xref: /openbmc/linux/drivers/mmc/core/core.c (revision ee8a99bd)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35 
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40 
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44 
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
47 
48 /*
49  * Background operations can take a long time, depending on the housekeeping
50  * operations the card has to perform.
51  */
52 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
53 
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56 
57 /*
58  * Enabling software CRCs on the data blocks can be a significant (30%)
59  * performance cost, and for other reasons may not always be desired.
60  * So we allow it it to be disabled.
61  */
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
64 
65 /*
66  * We normally treat cards as removed during suspend if they are not
67  * known to be on a non-removable bus, to avoid the risk of writing
68  * back data to a different card after resume.  Allow this to be
69  * overridden if necessary.
70  */
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 	removable,
80 	"MMC/SD cards are removable and may be removed during suspend");
81 
82 /*
83  * Internal function. Schedule delayed work in the MMC work queue.
84  */
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 				     unsigned long delay)
87 {
88 	return queue_delayed_work(workqueue, work, delay);
89 }
90 
91 /*
92  * Internal function. Flush all scheduled work from the MMC work queue.
93  */
94 static void mmc_flush_scheduled_work(void)
95 {
96 	flush_workqueue(workqueue);
97 }
98 
99 #ifdef CONFIG_FAIL_MMC_REQUEST
100 
101 /*
102  * Internal function. Inject random data errors.
103  * If mmc_data is NULL no errors are injected.
104  */
105 static void mmc_should_fail_request(struct mmc_host *host,
106 				    struct mmc_request *mrq)
107 {
108 	struct mmc_command *cmd = mrq->cmd;
109 	struct mmc_data *data = mrq->data;
110 	static const int data_errors[] = {
111 		-ETIMEDOUT,
112 		-EILSEQ,
113 		-EIO,
114 	};
115 
116 	if (!data)
117 		return;
118 
119 	if (cmd->error || data->error ||
120 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 		return;
122 
123 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
124 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
125 }
126 
127 #else /* CONFIG_FAIL_MMC_REQUEST */
128 
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 					   struct mmc_request *mrq)
131 {
132 }
133 
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	if (err && cmd->retries && mmc_host_is_spi(host)) {
150 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 			cmd->retries = 0;
152 	}
153 
154 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 		/*
156 		 * Request starter must handle retries - see
157 		 * mmc_wait_for_req_done().
158 		 */
159 		if (mrq->done)
160 			mrq->done(mrq);
161 	} else {
162 		mmc_should_fail_request(host, mrq);
163 
164 		led_trigger_event(host->led, LED_OFF);
165 
166 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 			mmc_hostname(host), cmd->opcode, err,
168 			cmd->resp[0], cmd->resp[1],
169 			cmd->resp[2], cmd->resp[3]);
170 
171 		if (mrq->data) {
172 			pr_debug("%s:     %d bytes transferred: %d\n",
173 				mmc_hostname(host),
174 				mrq->data->bytes_xfered, mrq->data->error);
175 		}
176 
177 		if (mrq->stop) {
178 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
179 				mmc_hostname(host), mrq->stop->opcode,
180 				mrq->stop->error,
181 				mrq->stop->resp[0], mrq->stop->resp[1],
182 				mrq->stop->resp[2], mrq->stop->resp[3]);
183 		}
184 
185 		if (mrq->done)
186 			mrq->done(mrq);
187 
188 		mmc_host_clk_release(host);
189 	}
190 }
191 
192 EXPORT_SYMBOL(mmc_request_done);
193 
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 #ifdef CONFIG_MMC_DEBUG
198 	unsigned int i, sz;
199 	struct scatterlist *sg;
200 #endif
201 
202 	if (mrq->sbc) {
203 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 			 mmc_hostname(host), mrq->sbc->opcode,
205 			 mrq->sbc->arg, mrq->sbc->flags);
206 	}
207 
208 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 		 mmc_hostname(host), mrq->cmd->opcode,
210 		 mrq->cmd->arg, mrq->cmd->flags);
211 
212 	if (mrq->data) {
213 		pr_debug("%s:     blksz %d blocks %d flags %08x "
214 			"tsac %d ms nsac %d\n",
215 			mmc_hostname(host), mrq->data->blksz,
216 			mrq->data->blocks, mrq->data->flags,
217 			mrq->data->timeout_ns / 1000000,
218 			mrq->data->timeout_clks);
219 	}
220 
221 	if (mrq->stop) {
222 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
223 			 mmc_hostname(host), mrq->stop->opcode,
224 			 mrq->stop->arg, mrq->stop->flags);
225 	}
226 
227 	WARN_ON(!host->claimed);
228 
229 	mrq->cmd->error = 0;
230 	mrq->cmd->mrq = mrq;
231 	if (mrq->data) {
232 		BUG_ON(mrq->data->blksz > host->max_blk_size);
233 		BUG_ON(mrq->data->blocks > host->max_blk_count);
234 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 			host->max_req_size);
236 
237 #ifdef CONFIG_MMC_DEBUG
238 		sz = 0;
239 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 			sz += sg->length;
241 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243 
244 		mrq->cmd->data = mrq->data;
245 		mrq->data->error = 0;
246 		mrq->data->mrq = mrq;
247 		if (mrq->stop) {
248 			mrq->data->stop = mrq->stop;
249 			mrq->stop->error = 0;
250 			mrq->stop->mrq = mrq;
251 		}
252 	}
253 	mmc_host_clk_hold(host);
254 	led_trigger_event(host->led, LED_FULL);
255 	host->ops->request(host, mrq);
256 }
257 
258 /**
259  *	mmc_start_bkops - start BKOPS for supported cards
260  *	@card: MMC card to start BKOPS
261  *	@form_exception: A flag to indicate if this function was
262  *			 called due to an exception raised by the card
263  *
264  *	Start background operations whenever requested.
265  *	When the urgent BKOPS bit is set in a R1 command response
266  *	then background operations should be started immediately.
267 */
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269 {
270 	int err;
271 	int timeout;
272 	bool use_busy_signal;
273 
274 	BUG_ON(!card);
275 
276 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 		return;
278 
279 	err = mmc_read_bkops_status(card);
280 	if (err) {
281 		pr_err("%s: Failed to read bkops status: %d\n",
282 		       mmc_hostname(card->host), err);
283 		return;
284 	}
285 
286 	if (!card->ext_csd.raw_bkops_status)
287 		return;
288 
289 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 	    from_exception)
291 		return;
292 
293 	mmc_claim_host(card->host);
294 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 		timeout = MMC_BKOPS_MAX_TIMEOUT;
296 		use_busy_signal = true;
297 	} else {
298 		timeout = 0;
299 		use_busy_signal = false;
300 	}
301 
302 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 			EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 	if (err) {
305 		pr_warn("%s: Error %d starting bkops\n",
306 			mmc_hostname(card->host), err);
307 		goto out;
308 	}
309 
310 	/*
311 	 * For urgent bkops status (LEVEL_2 and more)
312 	 * bkops executed synchronously, otherwise
313 	 * the operation is in progress
314 	 */
315 	if (!use_busy_signal)
316 		mmc_card_set_doing_bkops(card);
317 out:
318 	mmc_release_host(card->host);
319 }
320 EXPORT_SYMBOL(mmc_start_bkops);
321 
322 /*
323  * mmc_wait_data_done() - done callback for data request
324  * @mrq: done data request
325  *
326  * Wakes up mmc context, passed as a callback to host controller driver
327  */
328 static void mmc_wait_data_done(struct mmc_request *mrq)
329 {
330 	mrq->host->context_info.is_done_rcv = true;
331 	wake_up_interruptible(&mrq->host->context_info.wait);
332 }
333 
334 static void mmc_wait_done(struct mmc_request *mrq)
335 {
336 	complete(&mrq->completion);
337 }
338 
339 /*
340  *__mmc_start_data_req() - starts data request
341  * @host: MMC host to start the request
342  * @mrq: data request to start
343  *
344  * Sets the done callback to be called when request is completed by the card.
345  * Starts data mmc request execution
346  */
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
348 {
349 	mrq->done = mmc_wait_data_done;
350 	mrq->host = host;
351 	if (mmc_card_removed(host->card)) {
352 		mrq->cmd->error = -ENOMEDIUM;
353 		mmc_wait_data_done(mrq);
354 		return -ENOMEDIUM;
355 	}
356 	mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
362 {
363 	init_completion(&mrq->completion);
364 	mrq->done = mmc_wait_done;
365 	if (mmc_card_removed(host->card)) {
366 		mrq->cmd->error = -ENOMEDIUM;
367 		complete(&mrq->completion);
368 		return -ENOMEDIUM;
369 	}
370 	mmc_start_request(host, mrq);
371 	return 0;
372 }
373 
374 /*
375  * mmc_wait_for_data_req_done() - wait for request completed
376  * @host: MMC host to prepare the command.
377  * @mrq: MMC request to wait for
378  *
379  * Blocks MMC context till host controller will ack end of data request
380  * execution or new request notification arrives from the block layer.
381  * Handles command retries.
382  *
383  * Returns enum mmc_blk_status after checking errors.
384  */
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 				      struct mmc_request *mrq,
387 				      struct mmc_async_req *next_req)
388 {
389 	struct mmc_command *cmd;
390 	struct mmc_context_info *context_info = &host->context_info;
391 	int err;
392 	unsigned long flags;
393 
394 	while (1) {
395 		wait_event_interruptible(context_info->wait,
396 				(context_info->is_done_rcv ||
397 				 context_info->is_new_req));
398 		spin_lock_irqsave(&context_info->lock, flags);
399 		context_info->is_waiting_last_req = false;
400 		spin_unlock_irqrestore(&context_info->lock, flags);
401 		if (context_info->is_done_rcv) {
402 			context_info->is_done_rcv = false;
403 			context_info->is_new_req = false;
404 			cmd = mrq->cmd;
405 
406 			if (!cmd->error || !cmd->retries ||
407 			    mmc_card_removed(host->card)) {
408 				err = host->areq->err_check(host->card,
409 							    host->areq);
410 				break; /* return err */
411 			} else {
412 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
413 					mmc_hostname(host),
414 					cmd->opcode, cmd->error);
415 				cmd->retries--;
416 				cmd->error = 0;
417 				host->ops->request(host, mrq);
418 				continue; /* wait for done/new event again */
419 			}
420 		} else if (context_info->is_new_req) {
421 			context_info->is_new_req = false;
422 			if (!next_req) {
423 				err = MMC_BLK_NEW_REQUEST;
424 				break; /* return err */
425 			}
426 		}
427 	}
428 	return err;
429 }
430 
431 static void mmc_wait_for_req_done(struct mmc_host *host,
432 				  struct mmc_request *mrq)
433 {
434 	struct mmc_command *cmd;
435 
436 	while (1) {
437 		wait_for_completion(&mrq->completion);
438 
439 		cmd = mrq->cmd;
440 
441 		/*
442 		 * If host has timed out waiting for the sanitize
443 		 * to complete, card might be still in programming state
444 		 * so let's try to bring the card out of programming
445 		 * state.
