8,
990 		EXT_CSD_BUS_WIDTH_4,
991 	};
992 	static unsigned bus_widths[] = {
993 		MMC_BUS_WIDTH_8,
994 		MMC_BUS_WIDTH_4,
995 	};
996 	struct mmc_host *host = card->host;
997 	unsigned idx, bus_width = 0;
998 	int err = 0;
999 
1000 	if (!mmc_can_ext_csd(card) ||
1001 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002 		return 0;
1003 
1004 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005 
1006 	/*
1007 	 * Unlike SD, MMC cards dont have a configuration register to notify
1008 	 * supported bus width. So bus test command should be run to identify
1009 	 * the supported bus width or compare the ext csd values of current
1010 	 * bus width and ext csd values of 1 bit mode read earlier.
1011 	 */
1012 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013 		/*
1014 		 * Host is capable of 8bit transfer, then switch
1015 		 * the device to work in 8bit transfer mode. If the
1016 		 * mmc switch command returns error then switch to
1017 		 * 4bit transfer mode. On success set the corresponding
1018 		 * bus width on the host.
1019 		 */
1020 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 				 EXT_CSD_BUS_WIDTH,
1022 				 ext_csd_bits[idx],
1023 				 card->ext_csd.generic_cmd6_time);
1024 		if (err)
1025 			continue;
1026 
1027 		bus_width = bus_widths[idx];
1028 		mmc_set_bus_width(host, bus_width);
1029 
1030 		/*
1031 		 * If controller can't handle bus width test,
1032 		 * compare ext_csd previously read in 1 bit mode
1033 		 * against ext_csd at new bus width
1034 		 */
1035 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 			err = mmc_compare_ext_csds(card, bus_width);
1037 		else
1038 			err = mmc_bus_test(card, bus_width);
1039 
1040 		if (!err) {
1041 			err = bus_width;
1042 			break;
1043 		} else {
1044 			pr_warn("%s: switch to bus width %d failed\n",
1045 				mmc_hostname(host), 1 << bus_width);
1046 		}
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /*
1053  * Switch to the high-speed mode
1054  */
1055 static int mmc_select_hs(struct mmc_card *card)
1056 {
1057 	int err;
1058 
1059 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062 			   true, true, true);
1063 	if (err)
1064 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 			mmc_hostname(card->host), err);
1066 
1067 	return err;
1068 }
1069 
1070 /*
1071  * Activate wide bus and DDR if supported.
1072  */
1073 static int mmc_select_hs_ddr(struct mmc_card *card)
1074 {
1075 	struct mmc_host *host = card->host;
1076 	u32 bus_width, ext_csd_bits;
1077 	int err = 0;
1078 
1079 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080 		return 0;
1081 
1082 	bus_width = host->ios.bus_width;
1083 	if (bus_width == MMC_BUS_WIDTH_1)
1084 		return 0;
1085 
1086 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088 
1089 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090 			   EXT_CSD_BUS_WIDTH,
1091 			   ext_csd_bits,
1092 			   card->ext_csd.generic_cmd6_time,
1093 			   MMC_TIMING_MMC_DDR52,
1094 			   true, true, true);
1095 	if (err) {
1096 		pr_err("%s: switch to bus width %d ddr failed\n",
1097 			mmc_hostname(host), 1 << bus_width);
1098 		return err;
1099 	}
1100 
1101 	/*
1102 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103 	 * signaling.
1104 	 *
1105 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106 	 *
1107 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 	 * in the JEDEC spec for DDR.
1109 	 *
1110 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 	 * host controller can support this, like some of the SDHCI
1112 	 * controller which connect to an eMMC device. Some of these
1113 	 * host controller still needs to use 1.8v vccq for supporting
1114 	 * DDR mode.
1115 	 *
1116 	 * So the sequence will be:
1117 	 * if (host and device can both support 1.2v IO)
1118 	 *	use 1.2v IO;
1119 	 * else if (host and device can both support 1.8v IO)
1120 	 *	use 1.8v IO;
1121 	 * so if host and device can only support 3.3v IO, this is the
1122 	 * last choice.
