xref: /openbmc/linux/drivers/mmc/core/mmc.c (revision 0efd4374)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/sysfs.h>
16 
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 #include "quirks.h"
27 #include "sd_ops.h"
28 #include "pwrseq.h"
29 
30 #define DEFAULT_CMD6_TIMEOUT_MS	500
31 #define MIN_CACHE_EN_TIMEOUT_MS 1600
32 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 	u32 *resp = card->raw_cid;
73 
74 	/*
75 	 * The selection of the format here is based upon published
76 	 * specs from sandisk and from what people have reported.
77 	 */
78 	switch (card->csd.mmca_vsn) {
79 	case 0: /* MMC v1.0 - v1.2 */
80 	case 1: /* MMC v1.4 */
81 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
82 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
83 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
84 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
85 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
86 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
87 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
88 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
89 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
90 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
91 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
92 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
93 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
94 		break;
95 
96 	case 2: /* MMC v2.0 - v2.2 */
97 	case 3: /* MMC v3.1 - v3.3 */
98 	case 4: /* MMC v4 */
99 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
100 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
101 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
102 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
103 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
104 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
105 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
106 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
107 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
108 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
109 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
110 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
111 		break;
112 
113 	default:
114 		pr_err("%s: card has unknown MMCA version %d\n",
115 			mmc_hostname(card->host), card->csd.mmca_vsn);
116 		return -EINVAL;
117 	}
118 
119 	return 0;
120 }
121 
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 	if (card->ext_csd.erase_group_def & 1)
125 		card->erase_size = card->ext_csd.hc_erase_size;
126 	else
127 		card->erase_size = card->csd.erase_size;
128 
129 	mmc_init_erase(card);
130 }
131 
132 /*
133  * Given a 128-bit response, decode to our card CSD structure.
134  */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 	struct mmc_csd *csd = &card->csd;
138 	unsigned int e, m, a, b;
139 	u32 *resp = card->raw_csd;
140 
141 	/*
142 	 * We only understand CSD structure v1.1 and v1.2.
143 	 * v1.2 has extra information in bits 15, 11 and 10.
144 	 * We also support eMMC v4.4 & v4.41.
145 	 */
146 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 	if (csd->structure == 0) {
148 		pr_err("%s: unrecognised CSD structure version %d\n",
149 			mmc_hostname(card->host), csd->structure);
150 		return -EINVAL;
151 	}
152 
153 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
154 	m = UNSTUFF_BITS(resp, 115, 4);
155 	e = UNSTUFF_BITS(resp, 112, 3);
156 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
158 
159 	m = UNSTUFF_BITS(resp, 99, 4);
160 	e = UNSTUFF_BITS(resp, 96, 3);
161 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
162 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
163 
164 	e = UNSTUFF_BITS(resp, 47, 3);
165 	m = UNSTUFF_BITS(resp, 62, 12);
166 	csd->capacity	  = (1 + m) << (e + 2);
167 
168 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176 
177 	if (csd->write_blkbits >= 9) {
178 		a = UNSTUFF_BITS(resp, 42, 5);
179 		b = UNSTUFF_BITS(resp, 37, 5);
180 		csd->erase_size = (a + 1) * (b + 1);
181 		csd->erase_size <<= csd->write_blkbits - 9;
182 	}
183 
184 	return 0;
185 }
186 
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 	struct mmc_host *host = card->host;
190 	u8 card_type = card->ext_csd.raw_card_type;
191 	u32 caps = host->caps, caps2 = host->caps2;
192 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 	unsigned int avail_type = 0;
194 
195 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 	}
200 
201 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 	}
206 
207 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 	}
212 
213 	if (caps & MMC_CAP_1_2V_DDR &&
214 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 	}
218 
219 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 		hs200_max_dtr = MMC_HS200_MAX_DTR;
222 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 	}
224 
225 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 		hs200_max_dtr = MMC_HS200_MAX_DTR;
228 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 	}
230 
231 	if (caps2 & MMC_CAP2_HS400_1_8V &&
232 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 		hs200_max_dtr = MMC_HS200_MAX_DTR;
234 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 	}
236 
237 	if (caps2 & MMC_CAP2_HS400_1_2V &&
238 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 		hs200_max_dtr = MMC_HS200_MAX_DTR;
240 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 	}
242 
243 	if ((caps2 & MMC_CAP2_HS400_ES) &&
244 	    card->ext_csd.strobe_support &&
245 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247 
248 	card->ext_csd.hs_max_dtr = hs_max_dtr;
249 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 	card->mmc_avail_type = avail_type;
251 }
252 
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
256 
257 	/*
258 	 * Disable these attributes by default
259 	 */
260 	card->ext_csd.enhanced_area_offset = -EINVAL;
261 	card->ext_csd.enhanced_area_size = -EINVAL;
262 
263 	/*
264 	 * Enhanced area feature support -- check whether the eMMC
265 	 * card has the Enhanced area enabled.  If so, export enhanced
266 	 * area offset and size to user by adding sysfs interface.
267 	 */
268 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 		if (card->ext_csd.partition_setting_completed) {
271 			hc_erase_grp_sz =
272 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 			hc_wp_grp_sz =
274 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275 
276 			/*
277 			 * calculate the enhanced data area offset, in bytes
278 			 */
279 			card->ext_csd.enhanced_area_offset =
280 				(((unsigned long long)ext_csd[139]) << 24) +
281 				(((unsigned long long)ext_csd[138]) << 16) +
282 				(((unsigned long long)ext_csd[137]) << 8) +
283 				(((unsigned long long)ext_csd[136]));
284 			if (mmc_card_blockaddr(card))
285 				card->ext_csd.enhanced_area_offset <<= 9;
286 			/*
287 			 * calculate the enhanced data area size, in kilobytes
288 			 */
289 			card->ext_csd.enhanced_area_size =
290 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 				ext_csd[140];
292 			card->ext_csd.enhanced_area_size *=
293 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 			card->ext_csd.enhanced_area_size <<= 9;
295 		} else {
296 			pr_warn("%s: defines enhanced area without partition setting complete\n",
297 				mmc_hostname(card->host));
298 		}
299 	}
300 }
301 
302 static void mmc_part_add(struct mmc_card *card, u64 size,
303 			 unsigned int part_cfg, char *name, int idx, bool ro,
304 			 int area_type)
305 {
306 	card->part[card->nr_parts].size = size;
307 	card->part[card->nr_parts].part_cfg = part_cfg;
308 	sprintf(card->part[card->nr_parts].name, name, idx);
309 	card->part[card->nr_parts].force_ro = ro;
310 	card->part[card->nr_parts].area_type = area_type;
311 	card->nr_parts++;
312 }
313 
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 	int idx;
317 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 	u64 part_size;
319 
320 	/*
321 	 * General purpose partition feature support --
322 	 * If ext_csd has the size of general purpose partitions,
323 	 * set size, part_cfg, partition name in mmc_part.
324 	 */
325 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 	    EXT_CSD_PART_SUPPORT_PART_EN) {
327 		hc_erase_grp_sz =
328 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 		hc_wp_grp_sz =
330 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331 
332 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 				continue;
337 			if (card->ext_csd.partition_setting_completed == 0) {
338 				pr_warn("%s: has partition size defined without partition complete\n",
339 					mmc_hostname(card->host));
340 				break;
341 			}
342 			part_size =
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 				<< 16) +
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 				<< 8) +
347 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
349 			mmc_part_add(card, part_size << 19,
350 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
351 				"gp%d", idx, false,
352 				MMC_BLK_DATA_AREA_GP);
353 		}
354 	}
355 }
356 
357 /* Minimum partition switch timeout in milliseconds */
358 #define MMC_MIN_PART_SWITCH_TIME	300
359 
360 /*
361  * Decode extended CSD.
362  */
363 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
364 {
365 	int err = 0, idx;
366 	u64 part_size;
367 	struct device_node *np;
368 	bool broken_hpi = false;
369 
370 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
371 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
372 	if (card->csd.structure == 3) {
373 		if (card->ext_csd.raw_ext_csd_structure > 2) {
374 			pr_err("%s: unrecognised EXT_CSD structure "
375 				"version %d\n", mmc_hostname(card->host),
376 					card->ext_csd.raw_ext_csd_structure);
377 			err = -EINVAL;
378 			goto out;
379 		}
380 	}
381 
382 	np = mmc_of_find_child_device(card->host, 0);
383 	if (np && of_device_is_compatible(np, "mmc-card"))
384 		broken_hpi = of_property_read_bool(np, "broken-hpi");
385 	of_node_put(np);
386 
387 	/*
388 	 * The EXT_CSD format is meant to be forward compatible. As long
389 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
390 	 * are authorized, see JEDEC JESD84-B50 section B.8.
