xref: /openbmc/linux/drivers/mmc/core/core.c (revision bc5aa3a0)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47 
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51 
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
54 
55 /*
56  * Background operations can take a long time, depending on the housekeeping
57  * operations the card has to perform.
58  */
59 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
60 
61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62 
63 /*
64  * Enabling software CRCs on the data blocks can be a significant (30%)
65  * performance cost, and for other reasons may not always be desired.
66  * So we allow it it to be disabled.
67  */
68 bool use_spi_crc = 1;
69 module_param(use_spi_crc, bool, 0);
70 
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	/*
75 	 * We use the system_freezable_wq, because of two reasons.
76 	 * First, it allows several works (not the same work item) to be
77 	 * executed simultaneously. Second, the queue becomes frozen when
78 	 * userspace becomes frozen during system PM.
79 	 */
80 	return queue_delayed_work(system_freezable_wq, work, delay);
81 }
82 
83 #ifdef CONFIG_FAIL_MMC_REQUEST
84 
85 /*
86  * Internal function. Inject random data errors.
87  * If mmc_data is NULL no errors are injected.
88  */
89 static void mmc_should_fail_request(struct mmc_host *host,
90 				    struct mmc_request *mrq)
91 {
92 	struct mmc_command *cmd = mrq->cmd;
93 	struct mmc_data *data = mrq->data;
94 	static const int data_errors[] = {
95 		-ETIMEDOUT,
96 		-EILSEQ,
97 		-EIO,
98 	};
99 
100 	if (!data)
101 		return;
102 
103 	if (cmd->error || data->error ||
104 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
105 		return;
106 
107 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
108 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 }
110 
111 #else /* CONFIG_FAIL_MMC_REQUEST */
112 
113 static inline void mmc_should_fail_request(struct mmc_host *host,
114 					   struct mmc_request *mrq)
115 {
116 }
117 
118 #endif /* CONFIG_FAIL_MMC_REQUEST */
119 
120 /**
121  *	mmc_request_done - finish processing an MMC request
122  *	@host: MMC host which completed request
123  *	@mrq: MMC request which request
124  *
125  *	MMC drivers should call this function when they have completed
126  *	their processing of a request.
127  */
128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
129 {
130 	struct mmc_command *cmd = mrq->cmd;
131 	int err = cmd->error;
132 
133 	/* Flag re-tuning needed on CRC errors */
134 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
135 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
136 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
137 	    (mrq->data && mrq->data->error == -EILSEQ) ||
138 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
139 		mmc_retune_needed(host);
140 
141 	if (err && cmd->retries && mmc_host_is_spi(host)) {
142 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
143 			cmd->retries = 0;
144 	}
145 
146 	trace_mmc_request_done(host, mrq);
147 
148 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
149 		/*
150 		 * Request starter must handle retries - see
151 		 * mmc_wait_for_req_done().
152 		 */
153 		if (mrq->done)
154 			mrq->done(mrq);
155 	} else {
156 		mmc_should_fail_request(host, mrq);
157 
158 		led_trigger_event(host->led, LED_OFF);
159 
160 		if (mrq->sbc) {
161 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
162 				mmc_hostname(host), mrq->sbc->opcode,
163 				mrq->sbc->error,
164 				mrq->sbc->resp[0], mrq->sbc->resp[1],
165 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
166 		}
167 
168 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 			mmc_hostname(host), cmd->opcode, err,
170 			cmd->resp[0], cmd->resp[1],
171 			cmd->resp[2], cmd->resp[3]);
172 
173 		if (mrq->data) {
174 			pr_debug("%s:     %d bytes transferred: %d\n",
175 				mmc_hostname(host),
176 				mrq->data->bytes_xfered, mrq->data->error);
177 		}
178 
179 		if (mrq->stop) {
180 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->stop->opcode,
182 				mrq->stop->error,
183 				mrq->stop->resp[0], mrq->stop->resp[1],
184 				mrq->stop->resp[2], mrq->stop->resp[3]);
185 		}
186 
187 		if (mrq->done)
188 			mrq->done(mrq);
189 	}
190 }
191 
192 EXPORT_SYMBOL(mmc_request_done);
193 
194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
195 {
196 	int err;
197 
198 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
199 	err = mmc_retune(host);
200 	if (err) {
201 		mrq->cmd->error = err;
202 		mmc_request_done(host, mrq);
203 		return;
204 	}
205 
206 	/*
207 	 * For sdio rw commands we must wait for card busy otherwise some
208 	 * sdio devices won't work properly.
209 	 */
210 	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
211 		int tries = 500; /* Wait aprox 500ms at maximum */
212 
213 		while (host->ops->card_busy(host) && --tries)
214 			mmc_delay(1);
215 
216 		if (tries == 0) {
217 			mrq->cmd->error = -EBUSY;
218 			mmc_request_done(host, mrq);
219 			return;
220 		}
221 	}
222 
223 	trace_mmc_request_start(host, mrq);
224 
225 	host->ops->request(host, mrq);
226 }
227 
228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
229 {
230 #ifdef CONFIG_MMC_DEBUG
231 	unsigned int i, sz;
232 	struct scatterlist *sg;
233 #endif
234 	mmc_retune_hold(host);
235 
236 	if (mmc_card_removed(host->card))
237 		return -ENOMEDIUM;
238 
239 	if (mrq->sbc) {
240 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
241 			 mmc_hostname(host), mrq->sbc->opcode,
242 			 mrq->sbc->arg, mrq->sbc->flags);
243 	}
244 
245 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
246 		 mmc_hostname(host), mrq->cmd->opcode,
247 		 mrq->cmd->arg, mrq->cmd->flags);
248 
249 	if (mrq->data) {
250 		pr_debug("%s:     blksz %d blocks %d flags %08x "
251 			"tsac %d ms nsac %d\n",
252 			mmc_hostname(host), mrq->data->blksz,
253 			mrq->data->blocks, mrq->data->flags,
254 			mrq->data->timeout_ns / 1000000,
255 			mrq->data->timeout_clks);
256 	}
257 
258 	if (mrq->stop) {
259 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
260 			 mmc_hostname(host), mrq->stop->opcode,
261 			 mrq->stop->arg, mrq->stop->flags);
262 	}
263 
264 	WARN_ON(!host->claimed);
265 
266 	mrq->cmd->error = 0;
267 	mrq->cmd->mrq = mrq;
268 	if (mrq->sbc) {
269 		mrq->sbc->error = 0;
270 		mrq->sbc->mrq = mrq;
271 	}
272 	if (mrq->data) {
273 		BUG_ON(mrq->data->blksz > host->max_blk_size);
274 		BUG_ON(mrq->data->blocks > host->max_blk_count);
275 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
276 			host->max_req_size);
277 
278 #ifdef CONFIG_MMC_DEBUG
279 		sz = 0;
280 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
281 			sz += sg->length;
282 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
283 #endif
284 
285 		mrq->cmd->data = mrq->data;
286 		mrq->data->error = 0;
287 		mrq->data->mrq = mrq;
288 		if (mrq->stop) {
289 			mrq->data->stop = mrq->stop;
290 			mrq->stop->error = 0;
291 			mrq->stop->mrq = mrq;
292 		}
293 	}
294 	led_trigger_event(host->led, LED_FULL);
295 	__mmc_start_request(host, mrq);
296 
297 	return 0;
298 }
299 
300 /**
301  *	mmc_start_bkops - start BKOPS for supported cards
302  *	@card: MMC card to start BKOPS
303  *	@form_exception: A flag to indicate if this function was
304  *			 called due to an exception raised by the card
305  *
306  *	Start background operations whenever requested.
307  *	When the urgent BKOPS bit is set in a R1 command response
308  *	then background operations should be started immediately.
309 */
310 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
311 {
312 	int err;
313 	int timeout;
314 	bool use_busy_signal;
315 
316 	BUG_ON(!card);
317 
318 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
319 		return;
320 
321 	err = mmc_read_bkops_status(card);
322 	if (err) {
323 		pr_err("%s: Failed to read bkops status: %d\n",
324 		       mmc_hostname(card->host), err);
325 		return;
326 	}
327 
328 	if (!card->ext_csd.raw_bkops_status)
329 		return;
330 
331 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
332 	    from_exception)
333 		return;
334 
335 	mmc_claim_host(card->host);
336 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
337 		timeout = MMC_BKOPS_MAX_TIMEOUT;
338 		use_busy_signal = true;
339 	} else {
340 		timeout = 0;
341 		use_busy_signal = false;
342 	}
343 
344 	mmc_retune_hold(card->host);
345 
346 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
347 			EXT_CSD_BKOPS_START, 1, timeout,
348 			use_busy_signal, true, false);
349 	if (err) {
350 		pr_warn("%s: Error %d starting bkops\n",
351 			mmc_hostname(card->host), err);
352 		mmc_retune_release(card->host);
353 		goto out;
354 	}
355 
356 	/*
357 	 * For urgent bkops status (LEVEL_2 and more)
358 	 * bkops executed synchronously, otherwise
359 	 * the operation is in progress
360 	 */
361 	if (!use_busy_signal)
362 		mmc_card_set_doing_bkops(card);
363 	else
364 		mmc_retune_release(card->host);
365 out:
366 	mmc_release_host(card->host);
367 }
368 EXPORT_SYMBOL(mmc_start_bkops);
369 
370 /*
371  * mmc_wait_data_done() - done callback for data request
372  * @mrq: done data request
373  *
374  * Wakes up mmc context, passed as a callback to host controller driver
375  */
376 static void mmc_wait_data_done(struct mmc_request *mrq)
377 {
378 	struct mmc_context_info *context_info = &mrq->host->context_info;
379 
380 	context_info->is_done_rcv = true;
381 	wake_up_interruptible(&context_info->wait);
382 }
383 
384 static void mmc_wait_done(struct mmc_request *mrq)
385 {
386 	complete(&mrq->completion);
387 }
388 
389 /*
390  *__mmc_start_data_req() - starts data request
391  * @host: MMC host to start the request
392  * @mrq: data request to start
393  *
394  * Sets the done callback to be called when request is completed by the card.