1123 	 *
1124 	 * WARNING: eMMC rules are NOT the same as SD DDR
1125 	 */
1126 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128 		if (!err)
1129 			return 0;
1130 	}
1131 
1132 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 	    host->caps & MMC_CAP_1_8V_DDR)
1134 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135 
1136 	/* make sure vccq is 3.3v after switching disaster */
1137 	if (err)
1138 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1139 
1140 	return err;
1141 }
1142 
1143 static int mmc_select_hs400(struct mmc_card *card)
1144 {
1145 	struct mmc_host *host = card->host;
1146 	unsigned int max_dtr;
1147 	int err = 0;
1148 	u8 val;
1149 
1150 	/*
1151 	 * HS400 mode requires 8-bit bus width
1152 	 */
1153 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1155 		return 0;
1156 
1157 	/* Switch card to HS mode */
1158 	val = EXT_CSD_TIMING_HS;
1159 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 			   EXT_CSD_HS_TIMING, val,
1161 			   card->ext_csd.generic_cmd6_time, 0,
1162 			   true, false, true);
1163 	if (err) {
1164 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 			mmc_hostname(host), err);
1166 		return err;
1167 	}
1168 
1169 	/* Set host controller to HS timing */
1170 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171 
1172 	/* Reduce frequency to HS frequency */
1173 	max_dtr = card->ext_csd.hs_max_dtr;
1174 	mmc_set_clock(host, max_dtr);
1175 
1176 	err = mmc_switch_status(card);
1177 	if (err)
1178 		goto out_err;
1179 
1180 	/* Switch card to DDR */
1181 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1182 			 EXT_CSD_BUS_WIDTH,
1183 			 EXT_CSD_DDR_BUS_WIDTH_8,
1184 			 card->ext_csd.generic_cmd6_time);
1185 	if (err) {
1186 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187 			mmc_hostname(host), err);
1188 		return err;
1189 	}
1190 
1191 	/* Switch card to HS400 */
1192 	val = EXT_CSD_TIMING_HS400 |
1193 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195 			   EXT_CSD_HS_TIMING, val,
1196 			   card->ext_csd.generic_cmd6_time, 0,
1197 			   true, false, true);
1198 	if (err) {
1199 		pr_err("%s: switch to hs400 failed, err:%d\n",
1200 			 mmc_hostname(host), err);
1201 		return err;
1202 	}
1203 
1204 	/* Set host controller to HS400 timing and frequency */
1205 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206 	mmc_set_bus_speed(card);
1207 
1208 	err = mmc_switch_status(card);
1209 	if (err)
1210 		goto out_err;
1211 
1212 	return 0;
1213 
1214 out_err:
1215 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1216 	       __func__, err);
1217 	return err;
1218 }
1219 
1220 int mmc_hs200_to_hs400(struct mmc_card *card)
1221 {
1222 	return mmc_select_hs400(card);
1223 }
1224 
1225 int mmc_hs400_to_hs200(struct mmc_card *card)
1226 {
1227 	struct mmc_host *host = card->host;
1228 	unsigned int max_dtr;
1229 	int err;
1230 	u8 val;
1231 
1232 	/* Reduce frequency to HS */
1233 	max_dtr = card->ext_csd.hs_max_dtr;
1234 	mmc_set_clock(host, max_dtr);
1235 
1236 	/* Switch HS400 to HS DDR */
1237 	val = EXT_CSD_TIMING_HS;
1238 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239 			   val, card->ext_csd.generic_cmd6_time, 0,
1240 			   true, false, true);
1241 	if (err)
1242 		goto out_err;
1243 
1244 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1245 
1246 	err = mmc_switch_status(card);
1247 	if (err)
1248 		goto out_err;
1249 
1250 	/* Switch HS DDR to HS */
1251 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253 			   0, true, false, true);
1254 	if (err)
1255 		goto out_err;
1256 
1257 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1258 
1259 	err = mmc_switch_status(card);
1260 	if (err)
1261 		goto out_err;
1262 
1263 	/* Switch HS to HS200 */
1264 	val = EXT_CSD_TIMING_HS200 |
1265 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267 			   val, card->ext_csd.generic_cmd6_time, 0,
1268 			   true, false, true);
1269 	if (err)
1270 		goto out_err;
1271 
1272 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1273 
1274 	/*
1275 	 * For HS200, CRC errors are not a reliable way to know the switch
1276 	 * failed. If there really is a problem, we would expect tuning will
1277 	 * fail and the result ends up the same.
