1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "quirks.h" 26 #include "sd_ops.h" 27 #include "pwrseq.h" 28 29 #define DEFAULT_CMD6_TIMEOUT_MS 500 30 #define MIN_CACHE_EN_TIMEOUT_MS 1600 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 #define UNSTUFF_BITS(resp,start,size) \ 52 ({ \ 53 const int __size = size; \ 54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 55 const int __off = 3 - ((start) / 32); \ 56 const int __shft = (start) & 31; \ 57 u32 __res; \ 58 \ 59 __res = resp[__off] >> __shft; \ 60 if (__size + __shft > 32) \ 61 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 62 __res & __mask; \ 63 }) 64 65 /* 66 * Given the decoded CSD structure, decode the raw CID to our CID structure. 67 */ 68 static int mmc_decode_cid(struct mmc_card *card) 69 { 70 u32 *resp = card->raw_cid; 71 72 /* 73 * The selection of the format here is based upon published 74 * specs from sandisk and from what people have reported. 75 */ 76 switch (card->csd.mmca_vsn) { 77 case 0: /* MMC v1.0 - v1.2 */ 78 case 1: /* MMC v1.4 */ 79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 90 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 92 break; 93 94 case 2: /* MMC v2.0 - v2.2 */ 95 case 3: /* MMC v3.1 - v3.3 */ 96 case 4: /* MMC v4 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 107 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 109 break; 110 111 default: 112 pr_err("%s: card has unknown MMCA version %d\n", 113 mmc_hostname(card->host), card->csd.mmca_vsn); 114 return -EINVAL; 115 } 116 117 return 0; 118 } 119 120 static void mmc_set_erase_size(struct mmc_card *card) 121 { 122 if (card->ext_csd.erase_group_def & 1) 123 card->erase_size = card->ext_csd.hc_erase_size; 124 else 125 card->erase_size = card->csd.erase_size; 126 127 mmc_init_erase(card); 128 } 129 130 /* 131 * Given a 128-bit response, decode to our card CSD structure. 132 */ 133 static int mmc_decode_csd(struct mmc_card *card) 134 { 135 struct mmc_csd *csd = &card->csd; 136 unsigned int e, m, a, b; 137 u32 *resp = card->raw_csd; 138 139 /* 140 * We only understand CSD structure v1.1 and v1.2. 141 * v1.2 has extra information in bits 15, 11 and 10. 142 * We also support eMMC v4.4 & v4.41. 143 */ 144 csd->structure = UNSTUFF_BITS(resp, 126, 2); 145 if (csd->structure == 0) { 146 pr_err("%s: unrecognised CSD structure version %d\n", 147 mmc_hostname(card->host), csd->structure); 148 return -EINVAL; 149 } 150 151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 152 m = UNSTUFF_BITS(resp, 115, 4); 153 e = UNSTUFF_BITS(resp, 112, 3); 154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 156 157 m = UNSTUFF_BITS(resp, 99, 4); 158 e = UNSTUFF_BITS(resp, 96, 3); 159 csd->max_dtr = tran_exp[e] * tran_mant[m]; 160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 161 162 e = UNSTUFF_BITS(resp, 47, 3); 163 m = UNSTUFF_BITS(resp, 62, 12); 164 csd->capacity = (1 + m) << (e + 2); 165 166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 174 175 if (csd->write_blkbits >= 9) { 176 a = UNSTUFF_BITS(resp, 42, 5); 177 b = UNSTUFF_BITS(resp, 37, 5); 178 csd->erase_size = (a + 1) * (b + 1); 179 csd->erase_size <<= csd->write_blkbits - 9; 180 } 181 182 return 0; 183 } 184 185 static void mmc_select_card_type(struct mmc_card *card) 186 { 187 struct mmc_host *host = card->host; 188 u8 card_type = card->ext_csd.raw_card_type; 189 u32 caps = host->caps, caps2 = host->caps2; 190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 191 unsigned int avail_type = 0; 192 193 if (caps & MMC_CAP_MMC_HIGHSPEED && 194 card_type & EXT_CSD_CARD_TYPE_HS_26) { 195 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 196 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 197 } 198 199 if (caps & MMC_CAP_MMC_HIGHSPEED && 200 card_type & EXT_CSD_CARD_TYPE_HS_52) { 201 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 202 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 203 } 204 205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 209 } 210 211 if (caps & MMC_CAP_1_2V_DDR && 212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 215 } 216 217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 219 hs200_max_dtr = MMC_HS200_MAX_DTR; 220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 221 } 222 223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 225 hs200_max_dtr = MMC_HS200_MAX_DTR; 226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 227 } 228 229 if (caps2 & MMC_CAP2_HS400_1_8V && 230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 231 hs200_max_dtr = MMC_HS200_MAX_DTR; 232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 233 } 234 235 if (caps2 & MMC_CAP2_HS400_1_2V && 236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 237 hs200_max_dtr = MMC_HS200_MAX_DTR; 238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 239 } 240 241 if ((caps2 & MMC_CAP2_HS400_ES) && 242 card->ext_csd.strobe_support && 243 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 245 246 card->ext_csd.hs_max_dtr = hs_max_dtr; 247 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 248 card->mmc_avail_type = avail_type; 249 } 250 251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 252 { 253 u8 hc_erase_grp_sz, hc_wp_grp_sz; 254 255 /* 256 * Disable these attributes by default 257 */ 258 card->ext_csd.enhanced_area_offset = -EINVAL; 259 card->ext_csd.enhanced_area_size = -EINVAL; 260 261 /* 262 * Enhanced area feature support -- check whether the eMMC 263 * card has the Enhanced area enabled. If so, export enhanced 264 * area offset and size to user by adding sysfs interface. 265 */ 266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 268 if (card->ext_csd.partition_setting_completed) { 269 hc_erase_grp_sz = 270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 271 hc_wp_grp_sz = 272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 273 274 /* 275 * calculate the enhanced data area offset, in bytes 276 */ 277 card->ext_csd.enhanced_area_offset = 278 (((unsigned long long)ext_csd[139]) << 24) + 279 (((unsigned long long)ext_csd[138]) << 16) + 280 (((unsigned long long)ext_csd[137]) << 8) + 281 (((unsigned long long)ext_csd[136])); 282 if (mmc_card_blockaddr(card)) 283 card->ext_csd.enhanced_area_offset <<= 9; 284 /* 285 * calculate the enhanced data area size, in kilobytes 286 */ 287 card->ext_csd.enhanced_area_size = 288 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 289 ext_csd[140]; 290 card->ext_csd.enhanced_area_size *= 291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 292 card->ext_csd.enhanced_area_size <<= 9; 293 } else { 294 pr_warn("%s: defines enhanced area without partition setting complete\n", 295 mmc_hostname(card->host)); 296 } 297 } 298 } 299 300 static void mmc_part_add(struct mmc_card *card, u64 size, 301 unsigned int part_cfg, char *name, int idx, bool ro, 302 int area_type) 303 { 304 card->part[card->nr_parts].size = size; 305 card->part[card->nr_parts].part_cfg = part_cfg; 306 sprintf(card->part[card->nr_parts].name, name, idx); 307 card->part[card->nr_parts].force_ro = ro; 308 card->part[card->nr_parts].area_type = area_type; 309 card->nr_parts++; 310 } 311 312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 313 { 314 int idx; 315 u8 hc_erase_grp_sz, hc_wp_grp_sz; 316 u64 part_size; 317 318 /* 319 * General purpose partition feature support -- 320 * If ext_csd has the size of general purpose partitions, 321 * set size, part_cfg, partition name in mmc_part. 322 */ 323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 324 EXT_CSD_PART_SUPPORT_PART_EN) { 325 hc_erase_grp_sz = 326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 327 hc_wp_grp_sz = 328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 329 330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 334 continue; 335 if (card->ext_csd.partition_setting_completed == 0) { 336 pr_warn("%s: has partition size defined without partition complete\n", 337 mmc_hostname(card->host)); 