395  * Starts data mmc request execution
396  */
397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 	int err;
400 
401 	mrq->done = mmc_wait_data_done;
402 	mrq->host = host;
403 
404 	err = mmc_start_request(host, mrq);
405 	if (err) {
406 		mrq->cmd->error = err;
407 		mmc_wait_data_done(mrq);
408 	}
409 
410 	return err;
411 }
412 
413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
414 {
415 	int err;
416 
417 	init_completion(&mrq->completion);
418 	mrq->done = mmc_wait_done;
419 
420 	err = mmc_start_request(host, mrq);
421 	if (err) {
422 		mrq->cmd->error = err;
423 		complete(&mrq->completion);
424 	}
425 
426 	return err;
427 }
428 
429 /*
430  * mmc_wait_for_data_req_done() - wait for request completed
431  * @host: MMC host to prepare the command.
432  * @mrq: MMC request to wait for
433  *
434  * Blocks MMC context till host controller will ack end of data request
435  * execution or new request notification arrives from the block layer.
436  * Handles command retries.
437  *
438  * Returns enum mmc_blk_status after checking errors.
439  */
440 static int mmc_wait_for_data_req_done(struct mmc_host *host,
441 				      struct mmc_request *mrq,
442 				      struct mmc_async_req *next_req)
443 {
444 	struct mmc_command *cmd;
445 	struct mmc_context_info *context_info = &host->context_info;
446 	int err;
447 	unsigned long flags;
448 
449 	while (1) {
450 		wait_event_interruptible(context_info->wait,
451 				(context_info->is_done_rcv ||
452 				 context_info->is_new_req));
453 		spin_lock_irqsave(&context_info->lock, flags);
454 		context_info->is_waiting_last_req = false;
455 		spin_unlock_irqrestore(&context_info->lock, flags);
456 		if (context_info->is_done_rcv) {
457 			context_info->is_done_rcv = false;
458 			context_info->is_new_req = false;
459 			cmd = mrq->cmd;
460 
461 			if (!cmd->error || !cmd->retries ||
462 			    mmc_card_removed(host->card)) {
463 				err = host->areq->err_check(host->card,
464 							    host->areq);
465 				break; /* return err */
466 			} else {
467 				mmc_retune_recheck(host);
468 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
469 					mmc_hostname(host),
470 					cmd->opcode, cmd->error);
471 				cmd->retries--;
472 				cmd->error = 0;
473 				__mmc_start_request(host, mrq);
474 				continue; /* wait for done/new event again */
475 			}
476 		} else if (context_info->is_new_req) {
477 			context_info->is_new_req = false;
478 			if (!next_req)
479 				return MMC_BLK_NEW_REQUEST;
480 		}
481 	}
482 	mmc_retune_release(host);
483 	return err;
484 }
485 
486 static void mmc_wait_for_req_done(struct mmc_host *host,
487 				  struct mmc_request *mrq)
488 {
489 	struct mmc_command *cmd;
490 
491 	while (1) {
492 		wait_for_completion(&mrq->completion);
493 
494 		cmd = mrq->cmd;
495 
496 		/*
497 		 * If host has timed out waiting for the sanitize
498 		 * to complete, card might be still in programming state
499 		 * so let's try to bring the card out of programming
500 		 * state.
501 		 */
502 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
503 			if (!mmc_interrupt_hpi(host->card)) {
504 				pr_warn("%s: %s: Interrupted sanitize\n",
505 					mmc_hostname(host), __func__);
506 				cmd->error = 0;
507 				break;
508 			} else {
509 				pr_err("%s: %s: Failed to interrupt sanitize\n",
510 				       mmc_hostname(host), __func__);
511 			}
512 		}
513 		if (!cmd->error || !cmd->retries ||
514 		    mmc_card_removed(host->card))
515 			break;
516 
517 		mmc_retune_recheck(host);
518 
519 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
520 			 mmc_hostname(host), cmd->opcode, cmd->error);
521 		cmd->retries--;
522 		cmd->error = 0;
523 		__mmc_start_request(host, mrq);
524 	}
525 
526 	mmc_retune_release(host);
527 }
528 
529 /**
530  *	mmc_pre_req - Prepare for a new request
531  *	@host: MMC host to prepare command
532  *	@mrq: MMC request to prepare for
533  *	@is_first_req: true if there is no previous started request
534  *                     that may run in parellel to this call, otherwise false
535  *
536  *	mmc_pre_req() is called in prior to mmc_start_req() to let
537  *	host prepare for the new request. Preparation of a request may be
538  *	performed while another request is running on the host.
539  */
540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
541 		 bool is_first_req)
542 {
543 	if (host->ops->pre_req)
544 		host->ops->pre_req(host, mrq, is_first_req);
545 }
546 
547 /**
548  *	mmc_post_req - Post process a completed request
549  *	@host: MMC host to post process command
550  *	@mrq: MMC request to post process for
551  *	@err: Error, if non zero, clean up any resources made in pre_req
552  *
553  *	Let the host post process a completed request. Post processing of
554  *	a request may be performed while another reuqest is running.
555  */
556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
557 			 int err)
558 {
559 	if (host->ops->post_req)
560 		host->ops->post_req(host, mrq, err);
561 }
562 
563 /**
564  *	mmc_start_req - start a non-blocking request
565  *	@host: MMC host to start command
566  *	@areq: async request to start
567  *	@error: out parameter returns 0 for success, otherwise non zero
568  *
569  *	Start a new MMC custom command request for a host.
570  *	If there is on ongoing async request wait for completion
571  *	of that request and start the new one and return.
572  *	Does not wait for the new request to complete.
573  *
574  *      Returns the completed request, NULL in case of none completed.
575  *	Wait for the an ongoing request (previoulsy started) to complete and
576  *	return the completed request. If there is no ongoing request, NULL
577  *	is returned without waiting. NULL is not an error condition.
578  */
579 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
580 				    struct mmc_async_req *areq, int *error)
581 {
582 	int err = 0;
583 	int start_err = 0;
584 	struct mmc_async_req *data = host->areq;
585 
586 	/* Prepare a new request */
587 	if (areq)
588 		mmc_pre_req(host, areq->mrq, !host->areq);
589 
590 	if (host->areq) {
591 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
592 		if (err == MMC_BLK_NEW_REQUEST) {
593 			if (error)
594 				*error = err;
595 			/*
596 			 * The previous request was not completed,
597 			 * nothing to return
598 			 */
599 			return NULL;
600 		}
601 		/*
602 		 * Check BKOPS urgency for each R1 response
603 		 */
604 		if (host->card && mmc_card_mmc(host->card) &&
605 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
606 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
607 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
608 
609 			/* Cancel the prepared request */
610 			if (areq)
611 				mmc_post_req(host, areq->mrq, -EINVAL);
612 
613 			mmc_start_bkops(host->card, true);
614 
615 			/* prepare the request again */
616 			if (areq)
617 				mmc_pre_req(host, areq->mrq, !host->areq);
618 		}
619 	}
620 
621 	if (!err && areq)
622 		start_err = __mmc_start_data_req(host, areq->mrq);
623 
624 	if (host->areq)
625 		mmc_post_req(host, host->areq->mrq, 0);
626 
627 	 /* Cancel a prepared request if it was not started. */
628 	if ((err || start_err) && areq)
629 		mmc_post_req(host, areq->mrq, -EINVAL);
630 
631 	if (err)
632 		host->areq = NULL;
633 	else
634 		host->areq = areq;
635 
636 	if (error)
637 		*error = err;
638 	return data;
639 }
640 EXPORT_SYMBOL(mmc_start_req);
641 
642 /**
643  *	mmc_wait_for_req - start a request and wait for completion
644  *	@host: MMC host to start command
645  *	@mrq: MMC request to start
646  *
647  *	Start a new MMC custom command request for a host, and wait
648  *	for the command to complete. Does not attempt to parse the
649  *	response.
650  */
651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
652 {
653 	__mmc_start_req(host, mrq);
654 	mmc_wait_for_req_done(host, mrq);
655 }
656 EXPORT_SYMBOL(mmc_wait_for_req);
657 
658 /**
659  *	mmc_interrupt_hpi - Issue for High priority Interrupt
660  *	@card: the MMC card associated with the HPI transfer
661  *
662  *	Issued High Priority Interrupt, and check for card status
663  *	until out-of prg-state.