1278 	 */
1279 	err = __mmc_switch_status(card, false);
1280 	if (err)
1281 		goto out_err;
1282 
1283 	mmc_set_bus_speed(card);
1284 
1285 	return 0;
1286 
1287 out_err:
1288 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1289 	       __func__, err);
1290 	return err;
1291 }
1292 
1293 static void mmc_select_driver_type(struct mmc_card *card)
1294 {
1295 	int card_drv_type, drive_strength, drv_type = 0;
1296 	int fixed_drv_type = card->host->fixed_drv_type;
1297 
1298 	card_drv_type = card->ext_csd.raw_driver_strength |
1299 			mmc_driver_type_mask(0);
1300 
1301 	if (fixed_drv_type >= 0)
1302 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1303 				 ? fixed_drv_type : 0;
1304 	else
1305 		drive_strength = mmc_select_drive_strength(card,
1306 							   card->ext_csd.hs200_max_dtr,
1307 							   card_drv_type, &drv_type);
1308 
1309 	card->drive_strength = drive_strength;
1310 
1311 	if (drv_type)
1312 		mmc_set_driver_type(card->host, drv_type);
1313 }
1314 
1315 static int mmc_select_hs400es(struct mmc_card *card)
1316 {
1317 	struct mmc_host *host = card->host;
1318 	int err = -EINVAL;
1319 	u8 val;
1320 
1321 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1322 		err = -ENOTSUPP;
1323 		goto out_err;
1324 	}
1325 
1326 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1327 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1328 
1329 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1330 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1331 
1332 	/* If fails try again during next card power cycle */
1333 	if (err)
1334 		goto out_err;
1335 
1336 	err = mmc_select_bus_width(card);
1337 	if (err < 0)
1338 		goto out_err;
1339 
1340 	/* Switch card to HS mode */
1341 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1342 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1343 			   card->ext_csd.generic_cmd6_time, 0,
1344 			   true, false, true);
1345 	if (err) {
1346 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1347 			mmc_hostname(host), err);
1348 		goto out_err;
1349 	}
1350 
1351 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1352 	err = mmc_switch_status(card);
1353 	if (err)
1354 		goto out_err;
1355 
1356 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1357 
1358 	/* Switch card to DDR with strobe bit */
1359 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1360 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1361 			 EXT_CSD_BUS_WIDTH,
1362 			 val,
1363 			 card->ext_csd.generic_cmd6_time);
1364 	if (err) {
1365 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1366 			mmc_hostname(host), err);
1367 		goto out_err;
1368 	}
1369 
1370 	mmc_select_driver_type(card);
1371 
1372 	/* Switch card to HS400 */
1373 	val = EXT_CSD_TIMING_HS400 |
1374 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376 			   EXT_CSD_HS_TIMING, val,
1377 			   card->ext_csd.generic_cmd6_time, 0,
1378 			   true, false, true);
1379 	if (err) {
1380 		pr_err("%s: switch to hs400es failed, err:%d\n",
1381 			mmc_hostname(host), err);
1382 		goto out_err;
1383 	}
1384 
1385 	/* Set host controller to HS400 timing and frequency */
1386 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1387 
1388 	/* Controller enable enhanced strobe function */
1389 	host->ios.enhanced_strobe = true;
1390 	if (host->ops->hs400_enhanced_strobe)
1391 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1392 
1393 	err = mmc_switch_status(card);
1394 	if (err)
1395 		goto out_err;
1396 
1397 	return 0;
1398 
1399 out_err:
1400 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1401 	       __func__, err);
1402 	return err;
1403 }
1404 
1405 /*
1406  * For device supporting HS200 mode, the following sequence
1407  * should be done before executing the tuning process.
1408  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1409  * 2. switch to HS200 mode
1410  * 3. set the clock to > 52Mhz and <=200MHz
1411  */
1412 static int mmc_select_hs200(struct mmc_card *card)
1413 {
1414 	struct mmc_host *host = card->host;
1415 	unsigned int old_timing, old_signal_voltage;
1416 	int err = -EINVAL;
1417 	u8 val;
1418 
1419 	old_signal_voltage = host->ios.signal_voltage;
1420 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1421 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1422 
1423 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1424 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1425 
1426 	/* If fails try again during next card power cycle */
1427 	if (err)
1428 		return err;
1429 
1430 	mmc_select_driver_type(card);
1431 
1432 	/*
1433 	 * Set the bus width(4 or 8) with host's support and
1434 	 * switch to HS200 mode if bus width is set successfully.
1435 	 */
1436 	err = mmc_select_bus_width(card);
1437 	if (err > 0) {
1438 		val = EXT_CSD_TIMING_HS200 |
1439 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1440 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1441 				   EXT_CSD_HS_TIMING, val,
1442 				   card->ext_csd.generic_cmd6_time, 0,
1443 				   true, false, true);
1444 		if (err)
1445 			goto err;
1446 		old_timing = host->ios.timing;
1447 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1448 
1449 		/*
1450 		 * For HS200, CRC errors are not a reliable way to know the
1451 		 * switch failed. If there really is a problem, we would expect
1452 		 * tuning will fail and the result ends up the same.
1453 		 */
1454 		err = __mmc_switch_status(card, false);
1455 
1456 		/*
1457 		 * mmc_select_timing() assumes timing has not changed if
1458 		 * it is a switch error.
