1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/suspend.h> 27 #include <linux/fault-inject.h> 28 #include <linux/random.h> 29 #include <linux/slab.h> 30 #include <linux/of.h> 31 32 #include <linux/mmc/card.h> 33 #include <linux/mmc/host.h> 34 #include <linux/mmc/mmc.h> 35 #include <linux/mmc/sd.h> 36 37 #include "core.h" 38 #include "bus.h" 39 #include "host.h" 40 #include "sdio_bus.h" 41 42 #include "mmc_ops.h" 43 #include "sd_ops.h" 44 #include "sdio_ops.h" 45 46 /* If the device is not responding */ 47 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 48 49 /* 50 * Background operations can take a long time, depending on the housekeeping 51 * operations the card has to perform. 52 */ 53 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 54 55 static struct workqueue_struct *workqueue; 56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 57 58 /* 59 * Enabling software CRCs on the data blocks can be a significant (30%) 60 * performance cost, and for other reasons may not always be desired. 61 * So we allow it it to be disabled. 62 */ 63 bool use_spi_crc = 1; 64 module_param(use_spi_crc, bool, 0); 65 66 /* 67 * We normally treat cards as removed during suspend if they are not 68 * known to be on a non-removable bus, to avoid the risk of writing 69 * back data to a different card after resume. Allow this to be 70 * overridden if necessary. 71 */ 72 #ifdef CONFIG_MMC_UNSAFE_RESUME 73 bool mmc_assume_removable; 74 #else 75 bool mmc_assume_removable = 1; 76 #endif 77 EXPORT_SYMBOL(mmc_assume_removable); 78 module_param_named(removable, mmc_assume_removable, bool, 0644); 79 MODULE_PARM_DESC( 80 removable, 81 "MMC/SD cards are removable and may be removed during suspend"); 82 83 /* 84 * Internal function. Schedule delayed work in the MMC work queue. 85 */ 86 static int mmc_schedule_delayed_work(struct delayed_work *work, 87 unsigned long delay) 88 { 89 return queue_delayed_work(workqueue, work, delay); 90 } 91 92 /* 93 * Internal function. Flush all scheduled work from the MMC work queue. 94 */ 95 static void mmc_flush_scheduled_work(void) 96 { 97 flush_workqueue(workqueue); 98 } 99 100 #ifdef CONFIG_FAIL_MMC_REQUEST 101 102 /* 103 * Internal function. Inject random data errors. 104 * If mmc_data is NULL no errors are injected. 105 */ 106 static void mmc_should_fail_request(struct mmc_host *host, 107 struct mmc_request *mrq) 108 { 109 struct mmc_command *cmd = mrq->cmd; 110 struct mmc_data *data = mrq->data; 111 static const int data_errors[] = { 112 -ETIMEDOUT, 113 -EILSEQ, 114 -EIO, 115 }; 116 117 if (!data) 118 return; 119 120 if (cmd->error || data->error || 121 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 122 return; 123 124 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 125 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 126 } 127 128 #else /* CONFIG_FAIL_MMC_REQUEST */ 129 130 static inline void mmc_should_fail_request(struct mmc_host *host, 131 struct mmc_request *mrq) 132 { 133 } 134 135 #endif /* CONFIG_FAIL_MMC_REQUEST */ 136 137 /** 138 * mmc_request_done - finish processing an MMC request 139 * @host: MMC host which completed request 140 * @mrq: MMC request which request 141 * 142 * MMC drivers should call this function when they have completed 143 * their processing of a request. 144 */ 145 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 146 { 147 struct mmc_command *cmd = mrq->cmd; 148 int err = cmd->error; 149 150 if (err && cmd->retries && mmc_host_is_spi(host)) { 151 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 152 cmd->retries = 0; 153 } 154 155 if (err && cmd->retries && !mmc_card_removed(host->card)) { 156 /* 157 * Request starter must handle retries - see 158 * mmc_wait_for_req_done(). 159 */ 160 if (mrq->done) 161 mrq->done(mrq); 162 } else { 163 mmc_should_fail_request(host, mrq); 164 165 led_trigger_event(host->led, LED_OFF); 166 167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 168 mmc_hostname(host), cmd->opcode, err, 169 cmd->resp[0], cmd->resp[1], 170 cmd->resp[2], cmd->resp[3]); 171 172 if (mrq->data) { 173 pr_debug("%s: %d bytes transferred: %d\n", 174 mmc_hostname(host), 175 mrq->data->bytes_xfered, mrq->data->error); 176 } 177 178 if (mrq->stop) { 179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 180 mmc_hostname(host), mrq->stop->opcode, 181 mrq->stop->error, 182 mrq->stop->resp[0], mrq->stop->resp[1], 183 mrq->stop->resp[2], mrq->stop->resp[3]); 184 } 185 186 if (mrq->done) 187 mrq->done(mrq); 188 189 mmc_host_clk_release(host); 190 } 191 } 192 193 EXPORT_SYMBOL(mmc_request_done); 194 195 static void 196 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 197 { 198 #ifdef CONFIG_MMC_DEBUG 199 unsigned int i, sz; 200 struct scatterlist *sg; 201 #endif 202 203 if (mrq->sbc) { 204 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 205 mmc_hostname(host), mrq->sbc->opcode, 206 mrq->sbc->arg, mrq->sbc->flags); 207 } 208 209 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 210 mmc_hostname(host), mrq->cmd->opcode, 211 mrq->cmd->arg, mrq->cmd->flags); 212 213 if (mrq->data) { 214 pr_debug("%s: blksz %d blocks %d flags %08x " 215 "tsac %d ms nsac %d\n", 216 mmc_hostname(host), mrq->data->blksz, 217 mrq->data->blocks, mrq->data->flags, 218 mrq->data->timeout_ns / 1000000, 219 mrq->data->timeout_clks); 220 } 221 222 if (mrq->stop) { 223 pr_debug("%s: CMD%u arg %08x flags %08x\n", 224 mmc_hostname(host), mrq->stop->opcode, 225 mrq->stop->arg, mrq->stop->flags); 226 } 227 228 WARN_ON(!host->claimed); 229 230 mrq->cmd->error = 0; 231 mrq->cmd->mrq = mrq; 232 if (mrq->data) { 233 BUG_ON(mrq->data->blksz > host->max_blk_size); 234 BUG_ON(mrq->data->blocks > host->max_blk_count); 235 BUG_ON(mrq->data->blocks * mrq->data->blksz > 236 host->max_req_size); 237 238 #ifdef CONFIG_MMC_DEBUG 239 sz = 0; 240 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 241 sz += sg->length; 242 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 243 #endif 244 245 mrq->cmd->data = mrq->data; 246 mrq->data->error = 0; 247 mrq->data->mrq = mrq; 248 if (mrq->stop) { 249 mrq->data->stop = mrq->stop; 250 mrq->stop->error = 0; 251 mrq->stop->mrq = mrq; 252 } 253 } 254 mmc_host_clk_hold(host); 255 led_trigger_event(host->led, LED_FULL); 256 host->ops->request(host, mrq); 257 } 258 259 /** 260 * mmc_start_bkops - start BKOPS for supported cards 261 * @card: MMC card to start BKOPS 262 * @form_exception: A flag to indicate if this function was 263 * called due to an exception raised by the card 264 * 265 * Start background operations whenever requested. 266 * When the urgent BKOPS bit is set in a R1 command response 267 * then background operations should be started immediately. 268 */ 269 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 270 { 271 int err; 272 int timeout; 273 bool use_busy_signal; 274 275 BUG_ON(!card); 276 277 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) 278 return; 279 280 err = mmc_read_bkops_status(card); 281 if (err) { 282 pr_err("%s: Failed to read bkops status: %d\n", 283 mmc_hostname(card->host), err); 284 return; 285 } 286 287 if (!card->ext_csd.raw_bkops_status) 288 return; 289 290 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 291 from_exception) 292 return; 293 294 mmc_claim_host(card->host); 295 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 296 timeout = MMC_BKOPS_MAX_TIMEOUT; 297 use_busy_signal = true; 298 } else { 299 timeout = 0; 300 use_busy_signal = false; 301 } 302 303 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 304 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal); 305 if (err) { 306 pr_warn("%s: Error %d starting bkops\n", 307 mmc_hostname(card->host), err); 308 goto out; 309 } 310 311 /* 312 * For urgent bkops status (LEVEL_2 and more) 313 * bkops executed synchronously, otherwise 314 * the operation is in progress 315 */ 316 if (!use_busy_signal) 317 mmc_card_set_doing_bkops(card); 318 out: 319 mmc_release_host(card->host); 320 } 321 EXPORT_SYMBOL(mmc_start_bkops); 322 323 /* 324 * mmc_wait_data_done() - done callback for data request 325 * @mrq: done data request 326 * 327 * Wakes up mmc context, passed as a callback to host controller driver 328 */ 329 static void mmc_wait_data_done(struct mmc_request *mrq) 330 { 331 mrq->host->context_info.is_done_rcv = true; 332 wake_up_interruptible(&mrq->host->context_info.wait); 333 } 334 335 static void mmc_wait_done(struct mmc_request *mrq) 336 { 337 complete(&mrq->completion); 338 } 339 340 /* 341 *__mmc_start_data_req() - starts data request 342 * @host: MMC host to start the request 343 * @mrq: data request to start 344 * 345 * Sets the done callback to be called when request is completed by the card. 346 * Starts data mmc request execution 347 */ 348 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 349 { 350 mrq->done = mmc_wait_data_done; 351 mrq->host = host; 352 if (mmc_card_removed(host->card)) { 353 mrq->cmd->error = -ENOMEDIUM; 354 mmc_wait_data_done(mrq); 355 return -ENOMEDIUM; 356 } 357 mmc_start_request(host, mrq); 358 359 return 0; 360 } 361 362 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 363 { 364 init_completion(&mrq->completion); 365 mrq->done = mmc_wait_done; 366 if (mmc_card_removed(host->card)) { 367 mrq->cmd->error = -ENOMEDIUM; 368 complete(&mrq->completion); 369 return -ENOMEDIUM; 370 } 371 mmc_start_request(host, mrq); 372 return 0; 373 } 374 375 /* 376 * mmc_wait_for_data_req_done() - wait for request completed 377 * @host: MMC host to prepare the command. 