xref: /openbmc/linux/drivers/mmc/core/core.c (revision f35e839a)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35 
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40 
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44 
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
47 
48 /*
49  * Background operations can take a long time, depending on the housekeeping
50  * operations the card has to perform.
51  */
52 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
53 
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56 
57 /*
58  * Enabling software CRCs on the data blocks can be a significant (30%)
59  * performance cost, and for other reasons may not always be desired.
60  * So we allow it it to be disabled.
61  */
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
64 
65 /*
66  * We normally treat cards as removed during suspend if they are not
67  * known to be on a non-removable bus, to avoid the risk of writing
68  * back data to a different card after resume.  Allow this to be
69  * overridden if necessary.
70  */
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 	removable,
80 	"MMC/SD cards are removable and may be removed during suspend");
81 
82 /*
83  * Internal function. Schedule delayed work in the MMC work queue.
84  */
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 				     unsigned long delay)
87 {
88 	return queue_delayed_work(workqueue, work, delay);
89 }
90 
91 /*
92  * Internal function. Flush all scheduled work from the MMC work queue.
93  */
94 static void mmc_flush_scheduled_work(void)
95 {
96 	flush_workqueue(workqueue);
97 }
98 
99 #ifdef CONFIG_FAIL_MMC_REQUEST
100 
101 /*
102  * Internal function. Inject random data errors.
103  * If mmc_data is NULL no errors are injected.
104  */
105 static void mmc_should_fail_request(struct mmc_host *host,
106 				    struct mmc_request *mrq)
107 {
108 	struct mmc_command *cmd = mrq->cmd;
109 	struct mmc_data *data = mrq->data;
110 	static const int data_errors[] = {
111 		-ETIMEDOUT,
112 		-EILSEQ,
113 		-EIO,
114 	};
115 
116 	if (!data)
117 		return;
118 
119 	if (cmd->error || data->error ||
120 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 		return;
122 
123 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
124 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
125 }
126 
127 #else /* CONFIG_FAIL_MMC_REQUEST */
128 
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 					   struct mmc_request *mrq)
131 {
132 }
133 
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	if (err && cmd->retries && mmc_host_is_spi(host)) {
150 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 			cmd->retries = 0;
152 	}
153 
154 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 		/*
156 		 * Request starter must handle retries - see
157 		 * mmc_wait_for_req_done().
158 		 */
159 		if (mrq->done)
160 			mrq->done(mrq);
161 	} else {
162 		mmc_should_fail_request(host, mrq);
163 
164 		led_trigger_event(host->led, LED_OFF);
165 
166 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 			mmc_hostname(host), cmd->opcode, err,
168 			cmd->resp[0], cmd->resp[1],
169 			cmd->resp[2], cmd->resp[3]);
170 
171 		if (mrq->data) {
172 			pr_debug("%s:     %d bytes transferred: %d\n",
173 				mmc_hostname(host),
174 				mrq->data->bytes_xfered, mrq->data->error);
175 		}
176 
177 		if (mrq->stop) {
178 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
179 				mmc_hostname(host), mrq->stop->opcode,
180 				mrq->stop->error,
181 				mrq->stop->resp[0], mrq->stop->resp[1],
182 				mrq->stop->resp[2], mrq->stop->resp[3]);
183 		}
184 
185 		if (mrq->done)
186 			mrq->done(mrq);
187 
188 		mmc_host_clk_release(host);
189 	}
190 }
191 
192 EXPORT_SYMBOL(mmc_request_done);
193 
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 #ifdef CONFIG_MMC_DEBUG
198 	unsigned int i, sz;
199 	struct scatterlist *sg;
200 #endif
201 
202 	if (mrq->sbc) {
203 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 			 mmc_hostname(host), mrq->sbc->opcode,
205 			 mrq->sbc->arg, mrq->sbc->flags);
206 	}
207 
208 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 		 mmc_hostname(host), mrq->cmd->opcode,
210 		 mrq->cmd->arg, mrq->cmd->flags);
211 
212 	if (mrq->data) {
213 		pr_debug("%s:     blksz %d blocks %d flags %08x "
214 			"tsac %d ms nsac %d\n",
215 			mmc_hostname(host), mrq->data->blksz,
216 			mrq->data->blocks, mrq->data->flags,
217 			mrq->data->timeout_ns / 1000000,
218 			mrq->data->timeout_clks);
219 	}
220 
221 	if (mrq->stop) {
222 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
223 			 mmc_hostname(host), mrq->stop->opcode,
224 			 mrq->stop->arg, mrq->stop->flags);
225 	}
226 
227 	WARN_ON(!host->claimed);
228 
229 	mrq->cmd->error = 0;
230 	mrq->cmd->mrq = mrq;
231 	if (mrq->data) {
232 		BUG_ON(mrq->data->blksz > host->max_blk_size);
233 		BUG_ON(mrq->data->blocks > host->max_blk_count);
234 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 			host->max_req_size);
236 
237 #ifdef CONFIG_MMC_DEBUG
238 		sz = 0;
239 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 			sz += sg->length;
241 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243 
244 		mrq->cmd->data = mrq->data;
245 		mrq->data->error = 0;
246 		mrq->data->mrq = mrq;
247 		if (mrq->stop) {
248 			mrq->data->stop = mrq->stop;
249 			mrq->stop->error = 0;
250 			mrq->stop->mrq = mrq;
251 		}
252 	}
253 	mmc_host_clk_hold(host);
254 	led_trigger_event(host->led, LED_FULL);
255 	host->ops->request(host, mrq);
256 }
257 
258 /**
259  *	mmc_start_bkops - start BKOPS for supported cards
260  *	@card: MMC card to start BKOPS
261  *	@form_exception: A flag to indicate if this function was
262  *			 called due to an exception raised by the card
263  *
264  *	Start background operations whenever requested.
265  *	When the urgent BKOPS bit is set in a R1 command response
266  *	then background operations should be started immediately.
267 */
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269 {
270 	int err;
271 	int timeout;
272 	bool use_busy_signal;
273 
274 	BUG_ON(!card);
275 
276 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 		return;
278 
279 	err = mmc_read_bkops_status(card);
280 	if (err) {
281 		pr_err("%s: Failed to read bkops status: %d\n",
282 		       mmc_hostname(card->host), err);
283 		return;
284 	}
285 
286 	if (!card->ext_csd.raw_bkops_status)
287 		return;
288 
289 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 	    from_exception)
291 		return;
292 
293 	mmc_claim_host(card->host);
294 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 		timeout = MMC_BKOPS_MAX_TIMEOUT;
296 		use_busy_signal = true;
297 	} else {
298 		timeout = 0;
299 		use_busy_signal = false;
300 	}
301 
302 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 			EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 	if (err) {
305 		pr_warn("%s: Error %d starting bkops\n",
306 			mmc_hostname(card->host), err);
307 		goto out;
308 	}
309 
310 	/*
311 	 * For urgent bkops status (LEVEL_2 and more)
312 	 * bkops executed synchronously, otherwise
313 	 * the operation is in progress
314 	 */
315 	if (!use_busy_signal)
316 		mmc_card_set_doing_bkops(card);
317 out:
318 	mmc_release_host(card->host);
319 }
320 EXPORT_SYMBOL(mmc_start_bkops);
321 
322 /*
323  * mmc_wait_data_done() - done callback for data request
324  * @mrq: done data request
325  *
326  * Wakes up mmc context, passed as a callback to host controller driver
327  */
328 static void mmc_wait_data_done(struct mmc_request *mrq)
329 {
330 	mrq->host->context_info.is_done_rcv = true;
331 	wake_up_interruptible(&mrq->host->context_info.wait);
332 }
333 
334 static void mmc_wait_done(struct mmc_request *mrq)
335 {
336 	complete(&mrq->completion);
337 }
338 
339 /*
340  *__mmc_start_data_req() - starts data request
341  * @host: MMC host to start the request
342  * @mrq: data request to start
343  *
344  * Sets the done callback to be called when request is completed by the card.
345  * Starts data mmc request execution
346  */
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
348 {
349 	mrq->done = mmc_wait_data_done;
350 	mrq->host = host;
351 	if (mmc_card_removed(host->card)) {
352 		mrq->cmd->error = -ENOMEDIUM;
353 		mmc_wait_data_done(mrq);
354 		return -ENOMEDIUM;
355 	}
356 	mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
362 {
363 	init_completion(&mrq->completion);
364 	mrq->done = mmc_wait_done;
365 	if (mmc_card_removed(host->card)) {
366 		mrq->cmd->error = -ENOMEDIUM;
367 		complete(&mrq->completion);
368 		return -ENOMEDIUM;
369 	}
370 	mmc_start_request(host, mrq);
371 	return 0;
372 }
373 
374 /*
375  * mmc_wait_for_data_req_done() - wait for request completed
376  * @host: MMC host to prepare the command.
377  * @mrq: MMC request to wait for
378  *
379  * Blocks MMC context till host controller will ack end of data request
380  * execution or new request notification arrives from the block layer.
381  * Handles command retries.
382  *
383  * Returns enum mmc_blk_status after checking errors.
384  */
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 				      struct mmc_request *mrq,
387 				      struct mmc_async_req *next_req)
388 {
389 	struct mmc_command *cmd;
390 	struct mmc_context_info *context_info = &host->context_info;
391 	int err;
392 	unsigned long flags;
393 
394 	while (1) {
395 		wait_event_interruptible(context_info->wait,
396 				(context_info->is_done_rcv ||
397 				 context_info->is_new_req));
398 		spin_lock_irqsave(&context_info->lock, flags);
399 		context_info->is_waiting_last_req = false;
400 		spin_unlock_irqrestore(&context_info->lock, flags);
401 		if (context_info->is_done_rcv) {
402 			context_info->is_done_rcv = false;
403 			context_info->is_new_req = false;
404 			cmd = mrq->cmd;
405 			if (!cmd->error || !cmd->retries ||
406 			    mmc_card_removed(host->card)) {
407 				err = host->areq->err_check(host->card,
408 							    host->areq);
409 				break; /* return err */
410 			} else {
411 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 					mmc_hostname(host),
413 					cmd->opcode, cmd->error);
414 				cmd->retries--;
415 				cmd->error = 0;
416 				host->ops->request(host, mrq);
417 				continue; /* wait for done/new event again */
418 			}
419 		} else if (context_info->is_new_req) {
420 			context_info->is_new_req = false;
421 			if (!next_req) {
422 				err = MMC_BLK_NEW_REQUEST;
423 				break; /* return err */
424 			}
425 		}
426 	}
427 	return err;
428 }
429 
430 static void mmc_wait_for_req_done(struct mmc_host *host,
431 				  struct mmc_request *mrq)
432 {
433 	struct mmc_command *cmd;
434 
435 	while (1) {
436 		wait_for_completion(&mrq->completion);
437 
438 		cmd = mrq->cmd;
439 		if (!cmd->error || !cmd->retries ||
440 		    mmc_card_removed(host->card))
441 			break;
442 
443 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
444 			 mmc_hostname(host), cmd->opcode, cmd->error);
445 		cmd->retries--;
446 		cmd->error = 0;
447 		host->ops->request(host, mrq);
448 	}
449 }
450 
451 /**
452  *	mmc_pre_req - Prepare for a new request
453  *	@host: MMC host to prepare command
454  *	@mrq: MMC request to prepare for
455  *	@is_first_req: true if there is no previous started request
456  *                     that may run in parellel to this call, otherwise false
457  *
458  *	mmc_pre_req() is called in prior to mmc_start_req() to let
459  *	host prepare for the new request. Preparation of a request may be
460  *	performed while another request is running on the host.