664  */
665 int mmc_interrupt_hpi(struct mmc_card *card)
666 {
667 	int err;
668 	u32 status;
669 	unsigned long prg_wait;
670 
671 	BUG_ON(!card);
672 
673 	if (!card->ext_csd.hpi_en) {
674 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
675 		return 1;
676 	}
677 
678 	mmc_claim_host(card->host);
679 	err = mmc_send_status(card, &status);
680 	if (err) {
681 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
682 		goto out;
683 	}
684 
685 	switch (R1_CURRENT_STATE(status)) {
686 	case R1_STATE_IDLE:
687 	case R1_STATE_READY:
688 	case R1_STATE_STBY:
689 	case R1_STATE_TRAN:
690 		/*
691 		 * In idle and transfer states, HPI is not needed and the caller
692 		 * can issue the next intended command immediately
693 		 */
694 		goto out;
695 	case R1_STATE_PRG:
696 		break;
697 	default:
698 		/* In all other states, it's illegal to issue HPI */
699 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
700 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
701 		err = -EINVAL;
702 		goto out;
703 	}
704 
705 	err = mmc_send_hpi_cmd(card, &status);
706 	if (err)
707 		goto out;
708 
709 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
710 	do {
711 		err = mmc_send_status(card, &status);
712 
713 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
714 			break;
715 		if (time_after(jiffies, prg_wait))
716 			err = -ETIMEDOUT;
717 	} while (!err);
718 
719 out:
720 	mmc_release_host(card->host);
721 	return err;
722 }
723 EXPORT_SYMBOL(mmc_interrupt_hpi);
724 
725 /**
726  *	mmc_wait_for_cmd - start a command and wait for completion
727  *	@host: MMC host to start command
728  *	@cmd: MMC command to start
729  *	@retries: maximum number of retries
730  *
731  *	Start a new MMC command for a host, and wait for the command
732  *	to complete.  Return any error that occurred while the command
733  *	was executing.  Do not attempt to parse the response.
734  */
735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
736 {
737 	struct mmc_request mrq = {NULL};
738 
739 	WARN_ON(!host->claimed);
740 
741 	memset(cmd->resp, 0, sizeof(cmd->resp));
742 	cmd->retries = retries;
743 
744 	mrq.cmd = cmd;
745 	cmd->data = NULL;
746 
747 	mmc_wait_for_req(host, &mrq);
748 
749 	return cmd->error;
750 }
751 
752 EXPORT_SYMBOL(mmc_wait_for_cmd);
753 
754 /**
755  *	mmc_stop_bkops - stop ongoing BKOPS
756  *	@card: MMC card to check BKOPS
757  *
758  *	Send HPI command to stop ongoing background operations to
759  *	allow rapid servicing of foreground operations, e.g. read/
760  *	writes. Wait until the card comes out of the programming state
761  *	to avoid errors in servicing read/write requests.
762  */
763 int mmc_stop_bkops(struct mmc_card *card)
764 {
765 	int err = 0;
766 
767 	BUG_ON(!card);
768 	err = mmc_interrupt_hpi(card);
769 
770 	/*
771 	 * If err is EINVAL, we can't issue an HPI.
772 	 * It should complete the BKOPS.
773 	 */
774 	if (!err || (err == -EINVAL)) {
775 		mmc_card_clr_doing_bkops(card);
776 		mmc_retune_release(card->host);
777 		err = 0;
778 	}
779 
780 	return err;
781 }
782 EXPORT_SYMBOL(mmc_stop_bkops);
783 
784 int mmc_read_bkops_status(struct mmc_card *card)
785 {
786 	int err;
787 	u8 *ext_csd;
788 
789 	mmc_claim_host(card->host);
790 	err = mmc_get_ext_csd(card, &ext_csd);
791 	mmc_release_host(card->host);
792 	if (err)
793 		return err;
794 
795 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
796 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
797 	kfree(ext_csd);
798 	return 0;
799 }
800 EXPORT_SYMBOL(mmc_read_bkops_status);
801 
802 /**
803  *	mmc_set_data_timeout - set the timeout for a data command
804  *	@data: data phase for command
805  *	@card: the MMC card associated with the data transfer
806  *
807  *	Computes the data timeout parameters according to the
808  *	correct algorithm given the card type.
809  */
810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
811 {
812 	unsigned int mult;
813 
814 	/*
815 	 * SDIO cards only define an upper 1 s limit on access.
816 	 */
817 	if (mmc_card_sdio(card)) {
818 		data->timeout_ns = 1000000000;
819 		data->timeout_clks = 0;
820 		return;
821 	}
822 
823 	/*
824 	 * SD cards use a 100 multiplier rather than 10
825 	 */
826 	mult = mmc_card_sd(card) ? 100 : 10;
827 
828 	/*
829 	 * Scale up the multiplier (and therefore the timeout) by
830 	 * the r2w factor for writes.
831 	 */
832 	if (data->flags & MMC_DATA_WRITE)
833 		mult <<= card->csd.r2w_factor;
834 
835 	data->timeout_ns = card->csd.tacc_ns * mult;
836 	data->timeout_clks = card->csd.tacc_clks * mult;
837 
838 	/*
839 	 * SD cards also have an upper limit on the timeout.
840 	 */
841 	if (mmc_card_sd(card)) {
842 		unsigned int timeout_us, limit_us;
843 
844 		timeout_us = data->timeout_ns / 1000;
845 		if (card->host->ios.clock)
846 			timeout_us += data->timeout_clks * 1000 /
847 				(card->host->ios.clock / 1000);
848 
849 		if (data->flags & MMC_DATA_WRITE)
850 			/*
851 			 * The MMC spec "It is strongly recommended
852 			 * for hosts to implement more than 500ms
853 			 * timeout value even if the card indicates
854 			 * the 250ms maximum busy length."  Even the
855 			 * previous value of 300ms is known to be
856 			 * insufficient for some cards.
857 			 */
858 			limit_us = 3000000;
859 		else
860 			limit_us = 100000;
861 
862 		/*
863 		 * SDHC cards always use these fixed values.
864 		 */
865 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
866 			data->timeout_ns = limit_us * 1000;
867 			data->timeout_clks = 0;
868 		}
869 
870 		/* assign limit value if invalid */
871 		if (timeout_us == 0)
872 			data->timeout_ns = limit_us * 1000;
873 	}
874 
875 	/*
876 	 * Some cards require longer data read timeout than indicated in CSD.
877 	 * Address this by setting the read timeout to a "reasonably high"
878 	 * value. For the cards tested, 600ms has proven enough. If necessary,
879 	 * this value can be increased if other problematic cards require this.
880 	 */
881 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
882 		data->timeout_ns = 600000000;
883 		data->timeout_clks = 0;
884 	}
885 
886 	/*
887 	 * Some cards need very high timeouts if driven in SPI mode.
888 	 * The worst observed timeout was 900ms after writing a
889 	 * continuous stream of data until the internal logic
890 	 * overflowed.
891 	 */
892 	if (mmc_host_is_spi(card->host)) {
893 		if (data->flags & MMC_DATA_WRITE) {
894 			if (data->timeout_ns < 1000000000)
895 				data->timeout_ns = 1000000000;	/* 1s */
896 		} else {
897 			if (data->timeout_ns < 100000000)
898 				data->timeout_ns =  100000000;	/* 100ms */
899 		}
900 	}
901 }
902 EXPORT_SYMBOL(mmc_set_data_timeout);
903 
904 /**
905  *	mmc_align_data_size - pads a transfer size to a more optimal value
906  *	@card: the MMC card associated with the data transfer
907  *	@sz: original transfer size
908  *
909  *	Pads the original data size with a number of extra bytes in
910  *	order to avoid controller bugs and/or performance hits
911  *	(e.g. some controllers revert to PIO for certain sizes).
912  *
913  *	Returns the improved size, which might be unmodified.
914  *
915  *	Note that this function is only relevant when issuing a
916  *	single scatter gather entry.
917  */
918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
919 {
920 	/*
921 	 * FIXME: We don't have a system for the controller to tell
922 	 * the core about its problems yet, so for now we just 32-bit
923 	 * align the size.
924 	 */
925 	sz = ((sz + 3) / 4) * 4;
926 
927 	return sz;
928 }
929 EXPORT_SYMBOL(mmc_align_data_size);
930 
931 /**
932  *	__mmc_claim_host - exclusively claim a host
933  *	@host: mmc host to claim
934  *	@abort: whether or not the operation should be aborted
935  *
936  *	Claim a host for a set of operations.  If @abort is non null and
937  *	dereference a non-zero value then this will return prematurely with
938  *	that non-zero value without acquiring the lock.  Returns zero
939  *	with the lock held otherwise.