1459 		 */
1460 		if (err == -EBADMSG)
1461 			mmc_set_timing(host, old_timing);
1462 	}
1463 err:
1464 	if (err) {
1465 		/* fall back to the old signal voltage, if fails report error */
1466 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1467 			err = -EIO;
1468 
1469 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1470 		       __func__, err);
1471 	}
1472 	return err;
1473 }
1474 
1475 /*
1476  * Activate High Speed, HS200 or HS400ES mode if supported.
1477  */
1478 static int mmc_select_timing(struct mmc_card *card)
1479 {
1480 	int err = 0;
1481 
1482 	if (!mmc_can_ext_csd(card))
1483 		goto bus_speed;
1484 
1485 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1486 		err = mmc_select_hs400es(card);
1487 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1488 		err = mmc_select_hs200(card);
1489 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1490 		err = mmc_select_hs(card);
1491 
1492 	if (err && err != -EBADMSG)
1493 		return err;
1494 
1495 bus_speed:
1496 	/*
1497 	 * Set the bus speed to the selected bus timing.
1498 	 * If timing is not selected, backward compatible is the default.
1499 	 */
1500 	mmc_set_bus_speed(card);
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Execute tuning sequence to seek the proper bus operating
1506  * conditions for HS200 and HS400, which sends CMD21 to the device.
1507  */
1508 static int mmc_hs200_tuning(struct mmc_card *card)
1509 {
1510 	struct mmc_host *host = card->host;
1511 
1512 	/*
1513 	 * Timing should be adjusted to the HS400 target
1514 	 * operation frequency for tuning process
1515 	 */
1516 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1517 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1518 		if (host->ops->prepare_hs400_tuning)
1519 			host->ops->prepare_hs400_tuning(host, &host->ios);
1520 
1521 	return mmc_execute_tuning(card);
1522 }
1523 
1524 /*
1525  * Handle the detection and initialisation of a card.
1526  *
1527  * In the case of a resume, "oldcard" will contain the card
1528  * we're trying to reinitialise.
1529  */
1530 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1531 	struct mmc_card *oldcard)
1532 {
1533 	struct mmc_card *card;
1534 	int err;
1535 	u32 cid[4];
1536 	u32 rocr;
1537 
1538 	WARN_ON(!host->claimed);
1539 
1540 	/* Set correct bus mode for MMC before attempting init */
1541 	if (!mmc_host_is_spi(host))
1542 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1543 
1544 	/*
1545 	 * Since we're changing the OCR value, we seem to
1546 	 * need to tell some cards to go back to the idle
1547 	 * state.  We wait 1ms to give cards time to
1548 	 * respond.
1549 	 * mmc_go_idle is needed for eMMC that are asleep
1550 	 */
1551 	mmc_go_idle(host);
1552 
1553 	/* The extra bit indicates that we support high capacity */
1554 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1555 	if (err)
1556 		goto err;
1557 
1558 	/*
1559 	 * For SPI, enable CRC as appropriate.
1560 	 */
1561 	if (mmc_host_is_spi(host)) {
1562 		err = mmc_spi_set_crc(host, use_spi_crc);
1563 		if (err)
1564 			goto err;
1565 	}
1566 
1567 	/*
1568 	 * Fetch CID from card.
1569 	 */
1570 	err = mmc_send_cid(host, cid);
1571 	if (err)
1572 		goto err;
1573 
1574 	if (oldcard) {
1575 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1576 			err = -ENOENT;
1577 			goto err;
1578 		}
1579 
1580 		card = oldcard;
1581 	} else {
1582 		/*
1583 		 * Allocate card structure.
1584 		 */
1585 		card = mmc_alloc_card(host, &mmc_type);
1586 		if (IS_ERR(card)) {
1587 			err = PTR_ERR(card);
1588 			goto err;
1589 		}
1590 
1591 		card->ocr = ocr;
1592 		card->type = MMC_TYPE_MMC;
1593 		card->rca = 1;
1594 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1595 	}
1596 
1597 	/*
1598 	 * Call the optional HC's init_card function to handle quirks.
1599 	 */
1600 	if (host->ops->init_card)
1601 		host->ops->init_card(host, card);
1602 
1603 	/*
1604 	 * For native busses:  set card RCA and quit open drain mode.
1605 	 */
1606 	if (!mmc_host_is_spi(host)) {
1607 		err = mmc_set_relative_addr(card);
1608 		if (err)
1609 			goto free_card;
1610 
1611 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1612 	}
1613 
1614 	if (!oldcard) {
1615 		/*
1616 		 * Fetch CSD from card.