391 	 */
392 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
393 
394 	/* fixup device after ext_csd revision field is updated */
395 	mmc_fixup_device(card, mmc_ext_csd_fixups);
396 
397 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
398 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
399 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
400 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
401 	if (card->ext_csd.rev >= 2) {
402 		card->ext_csd.sectors =
403 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
404 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
405 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
406 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
407 
408 		/* Cards with density > 2GiB are sector addressed */
409 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
410 			mmc_card_set_blockaddr(card);
411 	}
412 
413 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
414 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
415 	mmc_select_card_type(card);
416 
417 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
418 	card->ext_csd.raw_erase_timeout_mult =
419 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
420 	card->ext_csd.raw_hc_erase_grp_size =
421 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
422 	card->ext_csd.raw_boot_mult =
423 		ext_csd[EXT_CSD_BOOT_MULT];
424 	if (card->ext_csd.rev >= 3) {
425 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 
428 		/* EXT_CSD value is in units of 10ms, but we store in ms */
429 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430 
431 		/* Sleep / awake timeout in 100ns units */
432 		if (sa_shift > 0 && sa_shift <= 0x17)
433 			card->ext_csd.sa_timeout =
434 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 		card->ext_csd.erase_group_def =
436 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 		card->ext_csd.hc_erase_timeout = 300 *
438 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 		card->ext_csd.hc_erase_size =
440 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441 
442 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443 
444 		/*
445 		 * There are two boot regions of equal size, defined in
446 		 * multiples of 128K.
447 		 */
448 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 				mmc_part_add(card, part_size,
452 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 					"boot%d", idx, true,
454 					MMC_BLK_DATA_AREA_BOOT);
455 			}
456 		}
457 	}
458 
459 	card->ext_csd.raw_hc_erase_gap_size =
460 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 	card->ext_csd.raw_sec_trim_mult =
462 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 	card->ext_csd.raw_sec_erase_mult =
464 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 	card->ext_csd.raw_sec_feature_support =
466 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 	card->ext_csd.raw_trim_mult =
468 		ext_csd[EXT_CSD_TRIM_MULT];
469 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 	if (card->ext_csd.rev >= 4) {
472 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 		    EXT_CSD_PART_SETTING_COMPLETED)
474 			card->ext_csd.partition_setting_completed = 1;
475 		else
476 			card->ext_csd.partition_setting_completed = 0;
477 
478 		mmc_manage_enhanced_area(card, ext_csd);
479 
480 		mmc_manage_gp_partitions(card, ext_csd);
481 
482 		card->ext_csd.sec_trim_mult =
483 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 		card->ext_csd.sec_erase_mult =
485 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 		card->ext_csd.sec_feature_support =
487 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 		card->ext_csd.trim_timeout = 300 *
489 			ext_csd[EXT_CSD_TRIM_MULT];
490 
491 		/*
492 		 * Note that the call to mmc_part_add above defaults to read
493 		 * only. If this default assumption is changed, the call must
494 		 * take into account the value of boot_locked below.
495 		 */
496 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 		card->ext_csd.boot_ro_lockable = true;
498 
499 		/* Save power class values */
500 		card->ext_csd.raw_pwr_cl_52_195 =
501 			ext_csd[EXT_CSD_PWR_CL_52_195];
502 		card->ext_csd.raw_pwr_cl_26_195 =
503 			ext_csd[EXT_CSD_PWR_CL_26_195];
504 		card->ext_csd.raw_pwr_cl_52_360 =
505 			ext_csd[EXT_CSD_PWR_CL_52_360];
506 		card->ext_csd.raw_pwr_cl_26_360 =
507 			ext_csd[EXT_CSD_PWR_CL_26_360];
508 		card->ext_csd.raw_pwr_cl_200_195 =
509 			ext_csd[EXT_CSD_PWR_CL_200_195];
510 		card->ext_csd.raw_pwr_cl_200_360 =
511 			ext_csd[EXT_CSD_PWR_CL_200_360];
512 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 	}
519 
520 	if (card->ext_csd.rev >= 5) {
521 		/* Adjust production date as per JEDEC JESD84-B451 */
522 		if (card->cid.year < 2010)
523 			card->cid.year += 16;
524 
525 		/* check whether the eMMC card supports BKOPS */
526 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 					mmc_hostname(card->host));
536 			card->ext_csd.auto_bkops_en =
537 					(ext_csd[EXT_CSD_BKOPS_EN] &
538 						EXT_CSD_AUTO_BKOPS_MASK);
539 			if (card->ext_csd.auto_bkops_en)
540 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 		}
543 
544 		/* check whether the eMMC card supports HPI */
545 		if (!mmc_card_broken_hpi(card) &&
546 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 			card->ext_csd.hpi = 1;
548 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
550 			else
551 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 			/*
553 			 * Indicate the maximum timeout to close
554 			 * a command interrupted by HPI
555 			 */
556 			card->ext_csd.out_of_int_time =
557 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 		}
559 
560 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562 
563 		/*
564 		 * RPMB regions are defined in multiples of 128K.
565 		 */
566 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 				EXT_CSD_PART_CONFIG_ACC_RPMB,
570 				"rpmb", 0, false,
571 				MMC_BLK_DATA_AREA_RPMB);
572 		}
573 	}
574 
575 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 		card->erased_byte = 0xFF;
578 	else
579 		card->erased_byte = 0x0;
580 
581 	/* eMMC v4.5 or later */
582 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 	if (card->ext_csd.rev >= 6) {
584 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585 
586 		card->ext_csd.generic_cmd6_time = 10 *
587 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 		card->ext_csd.power_off_longtime = 10 *
589 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590 
591 		card->ext_csd.cache_size =
592 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596 
597 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 			card->ext_csd.data_sector_size = 4096;
599 		else
600 			card->ext_csd.data_sector_size = 512;
601 
602 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 			card->ext_csd.data_tag_unit_size =
605 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 			(card->ext_csd.data_sector_size);
607 		} else {
608 			card->ext_csd.data_tag_unit_size = 0;
609 		}
610 
611 		card->ext_csd.max_packed_writes =
612 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 		card->ext_csd.max_packed_reads =
614 			ext_csd[EXT_CSD_MAX_PACKED_READS];
615 	} else {
616 		card->ext_csd.data_sector_size = 512;
617 	}
618 
619 	/*
620 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
621 	 * when accessing a specific field", so use it here if there is no
622 	 * PARTITION_SWITCH_TIME.
623 	 */
624 	if (!card->ext_csd.part_time)
625 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
626 	/* Some eMMC set the value too low so set a minimum */
627 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
628 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
629 
630 	/* eMMC v5 or later */
631 	if (card->ext_csd.rev >= 7) {
632 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
633 		       MMC_FIRMWARE_LEN);
634 		card->ext_csd.ffu_capable =
635 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
636 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
637 
638 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
639 		card->ext_csd.device_life_time_est_typ_a =
640 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
641 		card->ext_csd.device_life_time_est_typ_b =
642 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
643 	}
644 
645 	/* eMMC v5.1 or later */
646 	if (card->ext_csd.rev >= 8) {
647 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
648 					     EXT_CSD_CMDQ_SUPPORTED;
649 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
650 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
651 		/* Exclude inefficiently small queue depths */
652 		if (card->ext_csd.cmdq_depth <= 2) {
653 			card->ext_csd.cmdq_support = false;
654 			card->ext_csd.cmdq_depth = 0;
655 		}
656 		if (card->ext_csd.cmdq_support) {
657 			pr_debug("%s: Command Queue supported depth %u\n",
658 				 mmc_hostname(card->host),
659 				 card->ext_csd.cmdq_depth);
660 		}
661 		card->ext_csd.enhanced_rpmb_supported =
662 					(card->ext_csd.rel_param &
663 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
664 	}
665 out:
666 	return err;
667 }
668 
669 static int mmc_read_ext_csd(struct mmc_card *card)
670 {
671 	u8 *ext_csd;
672 	int err;
673 
674 	if (!mmc_can_ext_csd(card))
675 		return 0;
676 
677 	err = mmc_get_ext_csd(card, &ext_csd);
678 	if (err) {
679 		/* If the host or the card can't do the switch,
680 		 * fail more gracefully. */
681 		if ((err != -EINVAL)
682 		 && (err != -ENOSYS)
683 		 && (err != -EFAULT))
684 			return err;
685 
686 		/*
687 		 * High capacity cards should have this "magic" size
688 		 * stored in their CSD.