940  */
941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
942 {
943 	DECLARE_WAITQUEUE(wait, current);
944 	unsigned long flags;
945 	int stop;
946 	bool pm = false;
947 
948 	might_sleep();
949 
950 	add_wait_queue(&host->wq, &wait);
951 	spin_lock_irqsave(&host->lock, flags);
952 	while (1) {
953 		set_current_state(TASK_UNINTERRUPTIBLE);
954 		stop = abort ? atomic_read(abort) : 0;
955 		if (stop || !host->claimed || host->claimer == current)
956 			break;
957 		spin_unlock_irqrestore(&host->lock, flags);
958 		schedule();
959 		spin_lock_irqsave(&host->lock, flags);
960 	}
961 	set_current_state(TASK_RUNNING);
962 	if (!stop) {
963 		host->claimed = 1;
964 		host->claimer = current;
965 		host->claim_cnt += 1;
966 		if (host->claim_cnt == 1)
967 			pm = true;
968 	} else
969 		wake_up(&host->wq);
970 	spin_unlock_irqrestore(&host->lock, flags);
971 	remove_wait_queue(&host->wq, &wait);
972 
973 	if (pm)
974 		pm_runtime_get_sync(mmc_dev(host));
975 
976 	return stop;
977 }
978 EXPORT_SYMBOL(__mmc_claim_host);
979 
980 /**
981  *	mmc_release_host - release a host
982  *	@host: mmc host to release
983  *
984  *	Release a MMC host, allowing others to claim the host
985  *	for their operations.
986  */
987 void mmc_release_host(struct mmc_host *host)
988 {
989 	unsigned long flags;
990 
991 	WARN_ON(!host->claimed);
992 
993 	spin_lock_irqsave(&host->lock, flags);
994 	if (--host->claim_cnt) {
995 		/* Release for nested claim */
996 		spin_unlock_irqrestore(&host->lock, flags);
997 	} else {
998 		host->claimed = 0;
999 		host->claimer = NULL;
1000 		spin_unlock_irqrestore(&host->lock, flags);
1001 		wake_up(&host->wq);
1002 		pm_runtime_mark_last_busy(mmc_dev(host));
1003 		pm_runtime_put_autosuspend(mmc_dev(host));
1004 	}
1005 }
1006 EXPORT_SYMBOL(mmc_release_host);
1007 
1008 /*
1009  * This is a helper function, which fetches a runtime pm reference for the
1010  * card device and also claims the host.
1011  */
1012 void mmc_get_card(struct mmc_card *card)
1013 {
1014 	pm_runtime_get_sync(&card->dev);
1015 	mmc_claim_host(card->host);
1016 }
1017 EXPORT_SYMBOL(mmc_get_card);
1018 
1019 /*
1020  * This is a helper function, which releases the host and drops the runtime
1021  * pm reference for the card device.
1022  */
1023 void mmc_put_card(struct mmc_card *card)
1024 {
1025 	mmc_release_host(card->host);
1026 	pm_runtime_mark_last_busy(&card->dev);
1027 	pm_runtime_put_autosuspend(&card->dev);
1028 }
1029 EXPORT_SYMBOL(mmc_put_card);
1030 
1031 /*
1032  * Internal function that does the actual ios call to the host driver,
1033  * optionally printing some debug output.
1034  */
1035 static inline void mmc_set_ios(struct mmc_host *host)
1036 {
1037 	struct mmc_ios *ios = &host->ios;
1038 
1039 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1040 		"width %u timing %u\n",
1041 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1042 		 ios->power_mode, ios->chip_select, ios->vdd,
1043 		 1 << ios->bus_width, ios->timing);
1044 
1045 	host->ops->set_ios(host, ios);
1046 }
1047 
1048 /*
1049  * Control chip select pin on a host.
1050  */
1051 void mmc_set_chip_select(struct mmc_host *host, int mode)
1052 {
1053 	host->ios.chip_select = mode;
1054 	mmc_set_ios(host);
1055 }
1056 
1057 /*
1058  * Sets the host clock to the highest possible frequency that
1059  * is below "hz".
1060  */
1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1062 {
1063 	WARN_ON(hz && hz < host->f_min);
1064 
1065 	if (hz > host->f_max)
1066 		hz = host->f_max;
1067 
1068 	host->ios.clock = hz;
1069 	mmc_set_ios(host);
1070 }
1071 
1072 int mmc_execute_tuning(struct mmc_card *card)
1073 {
1074 	struct mmc_host *host = card->host;
1075 	u32 opcode;
1076 	int err;
1077 
1078 	if (!host->ops->execute_tuning)
1079 		return 0;
1080 
1081 	if (mmc_card_mmc(card))
1082 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1083 	else
1084 		opcode = MMC_SEND_TUNING_BLOCK;
1085 
1086 	err = host->ops->execute_tuning(host, opcode);
1087 
1088 	if (err)
1089 		pr_err("%s: tuning execution failed: %d\n",
1090 			mmc_hostname(host), err);
1091 	else
1092 		mmc_retune_enable(host);
1093 
1094 	return err;
1095 }
1096 
1097 /*
1098  * Change the bus mode (open drain/push-pull) of a host.
1099  */
1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1101 {
1102 	host->ios.bus_mode = mode;
1103 	mmc_set_ios(host);
1104 }
1105 
1106 /*
1107  * Change data bus width of a host.
1108  */
1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1110 {
1111 	host->ios.bus_width = width;
1112 	mmc_set_ios(host);
1113 }
1114 
1115 /*
1116  * Set initial state after a power cycle or a hw_reset.
1117  */
1118 void mmc_set_initial_state(struct mmc_host *host)
1119 {
1120 	mmc_retune_disable(host);
1121 
1122 	if (mmc_host_is_spi(host))
1123 		host->ios.chip_select = MMC_CS_HIGH;
1124 	else
1125 		host->ios.chip_select = MMC_CS_DONTCARE;
1126 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1127 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1128 	host->ios.timing = MMC_TIMING_LEGACY;
1129 	host->ios.drv_type = 0;
1130 	host->ios.enhanced_strobe = false;
1131 
1132 	/*
1133 	 * Make sure we are in non-enhanced strobe mode before we
1134 	 * actually enable it in ext_csd.
1135 	 */
1136 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1137 	     host->ops->hs400_enhanced_strobe)
1138 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1139 
1140 	mmc_set_ios(host);
1141 }
1142 
1143 /**
1144  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1145  * @vdd:	voltage (mV)
1146  * @low_bits:	prefer low bits in boundary cases
1147  *
1148  * This function returns the OCR bit number according to the provided @vdd
1149  * value. If conversion is not possible a negative errno value returned.
1150  *
1151  * Depending on the @low_bits flag the function prefers low or high OCR bits
1152  * on boundary voltages. For example,
1153  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1154  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1155  *
1156  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1157  */
1158 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1159 {
1160 	const int max_bit = ilog2(MMC_VDD_35_36);
1161 	int bit;
1162 
1163 	if (vdd < 1650 || vdd > 3600)
1164 		return -EINVAL;
1165 
1166 	if (vdd >= 1650 && vdd <= 1950)
1167 		return ilog2(MMC_VDD_165_195);
1168 
1169 	if (low_bits)
1170 		vdd -= 1;
1171 
1172 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1173 	bit = (vdd - 2000) / 100 + 8;
1174 	if (bit > max_bit)
1175 		return max_bit;
1176 	return bit;
1177 }
1178 
1179 /**
1180  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1181  * @vdd_min:	minimum voltage value (mV)
1182  * @vdd_max:	maximum voltage value (mV)
1183  *
1184  * This function returns the OCR mask bits according to the provided @vdd_min
1185  * and @vdd_max values. If conversion is not possible the function returns 0.
1186  *
1187  * Notes wrt boundary cases:
1188  * This function sets the OCR bits for all boundary voltages, for example
1189  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1190  * MMC_VDD_34_35 mask.
1191  */
1192 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1193 {
1194 	u32 mask = 0;
1195 
1196 	if (vdd_max < vdd_min)
1197 		return 0;
1198 
1199 	/* Prefer high bits for the boundary vdd_max values. */
1200 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1201 	if (vdd_max < 0)
1202 		return 0;
1203 
1204 	/* Prefer low bits for the boundary vdd_min values. */
1205 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1206 	if (vdd_min < 0)
1207 		return 0;
1208 
1209 	/* Fill the mask, from max bit to min bit. */
1210 	while (vdd_max >= vdd_min)
1211 		mask |= 1 << vdd_max--;
1212 
1213 	return mask;
1214 }
1215 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1216 
1217 #ifdef CONFIG_OF
1218 
1219 /**
1220  * mmc_of_parse_voltage - return mask of supported voltages
1221  * @np: The device node need to be parsed.
1222  * @mask: mask of voltages available for MMC/SD/SDIO
1223  *
1224  * Parse the "voltage-ranges" DT property, returning zero if it is not
1225  * found, negative errno if the voltage-range specification is invalid,
1226  * or one if the voltage-range is specified and successfully parsed.