338 break; 339 } 340 part_size = 341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 342 << 16) + 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 344 << 8) + 345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 347 mmc_part_add(card, part_size << 19, 348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 349 "gp%d", idx, false, 350 MMC_BLK_DATA_AREA_GP); 351 } 352 } 353 } 354 355 /* Minimum partition switch timeout in milliseconds */ 356 #define MMC_MIN_PART_SWITCH_TIME 300 357 358 /* 359 * Decode extended CSD. 360 */ 361 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 362 { 363 int err = 0, idx; 364 u64 part_size; 365 struct device_node *np; 366 bool broken_hpi = false; 367 368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 370 if (card->csd.structure == 3) { 371 if (card->ext_csd.raw_ext_csd_structure > 2) { 372 pr_err("%s: unrecognised EXT_CSD structure " 373 "version %d\n", mmc_hostname(card->host), 374 card->ext_csd.raw_ext_csd_structure); 375 err = -EINVAL; 376 goto out; 377 } 378 } 379 380 np = mmc_of_find_child_device(card->host, 0); 381 if (np && of_device_is_compatible(np, "mmc-card")) 382 broken_hpi = of_property_read_bool(np, "broken-hpi"); 383 of_node_put(np); 384 385 /* 386 * The EXT_CSD format is meant to be forward compatible. As long 387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 388 * are authorized, see JEDEC JESD84-B50 section B.8. 389 */ 390 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 391 392 /* fixup device after ext_csd revision field is updated */ 393 mmc_fixup_device(card, mmc_ext_csd_fixups); 394 395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 399 if (card->ext_csd.rev >= 2) { 400 card->ext_csd.sectors = 401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 405 406 /* Cards with density > 2GiB are sector addressed */ 407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 408 mmc_card_set_blockaddr(card); 409 } 410 411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 413 mmc_select_card_type(card); 414 415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 416 card->ext_csd.raw_erase_timeout_mult = 417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 418 card->ext_csd.raw_hc_erase_grp_size = 419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 420 if (card->ext_csd.rev >= 3) { 421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 423 424 /* EXT_CSD value is in units of 10ms, but we store in ms */ 425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 426 /* Some eMMC set the value too low so set a minimum */ 427 if (card->ext_csd.part_time && 428 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 429 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 430 431 /* Sleep / awake timeout in 100ns units */ 432 if (sa_shift > 0 && sa_shift <= 0x17) 433 card->ext_csd.sa_timeout = 434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 435 card->ext_csd.erase_group_def = 436 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 437 card->ext_csd.hc_erase_timeout = 300 * 438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 439 card->ext_csd.hc_erase_size = 440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 441 442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 443 444 /* 445 * There are two boot regions of equal size, defined in 446 * multiples of 128K. 447 */ 448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 451 mmc_part_add(card, part_size, 452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 453 "boot%d", idx, true, 454 MMC_BLK_DATA_AREA_BOOT); 455 } 456 } 457 } 458 459 card->ext_csd.raw_hc_erase_gap_size = 460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 461 card->ext_csd.raw_sec_trim_mult = 462 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 463 card->ext_csd.raw_sec_erase_mult = 464 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 465 card->ext_csd.raw_sec_feature_support = 466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 467 card->ext_csd.raw_trim_mult = 468 ext_csd[EXT_CSD_TRIM_MULT]; 469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 471 if (card->ext_csd.rev >= 4) { 472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 473 EXT_CSD_PART_SETTING_COMPLETED) 474 card->ext_csd.partition_setting_completed = 1; 475 else 476 card->ext_csd.partition_setting_completed = 0; 477 478 mmc_manage_enhanced_area(card, ext_csd); 479 480 mmc_manage_gp_partitions(card, ext_csd); 481 482 card->ext_csd.sec_trim_mult = 483 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 484 card->ext_csd.sec_erase_mult = 485 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 486 card->ext_csd.sec_feature_support = 487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 488 card->ext_csd.trim_timeout = 300 * 489 ext_csd[EXT_CSD_TRIM_MULT]; 490 491 /* 492 * Note that the call to mmc_part_add above defaults to read 493 * only. If this default assumption is changed, the call must 494 * take into account the value of boot_locked below. 495 */ 496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 497 card->ext_csd.boot_ro_lockable = true; 498 499 /* Save power class values */ 500 card->ext_csd.raw_pwr_cl_52_195 = 501 ext_csd[EXT_CSD_PWR_CL_52_195]; 502 card->ext_csd.raw_pwr_cl_26_195 = 503 ext_csd[EXT_CSD_PWR_CL_26_195]; 504 card->ext_csd.raw_pwr_cl_52_360 = 505 ext_csd[EXT_CSD_PWR_CL_52_360]; 506 card->ext_csd.raw_pwr_cl_26_360 = 507 ext_csd[EXT_CSD_PWR_CL_26_360]; 508 card->ext_csd.raw_pwr_cl_200_195 = 509 ext_csd[EXT_CSD_PWR_CL_200_195]; 510 card->ext_csd.raw_pwr_cl_200_360 = 511 ext_csd[EXT_CSD_PWR_CL_200_360]; 512 card->ext_csd.raw_pwr_cl_ddr_52_195 = 513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 514 card->ext_csd.raw_pwr_cl_ddr_52_360 = 515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 516 card->ext_csd.raw_pwr_cl_ddr_200_360 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 518 } 519 520 if (card->ext_csd.rev >= 5) { 521 /* Adjust production date as per JEDEC JESD84-B451 */ 522 if (card->cid.year < 2010) 523 card->cid.year += 16; 524 525 /* check whether the eMMC card supports BKOPS */ 526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 527 card->ext_csd.bkops = 1; 528 card->ext_csd.man_bkops_en = 529 (ext_csd[EXT_CSD_BKOPS_EN] & 530 EXT_CSD_MANUAL_BKOPS_MASK); 531 card->ext_csd.raw_bkops_status = 532 ext_csd[EXT_CSD_BKOPS_STATUS]; 533 if (card->ext_csd.man_bkops_en) 534 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 535 mmc_hostname(card->host)); 536 card->ext_csd.auto_bkops_en = 537 (ext_csd[EXT_CSD_BKOPS_EN] & 538 EXT_CSD_AUTO_BKOPS_MASK); 539 if (card->ext_csd.auto_bkops_en) 540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 541 mmc_hostname(card->host)); 542 } 543 544 /* check whether the eMMC card supports HPI */ 545 if (!mmc_card_broken_hpi(card) && 546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 547 card->ext_csd.hpi = 1; 548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 550 else 551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 552 /* 553 * Indicate the maximum timeout to close 554 * a command interrupted by HPI 555 */ 556 card->ext_csd.out_of_int_time = 557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 558 } 559 560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 562 563 /* 564 * RPMB regions are defined in multiples of 128K. 565 */ 566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 569 EXT_CSD_PART_CONFIG_ACC_RPMB, 570 "rpmb", 0, false, 571 MMC_BLK_DATA_AREA_RPMB); 572 } 573 } 574 575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 577 card->erased_byte = 0xFF; 578 else 579 card->erased_byte = 0x0; 580 581 /* eMMC v4.5 or later */ 582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 583 if (card->ext_csd.rev >= 6) { 584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 585 586 card->ext_csd.generic_cmd6_time = 10 * 587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 588 card->ext_csd.power_off_longtime = 10 * 589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 590 591 card->ext_csd.cache_size = 592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 596 597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 598 card->ext_csd.data_sector_size = 4096; 599 else 600 card->ext_csd.data_sector_size = 512; 601 602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 604 card->ext_csd.data_tag_unit_size = 605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 606 (card->ext_csd.data_sector_size); 607 } else { 608 card->ext_csd.data_tag_unit_size = 0; 609 } 610 611 card->ext_csd.max_packed_writes = 612 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 613 card->ext_csd.max_packed_reads = 614 ext_csd[EXT_CSD_MAX_PACKED_READS]; 615 } else { 616 card->ext_csd.data_sector_size = 512; 617 } 618 619 /* eMMC v5 or later */ 620 if (card->ext_csd.rev >= 7) { 621 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 622 MMC_FIRMWARE_LEN); 623 card->ext_csd.ffu_capable = 624 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 625 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 626 627 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 628 card->ext_csd.device_life_time_est_typ_a = 629 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 630 card->ext_csd.device_life_time_est_typ_b = 631 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 632 } 633 634 /* eMMC v5.1 or later */ 635 if (card->ext_csd.rev >= 8) { 636 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 637 EXT_CSD_CMDQ_SUPPORTED; 638 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 639 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 640 /* Exclude inefficiently small queue depths */ 641 if (card->ext_csd.cmdq_depth <= 2) { 642 card->ext_csd.cmdq_support = false; 643 card->ext_csd.cmdq_depth = 0; 644 } 645 if (card->ext_csd.cmdq_support) { 646 pr_debug("%s: Command Queue supported depth %u\n", 647 mmc_hostname(card->host), 648 card->ext_csd.cmdq_depth); 649 } 650 } 651 out: 652 return err; 653 } 654 655 static int mmc_read_ext_csd(struct mmc_card *card) 656 { 657 u8 *ext_csd; 658 int err; 659 660 if (!mmc_can_ext_csd(card)) 661 return 0; 662 663 err = mmc_get_ext_csd(card, &ext_csd); 664 if (err) { 665 /* If the host or the card can't do the switch, 666 * fail more gracefully. */ 667 if ((err != -EINVAL) 668 && (err != -ENOSYS) 669 && (err != -EFAULT)) 670 return err; 671 672 /* 673 * High capacity cards should have this "magic" size 674 * stored in their CSD. 675 */ 676 if (card->csd.capacity == (4096 * 512)) { 677 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 678 mmc_hostname(card->host)); 679 } else { 680 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 681 mmc_hostname(card->host)); 682 err = 0; 683 } 684 685 return err; 686 } 687 688 err = mmc_decode_ext_csd(card, ext_csd); 689 kfree(ext_csd); 690 return err; 691 } 692 693 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 694 { 695 u8 *bw_ext_csd; 696 int err; 697 698 if (bus_width == MMC_BUS_WIDTH_1) 699 return 0; 700 701 err = mmc_get_ext_csd(card, &bw_ext_csd); 702 if (err) 703 return err; 704 705 /* only compare read only fields */ 706 err = !((card->ext_csd.raw_partition_support == 707 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 708 (card->ext_csd.raw_erased_mem_count == 709 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 710 (card->ext_csd.rev == 711 bw_ext_csd[EXT_CSD_REV]) && 712 (card->ext_csd.raw_ext_csd_structure == 713 bw_ext_csd[EXT_CSD_STRUCTURE]) && 714 (card->ext_csd.raw_card_type == 715 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 716 (card->ext_csd.raw_s_a_timeout == 717 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 718 (card->ext_csd.raw_hc_erase_gap_size == 719 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 720 (card->ext_csd.raw_erase_timeout_mult == 721 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 722 (card->ext_csd.raw_hc_erase_grp_size == 723 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 724 (card->ext_csd.raw_sec_trim_mult == 725 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 726 (card->ext_csd.raw_sec_erase_mult == 727 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 728 (card->ext_csd.raw_sec_feature_support == 729 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 730 (card->ext_csd.raw_trim_mult == 731 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 732 (card->ext_csd.raw_sectors[0] == 733 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 734 (card->ext_csd.raw_sectors[1] == 735 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 736 (card->ext_csd.raw_sectors[2] == 737 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 738 (card->ext_csd.raw_sectors[3] == 739 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 740 (card->ext_csd.raw_pwr_cl_52_195 == 741 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 742 (card->ext_csd.raw_pwr_cl_26_195 == 743 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 744 (card->ext_csd.raw_pwr_cl_52_360 == 745 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 746 (card->ext_csd.raw_pwr_cl_26_360 == 747 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 748 (card->ext_csd.raw_pwr_cl_200_195 == 749 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 750 (card->ext_csd.raw_pwr_cl_200_360 == 751 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 752 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 754 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 756 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 758 759 if (err) 760 err = -EINVAL; 761 762 kfree(bw_ext_csd); 763 return err; 764 } 765 766 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 767 card->raw_cid[2], card->raw_cid[3]); 768 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 769 card->raw_csd[2], card->raw_csd[3]); 770 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 771 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 772 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 773 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 774 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 775 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 776 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 777 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 778 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 779 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 780 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 781 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 782 card->ext_csd.device_life_time_est_typ_a, 783 card->ext_csd.device_life_time_est_typ_b); 784 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 785 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 786 card->ext_csd.enhanced_area_offset); 787 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 788 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 789 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 790 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 791 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 792 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 793 794 static ssize_t mmc_fwrev_show(struct device *dev, 795 struct device_attribute *attr, 796 char *buf) 797 { 798 struct mmc_card *card = mmc_dev_to_card(dev); 799 800 if (card->ext_csd.rev < 7) { 801 return sprintf(buf, "0x%x\n", card->cid.fwrev); 802 } else { 803 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 804 card->ext_csd.fwrev); 805 } 806 } 807 808 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 809 810 static ssize_t mmc_dsr_show(struct device *dev, 811 struct device_attribute *attr, 812 char *buf) 813 { 814 struct mmc_card *card = mmc_dev_to_card(dev); 815 struct mmc_host *host = card->host; 816 817 if (card->csd.dsr_imp && host->dsr_req) 818 return sprintf(buf, "0x%x\n", host->dsr); 819 else 820 /* return default DSR value */ 821 return sprintf(buf, "0x%x\n", 0x404); 822 } 823 824 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 825 826 static struct attribute *mmc_std_attrs[] = { 827 &dev_attr_cid.attr, 828 &dev_attr_csd.attr, 829 &dev_attr_date.attr, 830 &dev_attr_erase_size.attr, 831 &dev_attr_preferred_erase_size.attr, 832 &dev_attr_fwrev.attr, 833 &dev_attr_ffu_capable.attr, 834 &dev_attr_hwrev.attr, 835 &dev_attr_manfid.attr, 836 &dev_attr_name.attr, 837 &dev_attr_oemid.attr, 838 &dev_attr_prv.attr, 839 &dev_attr_rev.attr, 840 &dev_attr_pre_eol_info.attr, 841 &dev_attr_life_time.attr, 842 &dev_attr_serial.attr, 843 &dev_attr_enhanced_area_offset.attr, 844 &dev_attr_enhanced_area_size.attr, 845 &dev_attr_raw_rpmb_size_mult.attr, 846 &dev_attr_rel_sectors.attr, 847 &dev_attr_ocr.attr, 848 &dev_attr_rca.attr, 849 &dev_attr_dsr.attr, 850 &dev_attr_cmdq_en.attr, 851 NULL, 852 }; 853 ATTRIBUTE_GROUPS(mmc_std); 854 855 static struct device_type mmc_type = { 856 .groups = mmc_std_groups, 857 }; 858 859 /* 860 * Select the PowerClass for the current bus width 861 * If power class is defined for 4/8 bit bus in the 862 * extended CSD register, select it by executing the 863 * mmc_switch command. 