446 		 */
447 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
448 			if (!mmc_interrupt_hpi(host->card)) {
449 				pr_warning("%s: %s: Interrupted sanitize\n",
450 					   mmc_hostname(host), __func__);
451 				cmd->error = 0;
452 				break;
453 			} else {
454 				pr_err("%s: %s: Failed to interrupt sanitize\n",
455 				       mmc_hostname(host), __func__);
456 			}
457 		}
458 		if (!cmd->error || !cmd->retries ||
459 		    mmc_card_removed(host->card))
460 			break;
461 
462 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
463 			 mmc_hostname(host), cmd->opcode, cmd->error);
464 		cmd->retries--;
465 		cmd->error = 0;
466 		host->ops->request(host, mrq);
467 	}
468 }
469 
470 /**
471  *	mmc_pre_req - Prepare for a new request
472  *	@host: MMC host to prepare command
473  *	@mrq: MMC request to prepare for
474  *	@is_first_req: true if there is no previous started request
475  *                     that may run in parellel to this call, otherwise false
476  *
477  *	mmc_pre_req() is called in prior to mmc_start_req() to let
478  *	host prepare for the new request. Preparation of a request may be
479  *	performed while another request is running on the host.
480  */
481 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
482 		 bool is_first_req)
483 {
484 	if (host->ops->pre_req) {
485 		mmc_host_clk_hold(host);
486 		host->ops->pre_req(host, mrq, is_first_req);
487 		mmc_host_clk_release(host);
488 	}
489 }
490 
491 /**
492  *	mmc_post_req - Post process a completed request
493  *	@host: MMC host to post process command
494  *	@mrq: MMC request to post process for
495  *	@err: Error, if non zero, clean up any resources made in pre_req
496  *
497  *	Let the host post process a completed request. Post processing of
498  *	a request may be performed while another reuqest is running.
499  */
500 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
501 			 int err)
502 {
503 	if (host->ops->post_req) {
504 		mmc_host_clk_hold(host);
505 		host->ops->post_req(host, mrq, err);
506 		mmc_host_clk_release(host);
507 	}
508 }
509 
510 /**
511  *	mmc_start_req - start a non-blocking request
512  *	@host: MMC host to start command
513  *	@areq: async request to start
514  *	@error: out parameter returns 0 for success, otherwise non zero
515  *
516  *	Start a new MMC custom command request for a host.
517  *	If there is on ongoing async request wait for completion
518  *	of that request and start the new one and return.
519  *	Does not wait for the new request to complete.
520  *
521  *      Returns the completed request, NULL in case of none completed.
522  *	Wait for the an ongoing request (previoulsy started) to complete and
523  *	return the completed request. If there is no ongoing request, NULL
524  *	is returned without waiting. NULL is not an error condition.
525  */
526 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
527 				    struct mmc_async_req *areq, int *error)
528 {
529 	int err = 0;
530 	int start_err = 0;
531 	struct mmc_async_req *data = host->areq;
532 
533 	/* Prepare a new request */
534 	if (areq)
535 		mmc_pre_req(host, areq->mrq, !host->areq);
536 
537 	if (host->areq) {
538 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
539 		if (err == MMC_BLK_NEW_REQUEST) {
540 			if (error)
541 				*error = err;
542 			/*
543 			 * The previous request was not completed,
544 			 * nothing to return
545 			 */
546 			return NULL;
547 		}
548 		/*
549 		 * Check BKOPS urgency for each R1 response
550 		 */
551 		if (host->card && mmc_card_mmc(host->card) &&
552 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
553 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
554 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
555 			mmc_start_bkops(host->card, true);
556 	}
557 
558 	if (!err && areq)
559 		start_err = __mmc_start_data_req(host, areq->mrq);
560 
561 	if (host->areq)
562 		mmc_post_req(host, host->areq->mrq, 0);
563 
564 	 /* Cancel a prepared request if it was not started. */
565 	if ((err || start_err) && areq)
566 		mmc_post_req(host, areq->mrq, -EINVAL);
567 
568 	if (err)
569 		host->areq = NULL;
570 	else
571 		host->areq = areq;
572 
573 	if (error)
574 		*error = err;
575 	return data;
576 }
577 EXPORT_SYMBOL(mmc_start_req);
578 
579 /**
580  *	mmc_wait_for_req - start a request and wait for completion
581  *	@host: MMC host to start command
582  *	@mrq: MMC request to start
583  *
584  *	Start a new MMC custom command request for a host, and wait
585  *	for the command to complete. Does not attempt to parse the
586  *	response.
587  */
588 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
589 {
590 	__mmc_start_req(host, mrq);
591 	mmc_wait_for_req_done(host, mrq);
592 }
593 EXPORT_SYMBOL(mmc_wait_for_req);
594 
595 /**
596  *	mmc_interrupt_hpi - Issue for High priority Interrupt
597  *	@card: the MMC card associated with the HPI transfer
598  *
599  *	Issued High Priority Interrupt, and check for card status
600  *	until out-of prg-state.
601  */
602 int mmc_interrupt_hpi(struct mmc_card *card)
603 {
604 	int err;
605 	u32 status;
606 	unsigned long prg_wait;
607 
608 	BUG_ON(!card);
609 
610 	if (!card->ext_csd.hpi_en) {
611 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
612 		return 1;
613 	}
614 
615 	mmc_claim_host(card->host);
616 	err = mmc_send_status(card, &status);
617 	if (err) {
618 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
619 		goto out;
620 	}
621 
622 	switch (R1_CURRENT_STATE(status)) {
623 	case R1_STATE_IDLE:
624 	case R1_STATE_READY:
625 	case R1_STATE_STBY:
626 	case R1_STATE_TRAN:
627 		/*
628 		 * In idle and transfer states, HPI is not needed and the caller
629 		 * can issue the next intended command immediately
630 		 */
631 		goto out;
632 	case R1_STATE_PRG:
633 		break;
634 	default:
635 		/* In all other states, it's illegal to issue HPI */
636 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
637 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
638 		err = -EINVAL;
639 		goto out;
640 	}
641 
642 	err = mmc_send_hpi_cmd(card, &status);
643 	if (err)
644 		goto out;
645 
646 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
647 	do {
648 		err = mmc_send_status(card, &status);
649 
650 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
651 			break;
652 		if (time_after(jiffies, prg_wait))
653 			err = -ETIMEDOUT;
654 	} while (!err);
655 
656 out:
657 	mmc_release_host(card->host);
658 	return err;
659 }
660 EXPORT_SYMBOL(mmc_interrupt_hpi);
661 
662 /**
663  *	mmc_wait_for_cmd - start a command and wait for completion
664  *	@host: MMC host to start command
665  *	@cmd: MMC command to start
666  *	@retries: maximum number of retries
667  *
668  *	Start a new MMC command for a host, and wait for the command
669  *	to complete.  Return any error that occurred while the command
670  *	was executing.  Do not attempt to parse the response.
671  */
672 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
673 {
674 	struct mmc_request mrq = {NULL};
675 
676 	WARN_ON(!host->claimed);
677 
678 	memset(cmd->resp, 0, sizeof(cmd->resp));
679 	cmd->retries = retries;
680 
681 	mrq.cmd = cmd;
682 	cmd->data = NULL;
683 
684 	mmc_wait_for_req(host, &mrq);
685 
686 	return cmd->error;
687 }
688 
689 EXPORT_SYMBOL(mmc_wait_for_cmd);
690 
691 /**
692  *	mmc_stop_bkops - stop ongoing BKOPS
693  *	@card: MMC card to check BKOPS
694  *
695  *	Send HPI command to stop ongoing background operations to
696  *	allow rapid servicing of foreground operations, e.g. read/
697  *	writes. Wait until the card comes out of the programming state
698  *	to avoid errors in servicing read/write requests.
699  */
700 int mmc_stop_bkops(struct mmc_card *card)
701 {
702 	int err = 0;
703 
704 	BUG_ON(!card);
705 	err = mmc_interrupt_hpi(card);
706 
707 	/*
708 	 * If err is EINVAL, we can't issue an HPI.
709 	 * It should complete the BKOPS.
710 	 */
711 	if (!err || (err == -EINVAL)) {
712 		mmc_card_clr_doing_bkops(card);
713 		err = 0;
714 	}
715 
716 	return err;
717 }
718 EXPORT_SYMBOL(mmc_stop_bkops);
719 
720 int mmc_read_bkops_status(struct mmc_card *card)
721 {
722 	int err;
723 	u8 *ext_csd;
724 
725 	/*
726 	 * In future work, we should consider storing the entire ext_csd.
727 	 */
728 	ext_csd = kmalloc(512, GFP_KERNEL);
729 	if (!ext_csd) {
730 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
731 		       mmc_hostname(card->host));
732 		return -ENOMEM;
733 	}
734 
735 	mmc_claim_host(card->host);
736 	err = mmc_send_ext_csd(card, ext_csd);
737 	mmc_release_host(card->host);
738 	if (err)
739 		goto out;
740 
741 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
742 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
743 out:
744 	kfree(ext_csd);
745 	return err;
746 }
747 EXPORT_SYMBOL(mmc_read_bkops_status);
748 
749 /**
750  *	mmc_set_data_timeout - set the timeout for a data command
751  *	@data: data phase for command
752  *	@card: the MMC card associated with the data transfer
753  *
754  *	Computes the data timeout parameters according to the
755  *	correct algorithm given the card type.
756  */
757 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
758 {
759 	unsigned int mult;
760 
761 	/*
762 	 * SDIO cards only define an upper 1 s limit on access.