461  */
462 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
463 		 bool is_first_req)
464 {
465 	if (host->ops->pre_req) {
466 		mmc_host_clk_hold(host);
467 		host->ops->pre_req(host, mrq, is_first_req);
468 		mmc_host_clk_release(host);
469 	}
470 }
471 
472 /**
473  *	mmc_post_req - Post process a completed request
474  *	@host: MMC host to post process command
475  *	@mrq: MMC request to post process for
476  *	@err: Error, if non zero, clean up any resources made in pre_req
477  *
478  *	Let the host post process a completed request. Post processing of
479  *	a request may be performed while another reuqest is running.
480  */
481 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
482 			 int err)
483 {
484 	if (host->ops->post_req) {
485 		mmc_host_clk_hold(host);
486 		host->ops->post_req(host, mrq, err);
487 		mmc_host_clk_release(host);
488 	}
489 }
490 
491 /**
492  *	mmc_start_req - start a non-blocking request
493  *	@host: MMC host to start command
494  *	@areq: async request to start
495  *	@error: out parameter returns 0 for success, otherwise non zero
496  *
497  *	Start a new MMC custom command request for a host.
498  *	If there is on ongoing async request wait for completion
499  *	of that request and start the new one and return.
500  *	Does not wait for the new request to complete.
501  *
502  *      Returns the completed request, NULL in case of none completed.
503  *	Wait for the an ongoing request (previoulsy started) to complete and
504  *	return the completed request. If there is no ongoing request, NULL
505  *	is returned without waiting. NULL is not an error condition.
506  */
507 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
508 				    struct mmc_async_req *areq, int *error)
509 {
510 	int err = 0;
511 	int start_err = 0;
512 	struct mmc_async_req *data = host->areq;
513 
514 	/* Prepare a new request */
515 	if (areq)
516 		mmc_pre_req(host, areq->mrq, !host->areq);
517 
518 	if (host->areq) {
519 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
520 		if (err == MMC_BLK_NEW_REQUEST) {
521 			if (error)
522 				*error = err;
523 			/*
524 			 * The previous request was not completed,
525 			 * nothing to return
526 			 */
527 			return NULL;
528 		}
529 		/*
530 		 * Check BKOPS urgency for each R1 response
531 		 */
532 		if (host->card && mmc_card_mmc(host->card) &&
533 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
534 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
535 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
536 			mmc_start_bkops(host->card, true);
537 	}
538 
539 	if (!err && areq)
540 		start_err = __mmc_start_data_req(host, areq->mrq);
541 
542 	if (host->areq)
543 		mmc_post_req(host, host->areq->mrq, 0);
544 
545 	 /* Cancel a prepared request if it was not started. */
546 	if ((err || start_err) && areq)
547 		mmc_post_req(host, areq->mrq, -EINVAL);
548 
549 	if (err)
550 		host->areq = NULL;
551 	else
552 		host->areq = areq;
553 
554 	if (error)
555 		*error = err;
556 	return data;
557 }
558 EXPORT_SYMBOL(mmc_start_req);
559 
560 /**
561  *	mmc_wait_for_req - start a request and wait for completion
562  *	@host: MMC host to start command
563  *	@mrq: MMC request to start
564  *
565  *	Start a new MMC custom command request for a host, and wait
566  *	for the command to complete. Does not attempt to parse the
567  *	response.
568  */
569 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
570 {
571 	__mmc_start_req(host, mrq);
572 	mmc_wait_for_req_done(host, mrq);
573 }
574 EXPORT_SYMBOL(mmc_wait_for_req);
575 
576 /**
577  *	mmc_interrupt_hpi - Issue for High priority Interrupt
578  *	@card: the MMC card associated with the HPI transfer
579  *
580  *	Issued High Priority Interrupt, and check for card status
581  *	until out-of prg-state.
582  */
583 int mmc_interrupt_hpi(struct mmc_card *card)
584 {
585 	int err;
586 	u32 status;
587 	unsigned long prg_wait;
588 
589 	BUG_ON(!card);
590 
591 	if (!card->ext_csd.hpi_en) {
592 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
593 		return 1;
594 	}
595 
596 	mmc_claim_host(card->host);
597 	err = mmc_send_status(card, &status);
598 	if (err) {
599 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
600 		goto out;
601 	}
602 
603 	switch (R1_CURRENT_STATE(status)) {
604 	case R1_STATE_IDLE:
605 	case R1_STATE_READY:
606 	case R1_STATE_STBY:
607 	case R1_STATE_TRAN:
608 		/*
609 		 * In idle and transfer states, HPI is not needed and the caller
610 		 * can issue the next intended command immediately
611 		 */
612 		goto out;
613 	case R1_STATE_PRG:
614 		break;
615 	default:
616 		/* In all other states, it's illegal to issue HPI */
617 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
618 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
619 		err = -EINVAL;
620 		goto out;
621 	}
622 
623 	err = mmc_send_hpi_cmd(card, &status);
624 	if (err)
625 		goto out;
626 
627 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
628 	do {
629 		err = mmc_send_status(card, &status);
630 
631 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
632 			break;
633 		if (time_after(jiffies, prg_wait))
634 			err = -ETIMEDOUT;
635 	} while (!err);
636 
637 out:
638 	mmc_release_host(card->host);
639 	return err;
640 }
641 EXPORT_SYMBOL(mmc_interrupt_hpi);
642 
643 /**
644  *	mmc_wait_for_cmd - start a command and wait for completion
645  *	@host: MMC host to start command
646  *	@cmd: MMC command to start
647  *	@retries: maximum number of retries
648  *
649  *	Start a new MMC command for a host, and wait for the command
650  *	to complete.  Return any error that occurred while the command
651  *	was executing.  Do not attempt to parse the response.
652  */
653 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
654 {
655 	struct mmc_request mrq = {NULL};
656 
657 	WARN_ON(!host->claimed);
658 
659 	memset(cmd->resp, 0, sizeof(cmd->resp));
660 	cmd->retries = retries;
661 
662 	mrq.cmd = cmd;
663 	cmd->data = NULL;
664 
665 	mmc_wait_for_req(host, &mrq);
666 
667 	return cmd->error;
668 }
669 
670 EXPORT_SYMBOL(mmc_wait_for_cmd);
671 
672 /**
673  *	mmc_stop_bkops - stop ongoing BKOPS
674  *	@card: MMC card to check BKOPS
675  *
676  *	Send HPI command to stop ongoing background operations to
677  *	allow rapid servicing of foreground operations, e.g. read/
678  *	writes. Wait until the card comes out of the programming state
679  *	to avoid errors in servicing read/write requests.
680  */
681 int mmc_stop_bkops(struct mmc_card *card)
682 {
683 	int err = 0;
684 
685 	BUG_ON(!card);
686 	err = mmc_interrupt_hpi(card);
687 
688 	/*
689 	 * If err is EINVAL, we can't issue an HPI.
690 	 * It should complete the BKOPS.
691 	 */
692 	if (!err || (err == -EINVAL)) {
693 		mmc_card_clr_doing_bkops(card);
694 		err = 0;
695 	}
696 
697 	return err;
698 }
699 EXPORT_SYMBOL(mmc_stop_bkops);
700 
701 int mmc_read_bkops_status(struct mmc_card *card)
702 {
703 	int err;
704 	u8 *ext_csd;
705 
706 	/*
707 	 * In future work, we should consider storing the entire ext_csd.
708 	 */
709 	ext_csd = kmalloc(512, GFP_KERNEL);
710 	if (!ext_csd) {
711 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
712 		       mmc_hostname(card->host));
713 		return -ENOMEM;
714 	}
715 
716 	mmc_claim_host(card->host);
717 	err = mmc_send_ext_csd(card, ext_csd);
718 	mmc_release_host(card->host);
719 	if (err)
720 		goto out;
721 
722 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
723 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
724 out:
725 	kfree(ext_csd);
726 	return err;
727 }
728 EXPORT_SYMBOL(mmc_read_bkops_status);
729 
730 /**
731  *	mmc_set_data_timeout - set the timeout for a data command
732  *	@data: data phase for command
733  *	@card: the MMC card associated with the data transfer
734  *
735  *	Computes the data timeout parameters according to the
736  *	correct algorithm given the card type.
737  */
738 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
739 {
740 	unsigned int mult;
741 
742 	/*
743 	 * SDIO cards only define an upper 1 s limit on access.
744 	 */
745 	if (mmc_card_sdio(card)) {
746 		data->timeout_ns = 1000000000;
747 		data->timeout_clks = 0;
748 		return;
749 	}
750 
751 	/*
752 	 * SD cards use a 100 multiplier rather than 10
753 	 */
754 	mult = mmc_card_sd(card) ? 100 : 10;
755 
756 	/*
757 	 * Scale up the multiplier (and therefore the timeout) by
758 	 * the r2w factor for writes.
759 	 */
760 	if (data->flags & MMC_DATA_WRITE)
761 		mult <<= card->csd.r2w_factor;
762 
763 	data->timeout_ns = card->csd.tacc_ns * mult;
764 	data->timeout_clks = card->csd.tacc_clks * mult;
765 
766 	/*
767 	 * SD cards also have an upper limit on the timeout.
768 	 */
769 	if (mmc_card_sd(card)) {
770 		unsigned int timeout_us, limit_us;
771 
772 		timeout_us = data->timeout_ns / 1000;
773 		if (mmc_host_clk_rate(card->host))
774 			timeout_us += data->timeout_clks * 1000 /
775 				(mmc_host_clk_rate(card->host) / 1000);
776 
777 		if (data->flags & MMC_DATA_WRITE)
778 			/*
779 			 * The MMC spec "It is strongly recommended
780 			 * for hosts to implement more than 500ms
781 			 * timeout value even if the card indicates
782 			 * the 250ms maximum busy length."  Even the
783 			 * previous value of 300ms is known to be
784 			 * insufficient for some cards.