378 * @mrq: MMC request to wait for 379 * 380 * Blocks MMC context till host controller will ack end of data request 381 * execution or new request notification arrives from the block layer. 382 * Handles command retries. 383 * 384 * Returns enum mmc_blk_status after checking errors. 385 */ 386 static int mmc_wait_for_data_req_done(struct mmc_host *host, 387 struct mmc_request *mrq, 388 struct mmc_async_req *next_req) 389 { 390 struct mmc_command *cmd; 391 struct mmc_context_info *context_info = &host->context_info; 392 int err; 393 unsigned long flags; 394 395 while (1) { 396 wait_event_interruptible(context_info->wait, 397 (context_info->is_done_rcv || 398 context_info->is_new_req)); 399 spin_lock_irqsave(&context_info->lock, flags); 400 context_info->is_waiting_last_req = false; 401 spin_unlock_irqrestore(&context_info->lock, flags); 402 if (context_info->is_done_rcv) { 403 context_info->is_done_rcv = false; 404 context_info->is_new_req = false; 405 cmd = mrq->cmd; 406 407 if (!cmd->error || !cmd->retries || 408 mmc_card_removed(host->card)) { 409 err = host->areq->err_check(host->card, 410 host->areq); 411 break; /* return err */ 412 } else { 413 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 414 mmc_hostname(host), 415 cmd->opcode, cmd->error); 416 cmd->retries--; 417 cmd->error = 0; 418 host->ops->request(host, mrq); 419 continue; /* wait for done/new event again */ 420 } 421 } else if (context_info->is_new_req) { 422 context_info->is_new_req = false; 423 if (!next_req) { 424 err = MMC_BLK_NEW_REQUEST; 425 break; /* return err */ 426 } 427 } 428 } 429 return err; 430 } 431 432 static void mmc_wait_for_req_done(struct mmc_host *host, 433 struct mmc_request *mrq) 434 { 435 struct mmc_command *cmd; 436 437 while (1) { 438 wait_for_completion(&mrq->completion); 439 440 cmd = mrq->cmd; 441 442 /* 443 * If host has timed out waiting for the sanitize 444 * to complete, card might be still in programming state 445 * so let's try to bring the card out of programming 446 * state. 447 */ 448 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 449 if (!mmc_interrupt_hpi(host->card)) { 450 pr_warning("%s: %s: Interrupted sanitize\n", 451 mmc_hostname(host), __func__); 452 cmd->error = 0; 453 break; 454 } else { 455 pr_err("%s: %s: Failed to interrupt sanitize\n", 456 mmc_hostname(host), __func__); 457 } 458 } 459 if (!cmd->error || !cmd->retries || 460 mmc_card_removed(host->card)) 461 break; 462 463 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 464 mmc_hostname(host), cmd->opcode, cmd->error); 465 cmd->retries--; 466 cmd->error = 0; 467 host->ops->request(host, mrq); 468 } 469 } 470 471 /** 472 * mmc_pre_req - Prepare for a new request 473 * @host: MMC host to prepare command 474 * @mrq: MMC request to prepare for 475 * @is_first_req: true if there is no previous started request 476 * that may run in parellel to this call, otherwise false 477 * 478 * mmc_pre_req() is called in prior to mmc_start_req() to let 479 * host prepare for the new request. Preparation of a request may be 480 * performed while another request is running on the host. 481 */ 482 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 483 bool is_first_req) 484 { 485 if (host->ops->pre_req) { 486 mmc_host_clk_hold(host); 487 host->ops->pre_req(host, mrq, is_first_req); 488 mmc_host_clk_release(host); 489 } 490 } 491 492 /** 493 * mmc_post_req - Post process a completed request 494 * @host: MMC host to post process command 495 * @mrq: MMC request to post process for 496 * @err: Error, if non zero, clean up any resources made in pre_req 497 * 498 * Let the host post process a completed request. Post processing of 499 * a request may be performed while another reuqest is running. 500 */ 501 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 502 int err) 503 { 504 if (host->ops->post_req) { 505 mmc_host_clk_hold(host); 506 host->ops->post_req(host, mrq, err); 507 mmc_host_clk_release(host); 508 } 509 } 510 511 /** 512 * mmc_start_req - start a non-blocking request 513 * @host: MMC host to start command 514 * @areq: async request to start 515 * @error: out parameter returns 0 for success, otherwise non zero 516 * 517 * Start a new MMC custom command request for a host. 518 * If there is on ongoing async request wait for completion 519 * of that request and start the new one and return. 520 * Does not wait for the new request to complete. 521 * 522 * Returns the completed request, NULL in case of none completed. 523 * Wait for the an ongoing request (previoulsy started) to complete and 524 * return the completed request. If there is no ongoing request, NULL 525 * is returned without waiting. NULL is not an error condition. 526 */ 527 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 528 struct mmc_async_req *areq, int *error) 529 { 530 int err = 0; 531 int start_err = 0; 532 struct mmc_async_req *data = host->areq; 533 534 /* Prepare a new request */ 535 if (areq) 536 mmc_pre_req(host, areq->mrq, !host->areq); 537 538 if (host->areq) { 539 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 540 if (err == MMC_BLK_NEW_REQUEST) { 541 if (error) 542 *error = err; 543 /* 544 * The previous request was not completed, 545 * nothing to return 546 */ 547 return NULL; 548 } 549 /* 550 * Check BKOPS urgency for each R1 response 551 */ 552 if (host->card && mmc_card_mmc(host->card) && 553 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 554 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 555 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) 556 mmc_start_bkops(host->card, true); 557 } 558 559 if (!err && areq) 560 start_err = __mmc_start_data_req(host, areq->mrq); 561 562 if (host->areq) 563 mmc_post_req(host, host->areq->mrq, 0); 564 565 /* Cancel a prepared request if it was not started. */ 566 if ((err || start_err) && areq) 567 mmc_post_req(host, areq->mrq, -EINVAL); 568 569 if (err) 570 host->areq = NULL; 571 else 572 host->areq = areq; 573 574 if (error) 575 *error = err; 576 return data; 577 } 578 EXPORT_SYMBOL(mmc_start_req); 579 580 /** 581 * mmc_wait_for_req - start a request and wait for completion 582 * @host: MMC host to start command 583 * @mrq: MMC request to start 584 * 585 * Start a new MMC custom command request for a host, and wait 586 * for the command to complete. Does not attempt to parse the 587 * response. 588 */ 589 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 590 { 591 __mmc_start_req(host, mrq); 592 mmc_wait_for_req_done(host, mrq); 593 } 594 EXPORT_SYMBOL(mmc_wait_for_req); 595 596 /** 597 * mmc_interrupt_hpi - Issue for High priority Interrupt 598 * @card: the MMC card associated with the HPI transfer 599 * 600 * Issued High Priority Interrupt, and check for card status 601 * until out-of prg-state. 602 */ 603 int mmc_interrupt_hpi(struct mmc_card *card) 604 { 605 int err; 606 u32 status; 607 unsigned long prg_wait; 608 609 BUG_ON(!card); 610 611 if (!card->ext_csd.hpi_en) { 612 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 613 return 1; 614 } 615 616 mmc_claim_host(card->host); 617 err = mmc_send_status(card, &status); 618 if (err) { 619 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 620 goto out; 621 } 622 623 switch (R1_CURRENT_STATE(status)) { 624 case R1_STATE_IDLE: 625 case R1_STATE_READY: 626 case R1_STATE_STBY: 627 case R1_STATE_TRAN: 628 /* 629 * In idle and transfer states, HPI is not needed and the caller 630 * can issue the next intended command immediately 631 */ 632 goto out; 633 case R1_STATE_PRG: 634 break; 635 default: 636 /* In all other states, it's illegal to issue HPI */ 637 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 638 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 639 err = -EINVAL; 640 goto out; 641 } 642 643 err = mmc_send_hpi_cmd(card, &status); 644 if (err) 645 goto out; 646 647 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 648 do { 649 err = mmc_send_status(card, &status); 650 651 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 652 break; 653 if (time_after(jiffies, prg_wait)) 654 err = -ETIMEDOUT; 655 } while (!err); 656 657 out: 658 mmc_release_host(card->host); 659 return err; 660 } 661 EXPORT_SYMBOL(mmc_interrupt_hpi); 662 663 /** 664 * mmc_wait_for_cmd - start a command and wait for completion 665 * @host: MMC host to start command 666 * @cmd: MMC command to start 667 * @retries: maximum number of retries 668 * 669 * Start a new MMC command for a host, and wait for the command 670 * to complete. Return any error that occurred while the command 671 * was executing. Do not attempt to parse the response. 672 */ 673 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 674 { 675 struct mmc_request mrq = {NULL}; 676 677 WARN_ON(!host->claimed); 678 679 memset(cmd->resp, 0, sizeof(cmd->resp)); 680 cmd->retries = retries; 681 682 mrq.cmd = cmd; 683 cmd->data = NULL; 684 685 mmc_wait_for_req(host, &mrq); 686 687 return cmd->error; 688 } 689 690 EXPORT_SYMBOL(mmc_wait_for_cmd); 691 692 /** 693 * mmc_stop_bkops - stop ongoing BKOPS 694 * @card: MMC card to check BKOPS 695 * 696 * Send HPI command to stop ongoing background operations to 697 * allow rapid servicing of foreground operations, e.g. read/ 698 * writes. Wait until the card comes out of the programming state 699 * to avoid errors in servicing read/write requests. 700 */ 701 int mmc_stop_bkops(struct mmc_card *card) 702 { 703 int err = 0; 704 705 BUG_ON(!card); 706 err = mmc_interrupt_hpi(card); 707 708 /* 709 * If err is EINVAL, we can't issue an HPI. 710 * It should complete the BKOPS. 