763 	 */
764 	if (mmc_card_sdio(card)) {
765 		data->timeout_ns = 1000000000;
766 		data->timeout_clks = 0;
767 		return;
768 	}
769 
770 	/*
771 	 * SD cards use a 100 multiplier rather than 10
772 	 */
773 	mult = mmc_card_sd(card) ? 100 : 10;
774 
775 	/*
776 	 * Scale up the multiplier (and therefore the timeout) by
777 	 * the r2w factor for writes.
778 	 */
779 	if (data->flags & MMC_DATA_WRITE)
780 		mult <<= card->csd.r2w_factor;
781 
782 	data->timeout_ns = card->csd.tacc_ns * mult;
783 	data->timeout_clks = card->csd.tacc_clks * mult;
784 
785 	/*
786 	 * SD cards also have an upper limit on the timeout.
787 	 */
788 	if (mmc_card_sd(card)) {
789 		unsigned int timeout_us, limit_us;
790 
791 		timeout_us = data->timeout_ns / 1000;
792 		if (mmc_host_clk_rate(card->host))
793 			timeout_us += data->timeout_clks * 1000 /
794 				(mmc_host_clk_rate(card->host) / 1000);
795 
796 		if (data->flags & MMC_DATA_WRITE)
797 			/*
798 			 * The MMC spec "It is strongly recommended
799 			 * for hosts to implement more than 500ms
800 			 * timeout value even if the card indicates
801 			 * the 250ms maximum busy length."  Even the
802 			 * previous value of 300ms is known to be
803 			 * insufficient for some cards.
804 			 */
805 			limit_us = 3000000;
806 		else
807 			limit_us = 100000;
808 
809 		/*
810 		 * SDHC cards always use these fixed values.
811 		 */
812 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
813 			data->timeout_ns = limit_us * 1000;
814 			data->timeout_clks = 0;
815 		}
816 	}
817 
818 	/*
819 	 * Some cards require longer data read timeout than indicated in CSD.
820 	 * Address this by setting the read timeout to a "reasonably high"
821 	 * value. For the cards tested, 300ms has proven enough. If necessary,
822 	 * this value can be increased if other problematic cards require this.
823 	 */
824 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
825 		data->timeout_ns = 300000000;
826 		data->timeout_clks = 0;
827 	}
828 
829 	/*
830 	 * Some cards need very high timeouts if driven in SPI mode.
831 	 * The worst observed timeout was 900ms after writing a
832 	 * continuous stream of data until the internal logic
833 	 * overflowed.
834 	 */
835 	if (mmc_host_is_spi(card->host)) {
836 		if (data->flags & MMC_DATA_WRITE) {
837 			if (data->timeout_ns < 1000000000)
838 				data->timeout_ns = 1000000000;	/* 1s */
839 		} else {
840 			if (data->timeout_ns < 100000000)
841 				data->timeout_ns =  100000000;	/* 100ms */
842 		}
843 	}
844 }
845 EXPORT_SYMBOL(mmc_set_data_timeout);
846 
847 /**
848  *	mmc_align_data_size - pads a transfer size to a more optimal value
849  *	@card: the MMC card associated with the data transfer
850  *	@sz: original transfer size
851  *
852  *	Pads the original data size with a number of extra bytes in
853  *	order to avoid controller bugs and/or performance hits
854  *	(e.g. some controllers revert to PIO for certain sizes).
855  *
856  *	Returns the improved size, which might be unmodified.
857  *
858  *	Note that this function is only relevant when issuing a
859  *	single scatter gather entry.
860  */
861 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
862 {
863 	/*
864 	 * FIXME: We don't have a system for the controller to tell
865 	 * the core about its problems yet, so for now we just 32-bit
866 	 * align the size.
867 	 */
868 	sz = ((sz + 3) / 4) * 4;
869 
870 	return sz;
871 }
872 EXPORT_SYMBOL(mmc_align_data_size);
873 
874 /**
875  *	__mmc_claim_host - exclusively claim a host
876  *	@host: mmc host to claim
877  *	@abort: whether or not the operation should be aborted
878  *
879  *	Claim a host for a set of operations.  If @abort is non null and
880  *	dereference a non-zero value then this will return prematurely with
881  *	that non-zero value without acquiring the lock.  Returns zero
882  *	with the lock held otherwise.
883  */
884 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
885 {
886 	DECLARE_WAITQUEUE(wait, current);
887 	unsigned long flags;
888 	int stop;
889 
890 	might_sleep();
891 
892 	add_wait_queue(&host->wq, &wait);
893 	spin_lock_irqsave(&host->lock, flags);
894 	while (1) {
895 		set_current_state(TASK_UNINTERRUPTIBLE);
896 		stop = abort ? atomic_read(abort) : 0;
897 		if (stop || !host->claimed || host->claimer == current)
898 			break;
899 		spin_unlock_irqrestore(&host->lock, flags);
900 		schedule();
901 		spin_lock_irqsave(&host->lock, flags);
902 	}
903 	set_current_state(TASK_RUNNING);
904 	if (!stop) {
905 		host->claimed = 1;
906 		host->claimer = current;
907 		host->claim_cnt += 1;
908 	} else
909 		wake_up(&host->wq);
910 	spin_unlock_irqrestore(&host->lock, flags);
911 	remove_wait_queue(&host->wq, &wait);
912 	if (host->ops->enable && !stop && host->claim_cnt == 1)
913 		host->ops->enable(host);
914 	return stop;
915 }
916 
917 EXPORT_SYMBOL(__mmc_claim_host);
918 
919 /**
920  *	mmc_try_claim_host - try exclusively to claim a host
921  *	@host: mmc host to claim
922  *
923  *	Returns %1 if the host is claimed, %0 otherwise.
924  */
925 int mmc_try_claim_host(struct mmc_host *host)
926 {
927 	int claimed_host = 0;
928 	unsigned long flags;
929 
930 	spin_lock_irqsave(&host->lock, flags);
931 	if (!host->claimed || host->claimer == current) {
932 		host->claimed = 1;
933 		host->claimer = current;
934 		host->claim_cnt += 1;
935 		claimed_host = 1;
936 	}
937 	spin_unlock_irqrestore(&host->lock, flags);
938 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
939 		host->ops->enable(host);
940 	return claimed_host;
941 }
942 EXPORT_SYMBOL(mmc_try_claim_host);
943 
944 /**
945  *	mmc_release_host - release a host
946  *	@host: mmc host to release
947  *
948  *	Release a MMC host, allowing others to claim the host
949  *	for their operations.
950  */
951 void mmc_release_host(struct mmc_host *host)
952 {
953 	unsigned long flags;
954 
955 	WARN_ON(!host->claimed);
956 
957 	if (host->ops->disable && host->claim_cnt == 1)
958 		host->ops->disable(host);
959 
960 	spin_lock_irqsave(&host->lock, flags);
961 	if (--host->claim_cnt) {
962 		/* Release for nested claim */
963 		spin_unlock_irqrestore(&host->lock, flags);
964 	} else {
965 		host->claimed = 0;
966 		host->claimer = NULL;
967 		spin_unlock_irqrestore(&host->lock, flags);
968 		wake_up(&host->wq);
969 	}
970 }
971 EXPORT_SYMBOL(mmc_release_host);
972 
973 /*
974  * This is a helper function, which fetches a runtime pm reference for the
975  * card device and also claims the host.
976  */
977 void mmc_get_card(struct mmc_card *card)
978 {
979 	pm_runtime_get_sync(&card->dev);
980 	mmc_claim_host(card->host);
981 }
982 EXPORT_SYMBOL(mmc_get_card);
983 
984 /*
985  * This is a helper function, which releases the host and drops the runtime
986  * pm reference for the card device.
987  */
988 void mmc_put_card(struct mmc_card *card)
989 {
990 	mmc_release_host(card->host);
991 	pm_runtime_mark_last_busy(&card->dev);
992 	pm_runtime_put_autosuspend(&card->dev);
993 }
994 EXPORT_SYMBOL(mmc_put_card);
995 
996 /*
997  * Internal function that does the actual ios call to the host driver,
998  * optionally printing some debug output.
999  */
1000 static inline void mmc_set_ios(struct mmc_host *host)
1001 {
1002 	struct mmc_ios *ios = &host->ios;
1003 
1004 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1005 		"width %u timing %u\n",
1006 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1007 		 ios->power_mode, ios->chip_select, ios->vdd,
1008 		 ios->bus_width, ios->timing);
1009 
1010 	if (ios->clock > 0)
1011 		mmc_set_ungated(host);
1012 	host->ops->set_ios(host, ios);
1013 }
1014 
1015 /*
1016  * Control chip select pin on a host.
1017  */
1018 void mmc_set_chip_select(struct mmc_host *host, int mode)
1019 {
1020 	mmc_host_clk_hold(host);
1021 	host->ios.chip_select = mode;
1022 	mmc_set_ios(host);
1023 	mmc_host_clk_release(host);
1024 }
1025 
1026 /*
1027  * Sets the host clock to the highest possible frequency that
1028  * is below "hz".
1029  */
1030 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1031 {
1032 	WARN_ON(hz < host->f_min);
1033 
1034 	if (hz > host->f_max)
1035 		hz = host->f_max;
1036 
1037 	host->ios.clock = hz;
1038 	mmc_set_ios(host);
1039 }
1040 
1041 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1042 {
1043 	mmc_host_clk_hold(host);
1044 	__mmc_set_clock(host, hz);
1045 	mmc_host_clk_release(host);
1046 }
1047 
1048 #ifdef CONFIG_MMC_CLKGATE
1049 /*
1050  * This gates the clock by setting it to 0 Hz.
1051  */
1052 void mmc_gate_clock(struct mmc_host *host)
1053 {
1054 	unsigned long flags;
1055 
1056 	spin_lock_irqsave(&host->clk_lock, flags);
1057 	host->clk_old = host->ios.clock;
1058 	host->ios.clock = 0;
1059 	host->clk_gated = true;
1060 	spin_unlock_irqrestore(&host->clk_lock, flags);
1061 	mmc_set_ios(host);
1062 }
1063 
1064 /*
1065  * This restores the clock from gating by using the cached
1066  * clock value.
1067  */
1068 void mmc_ungate_clock(struct mmc_host *host)
1069 {
1070 	/*
1071 	 * We should previously have gated the clock, so the clock shall
1072 	 * be 0 here! The clock may however be 0 during initialization,
1073 	 * when some request operations are performed before setting
1074 	 * the frequency. When ungate is requested in that situation
1075 	 * we just ignore the call.