785 			 */
786 			limit_us = 3000000;
787 		else
788 			limit_us = 100000;
789 
790 		/*
791 		 * SDHC cards always use these fixed values.
792 		 */
793 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
794 			data->timeout_ns = limit_us * 1000;
795 			data->timeout_clks = 0;
796 		}
797 	}
798 
799 	/*
800 	 * Some cards require longer data read timeout than indicated in CSD.
801 	 * Address this by setting the read timeout to a "reasonably high"
802 	 * value. For the cards tested, 300ms has proven enough. If necessary,
803 	 * this value can be increased if other problematic cards require this.
804 	 */
805 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
806 		data->timeout_ns = 300000000;
807 		data->timeout_clks = 0;
808 	}
809 
810 	/*
811 	 * Some cards need very high timeouts if driven in SPI mode.
812 	 * The worst observed timeout was 900ms after writing a
813 	 * continuous stream of data until the internal logic
814 	 * overflowed.
815 	 */
816 	if (mmc_host_is_spi(card->host)) {
817 		if (data->flags & MMC_DATA_WRITE) {
818 			if (data->timeout_ns < 1000000000)
819 				data->timeout_ns = 1000000000;	/* 1s */
820 		} else {
821 			if (data->timeout_ns < 100000000)
822 				data->timeout_ns =  100000000;	/* 100ms */
823 		}
824 	}
825 }
826 EXPORT_SYMBOL(mmc_set_data_timeout);
827 
828 /**
829  *	mmc_align_data_size - pads a transfer size to a more optimal value
830  *	@card: the MMC card associated with the data transfer
831  *	@sz: original transfer size
832  *
833  *	Pads the original data size with a number of extra bytes in
834  *	order to avoid controller bugs and/or performance hits
835  *	(e.g. some controllers revert to PIO for certain sizes).
836  *
837  *	Returns the improved size, which might be unmodified.
838  *
839  *	Note that this function is only relevant when issuing a
840  *	single scatter gather entry.
841  */
842 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
843 {
844 	/*
845 	 * FIXME: We don't have a system for the controller to tell
846 	 * the core about its problems yet, so for now we just 32-bit
847 	 * align the size.
848 	 */
849 	sz = ((sz + 3) / 4) * 4;
850 
851 	return sz;
852 }
853 EXPORT_SYMBOL(mmc_align_data_size);
854 
855 /**
856  *	__mmc_claim_host - exclusively claim a host
857  *	@host: mmc host to claim
858  *	@abort: whether or not the operation should be aborted
859  *
860  *	Claim a host for a set of operations.  If @abort is non null and
861  *	dereference a non-zero value then this will return prematurely with
862  *	that non-zero value without acquiring the lock.  Returns zero
863  *	with the lock held otherwise.
864  */
865 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
866 {
867 	DECLARE_WAITQUEUE(wait, current);
868 	unsigned long flags;
869 	int stop;
870 
871 	might_sleep();
872 
873 	add_wait_queue(&host->wq, &wait);
874 	spin_lock_irqsave(&host->lock, flags);
875 	while (1) {
876 		set_current_state(TASK_UNINTERRUPTIBLE);
877 		stop = abort ? atomic_read(abort) : 0;
878 		if (stop || !host->claimed || host->claimer == current)
879 			break;
880 		spin_unlock_irqrestore(&host->lock, flags);
881 		schedule();
882 		spin_lock_irqsave(&host->lock, flags);
883 	}
884 	set_current_state(TASK_RUNNING);
885 	if (!stop) {
886 		host->claimed = 1;
887 		host->claimer = current;
888 		host->claim_cnt += 1;
889 	} else
890 		wake_up(&host->wq);
891 	spin_unlock_irqrestore(&host->lock, flags);
892 	remove_wait_queue(&host->wq, &wait);
893 	if (host->ops->enable && !stop && host->claim_cnt == 1)
894 		host->ops->enable(host);
895 	return stop;
896 }
897 
898 EXPORT_SYMBOL(__mmc_claim_host);
899 
900 /**
901  *	mmc_try_claim_host - try exclusively to claim a host
902  *	@host: mmc host to claim
903  *
904  *	Returns %1 if the host is claimed, %0 otherwise.
905  */
906 int mmc_try_claim_host(struct mmc_host *host)
907 {
908 	int claimed_host = 0;
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&host->lock, flags);
912 	if (!host->claimed || host->claimer == current) {
913 		host->claimed = 1;
914 		host->claimer = current;
915 		host->claim_cnt += 1;
916 		claimed_host = 1;
917 	}
918 	spin_unlock_irqrestore(&host->lock, flags);
919 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
920 		host->ops->enable(host);
921 	return claimed_host;
922 }
923 EXPORT_SYMBOL(mmc_try_claim_host);
924 
925 /**
926  *	mmc_release_host - release a host
927  *	@host: mmc host to release
928  *
929  *	Release a MMC host, allowing others to claim the host
930  *	for their operations.
931  */
932 void mmc_release_host(struct mmc_host *host)
933 {
934 	unsigned long flags;
935 
936 	WARN_ON(!host->claimed);
937 
938 	if (host->ops->disable && host->claim_cnt == 1)
939 		host->ops->disable(host);
940 
941 	spin_lock_irqsave(&host->lock, flags);
942 	if (--host->claim_cnt) {
943 		/* Release for nested claim */
944 		spin_unlock_irqrestore(&host->lock, flags);
945 	} else {
946 		host->claimed = 0;
947 		host->claimer = NULL;
948 		spin_unlock_irqrestore(&host->lock, flags);
949 		wake_up(&host->wq);
950 	}
951 }
952 EXPORT_SYMBOL(mmc_release_host);
953 
954 /*
955  * Internal function that does the actual ios call to the host driver,
956  * optionally printing some debug output.
957  */
958 static inline void mmc_set_ios(struct mmc_host *host)
959 {
960 	struct mmc_ios *ios = &host->ios;
961 
962 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
963 		"width %u timing %u\n",
964 		 mmc_hostname(host), ios->clock, ios->bus_mode,
965 		 ios->power_mode, ios->chip_select, ios->vdd,
966 		 ios->bus_width, ios->timing);
967 
968 	if (ios->clock > 0)
969 		mmc_set_ungated(host);
970 	host->ops->set_ios(host, ios);
971 }
972 
973 /*
974  * Control chip select pin on a host.
975  */
976 void mmc_set_chip_select(struct mmc_host *host, int mode)
977 {
978 	mmc_host_clk_hold(host);
979 	host->ios.chip_select = mode;
980 	mmc_set_ios(host);
981 	mmc_host_clk_release(host);
982 }
983 
984 /*
985  * Sets the host clock to the highest possible frequency that
986  * is below "hz".
987  */
988 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
989 {
990 	WARN_ON(hz < host->f_min);
991 
992 	if (hz > host->f_max)
993 		hz = host->f_max;
994 
995 	host->ios.clock = hz;
996 	mmc_set_ios(host);
997 }
998 
999 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1000 {
1001 	mmc_host_clk_hold(host);
1002 	__mmc_set_clock(host, hz);
1003 	mmc_host_clk_release(host);
1004 }
1005 
1006 #ifdef CONFIG_MMC_CLKGATE
1007 /*
1008  * This gates the clock by setting it to 0 Hz.
1009  */
1010 void mmc_gate_clock(struct mmc_host *host)
1011 {
1012 	unsigned long flags;
1013 
1014 	spin_lock_irqsave(&host->clk_lock, flags);
1015 	host->clk_old = host->ios.clock;
1016 	host->ios.clock = 0;
1017 	host->clk_gated = true;
1018 	spin_unlock_irqrestore(&host->clk_lock, flags);
1019 	mmc_set_ios(host);
1020 }
1021 
1022 /*
1023  * This restores the clock from gating by using the cached
1024  * clock value.
1025  */
1026 void mmc_ungate_clock(struct mmc_host *host)
1027 {
1028 	/*
1029 	 * We should previously have gated the clock, so the clock shall
1030 	 * be 0 here! The clock may however be 0 during initialization,
1031 	 * when some request operations are performed before setting
1032 	 * the frequency. When ungate is requested in that situation
1033 	 * we just ignore the call.
1034 	 */
1035 	if (host->clk_old) {
1036 		BUG_ON(host->ios.clock);
1037 		/* This call will also set host->clk_gated to false */
1038 		__mmc_set_clock(host, host->clk_old);
1039 	}
1040 }
1041 
1042 void mmc_set_ungated(struct mmc_host *host)
1043 {
1044 	unsigned long flags;
1045 
1046 	/*
1047 	 * We've been given a new frequency while the clock is gated,
1048 	 * so make sure we regard this as ungating it.
1049 	 */
1050 	spin_lock_irqsave(&host->clk_lock, flags);
1051 	host->clk_gated = false;
1052 	spin_unlock_irqrestore(&host->clk_lock, flags);
1053 }
1054 
1055 #else
1056 void mmc_set_ungated(struct mmc_host *host)
1057 {
1058 }
1059 #endif
1060 
1061 /*
1062  * Change the bus mode (open drain/push-pull) of a host.
1063  */
1064 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1065 {
1066 	mmc_host_clk_hold(host);
1067 	host->ios.bus_mode = mode;
1068 	mmc_set_ios(host);
1069 	mmc_host_clk_release(host);
1070 }
1071 
1072 /*
1073  * Change data bus width of a host.
1074  */
1075 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1076 {
1077 	mmc_host_clk_hold(host);
1078 	host->ios.bus_width = width;
1079 	mmc_set_ios(host);
1080 	mmc_host_clk_release(host);
1081 }
1082 
1083 /**
1084  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1085  * @vdd:	voltage (mV)
1086  * @low_bits:	prefer low bits in boundary cases
1087  *
1088  * This function returns the OCR bit number according to the provided @vdd
1089  * value. If conversion is not possible a negative errno value returned.
1090  *
1091  * Depending on the @low_bits flag the function prefers low or high OCR bits
1092  * on boundary voltages. For example,
1093  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1094  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1095  *
1096  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1097  */
1098 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1099 {
1100 	const int max_bit = ilog2(MMC_VDD_35_36);
1101 	int bit;
1102 
1103 	if (vdd < 1650 || vdd > 3600)
1104 		return -EINVAL;
1105 
1106 	if (vdd >= 1650 && vdd <= 1950)
1107 		return ilog2(MMC_VDD_165_195);
1108 
1109 	if (low_bits)
1110 		vdd -= 1;
1111 
1112 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1113 	bit = (vdd - 2000) / 100 + 8;
1114 	if (bit > max_bit)
1115 		return max_bit;
1116 	return bit;
1117 }
1118 
1119 /**
1120  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1121  * @vdd_min:	minimum voltage value (mV)
1122  * @vdd_max:	maximum voltage value (mV)
1123  *
1124  * This function returns the OCR mask bits according to the provided @vdd_min
1125  * and @vdd_max values. If conversion is not possible the function returns 0.