689 		 */
690 		if (card->csd.capacity == (4096 * 512)) {
691 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
692 				mmc_hostname(card->host));
693 		} else {
694 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
695 				mmc_hostname(card->host));
696 			err = 0;
697 		}
698 
699 		return err;
700 	}
701 
702 	err = mmc_decode_ext_csd(card, ext_csd);
703 	kfree(ext_csd);
704 	return err;
705 }
706 
707 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
708 {
709 	u8 *bw_ext_csd;
710 	int err;
711 
712 	if (bus_width == MMC_BUS_WIDTH_1)
713 		return 0;
714 
715 	err = mmc_get_ext_csd(card, &bw_ext_csd);
716 	if (err)
717 		return err;
718 
719 	/* only compare read only fields */
720 	err = !((card->ext_csd.raw_partition_support ==
721 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
722 		(card->ext_csd.raw_erased_mem_count ==
723 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
724 		(card->ext_csd.rev ==
725 			bw_ext_csd[EXT_CSD_REV]) &&
726 		(card->ext_csd.raw_ext_csd_structure ==
727 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
728 		(card->ext_csd.raw_card_type ==
729 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
730 		(card->ext_csd.raw_s_a_timeout ==
731 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
732 		(card->ext_csd.raw_hc_erase_gap_size ==
733 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
734 		(card->ext_csd.raw_erase_timeout_mult ==
735 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
736 		(card->ext_csd.raw_hc_erase_grp_size ==
737 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
738 		(card->ext_csd.raw_sec_trim_mult ==
739 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
740 		(card->ext_csd.raw_sec_erase_mult ==
741 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
742 		(card->ext_csd.raw_sec_feature_support ==
743 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
744 		(card->ext_csd.raw_trim_mult ==
745 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
746 		(card->ext_csd.raw_sectors[0] ==
747 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
748 		(card->ext_csd.raw_sectors[1] ==
749 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
750 		(card->ext_csd.raw_sectors[2] ==
751 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
752 		(card->ext_csd.raw_sectors[3] ==
753 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
754 		(card->ext_csd.raw_pwr_cl_52_195 ==
755 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
756 		(card->ext_csd.raw_pwr_cl_26_195 ==
757 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
758 		(card->ext_csd.raw_pwr_cl_52_360 ==
759 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
760 		(card->ext_csd.raw_pwr_cl_26_360 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
762 		(card->ext_csd.raw_pwr_cl_200_195 ==
763 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
764 		(card->ext_csd.raw_pwr_cl_200_360 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
766 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
768 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
769 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
770 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
771 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
772 
773 	if (err)
774 		err = -EINVAL;
775 
776 	kfree(bw_ext_csd);
777 	return err;
778 }
779 
780 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
781 	card->raw_cid[2], card->raw_cid[3]);
782 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
783 	card->raw_csd[2], card->raw_csd[3]);
784 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
785 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
786 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
787 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
788 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
789 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
790 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
791 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
792 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
793 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
794 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
795 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
796 	card->ext_csd.device_life_time_est_typ_a,
797 	card->ext_csd.device_life_time_est_typ_b);
798 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
799 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
800 		card->ext_csd.enhanced_area_offset);
801 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
802 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
803 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
804 	card->ext_csd.enhanced_rpmb_supported);
805 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
806 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
807 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
808 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
809 
810 static ssize_t mmc_fwrev_show(struct device *dev,
811 			      struct device_attribute *attr,
812 			      char *buf)
813 {
814 	struct mmc_card *card = mmc_dev_to_card(dev);
815 
816 	if (card->ext_csd.rev < 7)
817 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
818 	else
819 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
820 				  card->ext_csd.fwrev);
821 }
822 
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824 
825 static ssize_t mmc_dsr_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct mmc_card *card = mmc_dev_to_card(dev);
830 	struct mmc_host *host = card->host;
831 
832 	if (card->csd.dsr_imp && host->dsr_req)
833 		return sysfs_emit(buf, "0x%x\n", host->dsr);
834 	else
835 		/* return default DSR value */
836 		return sysfs_emit(buf, "0x%x\n", 0x404);
837 }
838 
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840 
841 static struct attribute *mmc_std_attrs[] = {
842 	&dev_attr_cid.attr,
843 	&dev_attr_csd.attr,
844 	&dev_attr_date.attr,
845 	&dev_attr_erase_size.attr,
846 	&dev_attr_preferred_erase_size.attr,
847 	&dev_attr_fwrev.attr,
848 	&dev_attr_ffu_capable.attr,
849 	&dev_attr_hwrev.attr,
850 	&dev_attr_manfid.attr,
851 	&dev_attr_name.attr,
852 	&dev_attr_oemid.attr,
853 	&dev_attr_prv.attr,
854 	&dev_attr_rev.attr,
855 	&dev_attr_pre_eol_info.attr,
856 	&dev_attr_life_time.attr,
857 	&dev_attr_serial.attr,
858 	&dev_attr_enhanced_area_offset.attr,
859 	&dev_attr_enhanced_area_size.attr,
860 	&dev_attr_raw_rpmb_size_mult.attr,
861 	&dev_attr_enhanced_rpmb_supported.attr,
862 	&dev_attr_rel_sectors.attr,
863 	&dev_attr_ocr.attr,
864 	&dev_attr_rca.attr,
865 	&dev_attr_dsr.attr,
866 	&dev_attr_cmdq_en.attr,
867 	NULL,
868 };
869 ATTRIBUTE_GROUPS(mmc_std);
870 
871 static struct device_type mmc_type = {
872 	.groups = mmc_std_groups,
873 };
874 
875 /*
876  * Select the PowerClass for the current bus width
877  * If power class is defined for 4/8 bit bus in the
878  * extended CSD register, select it by executing the
879  * mmc_switch command.
880  */
881 static int __mmc_select_powerclass(struct mmc_card *card,
882 				   unsigned int bus_width)
883 {
884 	struct mmc_host *host = card->host;
885 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
886 	unsigned int pwrclass_val = 0;
887 	int err = 0;
888 
889 	switch (1 << host->ios.vdd) {
890 	case MMC_VDD_165_195:
891 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
892 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
893 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
894 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
895 				ext_csd->raw_pwr_cl_52_195 :
896 				ext_csd->raw_pwr_cl_ddr_52_195;
897 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
899 		break;
900 	case MMC_VDD_27_28:
901 	case MMC_VDD_28_29:
902 	case MMC_VDD_29_30:
903 	case MMC_VDD_30_31:
904 	case MMC_VDD_31_32:
905 	case MMC_VDD_32_33:
906 	case MMC_VDD_33_34:
907 	case MMC_VDD_34_35:
908 	case MMC_VDD_35_36:
909 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
910 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
911 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
912 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
913 				ext_csd->raw_pwr_cl_52_360 :
914 				ext_csd->raw_pwr_cl_ddr_52_360;
915 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
916 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
917 				ext_csd->raw_pwr_cl_ddr_200_360 :
918 				ext_csd->raw_pwr_cl_200_360;
919 		break;
920 	default:
921 		pr_warn("%s: Voltage range not supported for power class\n",
922 			mmc_hostname(host));
923 		return -EINVAL;
924 	}
925 
926 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
927 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
928 				EXT_CSD_PWR_CL_8BIT_SHIFT;
929 	else
930 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
931 				EXT_CSD_PWR_CL_4BIT_SHIFT;
932 
933 	/* If the power class is different from the default value */
934 	if (pwrclass_val > 0) {
935 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
936 				 EXT_CSD_POWER_CLASS,
937 				 pwrclass_val,
938 				 card->ext_csd.generic_cmd6_time);
939 	}
940 
941 	return err;
942 }
943 
944 static int mmc_select_powerclass(struct mmc_card *card)
945 {
946 	struct mmc_host *host = card->host;
947 	u32 bus_width, ext_csd_bits;
948 	int err, ddr;
949 
950 	/* Power class selection is supported for versions >= 4.0 */
951 	if (!mmc_can_ext_csd(card))
952 		return 0;
953 
954 	bus_width = host->ios.bus_width;
955 	/* Power class values are defined only for 4/8 bit bus */
956 	if (bus_width == MMC_BUS_WIDTH_1)
957 		return 0;
958 
959 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
960 	if (ddr)
961 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
962 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
963 	else
964 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
965 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
966 
967 	err = __mmc_select_powerclass(card, ext_csd_bits);
968 	if (err)
969 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
970 			mmc_hostname(host), 1 << bus_width, ddr);
971 
972 	return err;
973 }
974 
975 /*
976  * Set the bus speed for the selected speed mode.