1076 	 */
1077 	if (host->clk_old) {
1078 		BUG_ON(host->ios.clock);
1079 		/* This call will also set host->clk_gated to false */
1080 		__mmc_set_clock(host, host->clk_old);
1081 	}
1082 }
1083 
1084 void mmc_set_ungated(struct mmc_host *host)
1085 {
1086 	unsigned long flags;
1087 
1088 	/*
1089 	 * We've been given a new frequency while the clock is gated,
1090 	 * so make sure we regard this as ungating it.
1091 	 */
1092 	spin_lock_irqsave(&host->clk_lock, flags);
1093 	host->clk_gated = false;
1094 	spin_unlock_irqrestore(&host->clk_lock, flags);
1095 }
1096 
1097 #else
1098 void mmc_set_ungated(struct mmc_host *host)
1099 {
1100 }
1101 #endif
1102 
1103 /*
1104  * Change the bus mode (open drain/push-pull) of a host.
1105  */
1106 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1107 {
1108 	mmc_host_clk_hold(host);
1109 	host->ios.bus_mode = mode;
1110 	mmc_set_ios(host);
1111 	mmc_host_clk_release(host);
1112 }
1113 
1114 /*
1115  * Change data bus width of a host.
1116  */
1117 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1118 {
1119 	mmc_host_clk_hold(host);
1120 	host->ios.bus_width = width;
1121 	mmc_set_ios(host);
1122 	mmc_host_clk_release(host);
1123 }
1124 
1125 /**
1126  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1127  * @vdd:	voltage (mV)
1128  * @low_bits:	prefer low bits in boundary cases
1129  *
1130  * This function returns the OCR bit number according to the provided @vdd
1131  * value. If conversion is not possible a negative errno value returned.
1132  *
1133  * Depending on the @low_bits flag the function prefers low or high OCR bits
1134  * on boundary voltages. For example,
1135  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1136  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1137  *
1138  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1139  */
1140 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1141 {
1142 	const int max_bit = ilog2(MMC_VDD_35_36);
1143 	int bit;
1144 
1145 	if (vdd < 1650 || vdd > 3600)
1146 		return -EINVAL;
1147 
1148 	if (vdd >= 1650 && vdd <= 1950)
1149 		return ilog2(MMC_VDD_165_195);
1150 
1151 	if (low_bits)
1152 		vdd -= 1;
1153 
1154 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1155 	bit = (vdd - 2000) / 100 + 8;
1156 	if (bit > max_bit)
1157 		return max_bit;
1158 	return bit;
1159 }
1160 
1161 /**
1162  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1163  * @vdd_min:	minimum voltage value (mV)
1164  * @vdd_max:	maximum voltage value (mV)
1165  *
1166  * This function returns the OCR mask bits according to the provided @vdd_min
1167  * and @vdd_max values. If conversion is not possible the function returns 0.
1168  *
1169  * Notes wrt boundary cases:
1170  * This function sets the OCR bits for all boundary voltages, for example
1171  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1172  * MMC_VDD_34_35 mask.
1173  */
1174 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1175 {
1176 	u32 mask = 0;
1177 
1178 	if (vdd_max < vdd_min)
1179 		return 0;
1180 
1181 	/* Prefer high bits for the boundary vdd_max values. */
1182 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1183 	if (vdd_max < 0)
1184 		return 0;
1185 
1186 	/* Prefer low bits for the boundary vdd_min values. */
1187 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1188 	if (vdd_min < 0)
1189 		return 0;
1190 
1191 	/* Fill the mask, from max bit to min bit. */
1192 	while (vdd_max >= vdd_min)
1193 		mask |= 1 << vdd_max--;
1194 
1195 	return mask;
1196 }
1197 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1198 
1199 #ifdef CONFIG_REGULATOR
1200 
1201 /**
1202  * mmc_regulator_get_ocrmask - return mask of supported voltages
1203  * @supply: regulator to use
1204  *
1205  * This returns either a negative errno, or a mask of voltages that
1206  * can be provided to MMC/SD/SDIO devices using the specified voltage
1207  * regulator.  This would normally be called before registering the
1208  * MMC host adapter.
1209  */
1210 int mmc_regulator_get_ocrmask(struct regulator *supply)
1211 {
1212 	int			result = 0;
1213 	int			count;
1214 	int			i;
1215 
1216 	count = regulator_count_voltages(supply);
1217 	if (count < 0)
1218 		return count;
1219 
1220 	for (i = 0; i < count; i++) {
1221 		int		vdd_uV;
1222 		int		vdd_mV;
1223 
1224 		vdd_uV = regulator_list_voltage(supply, i);
1225 		if (vdd_uV <= 0)
1226 			continue;
1227 
1228 		vdd_mV = vdd_uV / 1000;
1229 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1230 	}
1231 
1232 	return result;
1233 }
1234 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1235 
1236 /**
1237  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1238  * @mmc: the host to regulate
1239  * @supply: regulator to use
1240  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1241  *
1242  * Returns zero on success, else negative errno.
1243  *
1244  * MMC host drivers may use this to enable or disable a regulator using
1245  * a particular supply voltage.  This would normally be called from the
1246  * set_ios() method.
1247  */
1248 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1249 			struct regulator *supply,
1250 			unsigned short vdd_bit)
1251 {
1252 	int			result = 0;
1253 	int			min_uV, max_uV;
1254 
1255 	if (vdd_bit) {
1256 		int		tmp;
1257 		int		voltage;
1258 
1259 		/*
1260 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1261 		 * bits this regulator doesn't quite support ... don't
1262 		 * be too picky, most cards and regulators are OK with
1263 		 * a 0.1V range goof (it's a small error percentage).
1264 		 */
1265 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1266 		if (tmp == 0) {
1267 			min_uV = 1650 * 1000;
1268 			max_uV = 1950 * 1000;
1269 		} else {
1270 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1271 			max_uV = min_uV + 100 * 1000;
1272 		}
1273 
1274 		/*
1275 		 * If we're using a fixed/static regulator, don't call
1276 		 * regulator_set_voltage; it would fail.
1277 		 */
1278 		voltage = regulator_get_voltage(supply);
1279 
1280 		if (!regulator_can_change_voltage(supply))
1281 			min_uV = max_uV = voltage;
1282 
1283 		if (voltage < 0)
1284 			result = voltage;
1285 		else if (voltage < min_uV || voltage > max_uV)
1286 			result = regulator_set_voltage(supply, min_uV, max_uV);
1287 		else
1288 			result = 0;
1289 
1290 		if (result == 0 && !mmc->regulator_enabled) {
1291 			result = regulator_enable(supply);
1292 			if (!result)
1293 				mmc->regulator_enabled = true;
1294 		}
1295 	} else if (mmc->regulator_enabled) {
1296 		result = regulator_disable(supply);
1297 		if (result == 0)
1298 			mmc->regulator_enabled = false;
1299 	}
1300 
1301 	if (result)
1302 		dev_err(mmc_dev(mmc),
1303 			"could not set regulator OCR (%d)\n", result);
1304 	return result;
1305 }
1306 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1307 
1308 int mmc_regulator_get_supply(struct mmc_host *mmc)
1309 {
1310 	struct device *dev = mmc_dev(mmc);
1311 	struct regulator *supply;
1312 	int ret;
1313 
1314 	supply = devm_regulator_get(dev, "vmmc");
1315 	mmc->supply.vmmc = supply;
1316 	mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1317 
1318 	if (IS_ERR(supply))
1319 		return PTR_ERR(supply);
1320 
1321 	ret = mmc_regulator_get_ocrmask(supply);
1322 	if (ret > 0)
1323 		mmc->ocr_avail = ret;
1324 	else
1325 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1326 
1327 	return 0;
1328 }
1329 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1330 
1331 #endif /* CONFIG_REGULATOR */
1332 
1333 /*
1334  * Mask off any voltages we don't support and select
1335  * the lowest voltage
1336  */
1337 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1338 {
1339 	int bit;
1340 
1341 	ocr &= host->ocr_avail;
1342 
1343 	bit = ffs(ocr);
1344 	if (bit) {
1345 		bit -= 1;
1346 
1347 		ocr &= 3 << bit;
1348 
1349 		mmc_host_clk_hold(host);
1350 		host->ios.vdd = bit;
1351 		mmc_set_ios(host);
1352 		mmc_host_clk_release(host);
1353 	} else {
1354 		pr_warning("%s: host doesn't support card's voltages\n",
1355 				mmc_hostname(host));
1356 		ocr = 0;
1357 	}
1358 
1359 	return ocr;
1360 }
1361 
1362 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1363 {
1364 	int err = 0;
1365 	int old_signal_voltage = host->ios.signal_voltage;
1366 
1367 	host->ios.signal_voltage = signal_voltage;
1368 	if (host->ops->start_signal_voltage_switch) {
1369 		mmc_host_clk_hold(host);
1370 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1371 		mmc_host_clk_release(host);
1372 	}
1373 
1374 	if (err)
1375 		host->ios.signal_voltage = old_signal_voltage;
1376 
1377 	return err;
1378 
1379 }
1380 
1381 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1382 {
1383 	struct mmc_command cmd = {0};
1384 	int err = 0;
1385 	u32 clock;
1386 
1387 	BUG_ON(!host);
1388 
1389 	/*
1390 	 * Send CMD11 only if the request is to switch the card to
1391 	 * 1.8V signalling.