711 */ 712 if (!err || (err == -EINVAL)) { 713 mmc_card_clr_doing_bkops(card); 714 err = 0; 715 } 716 717 return err; 718 } 719 EXPORT_SYMBOL(mmc_stop_bkops); 720 721 int mmc_read_bkops_status(struct mmc_card *card) 722 { 723 int err; 724 u8 *ext_csd; 725 726 /* 727 * In future work, we should consider storing the entire ext_csd. 728 */ 729 ext_csd = kmalloc(512, GFP_KERNEL); 730 if (!ext_csd) { 731 pr_err("%s: could not allocate buffer to receive the ext_csd.\n", 732 mmc_hostname(card->host)); 733 return -ENOMEM; 734 } 735 736 mmc_claim_host(card->host); 737 err = mmc_send_ext_csd(card, ext_csd); 738 mmc_release_host(card->host); 739 if (err) 740 goto out; 741 742 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 743 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 744 out: 745 kfree(ext_csd); 746 return err; 747 } 748 EXPORT_SYMBOL(mmc_read_bkops_status); 749 750 /** 751 * mmc_set_data_timeout - set the timeout for a data command 752 * @data: data phase for command 753 * @card: the MMC card associated with the data transfer 754 * 755 * Computes the data timeout parameters according to the 756 * correct algorithm given the card type. 757 */ 758 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 759 { 760 unsigned int mult; 761 762 /* 763 * SDIO cards only define an upper 1 s limit on access. 764 */ 765 if (mmc_card_sdio(card)) { 766 data->timeout_ns = 1000000000; 767 data->timeout_clks = 0; 768 return; 769 } 770 771 /* 772 * SD cards use a 100 multiplier rather than 10 773 */ 774 mult = mmc_card_sd(card) ? 100 : 10; 775 776 /* 777 * Scale up the multiplier (and therefore the timeout) by 778 * the r2w factor for writes. 779 */ 780 if (data->flags & MMC_DATA_WRITE) 781 mult <<= card->csd.r2w_factor; 782 783 data->timeout_ns = card->csd.tacc_ns * mult; 784 data->timeout_clks = card->csd.tacc_clks * mult; 785 786 /* 787 * SD cards also have an upper limit on the timeout. 788 */ 789 if (mmc_card_sd(card)) { 790 unsigned int timeout_us, limit_us; 791 792 timeout_us = data->timeout_ns / 1000; 793 if (mmc_host_clk_rate(card->host)) 794 timeout_us += data->timeout_clks * 1000 / 795 (mmc_host_clk_rate(card->host) / 1000); 796 797 if (data->flags & MMC_DATA_WRITE) 798 /* 799 * The MMC spec "It is strongly recommended 800 * for hosts to implement more than 500ms 801 * timeout value even if the card indicates 802 * the 250ms maximum busy length." Even the 803 * previous value of 300ms is known to be 804 * insufficient for some cards. 805 */ 806 limit_us = 3000000; 807 else 808 limit_us = 100000; 809 810 /* 811 * SDHC cards always use these fixed values. 812 */ 813 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 814 data->timeout_ns = limit_us * 1000; 815 data->timeout_clks = 0; 816 } 817 } 818 819 /* 820 * Some cards require longer data read timeout than indicated in CSD. 821 * Address this by setting the read timeout to a "reasonably high" 822 * value. For the cards tested, 300ms has proven enough. If necessary, 823 * this value can be increased if other problematic cards require this. 824 */ 825 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 826 data->timeout_ns = 300000000; 827 data->timeout_clks = 0; 828 } 829 830 /* 831 * Some cards need very high timeouts if driven in SPI mode. 832 * The worst observed timeout was 900ms after writing a 833 * continuous stream of data until the internal logic 834 * overflowed. 835 */ 836 if (mmc_host_is_spi(card->host)) { 837 if (data->flags & MMC_DATA_WRITE) { 838 if (data->timeout_ns < 1000000000) 839 data->timeout_ns = 1000000000; /* 1s */ 840 } else { 841 if (data->timeout_ns < 100000000) 842 data->timeout_ns = 100000000; /* 100ms */ 843 } 844 } 845 } 846 EXPORT_SYMBOL(mmc_set_data_timeout); 847 848 /** 849 * mmc_align_data_size - pads a transfer size to a more optimal value 850 * @card: the MMC card associated with the data transfer 851 * @sz: original transfer size 852 * 853 * Pads the original data size with a number of extra bytes in 854 * order to avoid controller bugs and/or performance hits 855 * (e.g. some controllers revert to PIO for certain sizes). 856 * 857 * Returns the improved size, which might be unmodified. 858 * 859 * Note that this function is only relevant when issuing a 860 * single scatter gather entry. 861 */ 862 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 863 { 864 /* 865 * FIXME: We don't have a system for the controller to tell 866 * the core about its problems yet, so for now we just 32-bit 867 * align the size. 868 */ 869 sz = ((sz + 3) / 4) * 4; 870 871 return sz; 872 } 873 EXPORT_SYMBOL(mmc_align_data_size); 874 875 /** 876 * __mmc_claim_host - exclusively claim a host 877 * @host: mmc host to claim 878 * @abort: whether or not the operation should be aborted 879 * 880 * Claim a host for a set of operations. If @abort is non null and 881 * dereference a non-zero value then this will return prematurely with 882 * that non-zero value without acquiring the lock. Returns zero 883 * with the lock held otherwise. 884 */ 885 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 886 { 887 DECLARE_WAITQUEUE(wait, current); 888 unsigned long flags; 889 int stop; 890 891 might_sleep(); 892 893 add_wait_queue(&host->wq, &wait); 894 spin_lock_irqsave(&host->lock, flags); 895 while (1) { 896 set_current_state(TASK_UNINTERRUPTIBLE); 897 stop = abort ? atomic_read(abort) : 0; 898 if (stop || !host->claimed || host->claimer == current) 899 break; 900 spin_unlock_irqrestore(&host->lock, flags); 901 schedule(); 902 spin_lock_irqsave(&host->lock, flags); 903 } 904 set_current_state(TASK_RUNNING); 905 if (!stop) { 906 host->claimed = 1; 907 host->claimer = current; 908 host->claim_cnt += 1; 909 } else 910 wake_up(&host->wq); 911 spin_unlock_irqrestore(&host->lock, flags); 912 remove_wait_queue(&host->wq, &wait); 913 if (host->ops->enable && !stop && host->claim_cnt == 1) 914 host->ops->enable(host); 915 return stop; 916 } 917 918 EXPORT_SYMBOL(__mmc_claim_host); 919 920 /** 921 * mmc_try_claim_host - try exclusively to claim a host 922 * @host: mmc host to claim 923 * 924 * Returns %1 if the host is claimed, %0 otherwise. 925 */ 926 int mmc_try_claim_host(struct mmc_host *host) 927 { 928 int claimed_host = 0; 929 unsigned long flags; 930 931 spin_lock_irqsave(&host->lock, flags); 932 if (!host->claimed || host->claimer == current) { 933 host->claimed = 1; 934 host->claimer = current; 935 host->claim_cnt += 1; 936 claimed_host = 1; 937 } 938 spin_unlock_irqrestore(&host->lock, flags); 939 if (host->ops->enable && claimed_host && host->claim_cnt == 1) 940 host->ops->enable(host); 941 return claimed_host; 942 } 943 EXPORT_SYMBOL(mmc_try_claim_host); 944 945 /** 946 * mmc_release_host - release a host 947 * @host: mmc host to release 948 * 949 * Release a MMC host, allowing others to claim the host 950 * for their operations. 951 */ 952 void mmc_release_host(struct mmc_host *host) 953 { 954 unsigned long flags; 955 956 WARN_ON(!host->claimed); 957 958 if (host->ops->disable && host->claim_cnt == 1) 959 host->ops->disable(host); 960 961 spin_lock_irqsave(&host->lock, flags); 962 if (--host->claim_cnt) { 963 /* Release for nested claim */ 964 spin_unlock_irqrestore(&host->lock, flags); 965 } else { 966 host->claimed = 0; 967 host->claimer = NULL; 968 spin_unlock_irqrestore(&host->lock, flags); 969 wake_up(&host->wq); 970 } 971 } 972 EXPORT_SYMBOL(mmc_release_host); 973 974 /* 975 * This is a helper function, which fetches a runtime pm reference for the 976 * card device and also claims the host. 977 */ 978 void mmc_get_card(struct mmc_card *card) 979 { 980 pm_runtime_get_sync(&card->dev); 981 mmc_claim_host(card->host); 982 } 983 EXPORT_SYMBOL(mmc_get_card); 984 985 /* 986 * This is a helper function, which releases the host and drops the runtime 987 * pm reference for the card device. 988 */ 989 void mmc_put_card(struct mmc_card *card) 990 { 991 mmc_release_host(card->host); 992 pm_runtime_mark_last_busy(&card->dev); 993 pm_runtime_put_autosuspend(&card->dev); 994 } 995 EXPORT_SYMBOL(mmc_put_card); 996 997 /* 998 * Internal function that does the actual ios call to the host driver, 999 * optionally printing some debug output. 1000 */ 1001 static inline void mmc_set_ios(struct mmc_host *host) 1002 { 1003 struct mmc_ios *ios = &host->ios; 1004 1005 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1006 "width %u timing %u\n", 1007 mmc_hostname(host), ios->clock, ios->bus_mode, 1008 ios->power_mode, ios->chip_select, ios->vdd, 1009 ios->bus_width, ios->timing); 1010 1011 if (ios->clock > 0) 1012 mmc_set_ungated(host); 1013 host->ops->set_ios(host, ios); 1014 } 1015 1016 /* 1017 * Control chip select pin on a host. 1018 */ 1019 void mmc_set_chip_select(struct mmc_host *host, int mode) 1020 { 1021 mmc_host_clk_hold(host); 1022 host->ios.chip_select = mode; 1023 mmc_set_ios(host); 1024 mmc_host_clk_release(host); 1025 } 1026 1027 /* 1028 * Sets the host clock to the highest possible frequency that 1029 * is below "hz". 1030 */ 1031 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 1032 { 1033 WARN_ON(hz < host->f_min); 1034 1035 if (hz > host->f_max) 1036 hz = host->f_max; 1037 1038 host->ios.clock = hz; 1039 mmc_set_ios(host); 1040 } 1041 1042 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1043 { 1044 mmc_host_clk_hold(host); 1045 __mmc_set_clock(host, hz); 1046 mmc_host_clk_release(host); 1047 } 1048 1049 #ifdef CONFIG_MMC_CLKGATE 1050 /* 1051 * This gates the clock by setting it to 0 Hz. 1052 */ 1053 void mmc_gate_clock(struct mmc_host *host) 1054 { 1055 unsigned long flags; 1056 1057 spin_lock_irqsave(&host->clk_lock, flags); 1058 host->clk_old = host->ios.clock; 1059 host->ios.clock = 0; 1060 host->clk_gated = true; 1061 spin_unlock_irqrestore(&host->clk_lock, flags); 1062 mmc_set_ios(host); 1063 } 1064 1065 /* 1066 * This restores the clock from gating by using the cached 1067 * clock value. 