1617 		 */
1618 		err = mmc_send_csd(card, card->raw_csd);
1619 		if (err)
1620 			goto free_card;
1621 
1622 		err = mmc_decode_csd(card);
1623 		if (err)
1624 			goto free_card;
1625 		err = mmc_decode_cid(card);
1626 		if (err)
1627 			goto free_card;
1628 	}
1629 
1630 	/*
1631 	 * handling only for cards supporting DSR and hosts requesting
1632 	 * DSR configuration
1633 	 */
1634 	if (card->csd.dsr_imp && host->dsr_req)
1635 		mmc_set_dsr(host);
1636 
1637 	/*
1638 	 * Select card, as all following commands rely on that.
1639 	 */
1640 	if (!mmc_host_is_spi(host)) {
1641 		err = mmc_select_card(card);
1642 		if (err)
1643 			goto free_card;
1644 	}
1645 
1646 	if (!oldcard) {
1647 		/* Read extended CSD. */
1648 		err = mmc_read_ext_csd(card);
1649 		if (err)
1650 			goto free_card;
1651 
1652 		/*
1653 		 * If doing byte addressing, check if required to do sector
1654 		 * addressing.  Handle the case of <2GB cards needing sector
1655 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1656 		 * ocr register has bit 30 set for sector addressing.
1657 		 */
1658 		if (rocr & BIT(30))
1659 			mmc_card_set_blockaddr(card);
1660 
1661 		/* Erase size depends on CSD and Extended CSD */
1662 		mmc_set_erase_size(card);
1663 	}
1664 
1665 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1666 	if (card->ext_csd.rev >= 3) {
1667 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1668 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1669 				 card->ext_csd.generic_cmd6_time);
1670 
1671 		if (err && err != -EBADMSG)
1672 			goto free_card;
1673 
1674 		if (err) {
1675 			err = 0;
1676 			/*
1677 			 * Just disable enhanced area off & sz
1678 			 * will try to enable ERASE_GROUP_DEF
1679 			 * during next time reinit
1680 			 */
1681 			card->ext_csd.enhanced_area_offset = -EINVAL;
1682 			card->ext_csd.enhanced_area_size = -EINVAL;
1683 		} else {
1684 			card->ext_csd.erase_group_def = 1;
1685 			/*
1686 			 * enable ERASE_GRP_DEF successfully.
1687 			 * This will affect the erase size, so
1688 			 * here need to reset erase size
1689 			 */
1690 			mmc_set_erase_size(card);
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * Ensure eMMC user default partition is enabled
1696 	 */
1697 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1698 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1699 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1700 				 card->ext_csd.part_config,
1701 				 card->ext_csd.part_time);
1702 		if (err && err != -EBADMSG)
1703 			goto free_card;
1704 	}
1705 
1706 	/*
1707 	 * Enable power_off_notification byte in the ext_csd register
1708 	 */
1709 	if (card->ext_csd.rev >= 6) {
1710 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1712 				 EXT_CSD_POWER_ON,
1713 				 card->ext_csd.generic_cmd6_time);
1714 		if (err && err != -EBADMSG)
1715 			goto free_card;
1716 
1717 		/*
1718 		 * The err can be -EBADMSG or 0,
1719 		 * so check for success and update the flag
1720 		 */
1721 		if (!err)
1722 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1723 	}
1724 
1725 	/*
1726 	 * Select timing interface
1727 	 */
1728 	err = mmc_select_timing(card);
1729 	if (err)
1730 		goto free_card;
1731 
1732 	if (mmc_card_hs200(card)) {
1733 		err = mmc_hs200_tuning(card);
1734 		if (err)
1735 			goto free_card;
1736 
1737 		err = mmc_select_hs400(card);
1738 		if (err)
1739 			goto free_card;
1740 	} else if (!mmc_card_hs400es(card)) {
1741 		/* Select the desired bus width optionally */
1742 		err = mmc_select_bus_width(card);
1743 		if (err > 0 && mmc_card_hs(card)) {
1744 			err = mmc_select_hs_ddr(card);
1745 			if (err)
1746 				goto free_card;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * Choose the power class with selected bus interface
1752 	 */
1753 	mmc_select_powerclass(card);
1754 
1755 	/*
1756 	 * Enable HPI feature (if supported)
1757 	 */
1758 	if (card->ext_csd.hpi) {
1759 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1760 				EXT_CSD_HPI_MGMT, 1,
1761 				card->ext_csd.generic_cmd6_time);
1762 		if (err && err != -EBADMSG)
1763 			goto free_card;
1764 		if (err) {
1765 			pr_warn("%s: Enabling HPI failed\n",
1766 				mmc_hostname(card->host));
1767 			err = 0;
1768 		} else
1769 			card->ext_csd.hpi_en = 1;
1770 	}
1771 
1772 	/*
1773 	 * If cache size is higher than 0, this indicates
1774 	 * the existence of cache and it can be turned on.