864 */ 865 static int __mmc_select_powerclass(struct mmc_card *card, 866 unsigned int bus_width) 867 { 868 struct mmc_host *host = card->host; 869 struct mmc_ext_csd *ext_csd = &card->ext_csd; 870 unsigned int pwrclass_val = 0; 871 int err = 0; 872 873 switch (1 << host->ios.vdd) { 874 case MMC_VDD_165_195: 875 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 876 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 877 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 878 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 879 ext_csd->raw_pwr_cl_52_195 : 880 ext_csd->raw_pwr_cl_ddr_52_195; 881 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 882 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 883 break; 884 case MMC_VDD_27_28: 885 case MMC_VDD_28_29: 886 case MMC_VDD_29_30: 887 case MMC_VDD_30_31: 888 case MMC_VDD_31_32: 889 case MMC_VDD_32_33: 890 case MMC_VDD_33_34: 891 case MMC_VDD_34_35: 892 case MMC_VDD_35_36: 893 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 894 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 895 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 896 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 897 ext_csd->raw_pwr_cl_52_360 : 898 ext_csd->raw_pwr_cl_ddr_52_360; 899 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 900 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 901 ext_csd->raw_pwr_cl_ddr_200_360 : 902 ext_csd->raw_pwr_cl_200_360; 903 break; 904 default: 905 pr_warn("%s: Voltage range not supported for power class\n", 906 mmc_hostname(host)); 907 return -EINVAL; 908 } 909 910 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 911 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 912 EXT_CSD_PWR_CL_8BIT_SHIFT; 913 else 914 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 915 EXT_CSD_PWR_CL_4BIT_SHIFT; 916 917 /* If the power class is different from the default value */ 918 if (pwrclass_val > 0) { 919 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 920 EXT_CSD_POWER_CLASS, 921 pwrclass_val, 922 card->ext_csd.generic_cmd6_time); 923 } 924 925 return err; 926 } 927 928 static int mmc_select_powerclass(struct mmc_card *card) 929 { 930 struct mmc_host *host = card->host; 931 u32 bus_width, ext_csd_bits; 932 int err, ddr; 933 934 /* Power class selection is supported for versions >= 4.0 */ 935 if (!mmc_can_ext_csd(card)) 936 return 0; 937 938 bus_width = host->ios.bus_width; 939 /* Power class values are defined only for 4/8 bit bus */ 940 if (bus_width == MMC_BUS_WIDTH_1) 941 return 0; 942 943 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 944 if (ddr) 945 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 946 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 947 else 948 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 949 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 950 951 err = __mmc_select_powerclass(card, ext_csd_bits); 952 if (err) 953 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 954 mmc_hostname(host), 1 << bus_width, ddr); 955 956 return err; 957 } 958 959 /* 960 * Set the bus speed for the selected speed mode. 961 */ 962 static void mmc_set_bus_speed(struct mmc_card *card) 963 { 964 unsigned int max_dtr = (unsigned int)-1; 965 966 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 967 max_dtr > card->ext_csd.hs200_max_dtr) 968 max_dtr = card->ext_csd.hs200_max_dtr; 969 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 970 max_dtr = card->ext_csd.hs_max_dtr; 971 else if (max_dtr > card->csd.max_dtr) 972 max_dtr = card->csd.max_dtr; 973 974 mmc_set_clock(card->host, max_dtr); 975 } 976 977 /* 978 * Select the bus width amoung 4-bit and 8-bit(SDR). 979 * If the bus width is changed successfully, return the selected width value. 980 * Zero is returned instead of error value if the wide width is not supported. 981 */ 982 static int mmc_select_bus_width(struct mmc_card *card) 983 { 984 static unsigned ext_csd_bits[] = { 985 EXT_CSD_BUS_WIDTH_8, 986 EXT_CSD_BUS_WIDTH_4, 987 }; 988 static unsigned bus_widths[] = { 989 MMC_BUS_WIDTH_8, 990 MMC_BUS_WIDTH_4, 991 }; 992 struct mmc_host *host = card->host; 993 unsigned idx, bus_width = 0; 994 int err = 0; 995 996 if (!mmc_can_ext_csd(card) || 997 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 998 return 0; 999 1000 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1001 1002 /* 1003 * Unlike SD, MMC cards dont have a configuration register to notify 1004 * supported bus width. So bus test command should be run to identify 1005 * the supported bus width or compare the ext csd values of current 1006 * bus width and ext csd values of 1 bit mode read earlier. 1007 */ 1008 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1009 /* 1010 * Host is capable of 8bit transfer, then switch 1011 * the device to work in 8bit transfer mode. If the 1012 * mmc switch command returns error then switch to 1013 * 4bit transfer mode. On success set the corresponding 1014 * bus width on the host. 1015 */ 1016 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1017 EXT_CSD_BUS_WIDTH, 1018 ext_csd_bits[idx], 1019 card->ext_csd.generic_cmd6_time); 1020 if (err) 1021 continue; 1022 1023 bus_width = bus_widths[idx]; 1024 mmc_set_bus_width(host, bus_width); 1025 1026 /* 1027 * If controller can't handle bus width test, 1028 * compare ext_csd previously read in 1 bit mode 1029 * against ext_csd at new bus width 1030 */ 1031 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1032 err = mmc_compare_ext_csds(card, bus_width); 1033 else 1034 err = mmc_bus_test(card, bus_width); 1035 1036 if (!err) { 1037 err = bus_width; 1038 break; 1039 } else { 1040 pr_warn("%s: switch to bus width %d failed\n", 1041 mmc_hostname(host), 1 << bus_width); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /* 1049 * Switch to the high-speed mode 1050 */ 1051 static int mmc_select_hs(struct mmc_card *card) 1052 { 1053 int err; 1054 1055 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1056 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1057 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1058 true, true); 1059 if (err) 1060 pr_warn("%s: switch to high-speed failed, err:%d\n", 1061 mmc_hostname(card->host), err); 1062 1063 return err; 1064 } 1065 1066 /* 1067 * Activate wide bus and DDR if supported. 1068 */ 1069 static int mmc_select_hs_ddr(struct mmc_card *card) 1070 { 1071 struct mmc_host *host = card->host; 1072 u32 bus_width, ext_csd_bits; 1073 int err = 0; 1074 1075 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1076 return 0; 1077 1078 bus_width = host->ios.bus_width; 1079 if (bus_width == MMC_BUS_WIDTH_1) 1080 return 0; 1081 1082 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1083 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1084 1085 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1086 EXT_CSD_BUS_WIDTH, 1087 ext_csd_bits, 1088 card->ext_csd.generic_cmd6_time, 1089 MMC_TIMING_MMC_DDR52, 1090 true, true); 1091 if (err) { 1092 pr_err("%s: switch to bus width %d ddr failed\n", 1093 mmc_hostname(host), 1 << bus_width); 1094 return err; 1095 } 1096 1097 /* 1098 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1099 * signaling. 