1068 */ 1069 void mmc_ungate_clock(struct mmc_host *host) 1070 { 1071 /* 1072 * We should previously have gated the clock, so the clock shall 1073 * be 0 here! The clock may however be 0 during initialization, 1074 * when some request operations are performed before setting 1075 * the frequency. When ungate is requested in that situation 1076 * we just ignore the call. 1077 */ 1078 if (host->clk_old) { 1079 BUG_ON(host->ios.clock); 1080 /* This call will also set host->clk_gated to false */ 1081 __mmc_set_clock(host, host->clk_old); 1082 } 1083 } 1084 1085 void mmc_set_ungated(struct mmc_host *host) 1086 { 1087 unsigned long flags; 1088 1089 /* 1090 * We've been given a new frequency while the clock is gated, 1091 * so make sure we regard this as ungating it. 1092 */ 1093 spin_lock_irqsave(&host->clk_lock, flags); 1094 host->clk_gated = false; 1095 spin_unlock_irqrestore(&host->clk_lock, flags); 1096 } 1097 1098 #else 1099 void mmc_set_ungated(struct mmc_host *host) 1100 { 1101 } 1102 #endif 1103 1104 /* 1105 * Change the bus mode (open drain/push-pull) of a host. 1106 */ 1107 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1108 { 1109 mmc_host_clk_hold(host); 1110 host->ios.bus_mode = mode; 1111 mmc_set_ios(host); 1112 mmc_host_clk_release(host); 1113 } 1114 1115 /* 1116 * Change data bus width of a host. 1117 */ 1118 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1119 { 1120 mmc_host_clk_hold(host); 1121 host->ios.bus_width = width; 1122 mmc_set_ios(host); 1123 mmc_host_clk_release(host); 1124 } 1125 1126 /** 1127 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1128 * @vdd: voltage (mV) 1129 * @low_bits: prefer low bits in boundary cases 1130 * 1131 * This function returns the OCR bit number according to the provided @vdd 1132 * value. If conversion is not possible a negative errno value returned. 1133 * 1134 * Depending on the @low_bits flag the function prefers low or high OCR bits 1135 * on boundary voltages. For example, 1136 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1137 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1138 * 1139 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1140 */ 1141 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1142 { 1143 const int max_bit = ilog2(MMC_VDD_35_36); 1144 int bit; 1145 1146 if (vdd < 1650 || vdd > 3600) 1147 return -EINVAL; 1148 1149 if (vdd >= 1650 && vdd <= 1950) 1150 return ilog2(MMC_VDD_165_195); 1151 1152 if (low_bits) 1153 vdd -= 1; 1154 1155 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1156 bit = (vdd - 2000) / 100 + 8; 1157 if (bit > max_bit) 1158 return max_bit; 1159 return bit; 1160 } 1161 1162 /** 1163 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1164 * @vdd_min: minimum voltage value (mV) 1165 * @vdd_max: maximum voltage value (mV) 1166 * 1167 * This function returns the OCR mask bits according to the provided @vdd_min 1168 * and @vdd_max values. If conversion is not possible the function returns 0. 1169 * 1170 * Notes wrt boundary cases: 1171 * This function sets the OCR bits for all boundary voltages, for example 1172 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1173 * MMC_VDD_34_35 mask. 1174 */ 1175 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1176 { 1177 u32 mask = 0; 1178 1179 if (vdd_max < vdd_min) 1180 return 0; 1181 1182 /* Prefer high bits for the boundary vdd_max values. */ 1183 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1184 if (vdd_max < 0) 1185 return 0; 1186 1187 /* Prefer low bits for the boundary vdd_min values. */ 1188 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1189 if (vdd_min < 0) 1190 return 0; 1191 1192 /* Fill the mask, from max bit to min bit. */ 1193 while (vdd_max >= vdd_min) 1194 mask |= 1 << vdd_max--; 1195 1196 return mask; 1197 } 1198 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1199 1200 #ifdef CONFIG_OF 1201 1202 /** 1203 * mmc_of_parse_voltage - return mask of supported voltages 1204 * @np: The device node need to be parsed. 1205 * @mask: mask of voltages available for MMC/SD/SDIO 1206 * 1207 * 1. Return zero on success. 1208 * 2. Return negative errno: voltage-range is invalid. 1209 */ 1210 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1211 { 1212 const u32 *voltage_ranges; 1213 int num_ranges, i; 1214 1215 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1216 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1217 if (!voltage_ranges || !num_ranges) { 1218 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1219 return -EINVAL; 1220 } 1221 1222 for (i = 0; i < num_ranges; i++) { 1223 const int j = i * 2; 1224 u32 ocr_mask; 1225 1226 ocr_mask = mmc_vddrange_to_ocrmask( 1227 be32_to_cpu(voltage_ranges[j]), 1228 be32_to_cpu(voltage_ranges[j + 1])); 1229 if (!ocr_mask) { 1230 pr_err("%s: voltage-range #%d is invalid\n", 1231 np->full_name, i); 1232 return -EINVAL; 1233 } 1234 *mask |= ocr_mask; 1235 } 1236 1237 return 0; 1238 } 1239 EXPORT_SYMBOL(mmc_of_parse_voltage); 1240 1241 #endif /* CONFIG_OF */ 1242 1243 #ifdef CONFIG_REGULATOR 1244 1245 /** 1246 * mmc_regulator_get_ocrmask - return mask of supported voltages 1247 * @supply: regulator to use 1248 * 1249 * This returns either a negative errno, or a mask of voltages that 1250 * can be provided to MMC/SD/SDIO devices using the specified voltage 1251 * regulator. This would normally be called before registering the 1252 * MMC host adapter. 1253 */ 1254 int mmc_regulator_get_ocrmask(struct regulator *supply) 1255 { 1256 int result = 0; 1257 int count; 1258 int i; 1259 1260 count = regulator_count_voltages(supply); 1261 if (count < 0) 1262 return count; 1263 1264 for (i = 0; i < count; i++) { 1265 int vdd_uV; 1266 int vdd_mV; 1267 1268 vdd_uV = regulator_list_voltage(supply, i); 1269 if (vdd_uV <= 0) 1270 continue; 1271 1272 vdd_mV = vdd_uV / 1000; 1273 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1274 } 1275 1276 return result; 1277 } 1278 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1279 1280 /** 1281 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1282 * @mmc: the host to regulate 1283 * @supply: regulator to use 1284 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1285 * 1286 * Returns zero on success, else negative errno. 1287 * 1288 * MMC host drivers may use this to enable or disable a regulator using 1289 * a particular supply voltage. This would normally be called from the 1290 * set_ios() method. 1291 */ 1292 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1293 struct regulator *supply, 1294 unsigned short vdd_bit) 1295 { 1296 int result = 0; 1297 int min_uV, max_uV; 1298 1299 if (vdd_bit) { 1300 int tmp; 1301 int voltage; 1302 1303 /* 1304 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1305 * bits this regulator doesn't quite support ... don't 1306 * be too picky, most cards and regulators are OK with 1307 * a 0.1V range goof (it's a small error percentage). 1308 */ 1309 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1310 if (tmp == 0) { 1311 min_uV = 1650 * 1000; 1312 max_uV = 1950 * 1000; 1313 } else { 1314 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1315 max_uV = min_uV + 100 * 1000; 1316 } 1317 1318 /* 1319 * If we're using a fixed/static regulator, don't call 1320 * regulator_set_voltage; it would fail. 1321 */ 1322 voltage = regulator_get_voltage(supply); 1323 1324 if (!regulator_can_change_voltage(supply)) 1325 min_uV = max_uV = voltage; 1326 1327 if (voltage < 0) 1328 result = voltage; 1329 else if (voltage < min_uV || voltage > max_uV) 1330 result = regulator_set_voltage(supply, min_uV, max_uV); 1331 else 1332 result = 0; 1333 1334 if (result == 0 && !mmc->regulator_enabled) { 1335 result = regulator_enable(supply); 1336 if (!result) 1337 mmc->regulator_enabled = true; 1338 } 1339 } else if (mmc->regulator_enabled) { 1340 result = regulator_disable(supply); 1341 if (result == 0) 1342 mmc->regulator_enabled = false; 1343 } 1344 1345 if (result) 1346 dev_err(mmc_dev(mmc), 1347 "could not set regulator OCR (%d)\n", result); 1348 return result; 1349 } 1350 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1351 1352 int mmc_regulator_get_supply(struct mmc_host *mmc) 1353 { 1354 struct device *dev = mmc_dev(mmc); 1355 struct regulator *supply; 1356 int ret; 1357 1358 supply = devm_regulator_get(dev, "vmmc"); 1359 mmc->supply.vmmc = supply; 1360 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1361 1362 if (IS_ERR(supply)) 1363 return PTR_ERR(supply); 1364 1365 ret = mmc_regulator_get_ocrmask(supply); 1366 if (ret > 0) 1367 mmc->ocr_avail = ret; 1368 else 1369 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret); 1370 1371 return 0; 1372 } 1373 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1374 1375 #endif /* CONFIG_REGULATOR */ 1376 1377 /* 1378 * Mask off any voltages we don't support and select 1379 * the lowest voltage 1380 */ 1381 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1382 { 1383 int bit; 1384 1385 ocr &= host->ocr_avail; 1386 1387 bit = ffs(ocr); 1388 if (bit) { 1389 bit -= 1; 1390 1391 ocr &= 3 << bit; 1392 1393 mmc_host_clk_hold(host); 1394 host->ios.vdd = bit; 1395 mmc_set_ios(host); 1396 mmc_host_clk_release(host); 1397 } else { 1398 pr_warning("%s: host doesn't support card's voltages\n", 1399 mmc_hostname(host)); 1400 ocr = 0; 1401 } 1402 1403 return ocr; 1404 } 1405 1406 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1407 { 1408 int err = 0; 1409 int old_signal_voltage = host->ios.signal_voltage; 1410 1411 host->ios.signal_voltage = signal_voltage; 1412 if (host->ops->start_signal_voltage_switch) { 1413 mmc_host_clk_hold(host); 1414 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1415 mmc_host_clk_release(host); 1416 } 1417 1418 if (err) 1419 host->ios.signal_voltage = old_signal_voltage; 1420 1421 return err; 1422 1423 } 1424 1425 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1426 { 1427 struct mmc_command cmd = {0}; 1428 int err = 0; 1429 u32 clock; 1430 1431 BUG_ON(!host); 1432 1433 /* 1434 * Send CMD11 only if the request is to switch the card to 1435 * 1.8V signalling. 