1775 	 */
1776 	if (!mmc_card_broken_hpi(card) &&
1777 	    card->ext_csd.cache_size > 0) {
1778 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779 				EXT_CSD_CACHE_CTRL, 1,
1780 				card->ext_csd.generic_cmd6_time);
1781 		if (err && err != -EBADMSG)
1782 			goto free_card;
1783 
1784 		/*
1785 		 * Only if no error, cache is turned on successfully.
1786 		 */
1787 		if (err) {
1788 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1789 				mmc_hostname(card->host), err);
1790 			card->ext_csd.cache_ctrl = 0;
1791 			err = 0;
1792 		} else {
1793 			card->ext_csd.cache_ctrl = 1;
1794 		}
1795 	}
1796 
1797 	/*
1798 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1799 	 * be used with Command Queue.
1800 	 */
1801 	card->ext_csd.cmdq_en = false;
1802 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1803 		err = mmc_cmdq_enable(card);
1804 		if (err && err != -EBADMSG)
1805 			goto free_card;
1806 		if (err) {
1807 			pr_warn("%s: Enabling CMDQ failed\n",
1808 				mmc_hostname(card->host));
1809 			card->ext_csd.cmdq_support = false;
1810 			card->ext_csd.cmdq_depth = 0;
1811 			err = 0;
1812 		}
1813 	}
1814 	/*
1815 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1816 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1817 	 * Command Queue.
1818 	 */
1819 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1820 
1821 	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1822 		err = host->cqe_ops->cqe_enable(host, card);
1823 		if (err) {
1824 			pr_err("%s: Failed to enable CQE, error %d\n",
1825 				mmc_hostname(host), err);
1826 		} else {
1827 			host->cqe_enabled = true;
1828 			pr_info("%s: Command Queue Engine enabled\n",
1829 				mmc_hostname(host));
1830 		}
1831 	}
1832 
1833 	if (!oldcard)
1834 		host->card = card;
1835 
1836 	return 0;
1837 
1838 free_card:
1839 	if (!oldcard)
1840 		mmc_remove_card(card);
1841 err:
1842 	return err;
1843 }
1844 
1845 static int mmc_can_sleep(struct mmc_card *card)
1846 {
1847 	return (card && card->ext_csd.rev >= 3);
1848 }
1849 
1850 static int mmc_sleep(struct mmc_host *host)
1851 {
1852 	struct mmc_command cmd = {};
1853 	struct mmc_card *card = host->card;
1854 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1855 	int err;
1856 
1857 	/* Re-tuning can't be done once the card is deselected */
1858 	mmc_retune_hold(host);
1859 
1860 	err = mmc_deselect_cards(host);
1861 	if (err)
1862 		goto out_release;
1863 
1864 	cmd.opcode = MMC_SLEEP_AWAKE;
1865 	cmd.arg = card->rca << 16;
1866 	cmd.arg |= 1 << 15;
1867 
1868 	/*
1869 	 * If the max_busy_timeout of the host is specified, validate it against
1870 	 * the sleep cmd timeout. A failure means we need to prevent the host
1871 	 * from doing hw busy detection, which is done by converting to a R1
1872 	 * response instead of a R1B.
1873 	 */
1874 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1875 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1876 	} else {
1877 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1878 		cmd.busy_timeout = timeout_ms;
1879 	}
1880 
1881 	err = mmc_wait_for_cmd(host, &cmd, 0);
1882 	if (err)
1883 		goto out_release;
1884 
1885 	/*
1886 	 * If the host does not wait while the card signals busy, then we will
1887 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1888 	 * SEND_STATUS command to poll the status because that command (and most
1889 	 * others) is invalid while the card sleeps.
1890 	 */
1891 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1892 		mmc_delay(timeout_ms);
1893 
1894 out_release:
1895 	mmc_retune_release(host);
1896 	return err;
1897 }
1898 
1899 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1900 {
1901 	return card &&
1902 		mmc_card_mmc(card) &&
1903 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1904 }
1905 
1906 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1907 {
1908 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1909 	int err;
1910 
1911 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1912 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1913 		timeout = card->ext_csd.power_off_longtime;
1914 
1915 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1916 			EXT_CSD_POWER_OFF_NOTIFICATION,
1917 			notify_type, timeout, 0, true, false, false);
1918 	if (err)
1919 		pr_err("%s: Power Off Notification timed out, %u\n",
1920 		       mmc_hostname(card->host), timeout);
1921 
1922 	/* Disable the power off notification after the switch operation. */
1923 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1924 
1925 	return err;
1926 }
1927 
1928 /*
1929  * Host is being removed. Free up the current card.