1100 * 1101 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1102 * 1103 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1104 * in the JEDEC spec for DDR. 1105 * 1106 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1107 * host controller can support this, like some of the SDHCI 1108 * controller which connect to an eMMC device. Some of these 1109 * host controller still needs to use 1.8v vccq for supporting 1110 * DDR mode. 1111 * 1112 * So the sequence will be: 1113 * if (host and device can both support 1.2v IO) 1114 * use 1.2v IO; 1115 * else if (host and device can both support 1.8v IO) 1116 * use 1.8v IO; 1117 * so if host and device can only support 3.3v IO, this is the 1118 * last choice. 1119 * 1120 * WARNING: eMMC rules are NOT the same as SD DDR 1121 */ 1122 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1123 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1124 if (!err) 1125 return 0; 1126 } 1127 1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1129 host->caps & MMC_CAP_1_8V_DDR) 1130 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1131 1132 /* make sure vccq is 3.3v after switching disaster */ 1133 if (err) 1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1135 1136 return err; 1137 } 1138 1139 static int mmc_select_hs400(struct mmc_card *card) 1140 { 1141 struct mmc_host *host = card->host; 1142 unsigned int max_dtr; 1143 int err = 0; 1144 u8 val; 1145 1146 /* 1147 * HS400 mode requires 8-bit bus width 1148 */ 1149 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1150 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1151 return 0; 1152 1153 /* Switch card to HS mode */ 1154 val = EXT_CSD_TIMING_HS; 1155 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1156 EXT_CSD_HS_TIMING, val, 1157 card->ext_csd.generic_cmd6_time, 0, 1158 false, true); 1159 if (err) { 1160 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1161 mmc_hostname(host), err); 1162 return err; 1163 } 1164 1165 /* Set host controller to HS timing */ 1166 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1167 1168 /* Prepare host to downgrade to HS timing */ 1169 if (host->ops->hs400_downgrade) 1170 host->ops->hs400_downgrade(host); 1171 1172 /* Reduce frequency to HS frequency */ 1173 max_dtr = card->ext_csd.hs_max_dtr; 1174 mmc_set_clock(host, max_dtr); 1175 1176 err = mmc_switch_status(card, true); 1177 if (err) 1178 goto out_err; 1179 1180 if (host->ops->hs400_prepare_ddr) 1181 host->ops->hs400_prepare_ddr(host); 1182 1183 /* Switch card to DDR */ 1184 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1185 EXT_CSD_BUS_WIDTH, 1186 EXT_CSD_DDR_BUS_WIDTH_8, 1187 card->ext_csd.generic_cmd6_time); 1188 if (err) { 1189 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1190 mmc_hostname(host), err); 1191 return err; 1192 } 1193 1194 /* Switch card to HS400 */ 1195 val = EXT_CSD_TIMING_HS400 | 1196 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1197 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1198 EXT_CSD_HS_TIMING, val, 1199 card->ext_csd.generic_cmd6_time, 0, 1200 false, true); 1201 if (err) { 1202 pr_err("%s: switch to hs400 failed, err:%d\n", 1203 mmc_hostname(host), err); 1204 return err; 1205 } 1206 1207 /* Set host controller to HS400 timing and frequency */ 1208 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1209 mmc_set_bus_speed(card); 1210 1211 if (host->ops->hs400_complete) 1212 host->ops->hs400_complete(host); 1213 1214 err = mmc_switch_status(card, true); 1215 if (err) 1216 goto out_err; 1217 1218 return 0; 1219 1220 out_err: 1221 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1222 __func__, err); 1223 return err; 1224 } 1225 1226 int mmc_hs200_to_hs400(struct mmc_card *card) 1227 { 1228 return mmc_select_hs400(card); 1229 } 1230 1231 int mmc_hs400_to_hs200(struct mmc_card *card) 1232 { 1233 struct mmc_host *host = card->host; 1234 unsigned int max_dtr; 1235 int err; 1236 u8 val; 1237 1238 /* Reduce frequency to HS */ 1239 max_dtr = card->ext_csd.hs_max_dtr; 1240 mmc_set_clock(host, max_dtr); 1241 1242 /* Switch HS400 to HS DDR */ 1243 val = EXT_CSD_TIMING_HS; 1244 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1245 val, card->ext_csd.generic_cmd6_time, 0, 1246 false, true); 1247 if (err) 1248 goto out_err; 1249 1250 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1251 1252 err = mmc_switch_status(card, true); 1253 if (err) 1254 goto out_err; 1255 1256 /* Switch HS DDR to HS */ 1257 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1258 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1259 0, false, true); 1260 if (err) 1261 goto out_err; 1262 1263 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1264 1265 if (host->ops->hs400_downgrade) 1266 host->ops->hs400_downgrade(host); 1267 1268 err = mmc_switch_status(card, true); 1269 if (err) 1270 goto out_err; 1271 1272 /* Switch HS to HS200 */ 1273 val = EXT_CSD_TIMING_HS200 | 1274 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1276 val, card->ext_csd.generic_cmd6_time, 0, 1277 false, true); 1278 if (err) 1279 goto out_err; 1280 1281 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1282 1283 /* 1284 * For HS200, CRC errors are not a reliable way to know the switch 1285 * failed. If there really is a problem, we would expect tuning will 1286 * fail and the result ends up the same. 1287 */ 1288 err = mmc_switch_status(card, false); 1289 if (err) 1290 goto out_err; 1291 1292 mmc_set_bus_speed(card); 1293 1294 /* Prepare tuning for HS400 mode. */ 1295 if (host->ops->prepare_hs400_tuning) 1296 host->ops->prepare_hs400_tuning(host, &host->ios); 1297 1298 return 0; 1299 1300 out_err: 1301 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1302 __func__, err); 1303 return err; 1304 } 1305 1306 static void mmc_select_driver_type(struct mmc_card *card) 1307 { 1308 int card_drv_type, drive_strength, drv_type = 0; 1309 int fixed_drv_type = card->host->fixed_drv_type; 1310 1311 card_drv_type = card->ext_csd.raw_driver_strength | 1312 mmc_driver_type_mask(0); 1313 1314 if (fixed_drv_type >= 0) 1315 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1316 ? fixed_drv_type : 0; 1317 else 1318 drive_strength = mmc_select_drive_strength(card, 1319 card->ext_csd.hs200_max_dtr, 1320 card_drv_type, &drv_type); 1321 1322 card->drive_strength = drive_strength; 1323 1324 if (drv_type) 1325 mmc_set_driver_type(card->host, drv_type); 1326 } 1327 1328 static int mmc_select_hs400es(struct mmc_card *card) 1329 { 1330 struct mmc_host *host = card->host; 1331 int err = -EINVAL; 1332 u8 val; 1333 1334 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1335 err = -ENOTSUPP; 1336 goto out_err; 1337 } 1338 1339 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1340 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1341 1342 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1343 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1344 1345 /* If fails try again during next card power cycle */ 1346 if (err) 1347 goto out_err; 1348 1349 err = mmc_select_bus_width(card); 1350 if (err != MMC_BUS_WIDTH_8) { 1351 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1352 mmc_hostname(host), err); 1353 err = err < 0 ? err : -ENOTSUPP; 1354 goto out_err; 1355 } 1356 1357 /* Switch card to HS mode */ 1358 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1359 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1360 card->ext_csd.generic_cmd6_time, 0, 1361 false, true); 1362 if (err) { 1363 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1364 