1392 	 */
1393 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1394 		return __mmc_set_signal_voltage(host, signal_voltage);
1395 
1396 	/*
1397 	 * If we cannot switch voltages, return failure so the caller
1398 	 * can continue without UHS mode
1399 	 */
1400 	if (!host->ops->start_signal_voltage_switch)
1401 		return -EPERM;
1402 	if (!host->ops->card_busy)
1403 		pr_warning("%s: cannot verify signal voltage switch\n",
1404 				mmc_hostname(host));
1405 
1406 	cmd.opcode = SD_SWITCH_VOLTAGE;
1407 	cmd.arg = 0;
1408 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1409 
1410 	err = mmc_wait_for_cmd(host, &cmd, 0);
1411 	if (err)
1412 		return err;
1413 
1414 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1415 		return -EIO;
1416 
1417 	mmc_host_clk_hold(host);
1418 	/*
1419 	 * The card should drive cmd and dat[0:3] low immediately
1420 	 * after the response of cmd11, but wait 1 ms to be sure
1421 	 */
1422 	mmc_delay(1);
1423 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1424 		err = -EAGAIN;
1425 		goto power_cycle;
1426 	}
1427 	/*
1428 	 * During a signal voltage level switch, the clock must be gated
1429 	 * for 5 ms according to the SD spec
1430 	 */
1431 	clock = host->ios.clock;
1432 	host->ios.clock = 0;
1433 	mmc_set_ios(host);
1434 
1435 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1436 		/*
1437 		 * Voltages may not have been switched, but we've already
1438 		 * sent CMD11, so a power cycle is required anyway
1439 		 */
1440 		err = -EAGAIN;
1441 		goto power_cycle;
1442 	}
1443 
1444 	/* Keep clock gated for at least 5 ms */
1445 	mmc_delay(5);
1446 	host->ios.clock = clock;
1447 	mmc_set_ios(host);
1448 
1449 	/* Wait for at least 1 ms according to spec */
1450 	mmc_delay(1);
1451 
1452 	/*
1453 	 * Failure to switch is indicated by the card holding
1454 	 * dat[0:3] low
1455 	 */
1456 	if (host->ops->card_busy && host->ops->card_busy(host))
1457 		err = -EAGAIN;
1458 
1459 power_cycle:
1460 	if (err) {
1461 		pr_debug("%s: Signal voltage switch failed, "
1462 			"power cycling card\n", mmc_hostname(host));
1463 		mmc_power_cycle(host);
1464 	}
1465 
1466 	mmc_host_clk_release(host);
1467 
1468 	return err;
1469 }
1470 
1471 /*
1472  * Select timing parameters for host.
1473  */
1474 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1475 {
1476 	mmc_host_clk_hold(host);
1477 	host->ios.timing = timing;
1478 	mmc_set_ios(host);
1479 	mmc_host_clk_release(host);
1480 }
1481 
1482 /*
1483  * Select appropriate driver type for host.
1484  */
1485 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1486 {
1487 	mmc_host_clk_hold(host);
1488 	host->ios.drv_type = drv_type;
1489 	mmc_set_ios(host);
1490 	mmc_host_clk_release(host);
1491 }
1492 
1493 /*
1494  * Apply power to the MMC stack.  This is a two-stage process.
1495  * First, we enable power to the card without the clock running.
1496  * We then wait a bit for the power to stabilise.  Finally,
1497  * enable the bus drivers and clock to the card.
1498  *
1499  * We must _NOT_ enable the clock prior to power stablising.
1500  *
1501  * If a host does all the power sequencing itself, ignore the
1502  * initial MMC_POWER_UP stage.
1503  */
1504 void mmc_power_up(struct mmc_host *host)
1505 {
1506 	int bit;
1507 
1508 	if (host->ios.power_mode == MMC_POWER_ON)
1509 		return;
1510 
1511 	mmc_host_clk_hold(host);
1512 
1513 	/* If ocr is set, we use it */
1514 	if (host->ocr)
1515 		bit = ffs(host->ocr) - 1;
1516 	else
1517 		bit = fls(host->ocr_avail) - 1;
1518 
1519 	host->ios.vdd = bit;
1520 	if (mmc_host_is_spi(host))
1521 		host->ios.chip_select = MMC_CS_HIGH;
1522 	else
1523 		host->ios.chip_select = MMC_CS_DONTCARE;
1524 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1525 	host->ios.power_mode = MMC_POWER_UP;
1526 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1527 	host->ios.timing = MMC_TIMING_LEGACY;
1528 	mmc_set_ios(host);
1529 
1530 	/* Set signal voltage to 3.3V */
1531 	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1532 
1533 	/*
1534 	 * This delay should be sufficient to allow the power supply
1535 	 * to reach the minimum voltage.
1536 	 */
1537 	mmc_delay(10);
1538 
1539 	host->ios.clock = host->f_init;
1540 
1541 	host->ios.power_mode = MMC_POWER_ON;
1542 	mmc_set_ios(host);
1543 
1544 	/*
1545 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1546 	 * time required to reach a stable voltage.
1547 	 */
1548 	mmc_delay(10);
1549 
1550 	mmc_host_clk_release(host);
1551 }
1552 
1553 void mmc_power_off(struct mmc_host *host)
1554 {
1555 	if (host->ios.power_mode == MMC_POWER_OFF)
1556 		return;
1557 
1558 	mmc_host_clk_hold(host);
1559 
1560 	host->ios.clock = 0;
1561 	host->ios.vdd = 0;
1562 
1563 
1564 	/*
1565 	 * Reset ocr mask to be the highest possible voltage supported for
1566 	 * this mmc host. This value will be used at next power up.
1567 	 */
1568 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1569 
1570 	if (!mmc_host_is_spi(host)) {
1571 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1572 		host->ios.chip_select = MMC_CS_DONTCARE;
1573 	}
1574 	host->ios.power_mode = MMC_POWER_OFF;
1575 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1576 	host->ios.timing = MMC_TIMING_LEGACY;
1577 	mmc_set_ios(host);
1578 
1579 	/*
1580 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1581 	 * XO-1.5, require a short delay after poweroff before the card
1582 	 * can be successfully turned on again.
1583 	 */
1584 	mmc_delay(1);
1585 
1586 	mmc_host_clk_release(host);
1587 }
1588 
1589 void mmc_power_cycle(struct mmc_host *host)
1590 {
1591 	mmc_power_off(host);
1592 	/* Wait at least 1 ms according to SD spec */
1593 	mmc_delay(1);
1594 	mmc_power_up(host);
1595 }
1596 
1597 /*
1598  * Cleanup when the last reference to the bus operator is dropped.
1599  */
1600 static void __mmc_release_bus(struct mmc_host *host)
1601 {
1602 	BUG_ON(!host);
1603 	BUG_ON(host->bus_refs);
1604 	BUG_ON(!host->bus_dead);
1605 
1606 	host->bus_ops = NULL;
1607 }
1608 
1609 /*
1610  * Increase reference count of bus operator
1611  */
1612 static inline void mmc_bus_get(struct mmc_host *host)
1613 {
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&host->lock, flags);
1617 	host->bus_refs++;
1618 	spin_unlock_irqrestore(&host->lock, flags);
1619 }
1620 
1621 /*
1622  * Decrease reference count of bus operator and free it if
1623  * it is the last reference.
1624  */
1625 static inline void mmc_bus_put(struct mmc_host *host)
1626 {
1627 	unsigned long flags;
1628 
1629 	spin_lock_irqsave(&host->lock, flags);
1630 	host->bus_refs--;
1631 	if ((host->bus_refs == 0) && host->bus_ops)
1632 		__mmc_release_bus(host);
1633 	spin_unlock_irqrestore(&host->lock, flags);
1634 }
1635 
1636 /*
1637  * Assign a mmc bus handler to a host. Only one bus handler may control a
1638  * host at any given time.
1639  */
1640 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1641 {
1642 	unsigned long flags;
1643 
1644 	BUG_ON(!host);
1645 	BUG_ON(!ops);
1646 
1647 	WARN_ON(!host->claimed);
1648 
1649 	spin_lock_irqsave(&host->lock, flags);
1650 
1651 	BUG_ON(host->bus_ops);
1652 	BUG_ON(host->bus_refs);
1653 
1654 	host->bus_ops = ops;
1655 	host->bus_refs = 1;
1656 	host->bus_dead = 0;
1657 
1658 	spin_unlock_irqrestore(&host->lock, flags);
1659 }
1660 
1661 /*
1662  * Remove the current bus handler from a host.
1663  */
1664 void mmc_detach_bus(struct mmc_host *host)
1665 {
1666 	unsigned long flags;
1667 
1668 	BUG_ON(!host);
1669 
1670 	WARN_ON(!host->claimed);
1671 	WARN_ON(!host->bus_ops);
1672 
1673 	spin_lock_irqsave(&host->lock, flags);
1674 
1675 	host->bus_dead = 1;
1676 
1677 	spin_unlock_irqrestore(&host->lock, flags);
1678 
1679 	mmc_bus_put(host);
1680 }
1681 
1682 /**
1683  *	mmc_detect_change - process change of state on a MMC socket
1684  *	@host: host which changed state.
1685  *	@delay: optional delay to wait before detection (jiffies)
1686  *
1687  *	MMC drivers should call this when they detect a card has been
1688  *	inserted or removed. The MMC layer will confirm that any
1689  *	present card is still functional, and initialize any newly
1690  *	inserted.
1691  */
1692 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1693 {
1694 #ifdef CONFIG_MMC_DEBUG
1695 	unsigned long flags;
1696 	spin_lock_irqsave(&host->lock, flags);
1697 	WARN_ON(host->removed);
1698 	spin_unlock_irqrestore(&host->lock, flags);
1699 #endif
1700 	host->detect_change = 1;
1701 	mmc_schedule_delayed_work(&host->detect, delay);
1702 }
1703 
1704 EXPORT_SYMBOL(mmc_detect_change);
1705 
1706 void mmc_init_erase(struct mmc_card *card)
1707 {
1708 	unsigned int sz;
1709 
1710 	if (is_power_of_2(card->erase_size))
1711 		card->erase_shift = ffs(card->erase_size) - 1;
1712 	else
1713 		card->erase_shift = 0;
1714 
1715 	/*
1716 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1717 	 * card.  That is not desirable because it can take a long time
1718 	 * (minutes) potentially delaying more important I/O, and also the
1719 	 * timeout calculations become increasingly hugely over-estimated.
1720 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1721 	 * to that size and alignment.
1722 	 *
1723 	 * For SD cards that define Allocation Unit size, limit erases to one
1724 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1725 	 * Erase Size, whether it is switched on or not, limit to that size.
1726 	 * Otherwise just have a stab at a good value.  For modern cards it
1727 	 * will end up being 4MiB.  Note that if the value is too small, it
1728 	 * can end up taking longer to erase.