1436 */ 1437 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1438 return __mmc_set_signal_voltage(host, signal_voltage); 1439 1440 /* 1441 * If we cannot switch voltages, return failure so the caller 1442 * can continue without UHS mode 1443 */ 1444 if (!host->ops->start_signal_voltage_switch) 1445 return -EPERM; 1446 if (!host->ops->card_busy) 1447 pr_warning("%s: cannot verify signal voltage switch\n", 1448 mmc_hostname(host)); 1449 1450 cmd.opcode = SD_SWITCH_VOLTAGE; 1451 cmd.arg = 0; 1452 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1453 1454 err = mmc_wait_for_cmd(host, &cmd, 0); 1455 if (err) 1456 return err; 1457 1458 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1459 return -EIO; 1460 1461 mmc_host_clk_hold(host); 1462 /* 1463 * The card should drive cmd and dat[0:3] low immediately 1464 * after the response of cmd11, but wait 1 ms to be sure 1465 */ 1466 mmc_delay(1); 1467 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1468 err = -EAGAIN; 1469 goto power_cycle; 1470 } 1471 /* 1472 * During a signal voltage level switch, the clock must be gated 1473 * for 5 ms according to the SD spec 1474 */ 1475 clock = host->ios.clock; 1476 host->ios.clock = 0; 1477 mmc_set_ios(host); 1478 1479 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1480 /* 1481 * Voltages may not have been switched, but we've already 1482 * sent CMD11, so a power cycle is required anyway 1483 */ 1484 err = -EAGAIN; 1485 goto power_cycle; 1486 } 1487 1488 /* Keep clock gated for at least 5 ms */ 1489 mmc_delay(5); 1490 host->ios.clock = clock; 1491 mmc_set_ios(host); 1492 1493 /* Wait for at least 1 ms according to spec */ 1494 mmc_delay(1); 1495 1496 /* 1497 * Failure to switch is indicated by the card holding 1498 * dat[0:3] low 1499 */ 1500 if (host->ops->card_busy && host->ops->card_busy(host)) 1501 err = -EAGAIN; 1502 1503 power_cycle: 1504 if (err) { 1505 pr_debug("%s: Signal voltage switch failed, " 1506 "power cycling card\n", mmc_hostname(host)); 1507 mmc_power_cycle(host); 1508 } 1509 1510 mmc_host_clk_release(host); 1511 1512 return err; 1513 } 1514 1515 /* 1516 * Select timing parameters for host. 1517 */ 1518 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1519 { 1520 mmc_host_clk_hold(host); 1521 host->ios.timing = timing; 1522 mmc_set_ios(host); 1523 mmc_host_clk_release(host); 1524 } 1525 1526 /* 1527 * Select appropriate driver type for host. 1528 */ 1529 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1530 { 1531 mmc_host_clk_hold(host); 1532 host->ios.drv_type = drv_type; 1533 mmc_set_ios(host); 1534 mmc_host_clk_release(host); 1535 } 1536 1537 /* 1538 * Apply power to the MMC stack. This is a two-stage process. 1539 * First, we enable power to the card without the clock running. 1540 * We then wait a bit for the power to stabilise. Finally, 1541 * enable the bus drivers and clock to the card. 1542 * 1543 * We must _NOT_ enable the clock prior to power stablising. 1544 * 1545 * If a host does all the power sequencing itself, ignore the 1546 * initial MMC_POWER_UP stage. 1547 */ 1548 void mmc_power_up(struct mmc_host *host) 1549 { 1550 int bit; 1551 1552 if (host->ios.power_mode == MMC_POWER_ON) 1553 return; 1554 1555 mmc_host_clk_hold(host); 1556 1557 /* If ocr is set, we use it */ 1558 if (host->ocr) 1559 bit = ffs(host->ocr) - 1; 1560 else 1561 bit = fls(host->ocr_avail) - 1; 1562 1563 host->ios.vdd = bit; 1564 if (mmc_host_is_spi(host)) 1565 host->ios.chip_select = MMC_CS_HIGH; 1566 else 1567 host->ios.chip_select = MMC_CS_DONTCARE; 1568 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1569 host->ios.power_mode = MMC_POWER_UP; 1570 host->ios.bus_width = MMC_BUS_WIDTH_1; 1571 host->ios.timing = MMC_TIMING_LEGACY; 1572 mmc_set_ios(host); 1573 1574 /* Set signal voltage to 3.3V */ 1575 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1576 1577 /* 1578 * This delay should be sufficient to allow the power supply 1579 * to reach the minimum voltage. 1580 */ 1581 mmc_delay(10); 1582 1583 host->ios.clock = host->f_init; 1584 1585 host->ios.power_mode = MMC_POWER_ON; 1586 mmc_set_ios(host); 1587 1588 /* 1589 * This delay must be at least 74 clock sizes, or 1 ms, or the 1590 * time required to reach a stable voltage. 1591 */ 1592 mmc_delay(10); 1593 1594 mmc_host_clk_release(host); 1595 } 1596 1597 void mmc_power_off(struct mmc_host *host) 1598 { 1599 if (host->ios.power_mode == MMC_POWER_OFF) 1600 return; 1601 1602 mmc_host_clk_hold(host); 1603 1604 host->ios.clock = 0; 1605 host->ios.vdd = 0; 1606 1607 1608 /* 1609 * Reset ocr mask to be the highest possible voltage supported for 1610 * this mmc host. This value will be used at next power up. 1611 */ 1612 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1613 1614 if (!mmc_host_is_spi(host)) { 1615 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1616 host->ios.chip_select = MMC_CS_DONTCARE; 1617 } 1618 host->ios.power_mode = MMC_POWER_OFF; 1619 host->ios.bus_width = MMC_BUS_WIDTH_1; 1620 host->ios.timing = MMC_TIMING_LEGACY; 1621 mmc_set_ios(host); 1622 1623 /* 1624 * Some configurations, such as the 802.11 SDIO card in the OLPC 1625 * XO-1.5, require a short delay after poweroff before the card 1626 * can be successfully turned on again. 1627 */ 1628 mmc_delay(1); 1629 1630 mmc_host_clk_release(host); 1631 } 1632 1633 void mmc_power_cycle(struct mmc_host *host) 1634 { 1635 mmc_power_off(host); 1636 /* Wait at least 1 ms according to SD spec */ 1637 mmc_delay(1); 1638 mmc_power_up(host); 1639 } 1640 1641 /* 1642 * Cleanup when the last reference to the bus operator is dropped. 1643 */ 1644 static void __mmc_release_bus(struct mmc_host *host) 1645 { 1646 BUG_ON(!host); 1647 BUG_ON(host->bus_refs); 1648 BUG_ON(!host->bus_dead); 1649 1650 host->bus_ops = NULL; 1651 } 1652 1653 /* 1654 * Increase reference count of bus operator 1655 */ 1656 static inline void mmc_bus_get(struct mmc_host *host) 1657 { 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&host->lock, flags); 1661 host->bus_refs++; 1662 spin_unlock_irqrestore(&host->lock, flags); 1663 } 1664 1665 /* 1666 * Decrease reference count of bus operator and free it if 1667 * it is the last reference. 1668 */ 1669 static inline void mmc_bus_put(struct mmc_host *host) 1670 { 1671 unsigned long flags; 1672 1673 spin_lock_irqsave(&host->lock, flags); 1674 host->bus_refs--; 1675 if ((host->bus_refs == 0) && host->bus_ops) 1676 __mmc_release_bus(host); 1677 spin_unlock_irqrestore(&host->lock, flags); 1678 } 1679 1680 /* 1681 * Assign a mmc bus handler to a host. Only one bus handler may control a 1682 * host at any given time. 1683 */ 1684 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1685 { 1686 unsigned long flags; 1687 1688 BUG_ON(!host); 1689 BUG_ON(!ops); 1690 1691 WARN_ON(!host->claimed); 1692 1693 spin_lock_irqsave(&host->lock, flags); 1694 1695 BUG_ON(host->bus_ops); 1696 BUG_ON(host->bus_refs); 1697 1698 host->bus_ops = ops; 1699 host->bus_refs = 1; 1700 host->bus_dead = 0; 1701 1702 spin_unlock_irqrestore(&host->lock, flags); 1703 } 1704 1705 /* 1706 * Remove the current bus handler from a host. 1707 */ 1708 void mmc_detach_bus(struct mmc_host *host) 1709 { 1710 unsigned long flags; 1711 1712 BUG_ON(!host); 1713 1714 WARN_ON(!host->claimed); 1715 WARN_ON(!host->bus_ops); 1716 1717 spin_lock_irqsave(&host->lock, flags); 1718 1719 host->bus_dead = 1; 1720 1721 spin_unlock_irqrestore(&host->lock, flags); 1722 1723 mmc_bus_put(host); 1724 } 1725 1726 /** 1727 * mmc_detect_change - process change of state on a MMC socket 1728 * @host: host which changed state. 1729 * @delay: optional delay to wait before detection (jiffies) 1730 * 1731 * MMC drivers should call this when they detect a card has been 1732 * inserted or removed. The MMC layer will confirm that any 1733 * present card is still functional, and initialize any newly 1734 * inserted. 1735 */ 1736 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1737 { 1738 #ifdef CONFIG_MMC_DEBUG 1739 unsigned long flags; 1740 spin_lock_irqsave(&host->lock, flags); 1741 WARN_ON(host->removed); 1742 spin_unlock_irqrestore(&host->lock, flags); 1743 #endif 1744 host->detect_change = 1; 1745 mmc_schedule_delayed_work(&host->detect, delay); 1746 } 1747 1748 EXPORT_SYMBOL(mmc_detect_change); 1749 1750 void mmc_init_erase(struct mmc_card *card) 1751 { 1752 unsigned int sz; 1753 1754 if (is_power_of_2(card->erase_size)) 1755 card->erase_shift = ffs(card->erase_size) - 1; 1756 else 1757 card->erase_shift = 0; 1758 1759 /* 1760 * It is possible to erase an arbitrarily large area of an SD or MMC 1761 * card. That is not desirable because it can take a long time 1762 * (minutes) potentially delaying more important I/O, and also the 1763 * timeout calculations become increasingly hugely over-estimated. 