mmc_hostname(host), err); 1365 goto out_err; 1366 } 1367 1368 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1369 err = mmc_switch_status(card, true); 1370 if (err) 1371 goto out_err; 1372 1373 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1374 1375 /* Switch card to DDR with strobe bit */ 1376 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1377 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1378 EXT_CSD_BUS_WIDTH, 1379 val, 1380 card->ext_csd.generic_cmd6_time); 1381 if (err) { 1382 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1383 mmc_hostname(host), err); 1384 goto out_err; 1385 } 1386 1387 mmc_select_driver_type(card); 1388 1389 /* Switch card to HS400 */ 1390 val = EXT_CSD_TIMING_HS400 | 1391 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1392 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1393 EXT_CSD_HS_TIMING, val, 1394 card->ext_csd.generic_cmd6_time, 0, 1395 false, true); 1396 if (err) { 1397 pr_err("%s: switch to hs400es failed, err:%d\n", 1398 mmc_hostname(host), err); 1399 goto out_err; 1400 } 1401 1402 /* Set host controller to HS400 timing and frequency */ 1403 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1404 1405 /* Controller enable enhanced strobe function */ 1406 host->ios.enhanced_strobe = true; 1407 if (host->ops->hs400_enhanced_strobe) 1408 host->ops->hs400_enhanced_strobe(host, &host->ios); 1409 1410 err = mmc_switch_status(card, true); 1411 if (err) 1412 goto out_err; 1413 1414 return 0; 1415 1416 out_err: 1417 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1418 __func__, err); 1419 return err; 1420 } 1421 1422 /* 1423 * For device supporting HS200 mode, the following sequence 1424 * should be done before executing the tuning process. 1425 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1426 * 2. switch to HS200 mode 1427 * 3. set the clock to > 52Mhz and <=200MHz 1428 */ 1429 static int mmc_select_hs200(struct mmc_card *card) 1430 { 1431 struct mmc_host *host = card->host; 1432 unsigned int old_timing, old_signal_voltage; 1433 int err = -EINVAL; 1434 u8 val; 1435 1436 old_signal_voltage = host->ios.signal_voltage; 1437 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1438 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1439 1440 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1441 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1442 1443 /* If fails try again during next card power cycle */ 1444 if (err) 1445 return err; 1446 1447 mmc_select_driver_type(card); 1448 1449 /* 1450 * Set the bus width(4 or 8) with host's support and 1451 * switch to HS200 mode if bus width is set successfully. 1452 */ 1453 err = mmc_select_bus_width(card); 1454 if (err > 0) { 1455 val = EXT_CSD_TIMING_HS200 | 1456 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1457 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1458 EXT_CSD_HS_TIMING, val, 1459 card->ext_csd.generic_cmd6_time, 0, 1460 false, true); 1461 if (err) 1462 goto err; 1463 old_timing = host->ios.timing; 1464 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1465 1466 /* 1467 * For HS200, CRC errors are not a reliable way to know the 1468 * switch failed. If there really is a problem, we would expect 1469 * tuning will fail and the result ends up the same. 1470 */ 1471 err = mmc_switch_status(card, false); 1472 1473 /* 1474 * mmc_select_timing() assumes timing has not changed if 1475 * it is a switch error. 1476 */ 1477 if (err == -EBADMSG) 1478 mmc_set_timing(host, old_timing); 1479 } 1480 err: 1481 if (err) { 1482 /* fall back to the old signal voltage, if fails report error */ 1483 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1484 err = -EIO; 1485 1486 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1487 __func__, err); 1488 } 1489 return err; 1490 } 1491 1492 /* 1493 * Activate High Speed, HS200 or HS400ES mode if supported. 1494 */ 1495 static int mmc_select_timing(struct mmc_card *card) 1496 { 1497 int err = 0; 1498 1499 if (!mmc_can_ext_csd(card)) 1500 goto bus_speed; 1501 1502 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1503 err = mmc_select_hs400es(card); 1504 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1505 err = mmc_select_hs200(card); 1506 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1507 err = mmc_select_hs(card); 1508 1509 if (err && err != -EBADMSG) 1510 return err; 1511 1512 bus_speed: 1513 /* 1514 * Set the bus speed to the selected bus timing. 1515 * If timing is not selected, backward compatible is the default. 1516 */ 1517 mmc_set_bus_speed(card); 1518 return 0; 1519 } 1520 1521 /* 1522 * Execute tuning sequence to seek the proper bus operating 1523 * conditions for HS200 and HS400, which sends CMD21 to the device. 1524 */ 1525 static int mmc_hs200_tuning(struct mmc_card *card) 1526 { 1527 struct mmc_host *host = card->host; 1528 1529 /* 1530 * Timing should be adjusted to the HS400 target 1531 * operation frequency for tuning process 1532 */ 1533 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1534 host->ios.bus_width == MMC_BUS_WIDTH_8) 1535 if (host->ops->prepare_hs400_tuning) 1536 host->ops->prepare_hs400_tuning(host, &host->ios); 1537 1538 return mmc_execute_tuning(card); 1539 } 1540 1541 /* 1542 * Handle the detection and initialisation of a card. 1543 * 1544 * In the case of a resume, "oldcard" will contain the card 1545 * we're trying to reinitialise. 1546 */ 1547 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1548 struct mmc_card *oldcard) 1549 { 1550 struct mmc_card *card; 1551 int err; 1552 u32 cid[4]; 1553 u32 rocr; 1554 1555 WARN_ON(!host->claimed); 1556 1557 /* Set correct bus mode for MMC before attempting init */ 1558 if (!mmc_host_is_spi(host)) 1559 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1560 1561 /* 1562 * Since we're changing the OCR value, we seem to 1563 * need to tell some cards to go back to the idle 1564 * state. We wait 1ms to give cards time to 1565 * respond. 1566 * mmc_go_idle is needed for eMMC that are asleep 1567 */ 1568 mmc_go_idle(host); 1569 1570 /* The extra bit indicates that we support high capacity */ 1571 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1572 if (err) 1573 goto err; 1574 1575 /* 1576 * For SPI, enable CRC as appropriate. 1577 */ 1578 if (mmc_host_is_spi(host)) { 1579 err = mmc_spi_set_crc(host, use_spi_crc); 1580 if (err) 1581 goto err; 1582 } 1583 1584 /* 1585 * Fetch CID from card. 1586 */ 1587 err = mmc_send_cid(host, cid); 1588 if (err) 1589 goto err; 1590 1591 if (oldcard) { 1592 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1593 pr_debug("%s: Perhaps the card was replaced\n", 1594 mmc_hostname(host)); 1595 err = -ENOENT; 1596 goto err; 1597 } 1598 1599 card = oldcard; 1600 } else { 1601 /* 1602 * Allocate card structure. 1603 */ 1604 card = mmc_alloc_card(host, &mmc_type); 1605 if (IS_ERR(card)) { 1606 err = PTR_ERR(card); 1607 goto err; 1608 } 1609 1610 card->ocr = ocr; 1611 card->type = MMC_TYPE_MMC; 1612 card->rca = 1; 1613 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1614 } 1615 1616 /* 1617 * Call the optional HC's init_card function to handle quirks. 1618 */ 1619 if (host->ops->init_card) 1620 host->ops->init_card(host, card); 1621 1622 /* 1623 * For native busses: set card RCA and quit open drain mode. 1624 */ 1625 if (!mmc_host_is_spi(host)) { 1626 err = mmc_set_relative_addr(card); 1627 if (err) 1628 goto free_card; 1629 1630 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1631 } 1632 1633 if (!oldcard) { 1634 /* 1635 * Fetch CSD from card. 1636 */ 1637 err = mmc_send_csd(card, card->raw_csd); 1638 if (err) 1639 goto free_card; 1640 1641 err = mmc_decode_csd(card); 1642 if (err) 1643 goto free_card; 1644 err = mmc_decode_cid(card); 1645 if (err) 1646 goto free_card; 1647 } 1648 1649 /* 1650 * handling only for cards supporting DSR and hosts requesting 1651 * DSR configuration 1652 */ 1653 if (card->csd.dsr_imp && host->dsr_req) 1654 mmc_set_dsr(host); 1655 1656 /* 1657 * Select card, as all following commands rely on that. 1658 */ 1659 if (!mmc_host_is_spi(host)) { 1660 err = mmc_select_card(card); 1661 if (err) 1662 goto free_card; 1663 } 1664 1665 if (!oldcard) { 1666 /* Read extended CSD. */ 1667 err = mmc_read_ext_csd(card); 1668 if (err) 1669 goto free_card; 1670 1671 /* 1672 * If doing byte addressing, check if required to do sector 1673 * addressing. Handle the case of <2GB cards needing sector 1674 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1675 * ocr register has bit 30 set for sector addressing. 