1227  */
1228 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1229 {
1230 	const u32 *voltage_ranges;
1231 	int num_ranges, i;
1232 
1233 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1234 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1235 	if (!voltage_ranges) {
1236 		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1237 		return 0;
1238 	}
1239 	if (!num_ranges) {
1240 		pr_err("%s: voltage-ranges empty\n", np->full_name);
1241 		return -EINVAL;
1242 	}
1243 
1244 	for (i = 0; i < num_ranges; i++) {
1245 		const int j = i * 2;
1246 		u32 ocr_mask;
1247 
1248 		ocr_mask = mmc_vddrange_to_ocrmask(
1249 				be32_to_cpu(voltage_ranges[j]),
1250 				be32_to_cpu(voltage_ranges[j + 1]));
1251 		if (!ocr_mask) {
1252 			pr_err("%s: voltage-range #%d is invalid\n",
1253 				np->full_name, i);
1254 			return -EINVAL;
1255 		}
1256 		*mask |= ocr_mask;
1257 	}
1258 
1259 	return 1;
1260 }
1261 EXPORT_SYMBOL(mmc_of_parse_voltage);
1262 
1263 #endif /* CONFIG_OF */
1264 
1265 static int mmc_of_get_func_num(struct device_node *node)
1266 {
1267 	u32 reg;
1268 	int ret;
1269 
1270 	ret = of_property_read_u32(node, "reg", &reg);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	return reg;
1275 }
1276 
1277 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1278 		unsigned func_num)
1279 {
1280 	struct device_node *node;
1281 
1282 	if (!host->parent || !host->parent->of_node)
1283 		return NULL;
1284 
1285 	for_each_child_of_node(host->parent->of_node, node) {
1286 		if (mmc_of_get_func_num(node) == func_num)
1287 			return node;
1288 	}
1289 
1290 	return NULL;
1291 }
1292 
1293 #ifdef CONFIG_REGULATOR
1294 
1295 /**
1296  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1297  * @vdd_bit:	OCR bit number
1298  * @min_uV:	minimum voltage value (mV)
1299  * @max_uV:	maximum voltage value (mV)
1300  *
1301  * This function returns the voltage range according to the provided OCR
1302  * bit number. If conversion is not possible a negative errno value returned.
1303  */
1304 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1305 {
1306 	int		tmp;
1307 
1308 	if (!vdd_bit)
1309 		return -EINVAL;
1310 
1311 	/*
1312 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1313 	 * bits this regulator doesn't quite support ... don't
1314 	 * be too picky, most cards and regulators are OK with
1315 	 * a 0.1V range goof (it's a small error percentage).
1316 	 */
1317 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1318 	if (tmp == 0) {
1319 		*min_uV = 1650 * 1000;
1320 		*max_uV = 1950 * 1000;
1321 	} else {
1322 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1323 		*max_uV = *min_uV + 100 * 1000;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * mmc_regulator_get_ocrmask - return mask of supported voltages
1331  * @supply: regulator to use
1332  *
1333  * This returns either a negative errno, or a mask of voltages that
1334  * can be provided to MMC/SD/SDIO devices using the specified voltage
1335  * regulator.  This would normally be called before registering the
1336  * MMC host adapter.
1337  */
1338 int mmc_regulator_get_ocrmask(struct regulator *supply)
1339 {
1340 	int			result = 0;
1341 	int			count;
1342 	int			i;
1343 	int			vdd_uV;
1344 	int			vdd_mV;
1345 
1346 	count = regulator_count_voltages(supply);
1347 	if (count < 0)
1348 		return count;
1349 
1350 	for (i = 0; i < count; i++) {
1351 		vdd_uV = regulator_list_voltage(supply, i);
1352 		if (vdd_uV <= 0)
1353 			continue;
1354 
1355 		vdd_mV = vdd_uV / 1000;
1356 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1357 	}
1358 
1359 	if (!result) {
1360 		vdd_uV = regulator_get_voltage(supply);
1361 		if (vdd_uV <= 0)
1362 			return vdd_uV;
1363 
1364 		vdd_mV = vdd_uV / 1000;
1365 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1366 	}
1367 
1368 	return result;
1369 }
1370 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1371 
1372 /**
1373  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1374  * @mmc: the host to regulate
1375  * @supply: regulator to use
1376  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1377  *
1378  * Returns zero on success, else negative errno.
1379  *
1380  * MMC host drivers may use this to enable or disable a regulator using
1381  * a particular supply voltage.  This would normally be called from the
1382  * set_ios() method.
1383  */
1384 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1385 			struct regulator *supply,
1386 			unsigned short vdd_bit)
1387 {
1388 	int			result = 0;
1389 	int			min_uV, max_uV;
1390 
1391 	if (vdd_bit) {
1392 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1393 
1394 		result = regulator_set_voltage(supply, min_uV, max_uV);
1395 		if (result == 0 && !mmc->regulator_enabled) {
1396 			result = regulator_enable(supply);
1397 			if (!result)
1398 				mmc->regulator_enabled = true;
1399 		}
1400 	} else if (mmc->regulator_enabled) {
1401 		result = regulator_disable(supply);
1402 		if (result == 0)
1403 			mmc->regulator_enabled = false;
1404 	}
1405 
1406 	if (result)
1407 		dev_err(mmc_dev(mmc),
1408 			"could not set regulator OCR (%d)\n", result);
1409 	return result;
1410 }
1411 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1412 
1413 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1414 						  int min_uV, int target_uV,
1415 						  int max_uV)
1416 {
1417 	/*
1418 	 * Check if supported first to avoid errors since we may try several
1419 	 * signal levels during power up and don't want to show errors.
1420 	 */
1421 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1422 		return -EINVAL;
1423 
1424 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1425 					     max_uV);
1426 }
1427 
1428 /**
1429  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1430  *
1431  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1432  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1433  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1434  * SD card spec also define VQMMC in terms of VMMC.
1435  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1436  *
1437  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1438  * requested voltage.  This is definitely a good idea for UHS where there's a
1439  * separate regulator on the card that's trying to make 1.8V and it's best if
1440  * we match.
1441  *
1442  * This function is expected to be used by a controller's
1443  * start_signal_voltage_switch() function.
1444  */
1445 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1446 {
1447 	struct device *dev = mmc_dev(mmc);
1448 	int ret, volt, min_uV, max_uV;
1449 
1450 	/* If no vqmmc supply then we can't change the voltage */
1451 	if (IS_ERR(mmc->supply.vqmmc))
1452 		return -EINVAL;
1453 
1454 	switch (ios->signal_voltage) {
1455 	case MMC_SIGNAL_VOLTAGE_120:
1456 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1457 						1100000, 1200000, 1300000);
1458 	case MMC_SIGNAL_VOLTAGE_180:
1459 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1460 						1700000, 1800000, 1950000);
1461 	case MMC_SIGNAL_VOLTAGE_330:
1462 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1463 		if (ret < 0)
1464 			return ret;
1465 
1466 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1467 			__func__, volt, max_uV);
1468 
1469 		min_uV = max(volt - 300000, 2700000);
1470 		max_uV = min(max_uV + 200000, 3600000);
1471 
1472 		/*
1473 		 * Due to a limitation in the current implementation of
1474 		 * regulator_set_voltage_triplet() which is taking the lowest
1475 		 * voltage possible if below the target, search for a suitable
1476 		 * voltage in two steps and try to stay close to vmmc
1477 		 * with a 0.3V tolerance at first.
1478 		 */
1479 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1480 						min_uV, volt, max_uV))
1481 			return 0;
1482 
1483 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1484 						2700000, volt, 3600000);
1485 	default:
1486 		return -EINVAL;
1487 	}
1488 }
1489 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1490 
1491 #endif /* CONFIG_REGULATOR */
1492 
1493 int mmc_regulator_get_supply(struct mmc_host *mmc)
1494 {
1495 	struct device *dev = mmc_dev(mmc);
1496 	int ret;
1497 
1498 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1499 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1500 
1501 	if (IS_ERR(mmc->supply.vmmc)) {
1502 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1503 			return -EPROBE_DEFER;
1504 		dev_dbg(dev, "No vmmc regulator found\n");
1505 	} else {
1506 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1507 		if (ret > 0)
1508 			mmc->ocr_avail = ret;
1509 		else
1510 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1511 	}
1512 
1513 	if (IS_ERR(mmc->supply.vqmmc)) {
1514 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1515 			return -EPROBE_DEFER;
1516 		dev_dbg(dev, "No vqmmc regulator found\n");
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1522 
1523 /*
1524  * Mask off any voltages we don't support and select
1525  * the lowest voltage
1526  */
1527 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1528 {
1529 	int bit;
1530 
1531 	/*
1532 	 * Sanity check the voltages that the card claims to
1533 	 * support.
1534 	 */
1535 	if (ocr & 0x7F) {
1536 		dev_warn(mmc_dev(host),
1537 		"card claims to support voltages below defined range\n");
1538 		ocr &= ~0x7F;
1539 	}
1540 
1541 	ocr &= host->ocr_avail;
1542 	if (!ocr) {
1543 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1544 		return 0;
1545 	}
1546 
1547 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1548 		bit = ffs(ocr) - 1;
1549 		ocr &= 3 << bit;
1550 		mmc_power_cycle(host, ocr);
1551 	} else {
1552 		bit = fls(ocr) - 1;
1553 		ocr &= 3 << bit;
1554 		if (bit != host->ios.vdd)
1555 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1556 	}
1557 
1558 	return ocr;
1559 }
1560 
1561 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1562 {
1563 	int err = 0;
1564 	int old_signal_voltage = host->ios.signal_voltage;
1565 
1566 	host->ios.signal_voltage = signal_voltage;
1567 	if (host->ops->start_signal_voltage_switch)
1568 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1569 
1570 	if (err)
1571 		host->ios.signal_voltage = old_signal_voltage;
1572 
1573 	return err;
1574 
1575 }
1576 
1577 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1578 {
1579 	struct mmc_command cmd = {0};
1580 	int err = 0;
1581 	u32 clock;
1582 
1583 	BUG_ON(!host);
1584 
1585 	/*
1586 	 * Send CMD11 only if the request is to switch the card to
1587 	 * 1.8V signalling.