977  */
978 static void mmc_set_bus_speed(struct mmc_card *card)
979 {
980 	unsigned int max_dtr = (unsigned int)-1;
981 
982 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
983 	     max_dtr > card->ext_csd.hs200_max_dtr)
984 		max_dtr = card->ext_csd.hs200_max_dtr;
985 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
986 		max_dtr = card->ext_csd.hs_max_dtr;
987 	else if (max_dtr > card->csd.max_dtr)
988 		max_dtr = card->csd.max_dtr;
989 
990 	mmc_set_clock(card->host, max_dtr);
991 }
992 
993 /*
994  * Select the bus width amoung 4-bit and 8-bit(SDR).
995  * If the bus width is changed successfully, return the selected width value.
996  * Zero is returned instead of error value if the wide width is not supported.
997  */
998 static int mmc_select_bus_width(struct mmc_card *card)
999 {
1000 	static unsigned ext_csd_bits[] = {
1001 		EXT_CSD_BUS_WIDTH_8,
1002 		EXT_CSD_BUS_WIDTH_4,
1003 	};
1004 	static unsigned bus_widths[] = {
1005 		MMC_BUS_WIDTH_8,
1006 		MMC_BUS_WIDTH_4,
1007 	};
1008 	struct mmc_host *host = card->host;
1009 	unsigned idx, bus_width = 0;
1010 	int err = 0;
1011 
1012 	if (!mmc_can_ext_csd(card) ||
1013 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1014 		return 0;
1015 
1016 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1017 
1018 	/*
1019 	 * Unlike SD, MMC cards dont have a configuration register to notify
1020 	 * supported bus width. So bus test command should be run to identify
1021 	 * the supported bus width or compare the ext csd values of current
1022 	 * bus width and ext csd values of 1 bit mode read earlier.
1023 	 */
1024 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1025 		/*
1026 		 * Host is capable of 8bit transfer, then switch
1027 		 * the device to work in 8bit transfer mode. If the
1028 		 * mmc switch command returns error then switch to
1029 		 * 4bit transfer mode. On success set the corresponding
1030 		 * bus width on the host.
1031 		 */
1032 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1033 				 EXT_CSD_BUS_WIDTH,
1034 				 ext_csd_bits[idx],
1035 				 card->ext_csd.generic_cmd6_time);
1036 		if (err)
1037 			continue;
1038 
1039 		bus_width = bus_widths[idx];
1040 		mmc_set_bus_width(host, bus_width);
1041 
1042 		/*
1043 		 * If controller can't handle bus width test,
1044 		 * compare ext_csd previously read in 1 bit mode
1045 		 * against ext_csd at new bus width
1046 		 */
1047 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1048 			err = mmc_compare_ext_csds(card, bus_width);
1049 		else
1050 			err = mmc_bus_test(card, bus_width);
1051 
1052 		if (!err) {
1053 			err = bus_width;
1054 			break;
1055 		} else {
1056 			pr_warn("%s: switch to bus width %d failed\n",
1057 				mmc_hostname(host), 1 << bus_width);
1058 		}
1059 	}
1060 
1061 	return err;
1062 }
1063 
1064 /*
1065  * Switch to the high-speed mode
1066  */
1067 static int mmc_select_hs(struct mmc_card *card)
1068 {
1069 	int err;
1070 
1071 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1072 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1073 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1074 			   true, true, MMC_CMD_RETRIES);
1075 	if (err)
1076 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1077 			mmc_hostname(card->host), err);
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * Activate wide bus and DDR if supported.
1084  */
1085 static int mmc_select_hs_ddr(struct mmc_card *card)
1086 {
1087 	struct mmc_host *host = card->host;
1088 	u32 bus_width, ext_csd_bits;
1089 	int err = 0;
1090 
1091 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1092 		return 0;
1093 
1094 	bus_width = host->ios.bus_width;
1095 	if (bus_width == MMC_BUS_WIDTH_1)
1096 		return 0;
1097 
1098 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1099 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1100 
1101 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1102 			   EXT_CSD_BUS_WIDTH,
1103 			   ext_csd_bits,
1104 			   card->ext_csd.generic_cmd6_time,
1105 			   MMC_TIMING_MMC_DDR52,
1106 			   true, true, MMC_CMD_RETRIES);
1107 	if (err) {
1108 		pr_err("%s: switch to bus width %d ddr failed\n",
1109 			mmc_hostname(host), 1 << bus_width);
1110 		return err;
1111 	}
1112 
1113 	/*
1114 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1115 	 * signaling.
1116 	 *
1117 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1118 	 *
1119 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1120 	 * in the JEDEC spec for DDR.
1121 	 *
1122 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1123 	 * host controller can support this, like some of the SDHCI
1124 	 * controller which connect to an eMMC device. Some of these
1125 	 * host controller still needs to use 1.8v vccq for supporting
1126 	 * DDR mode.
1127 	 *
1128 	 * So the sequence will be:
1129 	 * if (host and device can both support 1.2v IO)
1130 	 *	use 1.2v IO;
1131 	 * else if (host and device can both support 1.8v IO)
1132 	 *	use 1.8v IO;
1133 	 * so if host and device can only support 3.3v IO, this is the
1134 	 * last choice.