1764 * Consequently, 'pref_erase' is defined as a guide to limit erases 1765 * to that size and alignment. 1766 * 1767 * For SD cards that define Allocation Unit size, limit erases to one 1768 * Allocation Unit at a time. For MMC cards that define High Capacity 1769 * Erase Size, whether it is switched on or not, limit to that size. 1770 * Otherwise just have a stab at a good value. For modern cards it 1771 * will end up being 4MiB. Note that if the value is too small, it 1772 * can end up taking longer to erase. 1773 */ 1774 if (mmc_card_sd(card) && card->ssr.au) { 1775 card->pref_erase = card->ssr.au; 1776 card->erase_shift = ffs(card->ssr.au) - 1; 1777 } else if (card->ext_csd.hc_erase_size) { 1778 card->pref_erase = card->ext_csd.hc_erase_size; 1779 } else { 1780 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1781 if (sz < 128) 1782 card->pref_erase = 512 * 1024 / 512; 1783 else if (sz < 512) 1784 card->pref_erase = 1024 * 1024 / 512; 1785 else if (sz < 1024) 1786 card->pref_erase = 2 * 1024 * 1024 / 512; 1787 else 1788 card->pref_erase = 4 * 1024 * 1024 / 512; 1789 if (card->pref_erase < card->erase_size) 1790 card->pref_erase = card->erase_size; 1791 else { 1792 sz = card->pref_erase % card->erase_size; 1793 if (sz) 1794 card->pref_erase += card->erase_size - sz; 1795 } 1796 } 1797 } 1798 1799 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1800 unsigned int arg, unsigned int qty) 1801 { 1802 unsigned int erase_timeout; 1803 1804 if (arg == MMC_DISCARD_ARG || 1805 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1806 erase_timeout = card->ext_csd.trim_timeout; 1807 } else if (card->ext_csd.erase_group_def & 1) { 1808 /* High Capacity Erase Group Size uses HC timeouts */ 1809 if (arg == MMC_TRIM_ARG) 1810 erase_timeout = card->ext_csd.trim_timeout; 1811 else 1812 erase_timeout = card->ext_csd.hc_erase_timeout; 1813 } else { 1814 /* CSD Erase Group Size uses write timeout */ 1815 unsigned int mult = (10 << card->csd.r2w_factor); 1816 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1817 unsigned int timeout_us; 1818 1819 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1820 if (card->csd.tacc_ns < 1000000) 1821 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1822 else 1823 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1824 1825 /* 1826 * ios.clock is only a target. The real clock rate might be 1827 * less but not that much less, so fudge it by multiplying by 2. 1828 */ 1829 timeout_clks <<= 1; 1830 timeout_us += (timeout_clks * 1000) / 1831 (mmc_host_clk_rate(card->host) / 1000); 1832 1833 erase_timeout = timeout_us / 1000; 1834 1835 /* 1836 * Theoretically, the calculation could underflow so round up 1837 * to 1ms in that case. 1838 */ 1839 if (!erase_timeout) 1840 erase_timeout = 1; 1841 } 1842 1843 /* Multiplier for secure operations */ 1844 if (arg & MMC_SECURE_ARGS) { 1845 if (arg == MMC_SECURE_ERASE_ARG) 1846 erase_timeout *= card->ext_csd.sec_erase_mult; 1847 else 1848 erase_timeout *= card->ext_csd.sec_trim_mult; 1849 } 1850 1851 erase_timeout *= qty; 1852 1853 /* 1854 * Ensure at least a 1 second timeout for SPI as per 1855 * 'mmc_set_data_timeout()' 1856 */ 1857 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1858 erase_timeout = 1000; 1859 1860 return erase_timeout; 1861 } 1862 1863 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1864 unsigned int arg, 1865 unsigned int qty) 1866 { 1867 unsigned int erase_timeout; 1868 1869 if (card->ssr.erase_timeout) { 1870 /* Erase timeout specified in SD Status Register (SSR) */ 1871 erase_timeout = card->ssr.erase_timeout * qty + 1872 card->ssr.erase_offset; 1873 } else { 1874 /* 1875 * Erase timeout not specified in SD Status Register (SSR) so 1876 * use 250ms per write block. 1877 */ 1878 erase_timeout = 250 * qty; 1879 } 1880 1881 /* Must not be less than 1 second */ 1882 if (erase_timeout < 1000) 1883 erase_timeout = 1000; 1884 1885 return erase_timeout; 1886 } 1887 1888 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1889 unsigned int arg, 1890 unsigned int qty) 1891 { 1892 if (mmc_card_sd(card)) 1893 return mmc_sd_erase_timeout(card, arg, qty); 1894 else 1895 return mmc_mmc_erase_timeout(card, arg, qty); 1896 } 1897 1898 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1899 unsigned int to, unsigned int arg) 1900 { 1901 struct mmc_command cmd = {0}; 1902 unsigned int qty = 0; 1903 unsigned long timeout; 1904 int err; 1905 1906 /* 1907 * qty is used to calculate the erase timeout which depends on how many 1908 * erase groups (or allocation units in SD terminology) are affected. 1909 * We count erasing part of an erase group as one erase group. 1910 * For SD, the allocation units are always a power of 2. For MMC, the 1911 * erase group size is almost certainly also power of 2, but it does not 1912 * seem to insist on that in the JEDEC standard, so we fall back to 1913 * division in that case. SD may not specify an allocation unit size, 1914 * in which case the timeout is based on the number of write blocks. 1915 * 1916 * Note that the timeout for secure trim 2 will only be correct if the 1917 * number of erase groups specified is the same as the total of all 1918 * preceding secure trim 1 commands. Since the power may have been 1919 * lost since the secure trim 1 commands occurred, it is generally 1920 * impossible to calculate the secure trim 2 timeout correctly. 1921 */ 1922 if (card->erase_shift) 1923 qty += ((to >> card->erase_shift) - 1924 (from >> card->erase_shift)) + 1; 1925 else if (mmc_card_sd(card)) 1926 qty += to - from + 1; 1927 else 1928 qty += ((to / card->erase_size) - 1929 (from / card->erase_size)) + 1; 1930 1931 if (!mmc_card_blockaddr(card)) { 1932 from <<= 9; 1933 to <<= 9; 1934 } 1935 1936 if (mmc_card_sd(card)) 1937 cmd.opcode = SD_ERASE_WR_BLK_START; 1938 else 1939 cmd.opcode = MMC_ERASE_GROUP_START; 1940 cmd.arg = from; 1941 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1942 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1943 if (err) { 1944 pr_err("mmc_erase: group start error %d, " 1945 "status %#x\n", err, cmd.resp[0]); 1946 err = -EIO; 1947 goto out; 1948 } 1949 1950 memset(&cmd, 0, sizeof(struct mmc_command)); 1951 if (mmc_card_sd(card)) 1952 cmd.opcode = SD_ERASE_WR_BLK_END; 1953 else 1954 cmd.opcode = MMC_ERASE_GROUP_END; 1955 cmd.arg = to; 1956 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1957 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1958 if (err) { 1959 pr_err("mmc_erase: group end error %d, status %#x\n", 1960 err, cmd.resp[0]); 1961 err = -EIO; 1962 goto out; 1963 } 1964 1965 memset(&cmd, 0, sizeof(struct mmc_command)); 1966 cmd.opcode = MMC_ERASE; 1967 cmd.arg = arg; 1968 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1969 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1970 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1971 if (err) { 1972 pr_err("mmc_erase: erase error %d, status %#x\n", 1973 err, cmd.resp[0]); 1974 err = -EIO; 1975 goto out; 1976 } 1977 1978 if (mmc_host_is_spi(card->host)) 1979 goto out; 1980 1981 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 1982 do { 1983 memset(&cmd, 0, sizeof(struct mmc_command)); 1984 cmd.opcode = MMC_SEND_STATUS; 1985 cmd.arg = card->rca << 16; 1986 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1987 /* Do not retry else we can't see errors */ 1988 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1989 if (err || (cmd.resp[0] & 0xFDF92000)) { 1990 pr_err("error %d requesting status %#x\n", 1991 err, cmd.resp[0]); 1992 err = -EIO; 1993 goto out; 1994 } 1995 1996 /* Timeout if the device never becomes ready for data and 1997 * never leaves the program state. 1998 */ 1999 if (time_after(jiffies, timeout)) { 2000 pr_err("%s: Card stuck in programming state! %s\n", 2001 mmc_hostname(card->host), __func__); 2002 err = -EIO; 2003 goto out; 2004 } 2005 2006 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2007 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2008 out: 2009 return err; 2010 } 2011 2012 /** 2013 * mmc_erase - erase sectors. 2014 * @card: card to erase 2015 * @from: first sector to erase 2016 * @nr: number of sectors to erase 2017 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2018 * 2019 * Caller must claim host before calling this function. 2020 */ 2021 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2022 unsigned int arg) 2023 { 2024 unsigned int rem, to = from + nr; 2025 2026 if (!(card->host->caps & MMC_CAP_ERASE) || 2027 !