1930  */
1931 static void mmc_remove(struct mmc_host *host)
1932 {
1933 	mmc_remove_card(host->card);
1934 	host->card = NULL;
1935 }
1936 
1937 /*
1938  * Card detection - card is alive.
1939  */
1940 static int mmc_alive(struct mmc_host *host)
1941 {
1942 	return mmc_send_status(host->card, NULL);
1943 }
1944 
1945 /*
1946  * Card detection callback from host.
1947  */
1948 static void mmc_detect(struct mmc_host *host)
1949 {
1950 	int err;
1951 
1952 	mmc_get_card(host->card, NULL);
1953 
1954 	/*
1955 	 * Just check if our card has been removed.
1956 	 */
1957 	err = _mmc_detect_card_removed(host);
1958 
1959 	mmc_put_card(host->card, NULL);
1960 
1961 	if (err) {
1962 		mmc_remove(host);
1963 
1964 		mmc_claim_host(host);
1965 		mmc_detach_bus(host);
1966 		mmc_power_off(host);
1967 		mmc_release_host(host);
1968 	}
1969 }
1970 
1971 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1972 {
1973 	int err = 0;
1974 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1975 					EXT_CSD_POWER_OFF_LONG;
1976 
1977 	mmc_claim_host(host);
1978 
1979 	if (mmc_card_suspended(host->card))
1980 		goto out;
1981 
1982 	if (mmc_card_doing_bkops(host->card)) {
1983 		err = mmc_stop_bkops(host->card);
1984 		if (err)
1985 			goto out;
1986 	}
1987 
1988 	err = mmc_flush_cache(host->card);
1989 	if (err)
1990 		goto out;
1991 
1992 	if (mmc_can_poweroff_notify(host->card) &&
1993 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1994 		err = mmc_poweroff_notify(host->card, notify_type);
1995 	else if (mmc_can_sleep(host->card))
1996 		err = mmc_sleep(host);
1997 	else if (!mmc_host_is_spi(host))
1998 		err = mmc_deselect_cards(host);
1999 
2000 	if (!err) {
2001 		mmc_power_off(host);
2002 		mmc_card_set_suspended(host->card);
2003 	}
2004 out:
2005 	mmc_release_host(host);
2006 	return err;
2007 }
2008 
2009 /*
2010  * Suspend callback
2011  */
2012 static int mmc_suspend(struct mmc_host *host)
2013 {
2014 	int err;
2015 
2016 	err = _mmc_suspend(host, true);
2017 	if (!err) {
2018 		pm_runtime_disable(&host->card->dev);
2019 		pm_runtime_set_suspended(&host->card->dev);
2020 	}
2021 
2022 	return err;
2023 }
2024 
2025 /*
2026  * This function tries to determine if the same card is still present
2027  * and, if so, restore all state to it.
2028  */
2029 static int _mmc_resume(struct mmc_host *host)
2030 {
2031 	int err = 0;
2032 
2033 	mmc_claim_host(host);
2034 
2035 	if (!mmc_card_suspended(host->card))
2036 		goto out;
2037 
2038 	mmc_power_up(host, host->card->ocr);
2039 	err = mmc_init_card(host, host->card->ocr, host->card);
2040 	mmc_card_clr_suspended(host->card);
2041 
2042 out:
2043 	mmc_release_host(host);
2044 	return err;
2045 }
2046 
2047 /*
2048  * Shutdown callback
2049  */
2050 static int mmc_shutdown(struct mmc_host *host)
2051 {
2052 	int err = 0;
2053 
2054 	/*
2055 	 * In a specific case for poweroff notify, we need to resume the card
2056 	 * before we can shutdown it properly.
2057 	 */
2058 	if (mmc_can_poweroff_notify(host->card) &&
2059 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2060 		err = _mmc_resume(host);
2061 
2062 	if (!err)
2063 		err = _mmc_suspend(host, false);
2064 
2065 	return err;
2066 }
2067 
2068 /*
2069  * Callback for resume.
2070  */
2071 static int mmc_resume(struct mmc_host *host)
2072 {
2073 	pm_runtime_enable(&host->card->dev);
2074 	return 0;
2075 }
2076 
2077 /*
2078  * Callback for runtime_suspend.