1729 	 */
1730 	if (mmc_card_sd(card) && card->ssr.au) {
1731 		card->pref_erase = card->ssr.au;
1732 		card->erase_shift = ffs(card->ssr.au) - 1;
1733 	} else if (card->ext_csd.hc_erase_size) {
1734 		card->pref_erase = card->ext_csd.hc_erase_size;
1735 	} else {
1736 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1737 		if (sz < 128)
1738 			card->pref_erase = 512 * 1024 / 512;
1739 		else if (sz < 512)
1740 			card->pref_erase = 1024 * 1024 / 512;
1741 		else if (sz < 1024)
1742 			card->pref_erase = 2 * 1024 * 1024 / 512;
1743 		else
1744 			card->pref_erase = 4 * 1024 * 1024 / 512;
1745 		if (card->pref_erase < card->erase_size)
1746 			card->pref_erase = card->erase_size;
1747 		else {
1748 			sz = card->pref_erase % card->erase_size;
1749 			if (sz)
1750 				card->pref_erase += card->erase_size - sz;
1751 		}
1752 	}
1753 }
1754 
1755 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1756 				          unsigned int arg, unsigned int qty)
1757 {
1758 	unsigned int erase_timeout;
1759 
1760 	if (arg == MMC_DISCARD_ARG ||
1761 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1762 		erase_timeout = card->ext_csd.trim_timeout;
1763 	} else if (card->ext_csd.erase_group_def & 1) {
1764 		/* High Capacity Erase Group Size uses HC timeouts */
1765 		if (arg == MMC_TRIM_ARG)
1766 			erase_timeout = card->ext_csd.trim_timeout;
1767 		else
1768 			erase_timeout = card->ext_csd.hc_erase_timeout;
1769 	} else {
1770 		/* CSD Erase Group Size uses write timeout */
1771 		unsigned int mult = (10 << card->csd.r2w_factor);
1772 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1773 		unsigned int timeout_us;
1774 
1775 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1776 		if (card->csd.tacc_ns < 1000000)
1777 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1778 		else
1779 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1780 
1781 		/*
1782 		 * ios.clock is only a target.  The real clock rate might be
1783 		 * less but not that much less, so fudge it by multiplying by 2.
1784 		 */
1785 		timeout_clks <<= 1;
1786 		timeout_us += (timeout_clks * 1000) /
1787 			      (mmc_host_clk_rate(card->host) / 1000);
1788 
1789 		erase_timeout = timeout_us / 1000;
1790 
1791 		/*
1792 		 * Theoretically, the calculation could underflow so round up
1793 		 * to 1ms in that case.
1794 		 */
1795 		if (!erase_timeout)
1796 			erase_timeout = 1;
1797 	}
1798 
1799 	/* Multiplier for secure operations */
1800 	if (arg & MMC_SECURE_ARGS) {
1801 		if (arg == MMC_SECURE_ERASE_ARG)
1802 			erase_timeout *= card->ext_csd.sec_erase_mult;
1803 		else
1804 			erase_timeout *= card->ext_csd.sec_trim_mult;
1805 	}
1806 
1807 	erase_timeout *= qty;
1808 
1809 	/*
1810 	 * Ensure at least a 1 second timeout for SPI as per
1811 	 * 'mmc_set_data_timeout()'
1812 	 */
1813 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1814 		erase_timeout = 1000;
1815 
1816 	return erase_timeout;
1817 }
1818 
1819 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1820 					 unsigned int arg,
1821 					 unsigned int qty)
1822 {
1823 	unsigned int erase_timeout;
1824 
1825 	if (card->ssr.erase_timeout) {
1826 		/* Erase timeout specified in SD Status Register (SSR) */
1827 		erase_timeout = card->ssr.erase_timeout * qty +
1828 				card->ssr.erase_offset;
1829 	} else {
1830 		/*
1831 		 * Erase timeout not specified in SD Status Register (SSR) so
1832 		 * use 250ms per write block.
1833 		 */
1834 		erase_timeout = 250 * qty;
1835 	}
1836 
1837 	/* Must not be less than 1 second */
1838 	if (erase_timeout < 1000)
1839 		erase_timeout = 1000;
1840 
1841 	return erase_timeout;
1842 }
1843 
1844 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1845 				      unsigned int arg,
1846 				      unsigned int qty)
1847 {
1848 	if (mmc_card_sd(card))
1849 		return mmc_sd_erase_timeout(card, arg, qty);
1850 	else
1851 		return mmc_mmc_erase_timeout(card, arg, qty);
1852 }
1853 
1854 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1855 			unsigned int to, unsigned int arg)
1856 {
1857 	struct mmc_command cmd = {0};
1858 	unsigned int qty = 0;
1859 	unsigned long timeout;
1860 	int err;
1861 
1862 	/*
1863 	 * qty is used to calculate the erase timeout which depends on how many
1864 	 * erase groups (or allocation units in SD terminology) are affected.
1865 	 * We count erasing part of an erase group as one erase group.
1866 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1867 	 * erase group size is almost certainly also power of 2, but it does not
1868 	 * seem to insist on that in the JEDEC standard, so we fall back to
1869 	 * division in that case.  SD may not specify an allocation unit size,
1870 	 * in which case the timeout is based on the number of write blocks.
1871 	 *
1872 	 * Note that the timeout for secure trim 2 will only be correct if the
1873 	 * number of erase groups specified is the same as the total of all
1874 	 * preceding secure trim 1 commands.  Since the power may have been
1875 	 * lost since the secure trim 1 commands occurred, it is generally
1876 	 * impossible to calculate the secure trim 2 timeout correctly.
1877 	 */
1878 	if (card->erase_shift)
1879 		qty += ((to >> card->erase_shift) -
1880 			(from >> card->erase_shift)) + 1;
1881 	else if (mmc_card_sd(card))
1882 		qty += to - from + 1;
1883 	else
1884 		qty += ((to / card->erase_size) -
1885 			(from / card->erase_size)) + 1;
1886 
1887 	if (!mmc_card_blockaddr(card)) {
1888 		from <<= 9;
1889 		to <<= 9;
1890 	}
1891 
1892 	if (mmc_card_sd(card))
1893 		cmd.opcode = SD_ERASE_WR_BLK_START;
1894 	else
1895 		cmd.opcode = MMC_ERASE_GROUP_START;
1896 	cmd.arg = from;
1897 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1898 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1899 	if (err) {
1900 		pr_err("mmc_erase: group start error %d, "
1901 		       "status %#x\n", err, cmd.resp[0]);
1902 		err = -EIO;
1903 		goto out;
1904 	}
1905 
1906 	memset(&cmd, 0, sizeof(struct mmc_command));
1907 	if (mmc_card_sd(card))
1908 		cmd.opcode = SD_ERASE_WR_BLK_END;
1909 	else
1910 		cmd.opcode = MMC_ERASE_GROUP_END;
1911 	cmd.arg = to;
1912 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1913 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1914 	if (err) {
1915 		pr_err("mmc_erase: group end error %d, status %#x\n",
1916 		       err, cmd.resp[0]);
1917 		err = -EIO;
1918 		goto out;
1919 	}
1920 
1921 	memset(&cmd, 0, sizeof(struct mmc_command));
1922 	cmd.opcode = MMC_ERASE;
1923 	cmd.arg = arg;
1924 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1925 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1926 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 	if (err) {
1928 		pr_err("mmc_erase: erase error %d, status %#x\n",
1929 		       err, cmd.resp[0]);
1930 		err = -EIO;
1931 		goto out;
1932 	}
1933 
1934 	if (mmc_host_is_spi(card->host))
1935 		goto out;
1936 
1937 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1938 	do {
1939 		memset(&cmd, 0, sizeof(struct mmc_command));
1940 		cmd.opcode = MMC_SEND_STATUS;
1941 		cmd.arg = card->rca << 16;
1942 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1943 		/* Do not retry else we can't see errors */
1944 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1945 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1946 			pr_err("error %d requesting status %#x\n",
1947 				err, cmd.resp[0]);
1948 			err = -EIO;
1949 			goto out;
1950 		}
1951 
1952 		/* Timeout if the device never becomes ready for data and
1953 		 * never leaves the program state.
1954 		 */
1955 		if (time_after(jiffies, timeout)) {
1956 			pr_err("%s: Card stuck in programming state! %s\n",
1957 				mmc_hostname(card->host), __func__);
1958 			err =  -EIO;
1959 			goto out;
1960 		}
1961 
1962 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1963 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1964 out:
1965 	return err;
1966 }
1967 
1968 /**
1969  * mmc_erase - erase sectors.
1970  * @card: card to erase
1971  * @from: first sector to erase
1972  * @nr: number of sectors to erase
1973  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1974  *
1975  * Caller must claim host before calling this function.
1976  */
1977 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1978 	      unsigned int arg)
1979 {
1980 	unsigned int rem, to = from + nr;
1981 
1982 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1983 	    !(card->csd.cmdclass & CCC_ERASE))
1984 		return -EOPNOTSUPP;
1985 
1986 	if (!card->erase_size)
1987 		return -EOPNOTSUPP;
1988 
1989 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1990 		return -EOPNOTSUPP;
1991 
1992 	if ((arg & MMC_SECURE_ARGS) &&
1993 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1994 		return -EOPNOTSUPP;
1995 
1996 	if ((arg & MMC_TRIM_ARGS) &&
1997 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1998 		return -EOPNOTSUPP;
1999 
2000 	if (arg == MMC_SECURE_ERASE_ARG) {
2001 		if (from % card->erase_size || nr % card->erase_size)
2002 			return -EINVAL;
2003 	}
2004 
2005 	if (arg == MMC_ERASE_ARG) {
2006 		rem = from % card->erase_size;
2007 		if (rem) {
2008 			rem = card->erase_size - rem;
2009 			from += rem;
2010 			if (nr > rem)
2011 				nr -= rem;
2012 			else
2013 				return 0;
2014 		}
2015 		rem = nr % card->erase_size;
2016 		if (rem)
2017 			nr -= rem;
2018 	}
2019 
2020 	if (nr == 0)
2021 		return 0;
2022 
2023 	to = from + nr;
2024 
2025 	if (to <= from)
2026 		return -EINVAL;
2027 
2028 	/* 'from' and 'to' are inclusive */
2029 	to -= 1;
2030 
2031 	return mmc_do_erase(card, from, to, arg);
2032 }
2033 EXPORT_SYMBOL(mmc_erase);
2034 
2035 int mmc_can_erase(struct mmc_card *card)
2036 {
2037 	if ((card->host->caps & MMC_CAP_ERASE) &&
2038 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2039 		return 1;
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL(mmc_can_erase);
2043 
2044 int mmc_can_trim(struct mmc_card *card)
2045 {
2046 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2047 		return 1;
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL(mmc_can_trim);
2051 
2052 int mmc_can_discard(struct mmc_card *card)
2053 {
2054 	/*
2055 	 * As there's no way to detect the discard support bit at v4.5
2056 	 * use the s/w feature support filed.