(card->csd.cmdclass & CCC_ERASE)) 2028 return -EOPNOTSUPP; 2029 2030 if (!card->erase_size) 2031 return -EOPNOTSUPP; 2032 2033 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2034 return -EOPNOTSUPP; 2035 2036 if ((arg & MMC_SECURE_ARGS) && 2037 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2038 return -EOPNOTSUPP; 2039 2040 if ((arg & MMC_TRIM_ARGS) && 2041 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2042 return -EOPNOTSUPP; 2043 2044 if (arg == MMC_SECURE_ERASE_ARG) { 2045 if (from % card->erase_size || nr % card->erase_size) 2046 return -EINVAL; 2047 } 2048 2049 if (arg == MMC_ERASE_ARG) { 2050 rem = from % card->erase_size; 2051 if (rem) { 2052 rem = card->erase_size - rem; 2053 from += rem; 2054 if (nr > rem) 2055 nr -= rem; 2056 else 2057 return 0; 2058 } 2059 rem = nr % card->erase_size; 2060 if (rem) 2061 nr -= rem; 2062 } 2063 2064 if (nr == 0) 2065 return 0; 2066 2067 to = from + nr; 2068 2069 if (to <= from) 2070 return -EINVAL; 2071 2072 /* 'from' and 'to' are inclusive */ 2073 to -= 1; 2074 2075 return mmc_do_erase(card, from, to, arg); 2076 } 2077 EXPORT_SYMBOL(mmc_erase); 2078 2079 int mmc_can_erase(struct mmc_card *card) 2080 { 2081 if ((card->host->caps & MMC_CAP_ERASE) && 2082 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2083 return 1; 2084 return 0; 2085 } 2086 EXPORT_SYMBOL(mmc_can_erase); 2087 2088 int mmc_can_trim(struct mmc_card *card) 2089 { 2090 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 2091 return 1; 2092 return 0; 2093 } 2094 EXPORT_SYMBOL(mmc_can_trim); 2095 2096 int mmc_can_discard(struct mmc_card *card) 2097 { 2098 /* 2099 * As there's no way to detect the discard support bit at v4.5 2100 * use the s/w feature support filed. 2101 */ 2102 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2103 return 1; 2104 return 0; 2105 } 2106 EXPORT_SYMBOL(mmc_can_discard); 2107 2108 int mmc_can_sanitize(struct mmc_card *card) 2109 { 2110 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2111 return 0; 2112 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2113 return 1; 2114 return 0; 2115 } 2116 EXPORT_SYMBOL(mmc_can_sanitize); 2117 2118 int mmc_can_secure_erase_trim(struct mmc_card *card) 2119 { 2120 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 2121 return 1; 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2125 2126 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2127 unsigned int nr) 2128 { 2129 if (!card->erase_size) 2130 return 0; 2131 if (from % card->erase_size || nr % card->erase_size) 2132 return 0; 2133 return 1; 2134 } 2135 EXPORT_SYMBOL(mmc_erase_group_aligned); 2136 2137 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2138 unsigned int arg) 2139 { 2140 struct mmc_host *host = card->host; 2141 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2142 unsigned int last_timeout = 0; 2143 2144 if (card->erase_shift) 2145 max_qty = UINT_MAX >> card->erase_shift; 2146 else if (mmc_card_sd(card)) 2147 max_qty = UINT_MAX; 2148 else 2149 max_qty = UINT_MAX / card->erase_size; 2150 2151 /* Find the largest qty with an OK timeout */ 2152 do { 2153 y = 0; 2154 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2155 timeout = mmc_erase_timeout(card, arg, qty + x); 2156 if (timeout > host->max_discard_to) 2157 break; 2158 if (timeout < last_timeout) 2159 break; 2160 last_timeout = timeout; 2161 y = x; 2162 } 2163 qty += y; 2164 } while (y); 2165 2166 if (!qty) 2167 return 0; 2168 2169 if (qty == 1) 2170 return 1; 2171 2172 /* Convert qty to sectors */ 2173 if (card->erase_shift) 2174 max_discard = --qty << card->erase_shift; 2175 else if (mmc_card_sd(card)) 2176 max_discard = qty; 2177 else 2178 max_discard = --qty * card->erase_size; 2179 2180 return max_discard; 2181 } 2182 2183 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2184 { 2185 struct mmc_host *host = card->host; 2186 unsigned int max_discard, max_trim; 2187 2188 if (!host->max_discard_to) 2189 return UINT_MAX; 2190 2191 /* 2192 * Without erase_group_def set, MMC erase timeout depends on clock 2193 * frequence which can change. In that case, the best choice is 2194 * just the preferred erase size. 2195 */ 2196 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2197 return card->pref_erase; 2198 2199 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2200 if (mmc_can_trim(card)) { 2201 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2202 if (max_trim < max_discard) 2203 max_discard = max_trim; 2204 } else if (max_discard < card->erase_size) { 2205 max_discard = 0; 2206 } 2207 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2208 mmc_hostname(host), max_discard, host->max_discard_to); 2209 return max_discard; 2210 } 2211 EXPORT_SYMBOL(mmc_calc_max_discard); 2212 2213 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2214 { 2215 struct mmc_command cmd = {0}; 2216 2217 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 2218 return 0; 2219 2220 cmd.opcode = MMC_SET_BLOCKLEN; 2221 cmd.arg = blocklen; 2222 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2223 return mmc_wait_for_cmd(card->host, &cmd, 5); 2224 } 2225 EXPORT_SYMBOL(mmc_set_blocklen); 2226 2227 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2228 bool is_rel_write) 2229 { 2230 struct mmc_command cmd = {0}; 2231 2232 cmd.opcode = MMC_SET_BLOCK_COUNT; 2233 cmd.arg = blockcount & 0x0000FFFF; 2234 if (is_rel_write) 2235 cmd.arg |= 1 << 31; 2236 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2237 return mmc_wait_for_cmd(card->host, &cmd, 5); 2238 } 2239 EXPORT_SYMBOL(mmc_set_blockcount); 2240 2241 static void mmc_hw_reset_for_init(struct mmc_host *host) 2242 { 2243 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2244 return; 2245 mmc_host_clk_hold(host); 2246 host->ops->hw_reset(host); 2247 mmc_host_clk_release(host); 2248 } 2249 2250 int mmc_can_reset(struct mmc_card *card) 2251 { 2252 u8 rst_n_function; 2253 2254 if (!mmc_card_mmc(card)) 2255 return 0; 2256 rst_n_function = card->ext_csd.rst_n_function; 2257 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2258 return 0; 2259 return 1; 2260 } 2261 EXPORT_SYMBOL(mmc_can_reset); 2262 2263 static int mmc_do_hw_reset(struct mmc_host *host, int check) 2264 { 2265 struct mmc_card *card = host->card; 2266 2267 if (!host->bus_ops->power_restore) 2268 return -EOPNOTSUPP; 2269 2270 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2271 return -EOPNOTSUPP; 2272 2273 if (!card) 2274 return -EINVAL; 2275 2276 if (!mmc_can_reset(card)) 2277 return -EOPNOTSUPP; 2278 2279 mmc_host_clk_hold(host); 2280 mmc_set_clock(host, host->f_init); 2281 2282 host->ops->hw_reset(host); 2283 2284 /* If the reset has happened, then a status command will fail */ 2285 if (check) { 2286 struct mmc_command cmd = {0}; 2287 int err; 2288 2289 cmd.opcode = MMC_SEND_STATUS; 2290 if (!mmc_host_is_spi(card->host)) 2291 cmd.arg = card->rca << 16; 2292 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 2293 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2294 if (!err) { 2295 mmc_host_clk_release(host); 2296 return -ENOSYS; 2297 } 2298 } 2299 2300 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 2301 if (mmc_host_is_spi(host)) { 2302 host->ios.chip_select = MMC_CS_HIGH; 2303 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 2304 } else { 2305 host->ios.chip_select = MMC_CS_DONTCARE; 2306 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 2307 } 2308 host->ios.bus_width = MMC_BUS_WIDTH_1; 2309 host->ios.timing = MMC_TIMING_LEGACY; 2310 mmc_set_ios(host); 2311 2312 mmc_host_clk_release(host); 2313 2314 return host->bus_ops->power_restore(host); 2315 } 2316 2317 int mmc_hw_reset(struct mmc_host *host) 2318 { 2319 return mmc_do_hw_reset(host, 0); 2320 } 2321 EXPORT_SYMBOL(mmc_hw_reset); 2322 2323 int mmc_hw_reset_check(struct mmc_host *host) 2324 { 2325 return mmc_do_hw_reset(host, 1); 2326 } 2327 EXPORT_SYMBOL(mmc_hw_reset_check); 2328 2329 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2330 { 2331 host->f_init = freq; 2332 2333 #ifdef CONFIG_MMC_DEBUG 2334 pr_info("%s: %s: trying to init card at %u Hz\n", 2335 mmc_hostname(host), __func__, host->f_init); 2336 #endif 2337 mmc_power_up(host); 2338 2339 /* 2340 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2341 * do a hardware reset if possible. 2342 */ 2343 mmc_hw_reset_for_init(host); 2344 2345 /* 2346 * sdio_reset sends CMD52 to reset card. Since we do not know 2347 * if the card is being re-initialized, just send it. CMD52 2348 * should be ignored by SD/eMMC cards. 2349 */ 2350 sdio_reset(host); 2351 mmc_go_idle(host); 2352 2353 mmc_send_if_cond(host, host->ocr_avail); 2354 2355 /* Order's important: probe SDIO, then SD, then MMC */ 2356 if (!mmc_attach_sdio(host)) 2357 return 0; 2358 if (!mmc_attach_sd(host)) 2359 return 0; 2360 if (!mmc_attach_mmc(host)) 2361 return 0; 2362 2363 mmc_power_off(host); 2364 return -EIO; 2365 } 2366 2367 int _mmc_detect_card_removed(struct mmc_host *host) 2368 { 2369 int ret; 2370 2371 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) 2372 return 0; 2373 2374 if (!host->card || mmc_card_removed(host->card)) 2375 return 1; 2376 2377 ret = host->bus_ops->alive(host); 2378 2379 /* 2380 * Card detect status and alive check may be out of sync if card is 2381 * removed slowly, when card detect switch changes while card/slot 2382 * pads are still contacted in hardware (refer to "SD Card Mechanical 2383 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2384 * detect work 200ms later for this case. 2385 */ 2386 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2387 mmc_detect_change(host, msecs_to_jiffies(200)); 2388 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2389 } 2390 2391 if (ret) { 2392 mmc_card_set_removed(host->card); 2393 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2394 } 2395 2396 return ret; 2397 } 2398 2399 int mmc_detect_card_removed(struct mmc_host *host) 2400 { 2401 struct mmc_card *card = host->card; 2402 int ret; 2403 2404 WARN_ON(!host->claimed); 2405 2406 if (!card) 2407 return 1; 2408 2409 ret = mmc_card_removed(card); 2410 /* 2411 * The card will be considered unchanged unless we have been asked to 2412 * detect a change or host requires polling to provide card detection. 