1135 	 *
1136 	 * WARNING: eMMC rules are NOT the same as SD DDR
1137 	 */
1138 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1139 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1140 		if (!err)
1141 			return 0;
1142 	}
1143 
1144 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1145 	    host->caps & MMC_CAP_1_8V_DDR)
1146 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1147 
1148 	/* make sure vccq is 3.3v after switching disaster */
1149 	if (err)
1150 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1151 
1152 	return err;
1153 }
1154 
1155 static int mmc_select_hs400(struct mmc_card *card)
1156 {
1157 	struct mmc_host *host = card->host;
1158 	unsigned int max_dtr;
1159 	int err = 0;
1160 	u8 val;
1161 
1162 	/*
1163 	 * HS400 mode requires 8-bit bus width
1164 	 */
1165 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1166 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1167 		return 0;
1168 
1169 	/* Switch card to HS mode */
1170 	val = EXT_CSD_TIMING_HS;
1171 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 			   EXT_CSD_HS_TIMING, val,
1173 			   card->ext_csd.generic_cmd6_time, 0,
1174 			   false, true, MMC_CMD_RETRIES);
1175 	if (err) {
1176 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1177 			mmc_hostname(host), err);
1178 		return err;
1179 	}
1180 
1181 	/* Prepare host to downgrade to HS timing */
1182 	if (host->ops->hs400_downgrade)
1183 		host->ops->hs400_downgrade(host);
1184 
1185 	/* Set host controller to HS timing */
1186 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1187 
1188 	/* Reduce frequency to HS frequency */
1189 	max_dtr = card->ext_csd.hs_max_dtr;
1190 	mmc_set_clock(host, max_dtr);
1191 
1192 	err = mmc_switch_status(card, true);
1193 	if (err)
1194 		goto out_err;
1195 
1196 	if (host->ops->hs400_prepare_ddr)
1197 		host->ops->hs400_prepare_ddr(host);
1198 
1199 	/* Switch card to DDR */
1200 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 			 EXT_CSD_BUS_WIDTH,
1202 			 EXT_CSD_DDR_BUS_WIDTH_8,
1203 			 card->ext_csd.generic_cmd6_time);
1204 	if (err) {
1205 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1206 			mmc_hostname(host), err);
1207 		return err;
1208 	}
1209 
1210 	/* Switch card to HS400 */
1211 	val = EXT_CSD_TIMING_HS400 |
1212 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1213 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1214 			   EXT_CSD_HS_TIMING, val,
1215 			   card->ext_csd.generic_cmd6_time, 0,
1216 			   false, true, MMC_CMD_RETRIES);
1217 	if (err) {
1218 		pr_err("%s: switch to hs400 failed, err:%d\n",
1219 			 mmc_hostname(host), err);
1220 		return err;
1221 	}
1222 
1223 	/* Set host controller to HS400 timing and frequency */
1224 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1225 	mmc_set_bus_speed(card);
1226 
1227 	if (host->ops->execute_hs400_tuning) {
1228 		mmc_retune_disable(host);
1229 		err = host->ops->execute_hs400_tuning(host, card);
1230 		mmc_retune_enable(host);
1231 		if (err)
1232 			goto out_err;
1233 	}
1234 
1235 	if (host->ops->hs400_complete)
1236 		host->ops->hs400_complete(host);
1237 
1238 	err = mmc_switch_status(card, true);
1239 	if (err)
1240 		goto out_err;
1241 
1242 	return 0;
1243 
1244 out_err:
1245 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1246 	       __func__, err);
1247 	return err;
1248 }
1249 
1250 int mmc_hs200_to_hs400(struct mmc_card *card)
1251 {
1252 	return mmc_select_hs400(card);
1253 }
1254 
1255 int mmc_hs400_to_hs200(struct mmc_card *card)
1256 {
1257 	struct mmc_host *host = card->host;
1258 	unsigned int max_dtr;
1259 	int err;
1260 	u8 val;
1261 
1262 	/* Reduce frequency to HS */
1263 	max_dtr = card->ext_csd.hs_max_dtr;
1264 	mmc_set_clock(host, max_dtr);
1265 
1266 	/* Switch HS400 to HS DDR */
1267 	val = EXT_CSD_TIMING_HS;
1268 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1269 			   val, card->ext_csd.generic_cmd6_time, 0,
1270 			   false, true, MMC_CMD_RETRIES);
1271 	if (err)
1272 		goto out_err;
1273 
1274 	if (host->ops->hs400_downgrade)
1275 		host->ops->hs400_downgrade(host);
1276 
1277 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1278 
1279 	err = mmc_switch_status(card, true);
1280 	if (err)
1281 		goto out_err;
1282 
1283 	/* Switch HS DDR to HS */
1284 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1285 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1286 			   0, false, true, MMC_CMD_RETRIES);
1287 	if (err)
1288 		goto out_err;
1289 
1290 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1291 
1292 	err = mmc_switch_status(card, true);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	/* Switch HS to HS200 */
1297 	val = EXT_CSD_TIMING_HS200 |
1298 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1299 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1300 			   val, card->ext_csd.generic_cmd6_time, 0,
1301 			   false, true, MMC_CMD_RETRIES);
1302 	if (err)
1303 		goto out_err;
1304 
1305 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1306 
1307 	/*
1308 	 * For HS200, CRC errors are not a reliable way to know the switch
1309 	 * failed. If there really is a problem, we would expect tuning will
1310 	 * fail and the result ends up the same.
1311 	 */
1312 	err = mmc_switch_status(card, false);
1313 	if (err)
1314 		goto out_err;
1315 
1316 	mmc_set_bus_speed(card);
1317 
1318 	/* Prepare tuning for HS400 mode. */
1319 	if (host->ops->prepare_hs400_tuning)
1320 		host->ops->prepare_hs400_tuning(host, &host->ios);
1321 
1322 	return 0;
1323 
1324 out_err:
1325 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1326 	       __func__, err);
1327 	return err;
1328 }
1329 
1330 static void mmc_select_driver_type(struct mmc_card *card)
1331 {
1332 	int card_drv_type, drive_strength, drv_type = 0;
1333 	int fixed_drv_type = card->host->fixed_drv_type;
1334 
1335 	card_drv_type = card->ext_csd.raw_driver_strength |
1336 			mmc_driver_type_mask(0);
1337 
1338 	if (fixed_drv_type >= 0)
1339 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1340 				 ? fixed_drv_type : 0;
1341 	else
1342 		drive_strength = mmc_select_drive_strength(card,
1343 							   card->ext_csd.hs200_max_dtr,
1344 							   card_drv_type, &drv_type);
1345 
1346 	card->drive_strength = drive_strength;
1347 
1348 	if (drv_type)
1349 		mmc_set_driver_type(card->host, drv_type);
1350 }
1351 
1352 static int mmc_select_hs400es(struct mmc_card *card)
1353 {
1354 	struct mmc_host *host = card->host;
1355 	int err = -EINVAL;
1356 	u8 val;
1357 
1358 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1359 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1360 
1361 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1362 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1363 
1364 	/* If fails try again during next card power cycle */
1365 	if (err)
1366 		goto out_err;
1367 
1368 	err = mmc_select_bus_width(card);
1369 	if (err != MMC_BUS_WIDTH_8) {
1370 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1371 			mmc_hostname(host), err);
1372 		err = err < 0 ? err : -ENOTSUPP;
1373 		goto out_err;
1374 	}
1375 
1376 	/* Switch card to HS mode */
1377 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1378 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1379 			   card->ext_csd.generic_cmd6_time, 0,
1380 			   false, true, MMC_CMD_RETRIES);
1381 	if (err) {
1382 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1383 			mmc_hostname(host), err);
1384 		goto out_err;
1385 	}
1386 
1387 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1388 	err = mmc_switch_status(card, true);
1389 	if (err)
1390 		goto out_err;
1391 
1392 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1393 
1394 	/* Switch card to DDR with strobe bit */
1395 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1396 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1397 			 EXT_CSD_BUS_WIDTH,
1398 			 val,
1399 			 card->ext_csd.generic_cmd6_time);
1400 	if (err) {
1401 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1402 			mmc_hostname(host), err);
1403 		goto out_err;
1404 	}
1405 
1406 	mmc_select_driver_type(card);
1407 
1408 	/* Switch card to HS400 */
1409 	val = EXT_CSD_TIMING_HS400 |
1410 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1411 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1412 			   EXT_CSD_HS_TIMING, val,
1413 			   card->ext_csd.generic_cmd6_time, 0,
1414 			   false, true, MMC_CMD_RETRIES);
1415 	if (err) {
1416 		pr_err("%s: switch to hs400es failed, err:%d\n",
1417 			mmc_hostname(host), err);
1418 		goto out_err;
1419 	}
1420 
1421 	/* Set host controller to HS400 timing and frequency */
1422 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1423 
1424 	/* Controller enable enhanced strobe function */
1425 	host->ios.enhanced_strobe = true;
1426 	if (host->ops->hs400_enhanced_strobe)
1427 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1428 
1429 	err = mmc_switch_status(card, true);
1430 	if (err)
1431 		goto out_err;
1432 
1433 	return 0;
1434 
1435 out_err:
1436 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1437 	       __func__, err);
1438 	return err;
1439 }
1440 
1441 /*
1442  * For device supporting HS200 mode, the following sequence
1443  * should be done before executing the tuning process.
1444  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1445  * 2. switch to HS200 mode
1446  * 3. set the clock to > 52Mhz and <=200MHz
1447  */
1448 static int mmc_select_hs200(struct mmc_card *card)
1449 {
1450 	struct mmc_host *host = card->host;
1451 	unsigned int old_timing, old_signal_voltage;
1452 	int err = -EINVAL;
1453 	u8 val;
1454 
1455 	old_signal_voltage = host->ios.signal_voltage;
1456 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1457 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1458 
1459 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1460 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1461 
1462 	/* If fails try again during next card power cycle */
1463 	if (err)
1464 		return err;
1465 
1466 	mmc_select_driver_type(card);
1467 
1468 	/*
1469 	 * Set the bus width(4 or 8) with host's support and
1470 	 * switch to HS200 mode if bus width is set successfully.