2057 	 */
2058 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2059 		return 1;
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL(mmc_can_discard);
2063 
2064 int mmc_can_sanitize(struct mmc_card *card)
2065 {
2066 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2067 		return 0;
2068 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2069 		return 1;
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL(mmc_can_sanitize);
2073 
2074 int mmc_can_secure_erase_trim(struct mmc_card *card)
2075 {
2076 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2077 		return 1;
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2081 
2082 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2083 			    unsigned int nr)
2084 {
2085 	if (!card->erase_size)
2086 		return 0;
2087 	if (from % card->erase_size || nr % card->erase_size)
2088 		return 0;
2089 	return 1;
2090 }
2091 EXPORT_SYMBOL(mmc_erase_group_aligned);
2092 
2093 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2094 					    unsigned int arg)
2095 {
2096 	struct mmc_host *host = card->host;
2097 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2098 	unsigned int last_timeout = 0;
2099 
2100 	if (card->erase_shift)
2101 		max_qty = UINT_MAX >> card->erase_shift;
2102 	else if (mmc_card_sd(card))
2103 		max_qty = UINT_MAX;
2104 	else
2105 		max_qty = UINT_MAX / card->erase_size;
2106 
2107 	/* Find the largest qty with an OK timeout */
2108 	do {
2109 		y = 0;
2110 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2111 			timeout = mmc_erase_timeout(card, arg, qty + x);
2112 			if (timeout > host->max_discard_to)
2113 				break;
2114 			if (timeout < last_timeout)
2115 				break;
2116 			last_timeout = timeout;
2117 			y = x;
2118 		}
2119 		qty += y;
2120 	} while (y);
2121 
2122 	if (!qty)
2123 		return 0;
2124 
2125 	if (qty == 1)
2126 		return 1;
2127 
2128 	/* Convert qty to sectors */
2129 	if (card->erase_shift)
2130 		max_discard = --qty << card->erase_shift;
2131 	else if (mmc_card_sd(card))
2132 		max_discard = qty;
2133 	else
2134 		max_discard = --qty * card->erase_size;
2135 
2136 	return max_discard;
2137 }
2138 
2139 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2140 {
2141 	struct mmc_host *host = card->host;
2142 	unsigned int max_discard, max_trim;
2143 
2144 	if (!host->max_discard_to)
2145 		return UINT_MAX;
2146 
2147 	/*
2148 	 * Without erase_group_def set, MMC erase timeout depends on clock
2149 	 * frequence which can change.  In that case, the best choice is
2150 	 * just the preferred erase size.
2151 	 */
2152 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2153 		return card->pref_erase;
2154 
2155 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2156 	if (mmc_can_trim(card)) {
2157 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2158 		if (max_trim < max_discard)
2159 			max_discard = max_trim;
2160 	} else if (max_discard < card->erase_size) {
2161 		max_discard = 0;
2162 	}
2163 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2164 		 mmc_hostname(host), max_discard, host->max_discard_to);
2165 	return max_discard;
2166 }
2167 EXPORT_SYMBOL(mmc_calc_max_discard);
2168 
2169 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2170 {
2171 	struct mmc_command cmd = {0};
2172 
2173 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2174 		return 0;
2175 
2176 	cmd.opcode = MMC_SET_BLOCKLEN;
2177 	cmd.arg = blocklen;
2178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2179 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2180 }
2181 EXPORT_SYMBOL(mmc_set_blocklen);
2182 
2183 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2184 			bool is_rel_write)
2185 {
2186 	struct mmc_command cmd = {0};
2187 
2188 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2189 	cmd.arg = blockcount & 0x0000FFFF;
2190 	if (is_rel_write)
2191 		cmd.arg |= 1 << 31;
2192 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2193 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2194 }
2195 EXPORT_SYMBOL(mmc_set_blockcount);
2196 
2197 static void mmc_hw_reset_for_init(struct mmc_host *host)
2198 {
2199 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2200 		return;
2201 	mmc_host_clk_hold(host);
2202 	host->ops->hw_reset(host);
2203 	mmc_host_clk_release(host);
2204 }
2205 
2206 int mmc_can_reset(struct mmc_card *card)
2207 {
2208 	u8 rst_n_function;
2209 
2210 	if (!mmc_card_mmc(card))
2211 		return 0;
2212 	rst_n_function = card->ext_csd.rst_n_function;
2213 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2214 		return 0;
2215 	return 1;
2216 }
2217 EXPORT_SYMBOL(mmc_can_reset);
2218 
2219 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2220 {
2221 	struct mmc_card *card = host->card;
2222 
2223 	if (!host->bus_ops->power_restore)
2224 		return -EOPNOTSUPP;
2225 
2226 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2227 		return -EOPNOTSUPP;
2228 
2229 	if (!card)
2230 		return -EINVAL;
2231 
2232 	if (!mmc_can_reset(card))
2233 		return -EOPNOTSUPP;
2234 
2235 	mmc_host_clk_hold(host);
2236 	mmc_set_clock(host, host->f_init);
2237 
2238 	host->ops->hw_reset(host);
2239 
2240 	/* If the reset has happened, then a status command will fail */
2241 	if (check) {
2242 		struct mmc_command cmd = {0};
2243 		int err;
2244 
2245 		cmd.opcode = MMC_SEND_STATUS;
2246 		if (!mmc_host_is_spi(card->host))
2247 			cmd.arg = card->rca << 16;
2248 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2249 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2250 		if (!err) {
2251 			mmc_host_clk_release(host);
2252 			return -ENOSYS;
2253 		}
2254 	}
2255 
2256 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2257 	if (mmc_host_is_spi(host)) {
2258 		host->ios.chip_select = MMC_CS_HIGH;
2259 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2260 	} else {
2261 		host->ios.chip_select = MMC_CS_DONTCARE;
2262 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2263 	}
2264 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2265 	host->ios.timing = MMC_TIMING_LEGACY;
2266 	mmc_set_ios(host);
2267 
2268 	mmc_host_clk_release(host);
2269 
2270 	return host->bus_ops->power_restore(host);
2271 }
2272 
2273 int mmc_hw_reset(struct mmc_host *host)
2274 {
2275 	return mmc_do_hw_reset(host, 0);
2276 }
2277 EXPORT_SYMBOL(mmc_hw_reset);
2278 
2279 int mmc_hw_reset_check(struct mmc_host *host)
2280 {
2281 	return mmc_do_hw_reset(host, 1);
2282 }
2283 EXPORT_SYMBOL(mmc_hw_reset_check);
2284 
2285 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2286 {
2287 	host->f_init = freq;
2288 
2289 #ifdef CONFIG_MMC_DEBUG
2290 	pr_info("%s: %s: trying to init card at %u Hz\n",
2291 		mmc_hostname(host), __func__, host->f_init);
2292 #endif
2293 	mmc_power_up(host);
2294 
2295 	/*
2296 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2297 	 * do a hardware reset if possible.
2298 	 */
2299 	mmc_hw_reset_for_init(host);
2300 
2301 	/*
2302 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2303 	 * if the card is being re-initialized, just send it.  CMD52
2304 	 * should be ignored by SD/eMMC cards.
2305 	 */
2306 	sdio_reset(host);
2307 	mmc_go_idle(host);
2308 
2309 	mmc_send_if_cond(host, host->ocr_avail);
2310 
2311 	/* Order's important: probe SDIO, then SD, then MMC */
2312 	if (!mmc_attach_sdio(host))
2313 		return 0;
2314 	if (!mmc_attach_sd(host))
2315 		return 0;
2316 	if (!mmc_attach_mmc(host))
2317 		return 0;
2318 
2319 	mmc_power_off(host);
2320 	return -EIO;
2321 }
2322 
2323 int _mmc_detect_card_removed(struct mmc_host *host)
2324 {
2325 	int ret;
2326 
2327 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2328 		return 0;
2329 
2330 	if (!host->card || mmc_card_removed(host->card))
2331 		return 1;
2332 
2333 	ret = host->bus_ops->alive(host);
2334 
2335 	/*
2336 	 * Card detect status and alive check may be out of sync if card is
2337 	 * removed slowly, when card detect switch changes while card/slot
2338 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2339 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2340 	 * detect work 200ms later for this case.
2341 	 */
2342 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2343 		mmc_detect_change(host, msecs_to_jiffies(200));
2344 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2345 	}
2346 
2347 	if (ret) {
2348 		mmc_card_set_removed(host->card);
2349 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2350 	}
2351 
2352 	return ret;
2353 }
2354 
2355 int mmc_detect_card_removed(struct mmc_host *host)
2356 {
2357 	struct mmc_card *card = host->card;
2358 	int ret;
2359 
2360 	WARN_ON(!host->claimed);
2361 
2362 	if (!card)
2363 		return 1;
2364 
2365 	ret = mmc_card_removed(card);
2366 	/*
2367 	 * The card will be considered unchanged unless we have been asked to
2368 	 * detect a change or host requires polling to provide card detection.
2369 	 */
2370 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2371 		return ret;
2372 
2373 	host->detect_change = 0;
2374 	if (!ret) {
2375 		ret = _mmc_detect_card_removed(host);
2376 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2377 			/*
2378 			 * Schedule a detect work as soon as possible to let a
2379 			 * rescan handle the card removal.
2380 			 */
2381 			cancel_delayed_work(&host->detect);
2382 			mmc_detect_change(host, 0);
2383 		}
2384 	}
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL(mmc_detect_card_removed);
2389 
2390 void mmc_rescan(struct work_struct *work)
2391 {
2392 	struct mmc_host *host =
2393 		container_of(work, struct mmc_host, detect.work);
2394 	int i;
2395 
2396 	if (host->rescan_disable)
2397 		return;
2398 
2399 	/* If there is a non-removable card registered, only scan once */
2400 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2401 		return;
2402 	host->rescan_entered = 1;
2403 
2404 	mmc_bus_get(host);
2405 
2406 	/*
2407 	 * if there is a _removable_ card registered, check whether it is
2408 	 * still present
2409 	 */
2410 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2411 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2412 		host->bus_ops->detect(host);
2413 
2414 	host->detect_change = 0;
2415 
2416 	/*
2417 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2418 	 * the card is no longer present.