1588 	 */
1589 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1590 		return __mmc_set_signal_voltage(host, signal_voltage);
1591 
1592 	/*
1593 	 * If we cannot switch voltages, return failure so the caller
1594 	 * can continue without UHS mode
1595 	 */
1596 	if (!host->ops->start_signal_voltage_switch)
1597 		return -EPERM;
1598 	if (!host->ops->card_busy)
1599 		pr_warn("%s: cannot verify signal voltage switch\n",
1600 			mmc_hostname(host));
1601 
1602 	cmd.opcode = SD_SWITCH_VOLTAGE;
1603 	cmd.arg = 0;
1604 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1605 
1606 	err = mmc_wait_for_cmd(host, &cmd, 0);
1607 	if (err)
1608 		return err;
1609 
1610 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1611 		return -EIO;
1612 
1613 	/*
1614 	 * The card should drive cmd and dat[0:3] low immediately
1615 	 * after the response of cmd11, but wait 1 ms to be sure
1616 	 */
1617 	mmc_delay(1);
1618 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1619 		err = -EAGAIN;
1620 		goto power_cycle;
1621 	}
1622 	/*
1623 	 * During a signal voltage level switch, the clock must be gated
1624 	 * for 5 ms according to the SD spec
1625 	 */
1626 	clock = host->ios.clock;
1627 	host->ios.clock = 0;
1628 	mmc_set_ios(host);
1629 
1630 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1631 		/*
1632 		 * Voltages may not have been switched, but we've already
1633 		 * sent CMD11, so a power cycle is required anyway
1634 		 */
1635 		err = -EAGAIN;
1636 		goto power_cycle;
1637 	}
1638 
1639 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1640 	mmc_delay(10);
1641 	host->ios.clock = clock;
1642 	mmc_set_ios(host);
1643 
1644 	/* Wait for at least 1 ms according to spec */
1645 	mmc_delay(1);
1646 
1647 	/*
1648 	 * Failure to switch is indicated by the card holding
1649 	 * dat[0:3] low
1650 	 */
1651 	if (host->ops->card_busy && host->ops->card_busy(host))
1652 		err = -EAGAIN;
1653 
1654 power_cycle:
1655 	if (err) {
1656 		pr_debug("%s: Signal voltage switch failed, "
1657 			"power cycling card\n", mmc_hostname(host));
1658 		mmc_power_cycle(host, ocr);
1659 	}
1660 
1661 	return err;
1662 }
1663 
1664 /*
1665  * Select timing parameters for host.
1666  */
1667 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1668 {
1669 	host->ios.timing = timing;
1670 	mmc_set_ios(host);
1671 }
1672 
1673 /*
1674  * Select appropriate driver type for host.
1675  */
1676 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1677 {
1678 	host->ios.drv_type = drv_type;
1679 	mmc_set_ios(host);
1680 }
1681 
1682 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1683 			      int card_drv_type, int *drv_type)
1684 {
1685 	struct mmc_host *host = card->host;
1686 	int host_drv_type = SD_DRIVER_TYPE_B;
1687 
1688 	*drv_type = 0;
1689 
1690 	if (!host->ops->select_drive_strength)
1691 		return 0;
1692 
1693 	/* Use SD definition of driver strength for hosts */
1694 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1695 		host_drv_type |= SD_DRIVER_TYPE_A;
1696 
1697 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1698 		host_drv_type |= SD_DRIVER_TYPE_C;
1699 
1700 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1701 		host_drv_type |= SD_DRIVER_TYPE_D;
1702 
1703 	/*
1704 	 * The drive strength that the hardware can support
1705 	 * depends on the board design.  Pass the appropriate
1706 	 * information and let the hardware specific code
1707 	 * return what is possible given the options
1708 	 */
1709 	return host->ops->select_drive_strength(card, max_dtr,
1710 						host_drv_type,
1711 						card_drv_type,
1712 						drv_type);
1713 }
1714 
1715 /*
1716  * Apply power to the MMC stack.  This is a two-stage process.
1717  * First, we enable power to the card without the clock running.
1718  * We then wait a bit for the power to stabilise.  Finally,
1719  * enable the bus drivers and clock to the card.
1720  *
1721  * We must _NOT_ enable the clock prior to power stablising.
1722  *
1723  * If a host does all the power sequencing itself, ignore the
1724  * initial MMC_POWER_UP stage.
1725  */
1726 void mmc_power_up(struct mmc_host *host, u32 ocr)
1727 {
1728 	if (host->ios.power_mode == MMC_POWER_ON)
1729 		return;
1730 
1731 	mmc_pwrseq_pre_power_on(host);
1732 
1733 	host->ios.vdd = fls(ocr) - 1;
1734 	host->ios.power_mode = MMC_POWER_UP;
1735 	/* Set initial state and call mmc_set_ios */
1736 	mmc_set_initial_state(host);
1737 
1738 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1739 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1740 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1741 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1742 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1743 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1744 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1745 
1746 	/*
1747 	 * This delay should be sufficient to allow the power supply
1748 	 * to reach the minimum voltage.
1749 	 */
1750 	mmc_delay(10);
1751 
1752 	mmc_pwrseq_post_power_on(host);
1753 
1754 	host->ios.clock = host->f_init;
1755 
1756 	host->ios.power_mode = MMC_POWER_ON;
1757 	mmc_set_ios(host);
1758 
1759 	/*
1760 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1761 	 * time required to reach a stable voltage.
1762 	 */
1763 	mmc_delay(10);
1764 }
1765 
1766 void mmc_power_off(struct mmc_host *host)
1767 {
1768 	if (host->ios.power_mode == MMC_POWER_OFF)
1769 		return;
1770 
1771 	mmc_pwrseq_power_off(host);
1772 
1773 	host->ios.clock = 0;
1774 	host->ios.vdd = 0;
1775 
1776 	host->ios.power_mode = MMC_POWER_OFF;
1777 	/* Set initial state and call mmc_set_ios */
1778 	mmc_set_initial_state(host);
1779 
1780 	/*
1781 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1782 	 * XO-1.5, require a short delay after poweroff before the card
1783 	 * can be successfully turned on again.
1784 	 */
1785 	mmc_delay(1);
1786 }
1787 
1788 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1789 {
1790 	mmc_power_off(host);
1791 	/* Wait at least 1 ms according to SD spec */
1792 	mmc_delay(1);
1793 	mmc_power_up(host, ocr);
1794 }
1795 
1796 /*
1797  * Cleanup when the last reference to the bus operator is dropped.
1798  */
1799 static void __mmc_release_bus(struct mmc_host *host)
1800 {
1801 	BUG_ON(!host);
1802 	BUG_ON(host->bus_refs);
1803 	BUG_ON(!host->bus_dead);
1804 
1805 	host->bus_ops = NULL;
1806 }
1807 
1808 /*
1809  * Increase reference count of bus operator
1810  */
1811 static inline void mmc_bus_get(struct mmc_host *host)
1812 {
1813 	unsigned long flags;
1814 
1815 	spin_lock_irqsave(&host->lock, flags);
1816 	host->bus_refs++;
1817 	spin_unlock_irqrestore(&host->lock, flags);
1818 }
1819 
1820 /*
1821  * Decrease reference count of bus operator and free it if
1822  * it is the last reference.
1823  */
1824 static inline void mmc_bus_put(struct mmc_host *host)
1825 {
1826 	unsigned long flags;
1827 
1828 	spin_lock_irqsave(&host->lock, flags);
1829 	host->bus_refs--;
1830 	if ((host->bus_refs == 0) && host->bus_ops)
1831 		__mmc_release_bus(host);
1832 	spin_unlock_irqrestore(&host->lock, flags);
1833 }
1834 
1835 /*
1836  * Assign a mmc bus handler to a host. Only one bus handler may control a
1837  * host at any given time.
1838  */
1839 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1840 {
1841 	unsigned long flags;
1842 
1843 	BUG_ON(!host);
1844 	BUG_ON(!ops);
1845 
1846 	WARN_ON(!host->claimed);
1847 
1848 	spin_lock_irqsave(&host->lock, flags);
1849 
1850 	BUG_ON(host->bus_ops);
1851 	BUG_ON(host->bus_refs);
1852 
1853 	host->bus_ops = ops;
1854 	host->bus_refs = 1;
1855 	host->bus_dead = 0;
1856 
1857 	spin_unlock_irqrestore(&host->lock, flags);
1858 }
1859 
1860 /*
1861  * Remove the current bus handler from a host.
1862  */
1863 void mmc_detach_bus(struct mmc_host *host)
1864 {
1865 	unsigned long flags;
1866 
1867 	BUG_ON(!host);
1868 
1869 	WARN_ON(!host->claimed);
1870 	WARN_ON(!host->bus_ops);
1871 
1872 	spin_lock_irqsave(&host->lock, flags);
1873 
1874 	host->bus_dead = 1;
1875 
1876 	spin_unlock_irqrestore(&host->lock, flags);
1877 
1878 	mmc_bus_put(host);
1879 }
1880 
1881 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1882 				bool cd_irq)
1883 {
1884 #ifdef CONFIG_MMC_DEBUG
1885 	unsigned long flags;
1886 	spin_lock_irqsave(&host->lock, flags);
1887 	WARN_ON(host->removed);
1888 	spin_unlock_irqrestore(&host->lock, flags);
1889 #endif
1890 
1891 	/*
1892 	 * If the device is configured as wakeup, we prevent a new sleep for
1893 	 * 5 s to give provision for user space to consume the event.