2079  */
2080 static int mmc_runtime_suspend(struct mmc_host *host)
2081 {
2082 	int err;
2083 
2084 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2085 		return 0;
2086 
2087 	err = _mmc_suspend(host, true);
2088 	if (err)
2089 		pr_err("%s: error %d doing aggressive suspend\n",
2090 			mmc_hostname(host), err);
2091 
2092 	return err;
2093 }
2094 
2095 /*
2096  * Callback for runtime_resume.
2097  */
2098 static int mmc_runtime_resume(struct mmc_host *host)
2099 {
2100 	int err;
2101 
2102 	err = _mmc_resume(host);
2103 	if (err && err != -ENOMEDIUM)
2104 		pr_err("%s: error %d doing runtime resume\n",
2105 			mmc_hostname(host), err);
2106 
2107 	return 0;
2108 }
2109 
2110 static int mmc_can_reset(struct mmc_card *card)
2111 {
2112 	u8 rst_n_function;
2113 
2114 	rst_n_function = card->ext_csd.rst_n_function;
2115 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2116 		return 0;
2117 	return 1;
2118 }
2119 
2120 static int mmc_reset(struct mmc_host *host)
2121 {
2122 	struct mmc_card *card = host->card;
2123 
2124 	/*
2125 	 * In the case of recovery, we can't expect flushing the cache to work
2126 	 * always, but we have a go and ignore errors.
2127 	 */
2128 	mmc_flush_cache(host->card);
2129 
2130 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2131 	     mmc_can_reset(card)) {
2132 		/* If the card accept RST_n signal, send it. */
2133 		mmc_set_clock(host, host->f_init);
2134 		host->ops->hw_reset(host);
2135 		/* Set initial state and call mmc_set_ios */
2136 		mmc_set_initial_state(host);
2137 	} else {
2138 		/* Do a brute force power cycle */
2139 		mmc_power_cycle(host, card->ocr);
2140 		mmc_pwrseq_reset(host);
2141 	}
2142 	return mmc_init_card(host, card->ocr, card);
2143 }
2144 
2145 static const struct mmc_bus_ops mmc_ops = {
2146 	.remove = mmc_remove,
2147 	.detect = mmc_detect,
2148 	.suspend = mmc_suspend,
2149 	.resume = mmc_resume,
2150 	.runtime_suspend = mmc_runtime_suspend,
2151 	.runtime_resume = mmc_runtime_resume,
2152 	.alive = mmc_alive,
2153 	.shutdown = mmc_shutdown,
2154 	.reset = mmc_reset,
2155 };
2156 
2157 /*
2158  * Starting point for MMC card init.
2159  */
2160 int mmc_attach_mmc(struct mmc_host *host)
2161 {
2162 	int err;
2163 	u32 ocr, rocr;
2164 
2165 	WARN_ON(!host->claimed);
2166 
2167 	/* Set correct bus mode for MMC before attempting attach */
2168 	if (!mmc_host_is_spi(host))
2169 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2170 
2171 	err = mmc_send_op_cond(host, 0, &ocr);
2172 	if (err)
2173 		return err;
2174 
2175 	mmc_attach_bus(host, &mmc_ops);
2176 	if (host->ocr_avail_mmc)
2177 		host->ocr_avail = host->ocr_avail_mmc;
2178 
2179 	/*
2180 	 * We need to get OCR a different way for SPI.
2181 	 */
2182 	if (mmc_host_is_spi(host)) {
2183 		err = mmc_spi_read_ocr(host, 1, &ocr);
2184 		if (err)
2185 			goto err;
2186 	}
2187 
2188 	rocr = mmc_select_voltage(host, ocr);
2189 
2190 	/*
2191 	 * Can we support the voltage of the card?
2192 	 */
2193 	if (!rocr) {
2194 		err = -EINVAL;
2195 		goto err;
2196 	}
2197 
2198 	/*
2199 	 * Detect and init the card.
2200 	 */
2201 	err = mmc_init_card(host, rocr, NULL);
2202 	if (err)
2203 		goto err;
2204 
2205 	mmc_release_host(host);
2206 	err = mmc_add_card(host->card);
2207 	if (err)
2208 		goto remove_card;
2209 
2210 	mmc_claim_host(host);
2211 	return 0;
2212 
2213 remove_card:
2214 	mmc_remove_card(host->card);
2215 	mmc_claim_host(host);
2216 	host->card = NULL;
2217 err:
2218 	mmc_detach_bus(host);
2219 
2220 	pr_err("%s: error %d whilst initialising MMC card\n",
2221 		mmc_hostname(host), err);
2222 
2223 	return err;
2224 }
2225