1126  *
1127  * Notes wrt boundary cases:
1128  * This function sets the OCR bits for all boundary voltages, for example
1129  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1130  * MMC_VDD_34_35 mask.
1131  */
1132 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1133 {
1134 	u32 mask = 0;
1135 
1136 	if (vdd_max < vdd_min)
1137 		return 0;
1138 
1139 	/* Prefer high bits for the boundary vdd_max values. */
1140 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1141 	if (vdd_max < 0)
1142 		return 0;
1143 
1144 	/* Prefer low bits for the boundary vdd_min values. */
1145 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1146 	if (vdd_min < 0)
1147 		return 0;
1148 
1149 	/* Fill the mask, from max bit to min bit. */
1150 	while (vdd_max >= vdd_min)
1151 		mask |= 1 << vdd_max--;
1152 
1153 	return mask;
1154 }
1155 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1156 
1157 #ifdef CONFIG_REGULATOR
1158 
1159 /**
1160  * mmc_regulator_get_ocrmask - return mask of supported voltages
1161  * @supply: regulator to use
1162  *
1163  * This returns either a negative errno, or a mask of voltages that
1164  * can be provided to MMC/SD/SDIO devices using the specified voltage
1165  * regulator.  This would normally be called before registering the
1166  * MMC host adapter.
1167  */
1168 int mmc_regulator_get_ocrmask(struct regulator *supply)
1169 {
1170 	int			result = 0;
1171 	int			count;
1172 	int			i;
1173 
1174 	count = regulator_count_voltages(supply);
1175 	if (count < 0)
1176 		return count;
1177 
1178 	for (i = 0; i < count; i++) {
1179 		int		vdd_uV;
1180 		int		vdd_mV;
1181 
1182 		vdd_uV = regulator_list_voltage(supply, i);
1183 		if (vdd_uV <= 0)
1184 			continue;
1185 
1186 		vdd_mV = vdd_uV / 1000;
1187 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1188 	}
1189 
1190 	return result;
1191 }
1192 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1193 
1194 /**
1195  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1196  * @mmc: the host to regulate
1197  * @supply: regulator to use
1198  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1199  *
1200  * Returns zero on success, else negative errno.
1201  *
1202  * MMC host drivers may use this to enable or disable a regulator using
1203  * a particular supply voltage.  This would normally be called from the
1204  * set_ios() method.
1205  */
1206 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1207 			struct regulator *supply,
1208 			unsigned short vdd_bit)
1209 {
1210 	int			result = 0;
1211 	int			min_uV, max_uV;
1212 
1213 	if (vdd_bit) {
1214 		int		tmp;
1215 		int		voltage;
1216 
1217 		/*
1218 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1219 		 * bits this regulator doesn't quite support ... don't
1220 		 * be too picky, most cards and regulators are OK with
1221 		 * a 0.1V range goof (it's a small error percentage).
1222 		 */
1223 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1224 		if (tmp == 0) {
1225 			min_uV = 1650 * 1000;
1226 			max_uV = 1950 * 1000;
1227 		} else {
1228 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1229 			max_uV = min_uV + 100 * 1000;
1230 		}
1231 
1232 		/*
1233 		 * If we're using a fixed/static regulator, don't call
1234 		 * regulator_set_voltage; it would fail.
1235 		 */
1236 		voltage = regulator_get_voltage(supply);
1237 
1238 		if (!regulator_can_change_voltage(supply))
1239 			min_uV = max_uV = voltage;
1240 
1241 		if (voltage < 0)
1242 			result = voltage;
1243 		else if (voltage < min_uV || voltage > max_uV)
1244 			result = regulator_set_voltage(supply, min_uV, max_uV);
1245 		else
1246 			result = 0;
1247 
1248 		if (result == 0 && !mmc->regulator_enabled) {
1249 			result = regulator_enable(supply);
1250 			if (!result)
1251 				mmc->regulator_enabled = true;
1252 		}
1253 	} else if (mmc->regulator_enabled) {
1254 		result = regulator_disable(supply);
1255 		if (result == 0)
1256 			mmc->regulator_enabled = false;
1257 	}
1258 
1259 	if (result)
1260 		dev_err(mmc_dev(mmc),
1261 			"could not set regulator OCR (%d)\n", result);
1262 	return result;
1263 }
1264 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1265 
1266 int mmc_regulator_get_supply(struct mmc_host *mmc)
1267 {
1268 	struct device *dev = mmc_dev(mmc);
1269 	struct regulator *supply;
1270 	int ret;
1271 
1272 	supply = devm_regulator_get(dev, "vmmc");
1273 	mmc->supply.vmmc = supply;
1274 	mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1275 
1276 	if (IS_ERR(supply))
1277 		return PTR_ERR(supply);
1278 
1279 	ret = mmc_regulator_get_ocrmask(supply);
1280 	if (ret > 0)
1281 		mmc->ocr_avail = ret;
1282 	else
1283 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1288 
1289 #endif /* CONFIG_REGULATOR */
1290 
1291 /*
1292  * Mask off any voltages we don't support and select
1293  * the lowest voltage
1294  */
1295 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1296 {
1297 	int bit;
1298 
1299 	ocr &= host->ocr_avail;
1300 
1301 	bit = ffs(ocr);
1302 	if (bit) {
1303 		bit -= 1;
1304 
1305 		ocr &= 3 << bit;
1306 
1307 		mmc_host_clk_hold(host);
1308 		host->ios.vdd = bit;
1309 		mmc_set_ios(host);
1310 		mmc_host_clk_release(host);
1311 	} else {
1312 		pr_warning("%s: host doesn't support card's voltages\n",
1313 				mmc_hostname(host));
1314 		ocr = 0;
1315 	}
1316 
1317 	return ocr;
1318 }
1319 
1320 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1321 {
1322 	int err = 0;
1323 	int old_signal_voltage = host->ios.signal_voltage;
1324 
1325 	host->ios.signal_voltage = signal_voltage;
1326 	if (host->ops->start_signal_voltage_switch) {
1327 		mmc_host_clk_hold(host);
1328 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1329 		mmc_host_clk_release(host);
1330 	}
1331 
1332 	if (err)
1333 		host->ios.signal_voltage = old_signal_voltage;
1334 
1335 	return err;
1336 
1337 }
1338 
1339 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1340 {
1341 	struct mmc_command cmd = {0};
1342 	int err = 0;
1343 	u32 clock;
1344 
1345 	BUG_ON(!host);
1346 
1347 	/*
1348 	 * Send CMD11 only if the request is to switch the card to
1349 	 * 1.8V signalling.
1350 	 */
1351 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1352 		return __mmc_set_signal_voltage(host, signal_voltage);
1353 
1354 	/*
1355 	 * If we cannot switch voltages, return failure so the caller
1356 	 * can continue without UHS mode
1357 	 */
1358 	if (!host->ops->start_signal_voltage_switch)
1359 		return -EPERM;
1360 	if (!host->ops->card_busy)
1361 		pr_warning("%s: cannot verify signal voltage switch\n",
1362 				mmc_hostname(host));
1363 
1364 	cmd.opcode = SD_SWITCH_VOLTAGE;
1365 	cmd.arg = 0;
1366 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1367 
1368 	err = mmc_wait_for_cmd(host, &cmd, 0);
1369 	if (err)
1370 		return err;
1371 
1372 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1373 		return -EIO;
1374 
1375 	mmc_host_clk_hold(host);
1376 	/*
1377 	 * The card should drive cmd and dat[0:3] low immediately
1378 	 * after the response of cmd11, but wait 1 ms to be sure
1379 	 */
1380 	mmc_delay(1);
1381 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1382 		err = -EAGAIN;
1383 		goto power_cycle;
1384 	}
1385 	/*
1386 	 * During a signal voltage level switch, the clock must be gated
1387 	 * for 5 ms according to the SD spec
1388 	 */
1389 	clock = host->ios.clock;
1390 	host->ios.clock = 0;
1391 	mmc_set_ios(host);
1392 
1393 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1394 		/*
1395 		 * Voltages may not have been switched, but we've already
1396 		 * sent CMD11, so a power cycle is required anyway
1397 		 */
1398 		err = -EAGAIN;
1399 		goto power_cycle;
1400 	}
1401 
1402 	/* Keep clock gated for at least 5 ms */
1403 	mmc_delay(5);
1404 	host->ios.clock = clock;
1405 	mmc_set_ios(host);
1406 
1407 	/* Wait for at least 1 ms according to spec */
1408 	mmc_delay(1);
1409 
1410 	/*
1411 	 * Failure to switch is indicated by the card holding
1412 	 * dat[0:3] low
1413 	 */
1414 	if (host->ops->card_busy && host->ops->card_busy(host))
1415 		err = -EAGAIN;
1416 
1417 power_cycle:
1418 	if (err) {
1419 		pr_debug("%s: Signal voltage switch failed, "
1420 			"power cycling card\n", mmc_hostname(host));
1421 		mmc_power_cycle(host);
1422 	}
1423 
1424 	mmc_host_clk_release(host);
1425 
1426 	return err;
1427 }
1428 
1429 /*
1430  * Select timing parameters for host.
1431  */
1432 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1433 {
1434 	mmc_host_clk_hold(host);
1435 	host->ios.timing = timing;
1436 	mmc_set_ios(host);
1437 	mmc_host_clk_release(host);
1438 }
1439 
1440 /*
1441  * Select appropriate driver type for host.
1442  */
1443 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1444 {
1445 	mmc_host_clk_hold(host);
1446 	host->ios.drv_type = drv_type;
1447 	mmc_set_ios(host);
1448 	mmc_host_clk_release(host);
1449 }
1450 
1451 /*
1452  * Apply power to the MMC stack.  This is a two-stage process.
1453  * First, we enable power to the card without the clock running.
1454  * We then wait a bit for the power to stabilise.  Finally,
1455  * enable the bus drivers and clock to the card.
1456  *
1457  * We must _NOT_ enable the clock prior to power stablising.
1458  *
1459  * If a host does all the power sequencing itself, ignore the
1460  * initial MMC_POWER_UP stage.