1894 	 */
1895 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1896 		device_can_wakeup(mmc_dev(host)))
1897 		pm_wakeup_event(mmc_dev(host), 5000);
1898 
1899 	host->detect_change = 1;
1900 	mmc_schedule_delayed_work(&host->detect, delay);
1901 }
1902 
1903 /**
1904  *	mmc_detect_change - process change of state on a MMC socket
1905  *	@host: host which changed state.
1906  *	@delay: optional delay to wait before detection (jiffies)
1907  *
1908  *	MMC drivers should call this when they detect a card has been
1909  *	inserted or removed. The MMC layer will confirm that any
1910  *	present card is still functional, and initialize any newly
1911  *	inserted.
1912  */
1913 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1914 {
1915 	_mmc_detect_change(host, delay, true);
1916 }
1917 EXPORT_SYMBOL(mmc_detect_change);
1918 
1919 void mmc_init_erase(struct mmc_card *card)
1920 {
1921 	unsigned int sz;
1922 
1923 	if (is_power_of_2(card->erase_size))
1924 		card->erase_shift = ffs(card->erase_size) - 1;
1925 	else
1926 		card->erase_shift = 0;
1927 
1928 	/*
1929 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1930 	 * card.  That is not desirable because it can take a long time
1931 	 * (minutes) potentially delaying more important I/O, and also the
1932 	 * timeout calculations become increasingly hugely over-estimated.
1933 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1934 	 * to that size and alignment.
1935 	 *
1936 	 * For SD cards that define Allocation Unit size, limit erases to one
1937 	 * Allocation Unit at a time.
1938 	 * For MMC, have a stab at ai good value and for modern cards it will
1939 	 * end up being 4MiB. Note that if the value is too small, it can end
1940 	 * up taking longer to erase. Also note, erase_size is already set to
1941 	 * High Capacity Erase Size if available when this function is called.
1942 	 */
1943 	if (mmc_card_sd(card) && card->ssr.au) {
1944 		card->pref_erase = card->ssr.au;
1945 		card->erase_shift = ffs(card->ssr.au) - 1;
1946 	} else if (card->erase_size) {
1947 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1948 		if (sz < 128)
1949 			card->pref_erase = 512 * 1024 / 512;
1950 		else if (sz < 512)
1951 			card->pref_erase = 1024 * 1024 / 512;
1952 		else if (sz < 1024)
1953 			card->pref_erase = 2 * 1024 * 1024 / 512;
1954 		else
1955 			card->pref_erase = 4 * 1024 * 1024 / 512;
1956 		if (card->pref_erase < card->erase_size)
1957 			card->pref_erase = card->erase_size;
1958 		else {
1959 			sz = card->pref_erase % card->erase_size;
1960 			if (sz)
1961 				card->pref_erase += card->erase_size - sz;
1962 		}
1963 	} else
1964 		card->pref_erase = 0;
1965 }
1966 
1967 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1968 				          unsigned int arg, unsigned int qty)
1969 {
1970 	unsigned int erase_timeout;
1971 
1972 	if (arg == MMC_DISCARD_ARG ||
1973 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1974 		erase_timeout = card->ext_csd.trim_timeout;
1975 	} else if (card->ext_csd.erase_group_def & 1) {
1976 		/* High Capacity Erase Group Size uses HC timeouts */
1977 		if (arg == MMC_TRIM_ARG)
1978 			erase_timeout = card->ext_csd.trim_timeout;
1979 		else
1980 			erase_timeout = card->ext_csd.hc_erase_timeout;
1981 	} else {
1982 		/* CSD Erase Group Size uses write timeout */
1983 		unsigned int mult = (10 << card->csd.r2w_factor);
1984 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1985 		unsigned int timeout_us;
1986 
1987 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1988 		if (card->csd.tacc_ns < 1000000)
1989 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1990 		else
1991 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1992 
1993 		/*
1994 		 * ios.clock is only a target.  The real clock rate might be
1995 		 * less but not that much less, so fudge it by multiplying by 2.
1996 		 */
1997 		timeout_clks <<= 1;
1998 		timeout_us += (timeout_clks * 1000) /
1999 			      (card->host->ios.clock / 1000);
2000 
2001 		erase_timeout = timeout_us / 1000;
2002 
2003 		/*
2004 		 * Theoretically, the calculation could underflow so round up
2005 		 * to 1ms in that case.
2006 		 */
2007 		if (!erase_timeout)
2008 			erase_timeout = 1;
2009 	}
2010 
2011 	/* Multiplier for secure operations */
2012 	if (arg & MMC_SECURE_ARGS) {
2013 		if (arg == MMC_SECURE_ERASE_ARG)
2014 			erase_timeout *= card->ext_csd.sec_erase_mult;
2015 		else
2016 			erase_timeout *= card->ext_csd.sec_trim_mult;
2017 	}
2018 
2019 	erase_timeout *= qty;
2020 
2021 	/*
2022 	 * Ensure at least a 1 second timeout for SPI as per
2023 	 * 'mmc_set_data_timeout()'
2024 	 */
2025 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2026 		erase_timeout = 1000;
2027 
2028 	return erase_timeout;
2029 }
2030 
2031 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2032 					 unsigned int arg,
2033 					 unsigned int qty)
2034 {
2035 	unsigned int erase_timeout;
2036 
2037 	if (card->ssr.erase_timeout) {
2038 		/* Erase timeout specified in SD Status Register (SSR) */
2039 		erase_timeout = card->ssr.erase_timeout * qty +
2040 				card->ssr.erase_offset;
2041 	} else {
2042 		/*
2043 		 * Erase timeout not specified in SD Status Register (SSR) so
2044 		 * use 250ms per write block.
2045 		 */
2046 		erase_timeout = 250 * qty;
2047 	}
2048 
2049 	/* Must not be less than 1 second */
2050 	if (erase_timeout < 1000)
2051 		erase_timeout = 1000;
2052 
2053 	return erase_timeout;
2054 }
2055 
2056 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2057 				      unsigned int arg,
2058 				      unsigned int qty)
2059 {
2060 	if (mmc_card_sd(card))
2061 		return mmc_sd_erase_timeout(card, arg, qty);
2062 	else
2063 		return mmc_mmc_erase_timeout(card, arg, qty);
2064 }
2065 
2066 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2067 			unsigned int to, unsigned int arg)
2068 {
2069 	struct mmc_command cmd = {0};
2070 	unsigned int qty = 0, busy_timeout = 0;
2071 	bool use_r1b_resp = false;
2072 	unsigned long timeout;
2073 	int err;
2074 
2075 	mmc_retune_hold(card->host);
2076 
2077 	/*
2078 	 * qty is used to calculate the erase timeout which depends on how many
2079 	 * erase groups (or allocation units in SD terminology) are affected.
2080 	 * We count erasing part of an erase group as one erase group.
2081 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2082 	 * erase group size is almost certainly also power of 2, but it does not
2083 	 * seem to insist on that in the JEDEC standard, so we fall back to
2084 	 * division in that case.  SD may not specify an allocation unit size,
2085 	 * in which case the timeout is based on the number of write blocks.
2086 	 *
2087 	 * Note that the timeout for secure trim 2 will only be correct if the
2088 	 * number of erase groups specified is the same as the total of all
2089 	 * preceding secure trim 1 commands.  Since the power may have been
2090 	 * lost since the secure trim 1 commands occurred, it is generally
2091 	 * impossible to calculate the secure trim 2 timeout correctly.
2092 	 */
2093 	if (card->erase_shift)
2094 		qty += ((to >> card->erase_shift) -
2095 			(from >> card->erase_shift)) + 1;
2096 	else if (mmc_card_sd(card))
2097 		qty += to - from + 1;
2098 	else
2099 		qty += ((to / card->erase_size) -
2100 			(from / card->erase_size)) + 1;
2101 
2102 	if (!mmc_card_blockaddr(card)) {
2103 		from <<= 9;
2104 		to <<= 9;
2105 	}
2106 
2107 	if (mmc_card_sd(card))
2108 		cmd.opcode = SD_ERASE_WR_BLK_START;
2109 	else
2110 		cmd.opcode = MMC_ERASE_GROUP_START;
2111 	cmd.arg = from;
2112 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114 	if (err) {
2115 		pr_err("mmc_erase: group start error %d, "
2116 		       "status %#x\n", err, cmd.resp[0]);
2117 		err = -EIO;
2118 		goto out;
2119 	}
2120 
2121 	memset(&cmd, 0, sizeof(struct mmc_command));
2122 	if (mmc_card_sd(card))
2123 		cmd.opcode = SD_ERASE_WR_BLK_END;
2124 	else
2125 		cmd.opcode = MMC_ERASE_GROUP_END;
2126 	cmd.arg = to;
2127 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2128 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2129 	if (err) {
2130 		pr_err("mmc_erase: group end error %d, status %#x\n",
2131 		       err, cmd.resp[0]);
2132 		err = -EIO;
2133 		goto out;
2134 	}
2135 
2136 	memset(&cmd, 0, sizeof(struct mmc_command));
2137 	cmd.opcode = MMC_ERASE;
2138 	cmd.arg = arg;
2139 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2140 	/*
2141 	 * If the host controller supports busy signalling and the timeout for
2142 	 * the erase operation does not exceed the max_busy_timeout, we should
2143 	 * use R1B response. Or we need to prevent the host from doing hw busy
2144 	 * detection, which is done by converting to a R1 response instead.