2413 */ 2414 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2415 return ret; 2416 2417 host->detect_change = 0; 2418 if (!ret) { 2419 ret = _mmc_detect_card_removed(host); 2420 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2421 /* 2422 * Schedule a detect work as soon as possible to let a 2423 * rescan handle the card removal. 2424 */ 2425 cancel_delayed_work(&host->detect); 2426 mmc_detect_change(host, 0); 2427 } 2428 } 2429 2430 return ret; 2431 } 2432 EXPORT_SYMBOL(mmc_detect_card_removed); 2433 2434 void mmc_rescan(struct work_struct *work) 2435 { 2436 struct mmc_host *host = 2437 container_of(work, struct mmc_host, detect.work); 2438 int i; 2439 2440 if (host->rescan_disable) 2441 return; 2442 2443 /* If there is a non-removable card registered, only scan once */ 2444 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2445 return; 2446 host->rescan_entered = 1; 2447 2448 mmc_bus_get(host); 2449 2450 /* 2451 * if there is a _removable_ card registered, check whether it is 2452 * still present 2453 */ 2454 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2455 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2456 host->bus_ops->detect(host); 2457 2458 host->detect_change = 0; 2459 2460 /* 2461 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2462 * the card is no longer present. 2463 */ 2464 mmc_bus_put(host); 2465 mmc_bus_get(host); 2466 2467 /* if there still is a card present, stop here */ 2468 if (host->bus_ops != NULL) { 2469 mmc_bus_put(host); 2470 goto out; 2471 } 2472 2473 /* 2474 * Only we can add a new handler, so it's safe to 2475 * release the lock here. 2476 */ 2477 mmc_bus_put(host); 2478 2479 if (host->ops->get_cd && host->ops->get_cd(host) == 0) { 2480 mmc_claim_host(host); 2481 mmc_power_off(host); 2482 mmc_release_host(host); 2483 goto out; 2484 } 2485 2486 mmc_claim_host(host); 2487 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2488 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2489 break; 2490 if (freqs[i] <= host->f_min) 2491 break; 2492 } 2493 mmc_release_host(host); 2494 2495 out: 2496 if (host->caps & MMC_CAP_NEEDS_POLL) 2497 mmc_schedule_delayed_work(&host->detect, HZ); 2498 } 2499 2500 void mmc_start_host(struct mmc_host *host) 2501 { 2502 host->f_init = max(freqs[0], host->f_min); 2503 host->rescan_disable = 0; 2504 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2505 mmc_power_off(host); 2506 else 2507 mmc_power_up(host); 2508 mmc_detect_change(host, 0); 2509 } 2510 2511 void mmc_stop_host(struct mmc_host *host) 2512 { 2513 #ifdef CONFIG_MMC_DEBUG 2514 unsigned long flags; 2515 spin_lock_irqsave(&host->lock, flags); 2516 host->removed = 1; 2517 spin_unlock_irqrestore(&host->lock, flags); 2518 #endif 2519 2520 host->rescan_disable = 1; 2521 cancel_delayed_work_sync(&host->detect); 2522 mmc_flush_scheduled_work(); 2523 2524 /* clear pm flags now and let card drivers set them as needed */ 2525 host->pm_flags = 0; 2526 2527 mmc_bus_get(host); 2528 if (host->bus_ops && !host->bus_dead) { 2529 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2530 host->bus_ops->remove(host); 2531 mmc_claim_host(host); 2532 mmc_detach_bus(host); 2533 mmc_power_off(host); 2534 mmc_release_host(host); 2535 mmc_bus_put(host); 2536 return; 2537 } 2538 mmc_bus_put(host); 2539 2540 BUG_ON(host->card); 2541 2542 mmc_power_off(host); 2543 } 2544 2545 int mmc_power_save_host(struct mmc_host *host) 2546 { 2547 int ret = 0; 2548 2549 #ifdef CONFIG_MMC_DEBUG 2550 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2551 #endif 2552 2553 mmc_bus_get(host); 2554 2555 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2556 mmc_bus_put(host); 2557 return -EINVAL; 2558 } 2559 2560 if (host->bus_ops->power_save) 2561 ret = host->bus_ops->power_save(host); 2562 2563 mmc_bus_put(host); 2564 2565 mmc_power_off(host); 2566 2567 return ret; 2568 } 2569 EXPORT_SYMBOL(mmc_power_save_host); 2570 2571 int mmc_power_restore_host(struct mmc_host *host) 2572 { 2573 int ret; 2574 2575 #ifdef CONFIG_MMC_DEBUG 2576 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2577 #endif 2578 2579 mmc_bus_get(host); 2580 2581 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2582 mmc_bus_put(host); 2583 return -EINVAL; 2584 } 2585 2586 mmc_power_up(host); 2587 ret = host->bus_ops->power_restore(host); 2588 2589 mmc_bus_put(host); 2590 2591 return ret; 2592 } 2593 EXPORT_SYMBOL(mmc_power_restore_host); 2594 2595 /* 2596 * Flush the cache to the non-volatile storage. 2597 */ 2598 int mmc_flush_cache(struct mmc_card *card) 2599 { 2600 struct mmc_host *host = card->host; 2601 int err = 0; 2602 2603 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2604 return err; 2605 2606 if (mmc_card_mmc(card) && 2607 (card->ext_csd.cache_size > 0) && 2608 (card->ext_csd.cache_ctrl & 1)) { 2609 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2610 EXT_CSD_FLUSH_CACHE, 1, 0); 2611 if (err) 2612 pr_err("%s: cache flush error %d\n", 2613 mmc_hostname(card->host), err); 2614 } 2615 2616 return err; 2617 } 2618 EXPORT_SYMBOL(mmc_flush_cache); 2619 2620 /* 2621 * Turn the cache ON/OFF. 2622 * Turning the cache OFF shall trigger flushing of the data 2623 * to the non-volatile storage. 2624 * This function should be called with host claimed 2625 */ 2626 int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2627 { 2628 struct mmc_card *card = host->card; 2629 unsigned int timeout; 2630 int err = 0; 2631 2632 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2633 mmc_card_is_removable(host)) 2634 return err; 2635 2636 if (card && mmc_card_mmc(card) && 2637 (card->ext_csd.cache_size > 0)) { 2638 enable = !!enable; 2639 2640 if (card->ext_csd.cache_ctrl ^ enable) { 2641 timeout = enable ? card->ext_csd.generic_cmd6_time : 0; 2642 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2643 EXT_CSD_CACHE_CTRL, enable, timeout); 2644 if (err) 2645 pr_err("%s: cache %s error %d\n", 2646 mmc_hostname(card->host), 2647 enable ? "on" : "off", 2648 err); 2649 else 2650 card->ext_csd.cache_ctrl = enable; 2651 } 2652 } 2653 2654 return err; 2655 } 2656 EXPORT_SYMBOL(mmc_cache_ctrl); 2657 2658 #ifdef CONFIG_PM 2659 2660 /** 2661 * mmc_suspend_host - suspend a host 2662 * @host: mmc host 2663 */ 2664 int mmc_suspend_host(struct mmc_host *host) 2665 { 2666 /* This function is deprecated */ 2667 return 0; 2668 } 2669 EXPORT_SYMBOL(mmc_suspend_host); 2670 2671 /** 2672 * mmc_resume_host - resume a previously suspended host 2673 * @host: mmc host 2674 */ 2675 int mmc_resume_host(struct mmc_host *host) 2676 { 2677 /* This function is deprecated */ 2678 return 0; 2679 } 2680 EXPORT_SYMBOL(mmc_resume_host); 2681 2682 /* Do the card removal on suspend if card is assumed removeable 2683 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2684 to sync the card. 2685 */ 2686 int mmc_pm_notify(struct notifier_block *notify_block, 2687 unsigned long mode, void *unused) 2688 { 2689 struct mmc_host *host = container_of( 2690 notify_block, struct mmc_host, pm_notify); 2691 unsigned long flags; 2692 int err = 0; 2693 2694 switch (mode) { 2695 case PM_HIBERNATION_PREPARE: 2696 case PM_SUSPEND_PREPARE: 2697 spin_lock_irqsave(&host->lock, flags); 2698 host->rescan_disable = 1; 2699 spin_unlock_irqrestore(&host->lock, flags); 2700 cancel_delayed_work_sync(&host->detect); 2701 2702 if (!host->bus_ops) 2703 break; 2704 2705 /* Validate prerequisites for suspend */ 2706 if (host->bus_ops->pre_suspend) 2707 err = host->bus_ops->pre_suspend(host); 2708 if (!err && host->bus_ops->suspend) 2709 break; 2710 2711 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2712 host->bus_ops->remove(host); 2713 mmc_claim_host(host); 2714 mmc_detach_bus(host); 2715 mmc_power_off(host); 2716 mmc_release_host(host); 2717 host->pm_flags = 0; 2718 break; 2719 2720 case PM_POST_SUSPEND: 2721 case PM_POST_HIBERNATION: 2722 case PM_POST_RESTORE: 2723 2724 spin_lock_irqsave(&host->lock, flags); 2725 host->rescan_disable = 0; 2726 spin_unlock_irqrestore(&host->lock, flags); 2727 mmc_detect_change(host, 0); 2728 2729 } 2730 2731 return 0; 2732 } 2733 #endif 2734 2735 /** 2736 * mmc_init_context_info() - init synchronization context 2737 * @host: mmc host 2738 * 2739 * Init struct context_info needed to implement asynchronous 2740 * request mechanism, used by mmc core, host driver and mmc requests 2741 * supplier. 2742 */ 2743 void mmc_init_context_info(struct mmc_host *host) 2744 { 2745 spin_lock_init(&host->context_info.lock); 2746 host->context_info.is_new_req = false; 2747 host->context_info.is_done_rcv = false; 2748 host->context_info.is_waiting_last_req = false; 2749 init_waitqueue_head(&host->context_info.wait); 2750 } 2751 2752 static int __init mmc_init(void) 2753 { 2754 int ret; 2755 2756 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2757 if (!workqueue) 2758 return -ENOMEM; 2759 2760 ret = mmc_register_bus(); 2761 if (ret) 2762 goto destroy_workqueue; 2763 2764 ret = mmc_register_host_class(); 2765 if (ret) 2766 goto unregister_bus; 2767 2768 ret = sdio_register_bus(); 2769 if (ret) 2770 goto unregister_host_class; 2771 2772 return 0; 2773 2774 unregister_host_class: 2775 mmc_unregister_host_class(); 2776 unregister_bus: 2777 mmc_unregister_bus(); 2778 destroy_workqueue: 2779 destroy_workqueue(workqueue); 2780 2781 return ret; 2782 } 2783 2784 static void __exit mmc_exit(void) 2785 { 2786 sdio_unregister_bus(); 2787 mmc_unregister_host_class(); 2788 mmc_unregister_bus(); 2789 destroy_workqueue(workqueue); 2790 } 2791 2792 subsys_initcall(mmc_init); 2793 module_exit(mmc_exit); 2794 2795 MODULE_LICENSE("GPL"); 2796