1461  */
1462 static void mmc_power_up(struct mmc_host *host)
1463 {
1464 	int bit;
1465 
1466 	if (host->ios.power_mode == MMC_POWER_ON)
1467 		return;
1468 
1469 	mmc_host_clk_hold(host);
1470 
1471 	/* If ocr is set, we use it */
1472 	if (host->ocr)
1473 		bit = ffs(host->ocr) - 1;
1474 	else
1475 		bit = fls(host->ocr_avail) - 1;
1476 
1477 	host->ios.vdd = bit;
1478 	if (mmc_host_is_spi(host))
1479 		host->ios.chip_select = MMC_CS_HIGH;
1480 	else
1481 		host->ios.chip_select = MMC_CS_DONTCARE;
1482 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1483 	host->ios.power_mode = MMC_POWER_UP;
1484 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1485 	host->ios.timing = MMC_TIMING_LEGACY;
1486 	mmc_set_ios(host);
1487 
1488 	/* Set signal voltage to 3.3V */
1489 	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1490 
1491 	/*
1492 	 * This delay should be sufficient to allow the power supply
1493 	 * to reach the minimum voltage.
1494 	 */
1495 	mmc_delay(10);
1496 
1497 	host->ios.clock = host->f_init;
1498 
1499 	host->ios.power_mode = MMC_POWER_ON;
1500 	mmc_set_ios(host);
1501 
1502 	/*
1503 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1504 	 * time required to reach a stable voltage.
1505 	 */
1506 	mmc_delay(10);
1507 
1508 	mmc_host_clk_release(host);
1509 }
1510 
1511 void mmc_power_off(struct mmc_host *host)
1512 {
1513 	if (host->ios.power_mode == MMC_POWER_OFF)
1514 		return;
1515 
1516 	mmc_host_clk_hold(host);
1517 
1518 	host->ios.clock = 0;
1519 	host->ios.vdd = 0;
1520 
1521 
1522 	/*
1523 	 * Reset ocr mask to be the highest possible voltage supported for
1524 	 * this mmc host. This value will be used at next power up.
1525 	 */
1526 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1527 
1528 	if (!mmc_host_is_spi(host)) {
1529 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1530 		host->ios.chip_select = MMC_CS_DONTCARE;
1531 	}
1532 	host->ios.power_mode = MMC_POWER_OFF;
1533 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1534 	host->ios.timing = MMC_TIMING_LEGACY;
1535 	mmc_set_ios(host);
1536 
1537 	/*
1538 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1539 	 * XO-1.5, require a short delay after poweroff before the card
1540 	 * can be successfully turned on again.
1541 	 */
1542 	mmc_delay(1);
1543 
1544 	mmc_host_clk_release(host);
1545 }
1546 
1547 void mmc_power_cycle(struct mmc_host *host)
1548 {
1549 	mmc_power_off(host);
1550 	/* Wait at least 1 ms according to SD spec */
1551 	mmc_delay(1);
1552 	mmc_power_up(host);
1553 }
1554 
1555 /*
1556  * Cleanup when the last reference to the bus operator is dropped.
1557  */
1558 static void __mmc_release_bus(struct mmc_host *host)
1559 {
1560 	BUG_ON(!host);
1561 	BUG_ON(host->bus_refs);
1562 	BUG_ON(!host->bus_dead);
1563 
1564 	host->bus_ops = NULL;
1565 }
1566 
1567 /*
1568  * Increase reference count of bus operator
1569  */
1570 static inline void mmc_bus_get(struct mmc_host *host)
1571 {
1572 	unsigned long flags;
1573 
1574 	spin_lock_irqsave(&host->lock, flags);
1575 	host->bus_refs++;
1576 	spin_unlock_irqrestore(&host->lock, flags);
1577 }
1578 
1579 /*
1580  * Decrease reference count of bus operator and free it if
1581  * it is the last reference.
1582  */
1583 static inline void mmc_bus_put(struct mmc_host *host)
1584 {
1585 	unsigned long flags;
1586 
1587 	spin_lock_irqsave(&host->lock, flags);
1588 	host->bus_refs--;
1589 	if ((host->bus_refs == 0) && host->bus_ops)
1590 		__mmc_release_bus(host);
1591 	spin_unlock_irqrestore(&host->lock, flags);
1592 }
1593 
1594 /*
1595  * Assign a mmc bus handler to a host. Only one bus handler may control a
1596  * host at any given time.
1597  */
1598 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1599 {
1600 	unsigned long flags;
1601 
1602 	BUG_ON(!host);
1603 	BUG_ON(!ops);
1604 
1605 	WARN_ON(!host->claimed);
1606 
1607 	spin_lock_irqsave(&host->lock, flags);
1608 
1609 	BUG_ON(host->bus_ops);
1610 	BUG_ON(host->bus_refs);
1611 
1612 	host->bus_ops = ops;
1613 	host->bus_refs = 1;
1614 	host->bus_dead = 0;
1615 
1616 	spin_unlock_irqrestore(&host->lock, flags);
1617 }
1618 
1619 /*
1620  * Remove the current bus handler from a host.
1621  */
1622 void mmc_detach_bus(struct mmc_host *host)
1623 {
1624 	unsigned long flags;
1625 
1626 	BUG_ON(!host);
1627 
1628 	WARN_ON(!host->claimed);
1629 	WARN_ON(!host->bus_ops);
1630 
1631 	spin_lock_irqsave(&host->lock, flags);
1632 
1633 	host->bus_dead = 1;
1634 
1635 	spin_unlock_irqrestore(&host->lock, flags);
1636 
1637 	mmc_bus_put(host);
1638 }
1639 
1640 /**
1641  *	mmc_detect_change - process change of state on a MMC socket
1642  *	@host: host which changed state.
1643  *	@delay: optional delay to wait before detection (jiffies)
1644  *
1645  *	MMC drivers should call this when they detect a card has been
1646  *	inserted or removed. The MMC layer will confirm that any
1647  *	present card is still functional, and initialize any newly
1648  *	inserted.
1649  */
1650 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1651 {
1652 #ifdef CONFIG_MMC_DEBUG
1653 	unsigned long flags;
1654 	spin_lock_irqsave(&host->lock, flags);
1655 	WARN_ON(host->removed);
1656 	spin_unlock_irqrestore(&host->lock, flags);
1657 #endif
1658 	host->detect_change = 1;
1659 	mmc_schedule_delayed_work(&host->detect, delay);
1660 }
1661 
1662 EXPORT_SYMBOL(mmc_detect_change);
1663 
1664 void mmc_init_erase(struct mmc_card *card)
1665 {
1666 	unsigned int sz;
1667 
1668 	if (is_power_of_2(card->erase_size))
1669 		card->erase_shift = ffs(card->erase_size) - 1;
1670 	else
1671 		card->erase_shift = 0;
1672 
1673 	/*
1674 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1675 	 * card.  That is not desirable because it can take a long time
1676 	 * (minutes) potentially delaying more important I/O, and also the
1677 	 * timeout calculations become increasingly hugely over-estimated.
1678 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1679 	 * to that size and alignment.
1680 	 *
1681 	 * For SD cards that define Allocation Unit size, limit erases to one
1682 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1683 	 * Erase Size, whether it is switched on or not, limit to that size.
1684 	 * Otherwise just have a stab at a good value.  For modern cards it
1685 	 * will end up being 4MiB.  Note that if the value is too small, it
1686 	 * can end up taking longer to erase.
1687 	 */
1688 	if (mmc_card_sd(card) && card->ssr.au) {
1689 		card->pref_erase = card->ssr.au;
1690 		card->erase_shift = ffs(card->ssr.au) - 1;
1691 	} else if (card->ext_csd.hc_erase_size) {
1692 		card->pref_erase = card->ext_csd.hc_erase_size;
1693 	} else {
1694 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1695 		if (sz < 128)
1696 			card->pref_erase = 512 * 1024 / 512;
1697 		else if (sz < 512)
1698 			card->pref_erase = 1024 * 1024 / 512;
1699 		else if (sz < 1024)
1700 			card->pref_erase = 2 * 1024 * 1024 / 512;
1701 		else
1702 			card->pref_erase = 4 * 1024 * 1024 / 512;
1703 		if (card->pref_erase < card->erase_size)
1704 			card->pref_erase = card->erase_size;
1705 		else {
1706 			sz = card->pref_erase % card->erase_size;
1707 			if (sz)
1708 				card->pref_erase += card->erase_size - sz;
1709 		}
1710 	}
1711 }
1712 
1713 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1714 				          unsigned int arg, unsigned int qty)
1715 {
1716 	unsigned int erase_timeout;
1717 
1718 	if (arg == MMC_DISCARD_ARG ||
1719 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1720 		erase_timeout = card->ext_csd.trim_timeout;
1721 	} else if (card->ext_csd.erase_group_def & 1) {
1722 		/* High Capacity Erase Group Size uses HC timeouts */
1723 		if (arg == MMC_TRIM_ARG)
1724 			erase_timeout = card->ext_csd.trim_timeout;
1725 		else
1726 			erase_timeout = card->ext_csd.hc_erase_timeout;
1727 	} else {
1728 		/* CSD Erase Group Size uses write timeout */
1729 		unsigned int mult = (10 << card->csd.r2w_factor);
1730 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1731 		unsigned int timeout_us;
1732 
1733 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1734 		if (card->csd.tacc_ns < 1000000)
1735 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1736 		else
1737 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1738 
1739 		/*
1740 		 * ios.clock is only a target.  The real clock rate might be
1741 		 * less but not that much less, so fudge it by multiplying by 2.
1742 		 */
1743 		timeout_clks <<= 1;
1744 		timeout_us += (timeout_clks * 1000) /
1745 			      (mmc_host_clk_rate(card->host) / 1000);
1746 
1747 		erase_timeout = timeout_us / 1000;
1748 
1749 		/*
1750 		 * Theoretically, the calculation could underflow so round up
1751 		 * to 1ms in that case.
1752 		 */
1753 		if (!erase_timeout)
1754 			erase_timeout = 1;
1755 	}
1756 
1757 	/* Multiplier for secure operations */
1758 	if (arg & MMC_SECURE_ARGS) {
1759 		if (arg == MMC_SECURE_ERASE_ARG)
1760 			erase_timeout *= card->ext_csd.sec_erase_mult;
1761 		else
1762 			erase_timeout *= card->ext_csd.sec_trim_mult;
1763 	}
1764 
1765 	erase_timeout *= qty;
1766 
1767 	/*
1768 	 * Ensure at least a 1 second timeout for SPI as per
1769 	 * 'mmc_set_data_timeout()'
1770 	 */
1771 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1772 		erase_timeout = 1000;
1773 
1774 	return erase_timeout;
1775 }
1776 
1777 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1778 					 unsigned int arg,
1779 					 unsigned int qty)
1780 {
1781 	unsigned int erase_timeout;
1782 
1783 	if (card->ssr.erase_timeout) {
1784 		/* Erase timeout specified in SD Status Register (SSR) */
1785 		erase_timeout = card->ssr.erase_timeout * qty +
1786 				card->ssr.erase_offset;
1787 	} else {
1788 		/*
1789 		 * Erase timeout not specified in SD Status Register (SSR) so
1790 		 * use 250ms per write block.