1471 	 */
1472 	err = mmc_select_bus_width(card);
1473 	if (err > 0) {
1474 		val = EXT_CSD_TIMING_HS200 |
1475 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1476 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1477 				   EXT_CSD_HS_TIMING, val,
1478 				   card->ext_csd.generic_cmd6_time, 0,
1479 				   false, true, MMC_CMD_RETRIES);
1480 		if (err)
1481 			goto err;
1482 		old_timing = host->ios.timing;
1483 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1484 
1485 		/*
1486 		 * For HS200, CRC errors are not a reliable way to know the
1487 		 * switch failed. If there really is a problem, we would expect
1488 		 * tuning will fail and the result ends up the same.
1489 		 */
1490 		err = mmc_switch_status(card, false);
1491 
1492 		/*
1493 		 * mmc_select_timing() assumes timing has not changed if
1494 		 * it is a switch error.
1495 		 */
1496 		if (err == -EBADMSG)
1497 			mmc_set_timing(host, old_timing);
1498 	}
1499 err:
1500 	if (err) {
1501 		/* fall back to the old signal voltage, if fails report error */
1502 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1503 			err = -EIO;
1504 
1505 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1506 		       __func__, err);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  * Activate High Speed, HS200 or HS400ES mode if supported.
1513  */
1514 static int mmc_select_timing(struct mmc_card *card)
1515 {
1516 	int err = 0;
1517 
1518 	if (!mmc_can_ext_csd(card))
1519 		goto bus_speed;
1520 
1521 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1522 		err = mmc_select_hs400es(card);
1523 		goto out;
1524 	}
1525 
1526 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1527 		err = mmc_select_hs200(card);
1528 		if (err == -EBADMSG)
1529 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1530 		else
1531 			goto out;
1532 	}
1533 
1534 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1535 		err = mmc_select_hs(card);
1536 
1537 out:
1538 	if (err && err != -EBADMSG)
1539 		return err;
1540 
1541 bus_speed:
1542 	/*
1543 	 * Set the bus speed to the selected bus timing.
1544 	 * If timing is not selected, backward compatible is the default.
1545 	 */
1546 	mmc_set_bus_speed(card);
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Execute tuning sequence to seek the proper bus operating
1552  * conditions for HS200 and HS400, which sends CMD21 to the device.
1553  */
1554 static int mmc_hs200_tuning(struct mmc_card *card)
1555 {
1556 	struct mmc_host *host = card->host;
1557 
1558 	/*
1559 	 * Timing should be adjusted to the HS400 target
1560 	 * operation frequency for tuning process
1561 	 */
1562 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1563 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1564 		if (host->ops->prepare_hs400_tuning)
1565 			host->ops->prepare_hs400_tuning(host, &host->ios);
1566 
1567 	return mmc_execute_tuning(card);
1568 }
1569 
1570 /*
1571  * Handle the detection and initialisation of a card.
1572  *
1573  * In the case of a resume, "oldcard" will contain the card
1574  * we're trying to reinitialise.
1575  */
1576 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1577 	struct mmc_card *oldcard)
1578 {
1579 	struct mmc_card *card;
1580 	int err;
1581 	u32 cid[4];
1582 	u32 rocr;
1583 
1584 	WARN_ON(!host->claimed);
1585 
1586 	/* Set correct bus mode for MMC before attempting init */
1587 	if (!mmc_host_is_spi(host))
1588 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1589 
1590 	/*
1591 	 * Since we're changing the OCR value, we seem to
1592 	 * need to tell some cards to go back to the idle
1593 	 * state.  We wait 1ms to give cards time to
1594 	 * respond.
1595 	 * mmc_go_idle is needed for eMMC that are asleep
1596 	 */
1597 	mmc_go_idle(host);
1598 
1599 	/* The extra bit indicates that we support high capacity */
1600 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1601 	if (err)
1602 		goto err;
1603 
1604 	/*
1605 	 * For SPI, enable CRC as appropriate.
1606 	 */
1607 	if (mmc_host_is_spi(host)) {
1608 		err = mmc_spi_set_crc(host, use_spi_crc);
1609 		if (err)
1610 			goto err;
1611 	}
1612 
1613 	/*
1614 	 * Fetch CID from card.
1615 	 */
1616 	err = mmc_send_cid(host, cid);
1617 	if (err)
1618 		goto err;
1619 
1620 	if (oldcard) {
1621 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1622 			pr_debug("%s: Perhaps the card was replaced\n",
1623 				mmc_hostname(host));
1624 			err = -ENOENT;
1625 			goto err;
1626 		}
1627 
1628 		card = oldcard;
1629 	} else {
1630 		/*
1631 		 * Allocate card structure.
1632 		 */
1633 		card = mmc_alloc_card(host, &mmc_type);
1634 		if (IS_ERR(card)) {
1635 			err = PTR_ERR(card);
1636 			goto err;
1637 		}
1638 
1639 		card->ocr = ocr;
1640 		card->type = MMC_TYPE_MMC;
1641 		card->rca = 1;
1642 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1643 	}
1644 
1645 	/*
1646 	 * Call the optional HC's init_card function to handle quirks.
1647 	 */
1648 	if (host->ops->init_card)
1649 		host->ops->init_card(host, card);
1650 
1651 	/*
1652 	 * For native busses:  set card RCA and quit open drain mode.
1653 	 */
1654 	if (!mmc_host_is_spi(host)) {
1655 		err = mmc_set_relative_addr(card);
1656 		if (err)
1657 			goto free_card;
1658 
1659 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1660 	}
1661 
1662 	if (!oldcard) {
1663 		/*
1664 		 * Fetch CSD from card.
1665 		 */
1666 		err = mmc_send_csd(card, card->raw_csd);
1667 		if (err)
1668 			goto free_card;
1669 
1670 		err = mmc_decode_csd(card);
1671 		if (err)
1672 			goto free_card;
1673 		err = mmc_decode_cid(card);
1674 		if (err)
1675 			goto free_card;
1676 	}
1677 
1678 	/*
1679 	 * handling only for cards supporting DSR and hosts requesting
1680 	 * DSR configuration
1681 	 */
1682 	if (card->csd.dsr_imp && host->dsr_req)
1683 		mmc_set_dsr(host);
1684 
1685 	/*
1686 	 * Select card, as all following commands rely on that.
1687 	 */
1688 	if (!mmc_host_is_spi(host)) {
1689 		err = mmc_select_card(card);
1690 		if (err)
1691 			goto free_card;
1692 	}
1693 
1694 	if (!oldcard) {
1695 		/* Read extended CSD. */
1696 		err = mmc_read_ext_csd(card);
1697 		if (err)
1698 			goto free_card;
1699 
1700 		/*
1701 		 * If doing byte addressing, check if required to do sector
1702 		 * addressing.  Handle the case of <2GB cards needing sector
1703 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1704 		 * ocr register has bit 30 set for sector addressing.
1705 		 */
1706 		if (rocr & BIT(30))
1707 			mmc_card_set_blockaddr(card);
1708 
1709 		/* Erase size depends on CSD and Extended CSD */
1710 		mmc_set_erase_size(card);
1711 	}
1712 
1713 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1714 	if (card->ext_csd.rev >= 3) {
1715 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1716 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1717 				 card->ext_csd.generic_cmd6_time);
1718 
1719 		if (err && err != -EBADMSG)
1720 			goto free_card;
1721 
1722 		if (err) {
1723 			/*
1724 			 * Just disable enhanced area off & sz
1725 			 * will try to enable ERASE_GROUP_DEF
1726 			 * during next time reinit
1727 			 */
1728 			card->ext_csd.enhanced_area_offset = -EINVAL;
1729 			card->ext_csd.enhanced_area_size = -EINVAL;
1730 		} else {
1731 			card->ext_csd.erase_group_def = 1;
1732 			/*
1733 			 * enable ERASE_GRP_DEF successfully.