2419 	 */
2420 	mmc_bus_put(host);
2421 	mmc_bus_get(host);
2422 
2423 	/* if there still is a card present, stop here */
2424 	if (host->bus_ops != NULL) {
2425 		mmc_bus_put(host);
2426 		goto out;
2427 	}
2428 
2429 	/*
2430 	 * Only we can add a new handler, so it's safe to
2431 	 * release the lock here.
2432 	 */
2433 	mmc_bus_put(host);
2434 
2435 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2436 		mmc_claim_host(host);
2437 		mmc_power_off(host);
2438 		mmc_release_host(host);
2439 		goto out;
2440 	}
2441 
2442 	mmc_claim_host(host);
2443 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2444 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2445 			break;
2446 		if (freqs[i] <= host->f_min)
2447 			break;
2448 	}
2449 	mmc_release_host(host);
2450 
2451  out:
2452 	if (host->caps & MMC_CAP_NEEDS_POLL)
2453 		mmc_schedule_delayed_work(&host->detect, HZ);
2454 }
2455 
2456 void mmc_start_host(struct mmc_host *host)
2457 {
2458 	host->f_init = max(freqs[0], host->f_min);
2459 	host->rescan_disable = 0;
2460 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2461 		mmc_power_off(host);
2462 	else
2463 		mmc_power_up(host);
2464 	mmc_detect_change(host, 0);
2465 }
2466 
2467 void mmc_stop_host(struct mmc_host *host)
2468 {
2469 #ifdef CONFIG_MMC_DEBUG
2470 	unsigned long flags;
2471 	spin_lock_irqsave(&host->lock, flags);
2472 	host->removed = 1;
2473 	spin_unlock_irqrestore(&host->lock, flags);
2474 #endif
2475 
2476 	host->rescan_disable = 1;
2477 	cancel_delayed_work_sync(&host->detect);
2478 	mmc_flush_scheduled_work();
2479 
2480 	/* clear pm flags now and let card drivers set them as needed */
2481 	host->pm_flags = 0;
2482 
2483 	mmc_bus_get(host);
2484 	if (host->bus_ops && !host->bus_dead) {
2485 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2486 		host->bus_ops->remove(host);
2487 		mmc_claim_host(host);
2488 		mmc_detach_bus(host);
2489 		mmc_power_off(host);
2490 		mmc_release_host(host);
2491 		mmc_bus_put(host);
2492 		return;
2493 	}
2494 	mmc_bus_put(host);
2495 
2496 	BUG_ON(host->card);
2497 
2498 	mmc_power_off(host);
2499 }
2500 
2501 int mmc_power_save_host(struct mmc_host *host)
2502 {
2503 	int ret = 0;
2504 
2505 #ifdef CONFIG_MMC_DEBUG
2506 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2507 #endif
2508 
2509 	mmc_bus_get(host);
2510 
2511 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2512 		mmc_bus_put(host);
2513 		return -EINVAL;
2514 	}
2515 
2516 	if (host->bus_ops->power_save)
2517 		ret = host->bus_ops->power_save(host);
2518 
2519 	mmc_bus_put(host);
2520 
2521 	mmc_power_off(host);
2522 
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL(mmc_power_save_host);
2526 
2527 int mmc_power_restore_host(struct mmc_host *host)
2528 {
2529 	int ret;
2530 
2531 #ifdef CONFIG_MMC_DEBUG
2532 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2533 #endif
2534 
2535 	mmc_bus_get(host);
2536 
2537 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2538 		mmc_bus_put(host);
2539 		return -EINVAL;
2540 	}
2541 
2542 	mmc_power_up(host);
2543 	ret = host->bus_ops->power_restore(host);
2544 
2545 	mmc_bus_put(host);
2546 
2547 	return ret;
2548 }
2549 EXPORT_SYMBOL(mmc_power_restore_host);
2550 
2551 /*
2552  * Flush the cache to the non-volatile storage.
2553  */
2554 int mmc_flush_cache(struct mmc_card *card)
2555 {
2556 	struct mmc_host *host = card->host;
2557 	int err = 0;
2558 
2559 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2560 		return err;
2561 
2562 	if (mmc_card_mmc(card) &&
2563 			(card->ext_csd.cache_size > 0) &&
2564 			(card->ext_csd.cache_ctrl & 1)) {
2565 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2566 				EXT_CSD_FLUSH_CACHE, 1, 0);
2567 		if (err)
2568 			pr_err("%s: cache flush error %d\n",
2569 					mmc_hostname(card->host), err);
2570 	}
2571 
2572 	return err;
2573 }
2574 EXPORT_SYMBOL(mmc_flush_cache);
2575 
2576 /*
2577  * Turn the cache ON/OFF.
2578  * Turning the cache OFF shall trigger flushing of the data
2579  * to the non-volatile storage.
2580  * This function should be called with host claimed
2581  */
2582 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2583 {
2584 	struct mmc_card *card = host->card;
2585 	unsigned int timeout;
2586 	int err = 0;
2587 
2588 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2589 			mmc_card_is_removable(host))
2590 		return err;
2591 
2592 	if (card && mmc_card_mmc(card) &&
2593 			(card->ext_csd.cache_size > 0)) {
2594 		enable = !!enable;
2595 
2596 		if (card->ext_csd.cache_ctrl ^ enable) {
2597 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2598 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2599 					EXT_CSD_CACHE_CTRL, enable, timeout);
2600 			if (err)
2601 				pr_err("%s: cache %s error %d\n",
2602 						mmc_hostname(card->host),
2603 						enable ? "on" : "off",
2604 						err);
2605 			else
2606 				card->ext_csd.cache_ctrl = enable;
2607 		}
2608 	}
2609 
2610 	return err;
2611 }
2612 EXPORT_SYMBOL(mmc_cache_ctrl);
2613 
2614 #ifdef CONFIG_PM
2615 
2616 /**
2617  *	mmc_suspend_host - suspend a host
2618  *	@host: mmc host
2619  */
2620 int mmc_suspend_host(struct mmc_host *host)
2621 {
2622 	/* This function is deprecated */
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL(mmc_suspend_host);
2626 
2627 /**
2628  *	mmc_resume_host - resume a previously suspended host
2629  *	@host: mmc host
2630  */
2631 int mmc_resume_host(struct mmc_host *host)
2632 {
2633 	/* This function is deprecated */
2634 	return 0;
2635 }
2636 EXPORT_SYMBOL(mmc_resume_host);
2637 
2638 /* Do the card removal on suspend if card is assumed removeable
2639  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2640    to sync the card.
2641 */
2642 int mmc_pm_notify(struct notifier_block *notify_block,
2643 					unsigned long mode, void *unused)
2644 {
2645 	struct mmc_host *host = container_of(
2646 		notify_block, struct mmc_host, pm_notify);
2647 	unsigned long flags;
2648 	int err = 0;
2649 
2650 	switch (mode) {
2651 	case PM_HIBERNATION_PREPARE:
2652 	case PM_SUSPEND_PREPARE:
2653 		spin_lock_irqsave(&host->lock, flags);
2654 		host->rescan_disable = 1;
2655 		spin_unlock_irqrestore(&host->lock, flags);
2656 		cancel_delayed_work_sync(&host->detect);
2657 
2658 		if (!host->bus_ops)
2659 			break;
2660 
2661 		/* Validate prerequisites for suspend */
2662 		if (host->bus_ops->pre_suspend)
2663 			err = host->bus_ops->pre_suspend(host);
2664 		if (!err && host->bus_ops->suspend)
2665 			break;
2666 
2667 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2668 		host->bus_ops->remove(host);
2669 		mmc_claim_host(host);
2670 		mmc_detach_bus(host);
2671 		mmc_power_off(host);
2672 		mmc_release_host(host);
2673 		host->pm_flags = 0;
2674 		break;
2675 
2676 	case PM_POST_SUSPEND:
2677 	case PM_POST_HIBERNATION:
2678 	case PM_POST_RESTORE:
2679 
2680 		spin_lock_irqsave(&host->lock, flags);
2681 		host->rescan_disable = 0;
2682 		spin_unlock_irqrestore(&host->lock, flags);
2683 		mmc_detect_change(host, 0);
2684 
2685 	}
2686 
2687 	return 0;
2688 }
2689 #endif
2690 
2691 /**
2692  * mmc_init_context_info() - init synchronization context
2693  * @host: mmc host
2694  *
2695  * Init struct context_info needed to implement asynchronous
2696  * request mechanism, used by mmc core, host driver and mmc requests
2697  * supplier.
2698  */
2699 void mmc_init_context_info(struct mmc_host *host)
2700 {
2701 	spin_lock_init(&host->context_info.lock);
2702 	host->context_info.is_new_req = false;
2703 	host->context_info.is_done_rcv = false;
2704 	host->context_info.is_waiting_last_req = false;
2705 	init_waitqueue_head(&host->context_info.wait);
2706 }
2707 
2708 static int __init mmc_init(void)
2709 {
2710 	int ret;
2711 
2712 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2713 	if (!workqueue)
2714 		return -ENOMEM;
2715 
2716 	ret = mmc_register_bus();
2717 	if (ret)
2718 		goto destroy_workqueue;
2719 
2720 	ret = mmc_register_host_class();
2721 	if (ret)
2722 		goto unregister_bus;
2723 
2724 	ret = sdio_register_bus();
2725 	if (ret)
2726 		goto unregister_host_class;
2727 
2728 	return 0;
2729 
2730 unregister_host_class:
2731 	mmc_unregister_host_class();
2732 unregister_bus:
2733 	mmc_unregister_bus();
2734 destroy_workqueue:
2735 	destroy_workqueue(workqueue);
2736 
2737 	return ret;
2738 }
2739 
2740 static void __exit mmc_exit(void)
2741 {
2742 	sdio_unregister_bus();
2743 	mmc_unregister_host_class();
2744 	mmc_unregister_bus();
2745 	destroy_workqueue(workqueue);
2746 }
2747 
2748 subsys_initcall(mmc_init);
2749 module_exit(mmc_exit);
2750 
2751 MODULE_LICENSE("GPL");
2752