1791 		 */
1792 		erase_timeout = 250 * qty;
1793 	}
1794 
1795 	/* Must not be less than 1 second */
1796 	if (erase_timeout < 1000)
1797 		erase_timeout = 1000;
1798 
1799 	return erase_timeout;
1800 }
1801 
1802 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1803 				      unsigned int arg,
1804 				      unsigned int qty)
1805 {
1806 	if (mmc_card_sd(card))
1807 		return mmc_sd_erase_timeout(card, arg, qty);
1808 	else
1809 		return mmc_mmc_erase_timeout(card, arg, qty);
1810 }
1811 
1812 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1813 			unsigned int to, unsigned int arg)
1814 {
1815 	struct mmc_command cmd = {0};
1816 	unsigned int qty = 0;
1817 	unsigned long timeout;
1818 	int err;
1819 
1820 	/*
1821 	 * qty is used to calculate the erase timeout which depends on how many
1822 	 * erase groups (or allocation units in SD terminology) are affected.
1823 	 * We count erasing part of an erase group as one erase group.
1824 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1825 	 * erase group size is almost certainly also power of 2, but it does not
1826 	 * seem to insist on that in the JEDEC standard, so we fall back to
1827 	 * division in that case.  SD may not specify an allocation unit size,
1828 	 * in which case the timeout is based on the number of write blocks.
1829 	 *
1830 	 * Note that the timeout for secure trim 2 will only be correct if the
1831 	 * number of erase groups specified is the same as the total of all
1832 	 * preceding secure trim 1 commands.  Since the power may have been
1833 	 * lost since the secure trim 1 commands occurred, it is generally
1834 	 * impossible to calculate the secure trim 2 timeout correctly.
1835 	 */
1836 	if (card->erase_shift)
1837 		qty += ((to >> card->erase_shift) -
1838 			(from >> card->erase_shift)) + 1;
1839 	else if (mmc_card_sd(card))
1840 		qty += to - from + 1;
1841 	else
1842 		qty += ((to / card->erase_size) -
1843 			(from / card->erase_size)) + 1;
1844 
1845 	if (!mmc_card_blockaddr(card)) {
1846 		from <<= 9;
1847 		to <<= 9;
1848 	}
1849 
1850 	if (mmc_card_sd(card))
1851 		cmd.opcode = SD_ERASE_WR_BLK_START;
1852 	else
1853 		cmd.opcode = MMC_ERASE_GROUP_START;
1854 	cmd.arg = from;
1855 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1856 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1857 	if (err) {
1858 		pr_err("mmc_erase: group start error %d, "
1859 		       "status %#x\n", err, cmd.resp[0]);
1860 		err = -EIO;
1861 		goto out;
1862 	}
1863 
1864 	memset(&cmd, 0, sizeof(struct mmc_command));
1865 	if (mmc_card_sd(card))
1866 		cmd.opcode = SD_ERASE_WR_BLK_END;
1867 	else
1868 		cmd.opcode = MMC_ERASE_GROUP_END;
1869 	cmd.arg = to;
1870 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1871 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1872 	if (err) {
1873 		pr_err("mmc_erase: group end error %d, status %#x\n",
1874 		       err, cmd.resp[0]);
1875 		err = -EIO;
1876 		goto out;
1877 	}
1878 
1879 	memset(&cmd, 0, sizeof(struct mmc_command));
1880 	cmd.opcode = MMC_ERASE;
1881 	cmd.arg = arg;
1882 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1883 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1884 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1885 	if (err) {
1886 		pr_err("mmc_erase: erase error %d, status %#x\n",
1887 		       err, cmd.resp[0]);
1888 		err = -EIO;
1889 		goto out;
1890 	}
1891 
1892 	if (mmc_host_is_spi(card->host))
1893 		goto out;
1894 
1895 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1896 	do {
1897 		memset(&cmd, 0, sizeof(struct mmc_command));
1898 		cmd.opcode = MMC_SEND_STATUS;
1899 		cmd.arg = card->rca << 16;
1900 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1901 		/* Do not retry else we can't see errors */
1902 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1903 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1904 			pr_err("error %d requesting status %#x\n",
1905 				err, cmd.resp[0]);
1906 			err = -EIO;
1907 			goto out;
1908 		}
1909 
1910 		/* Timeout if the device never becomes ready for data and
1911 		 * never leaves the program state.
1912 		 */
1913 		if (time_after(jiffies, timeout)) {
1914 			pr_err("%s: Card stuck in programming state! %s\n",
1915 				mmc_hostname(card->host), __func__);
1916 			err =  -EIO;
1917 			goto out;
1918 		}
1919 
1920 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1921 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1922 out:
1923 	return err;
1924 }
1925 
1926 /**
1927  * mmc_erase - erase sectors.
1928  * @card: card to erase
1929  * @from: first sector to erase
1930  * @nr: number of sectors to erase
1931  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1932  *
1933  * Caller must claim host before calling this function.
1934  */
1935 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1936 	      unsigned int arg)
1937 {
1938 	unsigned int rem, to = from + nr;
1939 
1940 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1941 	    !(card->csd.cmdclass & CCC_ERASE))
1942 		return -EOPNOTSUPP;
1943 
1944 	if (!card->erase_size)
1945 		return -EOPNOTSUPP;
1946 
1947 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1948 		return -EOPNOTSUPP;
1949 
1950 	if ((arg & MMC_SECURE_ARGS) &&
1951 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1952 		return -EOPNOTSUPP;
1953 
1954 	if ((arg & MMC_TRIM_ARGS) &&
1955 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1956 		return -EOPNOTSUPP;
1957 
1958 	if (arg == MMC_SECURE_ERASE_ARG) {
1959 		if (from % card->erase_size || nr % card->erase_size)
1960 			return -EINVAL;
1961 	}
1962 
1963 	if (arg == MMC_ERASE_ARG) {
1964 		rem = from % card->erase_size;
1965 		if (rem) {
1966 			rem = card->erase_size - rem;
1967 			from += rem;
1968 			if (nr > rem)
1969 				nr -= rem;
1970 			else
1971 				return 0;
1972 		}
1973 		rem = nr % card->erase_size;
1974 		if (rem)
1975 			nr -= rem;
1976 	}
1977 
1978 	if (nr == 0)
1979 		return 0;
1980 
1981 	to = from + nr;
1982 
1983 	if (to <= from)
1984 		return -EINVAL;
1985 
1986 	/* 'from' and 'to' are inclusive */
1987 	to -= 1;
1988 
1989 	return mmc_do_erase(card, from, to, arg);
1990 }
1991 EXPORT_SYMBOL(mmc_erase);
1992 
1993 int mmc_can_erase(struct mmc_card *card)
1994 {
1995 	if ((card->host->caps & MMC_CAP_ERASE) &&
1996 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1997 		return 1;
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL(mmc_can_erase);
2001 
2002 int mmc_can_trim(struct mmc_card *card)
2003 {
2004 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2005 		return 1;
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(mmc_can_trim);
2009 
2010 int mmc_can_discard(struct mmc_card *card)
2011 {
2012 	/*
2013 	 * As there's no way to detect the discard support bit at v4.5
2014 	 * use the s/w feature support filed.
2015 	 */
2016 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2017 		return 1;
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(mmc_can_discard);
2021 
2022 int mmc_can_sanitize(struct mmc_card *card)
2023 {
2024 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2025 		return 0;
2026 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2027 		return 1;
2028 	return 0;
2029 }
2030 EXPORT_SYMBOL(mmc_can_sanitize);
2031 
2032 int mmc_can_secure_erase_trim(struct mmc_card *card)
2033 {
2034 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2035 		return 1;
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2039 
2040 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2041 			    unsigned int nr)
2042 {
2043 	if (!card->erase_size)
2044 		return 0;
2045 	if (from % card->erase_size || nr % card->erase_size)
2046 		return 0;
2047 	return 1;
2048 }
2049 EXPORT_SYMBOL(mmc_erase_group_aligned);
2050 
2051 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2052 					    unsigned int arg)
2053 {
2054 	struct mmc_host *host = card->host;
2055 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2056 	unsigned int last_timeout = 0;
2057 
2058 	if (card->erase_shift)
2059 		max_qty = UINT_MAX >> card->erase_shift;
2060 	else if (mmc_card_sd(card))
2061 		max_qty = UINT_MAX;
2062 	else
2063 		max_qty = UINT_MAX / card->erase_size;
2064 
2065 	/* Find the largest qty with an OK timeout */
2066 	do {
2067 		y = 0;
2068 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2069 			timeout = mmc_erase_timeout(card, arg, qty + x);
2070 			if (timeout > host->max_discard_to)
2071 				break;
2072 			if (timeout < last_timeout)
2073 				break;
2074 			last_timeout = timeout;
2075 			y = x;
2076 		}
2077 		qty += y;
2078 	} while (y);
2079 
2080 	if (!qty)
2081 		return 0;
2082 
2083 	if (qty == 1)
2084 		return 1;
2085 
2086 	/* Convert qty to sectors */
2087 	if (card->erase_shift)
2088 		max_discard = --qty << card->erase_shift;
2089 	else if (mmc_card_sd(card))
2090 		max_discard = qty;
2091 	else
2092 		max_discard = --qty * card->erase_size;
2093 
2094 	return max_discard;
2095 }
2096 
2097 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2098 {
2099 	struct mmc_host *host = card->host;
2100 	unsigned int max_discard, max_trim;
2101 
2102 	if (!host->max_discard_to)
2103 		return UINT_MAX;
2104 
2105 	/*
2106 	 * Without erase_group_def set, MMC erase timeout depends on clock
2107 	 * frequence which can change.  In that case, the best choice is
2108 	 * just the preferred erase size.