1734 			 * This will affect the erase size, so
1735 			 * here need to reset erase size
1736 			 */
1737 			mmc_set_erase_size(card);
1738 		}
1739 	}
1740 
1741 	/*
1742 	 * Ensure eMMC user default partition is enabled
1743 	 */
1744 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1745 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1746 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1747 				 card->ext_csd.part_config,
1748 				 card->ext_csd.part_time);
1749 		if (err && err != -EBADMSG)
1750 			goto free_card;
1751 	}
1752 
1753 	/*
1754 	 * Enable power_off_notification byte in the ext_csd register
1755 	 */
1756 	if (card->ext_csd.rev >= 6) {
1757 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1758 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1759 				 EXT_CSD_POWER_ON,
1760 				 card->ext_csd.generic_cmd6_time);
1761 		if (err && err != -EBADMSG)
1762 			goto free_card;
1763 
1764 		/*
1765 		 * The err can be -EBADMSG or 0,
1766 		 * so check for success and update the flag
1767 		 */
1768 		if (!err)
1769 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1770 	}
1771 
1772 	/* set erase_arg */
1773 	if (mmc_can_discard(card))
1774 		card->erase_arg = MMC_DISCARD_ARG;
1775 	else if (mmc_can_trim(card))
1776 		card->erase_arg = MMC_TRIM_ARG;
1777 	else
1778 		card->erase_arg = MMC_ERASE_ARG;
1779 
1780 	/*
1781 	 * Select timing interface
1782 	 */
1783 	err = mmc_select_timing(card);
1784 	if (err)
1785 		goto free_card;
1786 
1787 	if (mmc_card_hs200(card)) {
1788 		host->doing_init_tune = 1;
1789 
1790 		err = mmc_hs200_tuning(card);
1791 		if (!err)
1792 			err = mmc_select_hs400(card);
1793 
1794 		host->doing_init_tune = 0;
1795 
1796 		if (err)
1797 			goto free_card;
1798 
1799 	} else if (!mmc_card_hs400es(card)) {
1800 		/* Select the desired bus width optionally */
1801 		err = mmc_select_bus_width(card);
1802 		if (err > 0 && mmc_card_hs(card)) {
1803 			err = mmc_select_hs_ddr(card);
1804 			if (err)
1805 				goto free_card;
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * Choose the power class with selected bus interface
1811 	 */
1812 	mmc_select_powerclass(card);
1813 
1814 	/*
1815 	 * Enable HPI feature (if supported)
1816 	 */
1817 	if (card->ext_csd.hpi) {
1818 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1819 				EXT_CSD_HPI_MGMT, 1,
1820 				card->ext_csd.generic_cmd6_time);
1821 		if (err && err != -EBADMSG)
1822 			goto free_card;
1823 		if (err) {
1824 			pr_warn("%s: Enabling HPI failed\n",
1825 				mmc_hostname(card->host));
1826 			card->ext_csd.hpi_en = 0;
1827 		} else {
1828 			card->ext_csd.hpi_en = 1;
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * If cache size is higher than 0, this indicates the existence of cache
1834 	 * and it can be turned on. Note that some eMMCs from Micron has been
1835 	 * reported to need ~800 ms timeout, while enabling the cache after
1836 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1837 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1838 	 */
1839 	if (card->ext_csd.cache_size > 0) {
1840 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1841 
1842 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1843 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1844 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1845 		if (err && err != -EBADMSG)
1846 			goto free_card;
1847 
1848 		/*
1849 		 * Only if no error, cache is turned on successfully.
1850 		 */
1851 		if (err) {
1852 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1853 				mmc_hostname(card->host), err);
1854 			card->ext_csd.cache_ctrl = 0;
1855 		} else {
1856 			card->ext_csd.cache_ctrl = 1;
1857 		}
1858 	}
1859 
1860 	/*
1861 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1862 	 * be used with Command Queue.
1863 	 */
1864 	card->ext_csd.cmdq_en = false;
1865 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1866 		err = mmc_cmdq_enable(card);
1867 		if (err && err != -EBADMSG)
1868 			goto free_card;
1869 		if (err) {
1870 			pr_warn("%s: Enabling CMDQ failed\n",
1871 				mmc_hostname(card->host));
1872 			card->ext_csd.cmdq_support = false;
1873 			card->ext_csd.cmdq_depth = 0;
1874 		}
1875 	}
1876 	/*
1877 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1878 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1879 	 * Command Queue.
1880 	 */
1881 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1882 
1883 	if (host->cqe_ops && !host->cqe_enabled) {
1884 		err = host->cqe_ops->cqe_enable(host, card);
1885 		if (!err) {
1886 			host->cqe_enabled = true;
1887 
1888 			if (card->ext_csd.cmdq_en) {
1889 				pr_info("%s: Command Queue Engine enabled\n",
1890 					mmc_hostname(host));
1891 			} else {
1892 				host->hsq_enabled = true;
1893 				pr_info("%s: Host Software Queue enabled\n",
1894 					mmc_hostname(host));
1895 			}
1896 		}
1897 	}
1898 
1899 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1900 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1901 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1902 			mmc_hostname(host));
1903 		err = -EINVAL;
1904 		goto free_card;
1905 	}
1906 
1907 	if (!oldcard)
1908 		host->card = card;
1909 
1910 	return 0;
1911 
1912 free_card:
1913 	if (!oldcard)
1914 		mmc_remove_card(card);
1915 err:
1916 	return err;
1917 }
1918 
1919 static int mmc_can_sleep(struct mmc_card *card)
1920 {
1921 	return card->ext_csd.rev >= 3;
1922 }
1923 
1924 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1925 {
1926 	struct mmc_host *host = cb_data;
1927 
1928 	*busy = host->ops->card_busy(host);
1929 	return 0;
1930 }
1931 
1932 static int mmc_sleep(struct mmc_host *host)
1933 {
1934 	struct mmc_command cmd = {};
1935 	struct mmc_card *card = host->card;
1936 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1937 	bool use_r1b_resp;
1938 	int err;
1939 
1940 	/* Re-tuning can't be done once the card is deselected */
1941 	mmc_retune_hold(host);
1942 
1943 	err = mmc_deselect_cards(host);
1944 	if (err)
1945 		goto out_release;
1946 
1947 	cmd.opcode = MMC_SLEEP_AWAKE;
1948 	cmd.arg = card->rca << 16;
1949 	cmd.arg |= 1 << 15;
1950 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1951 
1952 	err = mmc_wait_for_cmd(host, &cmd, 0);
1953 	if (err)
1954 		goto out_release;
1955 
1956 	/*
1957 	 * If the host does not wait while the card signals busy, then we can
1958 	 * try to poll, but only if the host supports HW polling, as the
1959 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1960 	 * to wait the sleep/awake timeout.
1961 	 */
1962 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1963 		goto out_release;
1964 
1965 	if (!host->ops->card_busy) {
1966 		mmc_delay(timeout_ms);
1967 		goto out_release;
1968 	}
1969 
1970 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1971 
1972 out_release:
1973 	mmc_retune_release(host);
1974 	return err;
1975 }
1976 
1977 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1978 {
1979 	return card &&
1980 		mmc_card_mmc(card) &&
1981 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1982 }
1983 
1984 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1985 {
1986 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1987 	int err;
1988 
1989 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1990 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1991 		timeout = card->ext_csd.power_off_longtime;
1992 
1993 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1994 			EXT_CSD_POWER_OFF_NOTIFICATION,
1995 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1996 	if (err)
1997 		pr_err("%s: Power Off Notification timed out, %u\n",
1998 		       mmc_hostname(card->host), timeout);
1999 
2000 	/* Disable the power off notification after the switch operation. */
2001 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2002 
2003 	return err;
2004 }
2005 
2006 /*
2007  * Host is being removed. Free up the current card.
2008  */
2009 static void mmc_remove(struct mmc_host *host)
2010 {
2011 	mmc_remove_card(host->card);
2012 	host->card = NULL;
2013 }
2014 
2015 /*
2016  * Card detection - card is alive.
2017  */
2018 static int mmc_alive(struct mmc_host *host)
2019 {
2020 	return mmc_send_status(host->card, NULL);
2021 }
2022 
2023 /*
2024  * Card detection callback from host.
2025  */
2026 static void mmc_detect(struct mmc_host *host)
2027 {
2028 	int err;
2029 
2030 	mmc_get_card(host->card, NULL);
2031 
2032 	/*
2033 	 * Just check if our card has been removed.
2034 	 */
2035 	err = _mmc_detect_card_removed(host);
2036 
2037 	mmc_put_card(host->card, NULL);
2038 
2039 	if (err) {
2040 		mmc_remove(host);
2041 
2042 		mmc_claim_host(host);
2043 		mmc_detach_bus(host);
2044 		mmc_power_off(host);
2045 		mmc_release_host(host);
2046 	}
2047 }
2048 
2049 static bool _mmc_cache_enabled(struct mmc_host *host)
2050 {
2051 	return host->card->ext_csd.cache_size > 0 &&
2052 	       host->card->ext_csd.cache_ctrl & 1;
2053 }
2054 
2055 /*
2056  * Flush the internal cache of the eMMC to non-volatile storage.