1676 */ 1677 if (rocr & BIT(30)) 1678 mmc_card_set_blockaddr(card); 1679 1680 /* Erase size depends on CSD and Extended CSD */ 1681 mmc_set_erase_size(card); 1682 } 1683 1684 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1685 if (card->ext_csd.rev >= 3) { 1686 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1687 EXT_CSD_ERASE_GROUP_DEF, 1, 1688 card->ext_csd.generic_cmd6_time); 1689 1690 if (err && err != -EBADMSG) 1691 goto free_card; 1692 1693 if (err) { 1694 err = 0; 1695 /* 1696 * Just disable enhanced area off & sz 1697 * will try to enable ERASE_GROUP_DEF 1698 * during next time reinit 1699 */ 1700 card->ext_csd.enhanced_area_offset = -EINVAL; 1701 card->ext_csd.enhanced_area_size = -EINVAL; 1702 } else { 1703 card->ext_csd.erase_group_def = 1; 1704 /* 1705 * enable ERASE_GRP_DEF successfully. 1706 * This will affect the erase size, so 1707 * here need to reset erase size 1708 */ 1709 mmc_set_erase_size(card); 1710 } 1711 } 1712 1713 /* 1714 * Ensure eMMC user default partition is enabled 1715 */ 1716 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1717 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1718 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1719 card->ext_csd.part_config, 1720 card->ext_csd.part_time); 1721 if (err && err != -EBADMSG) 1722 goto free_card; 1723 } 1724 1725 /* 1726 * Enable power_off_notification byte in the ext_csd register 1727 */ 1728 if (card->ext_csd.rev >= 6) { 1729 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1730 EXT_CSD_POWER_OFF_NOTIFICATION, 1731 EXT_CSD_POWER_ON, 1732 card->ext_csd.generic_cmd6_time); 1733 if (err && err != -EBADMSG) 1734 goto free_card; 1735 1736 /* 1737 * The err can be -EBADMSG or 0, 1738 * so check for success and update the flag 1739 */ 1740 if (!err) 1741 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1742 } 1743 1744 /* set erase_arg */ 1745 if (mmc_can_discard(card)) 1746 card->erase_arg = MMC_DISCARD_ARG; 1747 else if (mmc_can_trim(card)) 1748 card->erase_arg = MMC_TRIM_ARG; 1749 else 1750 card->erase_arg = MMC_ERASE_ARG; 1751 1752 /* 1753 * Select timing interface 1754 */ 1755 err = mmc_select_timing(card); 1756 if (err) 1757 goto free_card; 1758 1759 if (mmc_card_hs200(card)) { 1760 err = mmc_hs200_tuning(card); 1761 if (err) 1762 goto free_card; 1763 1764 err = mmc_select_hs400(card); 1765 if (err) 1766 goto free_card; 1767 } else if (!mmc_card_hs400es(card)) { 1768 /* Select the desired bus width optionally */ 1769 err = mmc_select_bus_width(card); 1770 if (err > 0 && mmc_card_hs(card)) { 1771 err = mmc_select_hs_ddr(card); 1772 if (err) 1773 goto free_card; 1774 } 1775 } 1776 1777 /* 1778 * Choose the power class with selected bus interface 1779 */ 1780 mmc_select_powerclass(card); 1781 1782 /* 1783 * Enable HPI feature (if supported) 1784 */ 1785 if (card->ext_csd.hpi) { 1786 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1787 EXT_CSD_HPI_MGMT, 1, 1788 card->ext_csd.generic_cmd6_time); 1789 if (err && err != -EBADMSG) 1790 goto free_card; 1791 if (err) { 1792 pr_warn("%s: Enabling HPI failed\n", 1793 mmc_hostname(card->host)); 1794 card->ext_csd.hpi_en = 0; 1795 err = 0; 1796 } else { 1797 card->ext_csd.hpi_en = 1; 1798 } 1799 } 1800 1801 /* 1802 * If cache size is higher than 0, this indicates the existence of cache 1803 * and it can be turned on. Note that some eMMCs from Micron has been 1804 * reported to need ~800 ms timeout, while enabling the cache after 1805 * sudden power failure tests. Let's extend the timeout to a minimum of 1806 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1807 */ 1808 if (card->ext_csd.cache_size > 0) { 1809 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1810 1811 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1812 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1813 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1814 if (err && err != -EBADMSG) 1815 goto free_card; 1816 1817 /* 1818 * Only if no error, cache is turned on successfully. 1819 */ 1820 if (err) { 1821 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1822 mmc_hostname(card->host), err); 1823 card->ext_csd.cache_ctrl = 0; 1824 err = 0; 1825 } else { 1826 card->ext_csd.cache_ctrl = 1; 1827 } 1828 } 1829 1830 /* 1831 * Enable Command Queue if supported. Note that Packed Commands cannot 1832 * be used with Command Queue. 1833 */ 1834 card->ext_csd.cmdq_en = false; 1835 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1836 err = mmc_cmdq_enable(card); 1837 if (err && err != -EBADMSG) 1838 goto free_card; 1839 if (err) { 1840 pr_warn("%s: Enabling CMDQ failed\n", 1841 mmc_hostname(card->host)); 1842 card->ext_csd.cmdq_support = false; 1843 card->ext_csd.cmdq_depth = 0; 1844 err = 0; 1845 } 1846 } 1847 /* 1848 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1849 * disabled for a time, so a flag is needed to indicate to re-enable the 1850 * Command Queue. 1851 */ 1852 card->reenable_cmdq = card->ext_csd.cmdq_en; 1853 1854 if (host->cqe_ops && !host->cqe_enabled) { 1855 err = host->cqe_ops->cqe_enable(host, card); 1856 if (!err) { 1857 host->cqe_enabled = true; 1858 1859 if (card->ext_csd.cmdq_en) { 1860 pr_info("%s: Command Queue Engine enabled\n", 1861 mmc_hostname(host)); 1862 } else { 1863 host->hsq_enabled = true; 1864 pr_info("%s: Host Software Queue enabled\n", 1865 mmc_hostname(host)); 1866 } 1867 } 1868 } 1869 1870 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1871 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1872 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1873 mmc_hostname(host)); 1874 err = -EINVAL; 1875 goto free_card; 1876 } 1877 1878 if (!oldcard) 1879 host->card = card; 1880 1881 return 0; 1882 1883 free_card: 1884 if (!oldcard) 1885 mmc_remove_card(card); 1886 err: 1887 return err; 1888 } 1889 1890 static int mmc_can_sleep(struct mmc_card *card) 1891 { 1892 return (card && card->ext_csd.rev >= 3); 1893 } 1894 1895 static int mmc_sleep(struct mmc_host *host) 1896 { 1897 struct mmc_command cmd = {}; 1898 struct mmc_card *card = host->card; 1899 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1900 int err; 1901 1902 /* Re-tuning can't be done once the card is deselected */ 1903 mmc_retune_hold(host); 1904 1905 err = mmc_deselect_cards(host); 1906 if (err) 1907 goto out_release; 1908 1909 cmd.opcode = MMC_SLEEP_AWAKE; 1910 cmd.arg = card->rca << 16; 1911 cmd.arg |= 1 << 15; 1912 1913 /* 1914 * If the max_busy_timeout of the host is specified, validate it against 1915 * the sleep cmd timeout. A failure means we need to prevent the host 1916 * from doing hw busy detection, which is done by converting to a R1 1917 * response instead of a R1B. Note, some hosts requires R1B, which also 1918 * means they are on their own when it comes to deal with the busy 1919 * timeout. 1920 */ 1921 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && 1922 (timeout_ms > host->max_busy_timeout)) { 1923 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1924 } else { 1925 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1926 cmd.busy_timeout = timeout_ms; 1927 } 1928 1929 err = mmc_wait_for_cmd(host, &cmd, 0); 1930 if (err) 1931 goto out_release; 1932 1933 /* 1934 * If the host does not wait while the card signals busy, then we will 1935 * will have to wait the sleep/awake timeout. Note, we cannot use the 1936 * SEND_STATUS command to poll the status because that command (and most 1937 * others) is invalid while the card sleeps. 