2109 	 */
2110 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2111 		return card->pref_erase;
2112 
2113 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2114 	if (mmc_can_trim(card)) {
2115 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2116 		if (max_trim < max_discard)
2117 			max_discard = max_trim;
2118 	} else if (max_discard < card->erase_size) {
2119 		max_discard = 0;
2120 	}
2121 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2122 		 mmc_hostname(host), max_discard, host->max_discard_to);
2123 	return max_discard;
2124 }
2125 EXPORT_SYMBOL(mmc_calc_max_discard);
2126 
2127 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2128 {
2129 	struct mmc_command cmd = {0};
2130 
2131 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2132 		return 0;
2133 
2134 	cmd.opcode = MMC_SET_BLOCKLEN;
2135 	cmd.arg = blocklen;
2136 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2137 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2138 }
2139 EXPORT_SYMBOL(mmc_set_blocklen);
2140 
2141 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2142 			bool is_rel_write)
2143 {
2144 	struct mmc_command cmd = {0};
2145 
2146 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2147 	cmd.arg = blockcount & 0x0000FFFF;
2148 	if (is_rel_write)
2149 		cmd.arg |= 1 << 31;
2150 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2151 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2152 }
2153 EXPORT_SYMBOL(mmc_set_blockcount);
2154 
2155 static void mmc_hw_reset_for_init(struct mmc_host *host)
2156 {
2157 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2158 		return;
2159 	mmc_host_clk_hold(host);
2160 	host->ops->hw_reset(host);
2161 	mmc_host_clk_release(host);
2162 }
2163 
2164 int mmc_can_reset(struct mmc_card *card)
2165 {
2166 	u8 rst_n_function;
2167 
2168 	if (!mmc_card_mmc(card))
2169 		return 0;
2170 	rst_n_function = card->ext_csd.rst_n_function;
2171 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2172 		return 0;
2173 	return 1;
2174 }
2175 EXPORT_SYMBOL(mmc_can_reset);
2176 
2177 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2178 {
2179 	struct mmc_card *card = host->card;
2180 
2181 	if (!host->bus_ops->power_restore)
2182 		return -EOPNOTSUPP;
2183 
2184 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2185 		return -EOPNOTSUPP;
2186 
2187 	if (!card)
2188 		return -EINVAL;
2189 
2190 	if (!mmc_can_reset(card))
2191 		return -EOPNOTSUPP;
2192 
2193 	mmc_host_clk_hold(host);
2194 	mmc_set_clock(host, host->f_init);
2195 
2196 	host->ops->hw_reset(host);
2197 
2198 	/* If the reset has happened, then a status command will fail */
2199 	if (check) {
2200 		struct mmc_command cmd = {0};
2201 		int err;
2202 
2203 		cmd.opcode = MMC_SEND_STATUS;
2204 		if (!mmc_host_is_spi(card->host))
2205 			cmd.arg = card->rca << 16;
2206 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2207 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2208 		if (!err) {
2209 			mmc_host_clk_release(host);
2210 			return -ENOSYS;
2211 		}
2212 	}
2213 
2214 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2215 	if (mmc_host_is_spi(host)) {
2216 		host->ios.chip_select = MMC_CS_HIGH;
2217 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2218 	} else {
2219 		host->ios.chip_select = MMC_CS_DONTCARE;
2220 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2221 	}
2222 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2223 	host->ios.timing = MMC_TIMING_LEGACY;
2224 	mmc_set_ios(host);
2225 
2226 	mmc_host_clk_release(host);
2227 
2228 	return host->bus_ops->power_restore(host);
2229 }
2230 
2231 int mmc_hw_reset(struct mmc_host *host)
2232 {
2233 	return mmc_do_hw_reset(host, 0);
2234 }
2235 EXPORT_SYMBOL(mmc_hw_reset);
2236 
2237 int mmc_hw_reset_check(struct mmc_host *host)
2238 {
2239 	return mmc_do_hw_reset(host, 1);
2240 }
2241 EXPORT_SYMBOL(mmc_hw_reset_check);
2242 
2243 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2244 {
2245 	host->f_init = freq;
2246 
2247 #ifdef CONFIG_MMC_DEBUG
2248 	pr_info("%s: %s: trying to init card at %u Hz\n",
2249 		mmc_hostname(host), __func__, host->f_init);
2250 #endif
2251 	mmc_power_up(host);
2252 
2253 	/*
2254 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2255 	 * do a hardware reset if possible.
2256 	 */
2257 	mmc_hw_reset_for_init(host);
2258 
2259 	/*
2260 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2261 	 * if the card is being re-initialized, just send it.  CMD52
2262 	 * should be ignored by SD/eMMC cards.
2263 	 */
2264 	sdio_reset(host);
2265 	mmc_go_idle(host);
2266 
2267 	mmc_send_if_cond(host, host->ocr_avail);
2268 
2269 	/* Order's important: probe SDIO, then SD, then MMC */
2270 	if (!mmc_attach_sdio(host))
2271 		return 0;
2272 	if (!mmc_attach_sd(host))
2273 		return 0;
2274 	if (!mmc_attach_mmc(host))
2275 		return 0;
2276 
2277 	mmc_power_off(host);
2278 	return -EIO;
2279 }
2280 
2281 int _mmc_detect_card_removed(struct mmc_host *host)
2282 {
2283 	int ret;
2284 
2285 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2286 		return 0;
2287 
2288 	if (!host->card || mmc_card_removed(host->card))
2289 		return 1;
2290 
2291 	ret = host->bus_ops->alive(host);
2292 
2293 	/*
2294 	 * Card detect status and alive check may be out of sync if card is
2295 	 * removed slowly, when card detect switch changes while card/slot
2296 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2297 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2298 	 * detect work 200ms later for this case.
2299 	 */
2300 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2301 		mmc_detect_change(host, msecs_to_jiffies(200));
2302 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2303 	}
2304 
2305 	if (ret) {
2306 		mmc_card_set_removed(host->card);
2307 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2308 	}
2309 
2310 	return ret;
2311 }
2312 
2313 int mmc_detect_card_removed(struct mmc_host *host)
2314 {
2315 	struct mmc_card *card = host->card;
2316 	int ret;
2317 
2318 	WARN_ON(!host->claimed);
2319 
2320 	if (!card)
2321 		return 1;
2322 
2323 	ret = mmc_card_removed(card);
2324 	/*
2325 	 * The card will be considered unchanged unless we have been asked to
2326 	 * detect a change or host requires polling to provide card detection.
2327 	 */
2328 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2329 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2330 		return ret;
2331 
2332 	host->detect_change = 0;
2333 	if (!ret) {
2334 		ret = _mmc_detect_card_removed(host);
2335 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2336 			/*
2337 			 * Schedule a detect work as soon as possible to let a
2338 			 * rescan handle the card removal.
2339 			 */
2340 			cancel_delayed_work(&host->detect);
2341 			mmc_detect_change(host, 0);
2342 		}
2343 	}
2344 
2345 	return ret;
2346 }
2347 EXPORT_SYMBOL(mmc_detect_card_removed);
2348 
2349 void mmc_rescan(struct work_struct *work)
2350 {
2351 	struct mmc_host *host =
2352 		container_of(work, struct mmc_host, detect.work);
2353 	int i;
2354 
2355 	if (host->rescan_disable)
2356 		return;
2357 
2358 	/* If there is a non-removable card registered, only scan once */
2359 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2360 		return;
2361 	host->rescan_entered = 1;
2362 
2363 	mmc_bus_get(host);
2364 
2365 	/*
2366 	 * if there is a _removable_ card registered, check whether it is
2367 	 * still present
2368 	 */
2369 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2370 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2371 		host->bus_ops->detect(host);
2372 
2373 	host->detect_change = 0;
2374 
2375 	/*
2376 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2377 	 * the card is no longer present.
2378 	 */
2379 	mmc_bus_put(host);
2380 	mmc_bus_get(host);
2381 
2382 	/* if there still is a card present, stop here */
2383 	if (host->bus_ops != NULL) {
2384 		mmc_bus_put(host);
2385 		goto out;
2386 	}
2387 
2388 	/*
2389 	 * Only we can add a new handler, so it's safe to
2390 	 * release the lock here.
2391 	 */
2392 	mmc_bus_put(host);
2393 
2394 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2395 		mmc_claim_host(host);
2396 		mmc_power_off(host);
2397 		mmc_release_host(host);
2398 		goto out;
2399 	}
2400 
2401 	mmc_claim_host(host);
2402 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2403 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2404 			break;
2405 		if (freqs[i] <= host->f_min)
2406 			break;
2407 	}
2408 	mmc_release_host(host);
2409 
2410  out:
2411 	if (host->caps & MMC_CAP_NEEDS_POLL)
2412 		mmc_schedule_delayed_work(&host->detect, HZ);
2413 }
2414 
2415 void mmc_start_host(struct mmc_host *host)
2416 {
2417 	host->f_init = max(freqs[0], host->f_min);
2418 	host->rescan_disable = 0;
2419 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2420 		mmc_power_off(host);
2421 	else
2422 		mmc_power_up(host);
2423 	mmc_detect_change(host, 0);
2424 }
2425 
2426 void mmc_stop_host(struct mmc_host *host)
2427 {
2428 #ifdef CONFIG_MMC_DEBUG
2429 	unsigned long flags;
2430 	spin_lock_irqsave(&host->lock, flags);
2431 	host->removed = 1;
2432 	spin_unlock_irqrestore(&host->lock, flags);
2433 #endif
2434 
2435 	host->rescan_disable = 1;
2436 	cancel_delayed_work_sync(&host->detect);
2437 	mmc_flush_scheduled_work();
2438 
2439 	/* clear pm flags now and let card drivers set them as needed */
2440 	host->pm_flags = 0;
2441 
2442 	mmc_bus_get(host);
2443 	if (host->bus_ops && !host->bus_dead) {
2444 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2445 		if (host->bus_ops->remove)
2446 			host->bus_ops->remove(host);
2447 
2448 		mmc_claim_host(host);
2449 		mmc_detach_bus(host);
2450 		mmc_power_off(host);
2451 		mmc_release_host(host);
2452 		mmc_bus_put(host);
2453 		return;
2454 	}
2455 	mmc_bus_put(host);
2456 
2457 	BUG_ON(host->card);
2458 
2459 	mmc_power_off(host);
2460 }
2461 
2462 int mmc_power_save_host(struct mmc_host *host)
2463 {
2464 	int ret = 0;
2465 
2466 #ifdef CONFIG_MMC_DEBUG
2467 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2468 #endif
2469 
2470 	mmc_bus_get(host);
2471 
2472 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2473 		mmc_bus_put(host);
2474 		return -EINVAL;
2475 	}
2476 
2477 	if (host->bus_ops->power_save)
2478 		ret = host->bus_ops->power_save(host);
2479 
2480 	mmc_bus_put(host);
2481 
2482 	mmc_power_off(host);
2483 
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL(mmc_power_save_host);
2487 
2488 int mmc_power_restore_host(struct mmc_host *host)
2489 {
2490 	int ret;
2491 
2492 #ifdef CONFIG_MMC_DEBUG
2493 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2494 #endif
2495 
2496 	mmc_bus_get(host);
2497 
2498 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2499 		mmc_bus_put(host);
2500 		return -EINVAL;
2501 	}
2502 
2503 	mmc_power_up(host);
2504 	ret = host->bus_ops->power_restore(host);
2505 
2506 	mmc_bus_put(host);
2507 
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL(mmc_power_restore_host);
2511 
2512 int mmc_card_awake(struct mmc_host *host)
2513 {
2514 	int err = -ENOSYS;
2515 
2516 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2517 		return 0;
2518 
2519 	mmc_bus_get(host);
2520 
2521 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2522 		err = host->bus_ops->awake(host);
2523 
2524 	mmc_bus_put(host);
2525 
2526 	return err;
2527 }
2528 EXPORT_SYMBOL(mmc_card_awake);
2529 
2530 int mmc_card_sleep(struct mmc_host *host)
2531 {
2532 	int err = -ENOSYS;
2533 
2534 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2535 		return 0;
2536 
2537 	mmc_bus_get(host);
2538 
2539 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2540 		err = host->bus_ops->sleep(host);
2541 
2542 	mmc_bus_put(host);
2543 
2544 	return err;
2545 }
2546 EXPORT_SYMBOL(mmc_card_sleep);
2547 
2548 int mmc_card_can_sleep(struct mmc_host *host)
2549 {
2550 	struct mmc_card *card = host->card;
2551 
2552 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2553 		return 1;
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(mmc_card_can_sleep);
2557 
2558 /*
2559  * Flush the cache to the non-volatile storage.