2057  */
2058 static int _mmc_flush_cache(struct mmc_host *host)
2059 {
2060 	int err = 0;
2061 
2062 	if (_mmc_cache_enabled(host)) {
2063 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2064 				 EXT_CSD_FLUSH_CACHE, 1,
2065 				 CACHE_FLUSH_TIMEOUT_MS);
2066 		if (err)
2067 			pr_err("%s: cache flush error %d\n",
2068 			       mmc_hostname(host), err);
2069 	}
2070 
2071 	return err;
2072 }
2073 
2074 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2075 {
2076 	int err = 0;
2077 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2078 					EXT_CSD_POWER_OFF_LONG;
2079 
2080 	mmc_claim_host(host);
2081 
2082 	if (mmc_card_suspended(host->card))
2083 		goto out;
2084 
2085 	err = _mmc_flush_cache(host);
2086 	if (err)
2087 		goto out;
2088 
2089 	if (mmc_can_poweroff_notify(host->card) &&
2090 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2091 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2092 		err = mmc_poweroff_notify(host->card, notify_type);
2093 	else if (mmc_can_sleep(host->card))
2094 		err = mmc_sleep(host);
2095 	else if (!mmc_host_is_spi(host))
2096 		err = mmc_deselect_cards(host);
2097 
2098 	if (!err) {
2099 		mmc_power_off(host);
2100 		mmc_card_set_suspended(host->card);
2101 	}
2102 out:
2103 	mmc_release_host(host);
2104 	return err;
2105 }
2106 
2107 /*
2108  * Suspend callback
2109  */
2110 static int mmc_suspend(struct mmc_host *host)
2111 {
2112 	int err;
2113 
2114 	err = _mmc_suspend(host, true);
2115 	if (!err) {
2116 		pm_runtime_disable(&host->card->dev);
2117 		pm_runtime_set_suspended(&host->card->dev);
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 /*
2124  * This function tries to determine if the same card is still present
2125  * and, if so, restore all state to it.
2126  */
2127 static int _mmc_resume(struct mmc_host *host)
2128 {
2129 	int err = 0;
2130 
2131 	mmc_claim_host(host);
2132 
2133 	if (!mmc_card_suspended(host->card))
2134 		goto out;
2135 
2136 	mmc_power_up(host, host->card->ocr);
2137 	err = mmc_init_card(host, host->card->ocr, host->card);
2138 	mmc_card_clr_suspended(host->card);
2139 
2140 out:
2141 	mmc_release_host(host);
2142 	return err;
2143 }
2144 
2145 /*
2146  * Shutdown callback
2147  */
2148 static int mmc_shutdown(struct mmc_host *host)
2149 {
2150 	int err = 0;
2151 
2152 	/*
2153 	 * In a specific case for poweroff notify, we need to resume the card
2154 	 * before we can shutdown it properly.
2155 	 */
2156 	if (mmc_can_poweroff_notify(host->card) &&
2157 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2158 		err = _mmc_resume(host);
2159 
2160 	if (!err)
2161 		err = _mmc_suspend(host, false);
2162 
2163 	return err;
2164 }
2165 
2166 /*
2167  * Callback for resume.
2168  */
2169 static int mmc_resume(struct mmc_host *host)
2170 {
2171 	pm_runtime_enable(&host->card->dev);
2172 	return 0;
2173 }
2174 
2175 /*
2176  * Callback for runtime_suspend.
2177  */
2178 static int mmc_runtime_suspend(struct mmc_host *host)
2179 {
2180 	int err;
2181 
2182 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2183 		return 0;
2184 
2185 	err = _mmc_suspend(host, true);
2186 	if (err)
2187 		pr_err("%s: error %d doing aggressive suspend\n",
2188 			mmc_hostname(host), err);
2189 
2190 	return err;
2191 }
2192 
2193 /*
2194  * Callback for runtime_resume.
2195  */
2196 static int mmc_runtime_resume(struct mmc_host *host)
2197 {
2198 	int err;
2199 
2200 	err = _mmc_resume(host);
2201 	if (err && err != -ENOMEDIUM)
2202 		pr_err("%s: error %d doing runtime resume\n",
2203 			mmc_hostname(host), err);
2204 
2205 	return 0;
2206 }
2207 
2208 static int mmc_can_reset(struct mmc_card *card)
2209 {
2210 	u8 rst_n_function;
2211 
2212 	rst_n_function = card->ext_csd.rst_n_function;
2213 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2214 		return 0;
2215 	return 1;
2216 }
2217 
2218 static int _mmc_hw_reset(struct mmc_host *host)
2219 {
2220 	struct mmc_card *card = host->card;
2221 
2222 	/*
2223 	 * In the case of recovery, we can't expect flushing the cache to work
2224 	 * always, but we have a go and ignore errors.
2225 	 */
2226 	_mmc_flush_cache(host);
2227 
2228 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2229 	     mmc_can_reset(card)) {
2230 		/* If the card accept RST_n signal, send it. */
2231 		mmc_set_clock(host, host->f_init);
2232 		host->ops->hw_reset(host);
2233 		/* Set initial state and call mmc_set_ios */
2234 		mmc_set_initial_state(host);
2235 	} else {
2236 		/* Do a brute force power cycle */
2237 		mmc_power_cycle(host, card->ocr);
2238 		mmc_pwrseq_reset(host);
2239 	}
2240 	return mmc_init_card(host, card->ocr, card);
2241 }
2242 
2243 static const struct mmc_bus_ops mmc_ops = {
2244 	.remove = mmc_remove,
2245 	.detect = mmc_detect,
2246 	.suspend = mmc_suspend,
2247 	.resume = mmc_resume,
2248 	.runtime_suspend = mmc_runtime_suspend,
2249 	.runtime_resume = mmc_runtime_resume,
2250 	.alive = mmc_alive,
2251 	.shutdown = mmc_shutdown,
2252 	.hw_reset = _mmc_hw_reset,
2253 	.cache_enabled = _mmc_cache_enabled,
2254 	.flush_cache = _mmc_flush_cache,
2255 };
2256 
2257 /*
2258  * Starting point for MMC card init.
2259  */
2260 int mmc_attach_mmc(struct mmc_host *host)
2261 {
2262 	int err;
2263 	u32 ocr, rocr;
2264 
2265 	WARN_ON(!host->claimed);
2266 
2267 	/* Set correct bus mode for MMC before attempting attach */
2268 	if (!mmc_host_is_spi(host))
2269 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2270 
2271 	err = mmc_send_op_cond(host, 0, &ocr);
2272 	if (err)
2273 		return err;
2274 
2275 	mmc_attach_bus(host, &mmc_ops);
2276 	if (host->ocr_avail_mmc)
2277 		host->ocr_avail = host->ocr_avail_mmc;
2278 
2279 	/*
2280 	 * We need to get OCR a different way for SPI.
2281 	 */
2282 	if (mmc_host_is_spi(host)) {
2283 		err = mmc_spi_read_ocr(host, 1, &ocr);
2284 		if (err)
2285 			goto err;
2286 	}
2287 
2288 	rocr = mmc_select_voltage(host, ocr);
2289 
2290 	/*
2291 	 * Can we support the voltage of the card?
2292 	 */
2293 	if (!rocr) {
2294 		err = -EINVAL;
2295 		goto err;
2296 	}
2297 
2298 	/*
2299 	 * Detect and init the card.
2300 	 */
2301 	err = mmc_init_card(host, rocr, NULL);
2302 	if (err)
2303 		goto err;
2304 
2305 	mmc_release_host(host);
2306 	err = mmc_add_card(host->card);
2307 	if (err)
2308 		goto remove_card;
2309 
2310 	mmc_claim_host(host);
2311 	return 0;
2312 
2313 remove_card:
2314 	mmc_remove_card(host->card);
2315 	mmc_claim_host(host);
2316 	host->card = NULL;
2317 err:
2318 	mmc_detach_bus(host);
2319 
2320 	pr_err("%s: error %d whilst initialising MMC card\n",
2321 		mmc_hostname(host), err);
2322 
2323 	return err;
2324 }
2325