1938 */ 1939 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1940 mmc_delay(timeout_ms); 1941 1942 out_release: 1943 mmc_retune_release(host); 1944 return err; 1945 } 1946 1947 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1948 { 1949 return card && 1950 mmc_card_mmc(card) && 1951 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1952 } 1953 1954 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1955 { 1956 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1957 int err; 1958 1959 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1960 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1961 timeout = card->ext_csd.power_off_longtime; 1962 1963 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1964 EXT_CSD_POWER_OFF_NOTIFICATION, 1965 notify_type, timeout, 0, false, false); 1966 if (err) 1967 pr_err("%s: Power Off Notification timed out, %u\n", 1968 mmc_hostname(card->host), timeout); 1969 1970 /* Disable the power off notification after the switch operation. */ 1971 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1972 1973 return err; 1974 } 1975 1976 /* 1977 * Host is being removed. Free up the current card. 1978 */ 1979 static void mmc_remove(struct mmc_host *host) 1980 { 1981 mmc_remove_card(host->card); 1982 host->card = NULL; 1983 } 1984 1985 /* 1986 * Card detection - card is alive. 1987 */ 1988 static int mmc_alive(struct mmc_host *host) 1989 { 1990 return mmc_send_status(host->card, NULL); 1991 } 1992 1993 /* 1994 * Card detection callback from host. 1995 */ 1996 static void mmc_detect(struct mmc_host *host) 1997 { 1998 int err; 1999 2000 mmc_get_card(host->card, NULL); 2001 2002 /* 2003 * Just check if our card has been removed. 2004 */ 2005 err = _mmc_detect_card_removed(host); 2006 2007 mmc_put_card(host->card, NULL); 2008 2009 if (err) { 2010 mmc_remove(host); 2011 2012 mmc_claim_host(host); 2013 mmc_detach_bus(host); 2014 mmc_power_off(host); 2015 mmc_release_host(host); 2016 } 2017 } 2018 2019 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2020 { 2021 int err = 0; 2022 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2023 EXT_CSD_POWER_OFF_LONG; 2024 2025 mmc_claim_host(host); 2026 2027 if (mmc_card_suspended(host->card)) 2028 goto out; 2029 2030 err = mmc_flush_cache(host->card); 2031 if (err) 2032 goto out; 2033 2034 if (mmc_can_poweroff_notify(host->card) && 2035 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 2036 err = mmc_poweroff_notify(host->card, notify_type); 2037 else if (mmc_can_sleep(host->card)) 2038 err = mmc_sleep(host); 2039 else if (!mmc_host_is_spi(host)) 2040 err = mmc_deselect_cards(host); 2041 2042 if (!err) { 2043 mmc_power_off(host); 2044 mmc_card_set_suspended(host->card); 2045 } 2046 out: 2047 mmc_release_host(host); 2048 return err; 2049 } 2050 2051 /* 2052 * Suspend callback 2053 */ 2054 static int mmc_suspend(struct mmc_host *host) 2055 { 2056 int err; 2057 2058 err = _mmc_suspend(host, true); 2059 if (!err) { 2060 pm_runtime_disable(&host->card->dev); 2061 pm_runtime_set_suspended(&host->card->dev); 2062 } 2063 2064 return err; 2065 } 2066 2067 /* 2068 * This function tries to determine if the same card is still present 2069 * and, if so, restore all state to it. 2070 */ 2071 static int _mmc_resume(struct mmc_host *host) 2072 { 2073 int err = 0; 2074 2075 mmc_claim_host(host); 2076 2077 if (!mmc_card_suspended(host->card)) 2078 goto out; 2079 2080 mmc_power_up(host, host->card->ocr); 2081 err = mmc_init_card(host, host->card->ocr, host->card); 2082 mmc_card_clr_suspended(host->card); 2083 2084 out: 2085 mmc_release_host(host); 2086 return err; 2087 } 2088 2089 /* 2090 * Shutdown callback 2091 */ 2092 static int mmc_shutdown(struct mmc_host *host) 2093 { 2094 int err = 0; 2095 2096 /* 2097 * In a specific case for poweroff notify, we need to resume the card 2098 * before we can shutdown it properly. 2099 */ 2100 if (mmc_can_poweroff_notify(host->card) && 2101 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2102 err = _mmc_resume(host); 2103 2104 if (!err) 2105 err = _mmc_suspend(host, false); 2106 2107 return err; 2108 } 2109 2110 /* 2111 * Callback for resume. 2112 */ 2113 static int mmc_resume(struct mmc_host *host) 2114 { 2115 pm_runtime_enable(&host->card->dev); 2116 return 0; 2117 } 2118 2119 /* 2120 * Callback for runtime_suspend. 2121 */ 2122 static int mmc_runtime_suspend(struct mmc_host *host) 2123 { 2124 int err; 2125 2126 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2127 return 0; 2128 2129 err = _mmc_suspend(host, true); 2130 if (err) 2131 pr_err("%s: error %d doing aggressive suspend\n", 2132 mmc_hostname(host), err); 2133 2134 return err; 2135 } 2136 2137 /* 2138 * Callback for runtime_resume. 2139 */ 2140 static int mmc_runtime_resume(struct mmc_host *host) 2141 { 2142 int err; 2143 2144 err = _mmc_resume(host); 2145 if (err && err != -ENOMEDIUM) 2146 pr_err("%s: error %d doing runtime resume\n", 2147 mmc_hostname(host), err); 2148 2149 return 0; 2150 } 2151 2152 static int mmc_can_reset(struct mmc_card *card) 2153 { 2154 u8 rst_n_function; 2155 2156 rst_n_function = card->ext_csd.rst_n_function; 2157 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2158 return 0; 2159 return 1; 2160 } 2161 2162 static int _mmc_hw_reset(struct mmc_host *host) 2163 { 2164 struct mmc_card *card = host->card; 2165 2166 /* 2167 * In the case of recovery, we can't expect flushing the cache to work 2168 * always, but we have a go and ignore errors. 2169 */ 2170 mmc_flush_cache(host->card); 2171 2172 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2173 mmc_can_reset(card)) { 2174 /* If the card accept RST_n signal, send it. */ 2175 mmc_set_clock(host, host->f_init); 2176 host->ops->hw_reset(host); 2177 /* Set initial state and call mmc_set_ios */ 2178 mmc_set_initial_state(host); 2179 } else { 2180 /* Do a brute force power cycle */ 2181 mmc_power_cycle(host, card->ocr); 2182 mmc_pwrseq_reset(host); 2183 } 2184 return mmc_init_card(host, card->ocr, card); 2185 } 2186 2187 static const struct mmc_bus_ops mmc_ops = { 2188 .remove = mmc_remove, 2189 .detect = mmc_detect, 2190 .suspend = mmc_suspend, 2191 .resume = mmc_resume, 2192 .runtime_suspend = mmc_runtime_suspend, 2193 .runtime_resume = mmc_runtime_resume, 2194 .alive = mmc_alive, 2195 .shutdown = mmc_shutdown, 2196 .hw_reset = _mmc_hw_reset, 2197 }; 2198 2199 /* 2200 * Starting point for MMC card init. 2201 */ 2202 int mmc_attach_mmc(struct mmc_host *host) 2203 { 2204 int err; 2205 u32 ocr, rocr; 2206 2207 WARN_ON(!host->claimed); 2208 2209 /* Set correct bus mode for MMC before attempting attach */ 2210 if (!mmc_host_is_spi(host)) 2211 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2212 2213 err = mmc_send_op_cond(host, 0, &ocr); 2214 if (err) 2215 return err; 2216 2217 mmc_attach_bus(host, &mmc_ops); 2218 if (host->ocr_avail_mmc) 2219 host->ocr_avail = host->ocr_avail_mmc; 2220 2221 /* 2222 * We need to get OCR a different way for SPI. 2223 */ 2224 if (mmc_host_is_spi(host)) { 2225 err = mmc_spi_read_ocr(host, 1, &ocr); 2226 if (err) 2227 goto err; 2228 } 2229 2230 rocr = mmc_select_voltage(host, ocr); 2231 2232 /* 2233 * Can we support the voltage of the card? 2234 */ 2235 if (!rocr) { 2236 err = -EINVAL; 2237 goto err; 2238 } 2239 2240 /* 2241 * Detect and init the card. 2242 */ 2243 err = mmc_init_card(host, rocr, NULL); 2244 if (err) 2245 goto err; 2246 2247 mmc_release_host(host); 2248 err = mmc_add_card(host->card); 2249 if (err) 2250 goto remove_card; 2251 2252 mmc_claim_host(host); 2253 return 0; 2254 2255 remove_card: 2256 mmc_remove_card(host->card); 2257 mmc_claim_host(host); 2258 host->card = NULL; 2259 err: 2260 mmc_detach_bus(host); 2261 2262 pr_err("%s: error %d whilst initialising MMC card\n", 2263 mmc_hostname(host), err); 2264 2265 return err; 2266 } 2267