2560  */
2561 int mmc_flush_cache(struct mmc_card *card)
2562 {
2563 	struct mmc_host *host = card->host;
2564 	int err = 0;
2565 
2566 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2567 		return err;
2568 
2569 	if (mmc_card_mmc(card) &&
2570 			(card->ext_csd.cache_size > 0) &&
2571 			(card->ext_csd.cache_ctrl & 1)) {
2572 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2573 				EXT_CSD_FLUSH_CACHE, 1, 0);
2574 		if (err)
2575 			pr_err("%s: cache flush error %d\n",
2576 					mmc_hostname(card->host), err);
2577 	}
2578 
2579 	return err;
2580 }
2581 EXPORT_SYMBOL(mmc_flush_cache);
2582 
2583 /*
2584  * Turn the cache ON/OFF.
2585  * Turning the cache OFF shall trigger flushing of the data
2586  * to the non-volatile storage.
2587  * This function should be called with host claimed
2588  */
2589 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2590 {
2591 	struct mmc_card *card = host->card;
2592 	unsigned int timeout;
2593 	int err = 0;
2594 
2595 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2596 			mmc_card_is_removable(host))
2597 		return err;
2598 
2599 	if (card && mmc_card_mmc(card) &&
2600 			(card->ext_csd.cache_size > 0)) {
2601 		enable = !!enable;
2602 
2603 		if (card->ext_csd.cache_ctrl ^ enable) {
2604 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2605 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2606 					EXT_CSD_CACHE_CTRL, enable, timeout);
2607 			if (err)
2608 				pr_err("%s: cache %s error %d\n",
2609 						mmc_hostname(card->host),
2610 						enable ? "on" : "off",
2611 						err);
2612 			else
2613 				card->ext_csd.cache_ctrl = enable;
2614 		}
2615 	}
2616 
2617 	return err;
2618 }
2619 EXPORT_SYMBOL(mmc_cache_ctrl);
2620 
2621 #ifdef CONFIG_PM
2622 
2623 /**
2624  *	mmc_suspend_host - suspend a host
2625  *	@host: mmc host
2626  */
2627 int mmc_suspend_host(struct mmc_host *host)
2628 {
2629 	int err = 0;
2630 
2631 	cancel_delayed_work(&host->detect);
2632 	mmc_flush_scheduled_work();
2633 
2634 	mmc_bus_get(host);
2635 	if (host->bus_ops && !host->bus_dead) {
2636 		if (host->bus_ops->suspend) {
2637 			if (mmc_card_doing_bkops(host->card)) {
2638 				err = mmc_stop_bkops(host->card);
2639 				if (err)
2640 					goto out;
2641 			}
2642 			err = host->bus_ops->suspend(host);
2643 		}
2644 
2645 		if (err == -ENOSYS || !host->bus_ops->resume) {
2646 			/*
2647 			 * We simply "remove" the card in this case.
2648 			 * It will be redetected on resume.  (Calling
2649 			 * bus_ops->remove() with a claimed host can
2650 			 * deadlock.)
2651 			 */
2652 			if (host->bus_ops->remove)
2653 				host->bus_ops->remove(host);
2654 			mmc_claim_host(host);
2655 			mmc_detach_bus(host);
2656 			mmc_power_off(host);
2657 			mmc_release_host(host);
2658 			host->pm_flags = 0;
2659 			err = 0;
2660 		}
2661 	}
2662 	mmc_bus_put(host);
2663 
2664 	if (!err && !mmc_card_keep_power(host))
2665 		mmc_power_off(host);
2666 
2667 out:
2668 	return err;
2669 }
2670 
2671 EXPORT_SYMBOL(mmc_suspend_host);
2672 
2673 /**
2674  *	mmc_resume_host - resume a previously suspended host
2675  *	@host: mmc host
2676  */
2677 int mmc_resume_host(struct mmc_host *host)
2678 {
2679 	int err = 0;
2680 
2681 	mmc_bus_get(host);
2682 	if (host->bus_ops && !host->bus_dead) {
2683 		if (!mmc_card_keep_power(host)) {
2684 			mmc_power_up(host);
2685 			mmc_select_voltage(host, host->ocr);
2686 			/*
2687 			 * Tell runtime PM core we just powered up the card,
2688 			 * since it still believes the card is powered off.
2689 			 * Note that currently runtime PM is only enabled
2690 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2691 			 */
2692 			if (mmc_card_sdio(host->card) &&
2693 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2694 				pm_runtime_disable(&host->card->dev);
2695 				pm_runtime_set_active(&host->card->dev);
2696 				pm_runtime_enable(&host->card->dev);
2697 			}
2698 		}
2699 		BUG_ON(!host->bus_ops->resume);
2700 		err = host->bus_ops->resume(host);
2701 		if (err) {
2702 			pr_warning("%s: error %d during resume "
2703 					    "(card was removed?)\n",
2704 					    mmc_hostname(host), err);
2705 			err = 0;
2706 		}
2707 	}
2708 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2709 	mmc_bus_put(host);
2710 
2711 	return err;
2712 }
2713 EXPORT_SYMBOL(mmc_resume_host);
2714 
2715 /* Do the card removal on suspend if card is assumed removeable
2716  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2717    to sync the card.
2718 */
2719 int mmc_pm_notify(struct notifier_block *notify_block,
2720 					unsigned long mode, void *unused)
2721 {
2722 	struct mmc_host *host = container_of(
2723 		notify_block, struct mmc_host, pm_notify);
2724 	unsigned long flags;
2725 	int err = 0;
2726 
2727 	switch (mode) {
2728 	case PM_HIBERNATION_PREPARE:
2729 	case PM_SUSPEND_PREPARE:
2730 		if (host->card && mmc_card_mmc(host->card) &&
2731 		    mmc_card_doing_bkops(host->card)) {
2732 			err = mmc_stop_bkops(host->card);
2733 			if (err) {
2734 				pr_err("%s: didn't stop bkops\n",
2735 					mmc_hostname(host));
2736 				return err;
2737 			}
2738 			mmc_card_clr_doing_bkops(host->card);
2739 		}
2740 
2741 		spin_lock_irqsave(&host->lock, flags);
2742 		host->rescan_disable = 1;
2743 		spin_unlock_irqrestore(&host->lock, flags);
2744 		cancel_delayed_work_sync(&host->detect);
2745 
2746 		if (!host->bus_ops || host->bus_ops->suspend)
2747 			break;
2748 
2749 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2750 		if (host->bus_ops->remove)
2751 			host->bus_ops->remove(host);
2752 
2753 		mmc_claim_host(host);
2754 		mmc_detach_bus(host);
2755 		mmc_power_off(host);
2756 		mmc_release_host(host);
2757 		host->pm_flags = 0;
2758 		break;
2759 
2760 	case PM_POST_SUSPEND:
2761 	case PM_POST_HIBERNATION:
2762 	case PM_POST_RESTORE:
2763 
2764 		spin_lock_irqsave(&host->lock, flags);
2765 		host->rescan_disable = 0;
2766 		spin_unlock_irqrestore(&host->lock, flags);
2767 		mmc_detect_change(host, 0);
2768 
2769 	}
2770 
2771 	return 0;
2772 }
2773 #endif
2774 
2775 /**
2776  * mmc_init_context_info() - init synchronization context
2777  * @host: mmc host
2778  *
2779  * Init struct context_info needed to implement asynchronous
2780  * request mechanism, used by mmc core, host driver and mmc requests
2781  * supplier.
2782  */
2783 void mmc_init_context_info(struct mmc_host *host)
2784 {
2785 	spin_lock_init(&host->context_info.lock);
2786 	host->context_info.is_new_req = false;
2787 	host->context_info.is_done_rcv = false;
2788 	host->context_info.is_waiting_last_req = false;
2789 	init_waitqueue_head(&host->context_info.wait);
2790 }
2791 
2792 static int __init mmc_init(void)
2793 {
2794 	int ret;
2795 
2796 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2797 	if (!workqueue)
2798 		return -ENOMEM;
2799 
2800 	ret = mmc_register_bus();
2801 	if (ret)
2802 		goto destroy_workqueue;
2803 
2804 	ret = mmc_register_host_class();
2805 	if (ret)
2806 		goto unregister_bus;
2807 
2808 	ret = sdio_register_bus();
2809 	if (ret)
2810 		goto unregister_host_class;
2811 
2812 	return 0;
2813 
2814 unregister_host_class:
2815 	mmc_unregister_host_class();
2816 unregister_bus:
2817 	mmc_unregister_bus();
2818 destroy_workqueue:
2819 	destroy_workqueue(workqueue);
2820 
2821 	return ret;
2822 }
2823 
2824 static void __exit mmc_exit(void)
2825 {
2826 	sdio_unregister_bus();
2827 	mmc_unregister_host_class();
2828 	mmc_unregister_bus();
2829 	destroy_workqueue(workqueue);
2830 }
2831 
2832 subsys_initcall(mmc_init);
2833 module_exit(mmc_exit);
2834 
2835 MODULE_LICENSE("GPL");
2836