2145 	 */
2146 	if (card->host->max_busy_timeout &&
2147 	    busy_timeout > card->host->max_busy_timeout) {
2148 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2149 	} else {
2150 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2151 		cmd.busy_timeout = busy_timeout;
2152 		use_r1b_resp = true;
2153 	}
2154 
2155 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2156 	if (err) {
2157 		pr_err("mmc_erase: erase error %d, status %#x\n",
2158 		       err, cmd.resp[0]);
2159 		err = -EIO;
2160 		goto out;
2161 	}
2162 
2163 	if (mmc_host_is_spi(card->host))
2164 		goto out;
2165 
2166 	/*
2167 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2168 	 * shall be avoided.
2169 	 */
2170 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2171 		goto out;
2172 
2173 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2174 	do {
2175 		memset(&cmd, 0, sizeof(struct mmc_command));
2176 		cmd.opcode = MMC_SEND_STATUS;
2177 		cmd.arg = card->rca << 16;
2178 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2179 		/* Do not retry else we can't see errors */
2180 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2181 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2182 			pr_err("error %d requesting status %#x\n",
2183 				err, cmd.resp[0]);
2184 			err = -EIO;
2185 			goto out;
2186 		}
2187 
2188 		/* Timeout if the device never becomes ready for data and
2189 		 * never leaves the program state.
2190 		 */
2191 		if (time_after(jiffies, timeout)) {
2192 			pr_err("%s: Card stuck in programming state! %s\n",
2193 				mmc_hostname(card->host), __func__);
2194 			err =  -EIO;
2195 			goto out;
2196 		}
2197 
2198 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2199 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2200 out:
2201 	mmc_retune_release(card->host);
2202 	return err;
2203 }
2204 
2205 /**
2206  * mmc_erase - erase sectors.
2207  * @card: card to erase
2208  * @from: first sector to erase
2209  * @nr: number of sectors to erase
2210  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2211  *
2212  * Caller must claim host before calling this function.
2213  */
2214 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2215 	      unsigned int arg)
2216 {
2217 	unsigned int rem, to = from + nr;
2218 	int err;
2219 
2220 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2221 	    !(card->csd.cmdclass & CCC_ERASE))
2222 		return -EOPNOTSUPP;
2223 
2224 	if (!card->erase_size)
2225 		return -EOPNOTSUPP;
2226 
2227 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2228 		return -EOPNOTSUPP;
2229 
2230 	if ((arg & MMC_SECURE_ARGS) &&
2231 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2232 		return -EOPNOTSUPP;
2233 
2234 	if ((arg & MMC_TRIM_ARGS) &&
2235 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2236 		return -EOPNOTSUPP;
2237 
2238 	if (arg == MMC_SECURE_ERASE_ARG) {
2239 		if (from % card->erase_size || nr % card->erase_size)
2240 			return -EINVAL;
2241 	}
2242 
2243 	if (arg == MMC_ERASE_ARG) {
2244 		rem = from % card->erase_size;
2245 		if (rem) {
2246 			rem = card->erase_size - rem;
2247 			from += rem;
2248 			if (nr > rem)
2249 				nr -= rem;
2250 			else
2251 				return 0;
2252 		}
2253 		rem = nr % card->erase_size;
2254 		if (rem)
2255 			nr -= rem;
2256 	}
2257 
2258 	if (nr == 0)
2259 		return 0;
2260 
2261 	to = from + nr;
2262 
2263 	if (to <= from)
2264 		return -EINVAL;
2265 
2266 	/* 'from' and 'to' are inclusive */
2267 	to -= 1;
2268 
2269 	/*
2270 	 * Special case where only one erase-group fits in the timeout budget:
2271 	 * If the region crosses an erase-group boundary on this particular
2272 	 * case, we will be trimming more than one erase-group which, does not
2273 	 * fit in the timeout budget of the controller, so we need to split it
2274 	 * and call mmc_do_erase() twice if necessary. This special case is
2275 	 * identified by the card->eg_boundary flag.
2276 	 */
2277 	rem = card->erase_size - (from % card->erase_size);
2278 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2279 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2280 		from += rem;
2281 		if ((err) || (to <= from))
2282 			return err;
2283 	}
2284 
2285 	return mmc_do_erase(card, from, to, arg);
2286 }
2287 EXPORT_SYMBOL(mmc_erase);
2288 
2289 int mmc_can_erase(struct mmc_card *card)
2290 {
2291 	if ((card->host->caps & MMC_CAP_ERASE) &&
2292 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2293 		return 1;
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL(mmc_can_erase);
2297 
2298 int mmc_can_trim(struct mmc_card *card)
2299 {
2300 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2301 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2302 		return 1;
2303 	return 0;
2304 }
2305 EXPORT_SYMBOL(mmc_can_trim);
2306 
2307 int mmc_can_discard(struct mmc_card *card)
2308 {
2309 	/*
2310 	 * As there's no way to detect the discard support bit at v4.5
2311 	 * use the s/w feature support filed.
2312 	 */
2313 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2314 		return 1;
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL(mmc_can_discard);
2318 
2319 int mmc_can_sanitize(struct mmc_card *card)
2320 {
2321 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2322 		return 0;
2323 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2324 		return 1;
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(mmc_can_sanitize);
2328 
2329 int mmc_can_secure_erase_trim(struct mmc_card *card)
2330 {
2331 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2332 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2333 		return 1;
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2337 
2338 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2339 			    unsigned int nr)
2340 {
2341 	if (!card->erase_size)
2342 		return 0;
2343 	if (from % card->erase_size || nr % card->erase_size)
2344 		return 0;
2345 	return 1;
2346 }
2347 EXPORT_SYMBOL(mmc_erase_group_aligned);
2348 
2349 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2350 					    unsigned int arg)
2351 {
2352 	struct mmc_host *host = card->host;
2353 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2354 	unsigned int last_timeout = 0;
2355 
2356 	if (card->erase_shift) {
2357 		max_qty = UINT_MAX >> card->erase_shift;
2358 		min_qty = card->pref_erase >> card->erase_shift;
2359 	} else if (mmc_card_sd(card)) {
2360 		max_qty = UINT_MAX;
2361 		min_qty = card->pref_erase;
2362 	} else {
2363 		max_qty = UINT_MAX / card->erase_size;
2364 		min_qty = card->pref_erase / card->erase_size;
2365 	}
2366 
2367 	/*
2368 	 * We should not only use 'host->max_busy_timeout' as the limitation
2369 	 * when deciding the max discard sectors. We should set a balance value
2370 	 * to improve the erase speed, and it can not get too long timeout at
2371 	 * the same time.
2372 	 *
2373 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2374 	 * matter what size of 'host->max_busy_timeout', but if the
2375 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2376 	 * then we can continue to increase the max discard sectors until we
2377 	 * get a balance value.
2378 	 */
2379 	do {
2380 		y = 0;
2381 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2382 			timeout = mmc_erase_timeout(card, arg, qty + x);
2383 
2384 			if (qty + x > min_qty &&
2385 			    timeout > host->max_busy_timeout)
2386 				break;
2387 
2388 			if (timeout < last_timeout)
2389 				break;
2390 			last_timeout = timeout;
2391 			y = x;
2392 		}
2393 		qty += y;
2394 	} while (y);
2395 
2396 	if (!qty)
2397 		return 0;
2398 
2399 	/*
2400 	 * When specifying a sector range to trim, chances are we might cross
2401 	 * an erase-group boundary even if the amount of sectors is less than
2402 	 * one erase-group.
2403 	 * If we can only fit one erase-group in the controller timeout budget,
2404 	 * we have to care that erase-group boundaries are not crossed by a
2405 	 * single trim operation. We flag that special case with "eg_boundary".
2406 	 * In all other cases we can just decrement qty and pretend that we
2407 	 * always touch (qty + 1) erase-groups as a simple optimization.
2408 	 */
2409 	if (qty == 1)
2410 		card->eg_boundary = 1;
2411 	else
2412 		qty--;
2413 
2414 	/* Convert qty to sectors */
2415 	if (card->erase_shift)
2416 		max_discard = qty << card->erase_shift;
2417 	else if (mmc_card_sd(card))
2418 		max_discard = qty + 1;
2419 	else
2420 		max_discard = qty * card->erase_size;
2421 
2422 	return max_discard;
2423 }
2424 
2425 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2426 {
2427 	struct mmc_host *host = card->host;
2428 	unsigned int max_discard, max_trim;
2429 
2430 	if (!host->max_busy_timeout)
2431 		return UINT_MAX;
2432 
2433 	/*
2434 	 * Without erase_group_def set, MMC erase timeout depends on clock
2435 	 * frequence which can change.  In that case, the best choice is
2436 	 * just the preferred erase size.
2437 	 */
2438 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2439 		return card->pref_erase;
2440 
2441 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2442 	if (mmc_can_trim(card)) {
2443 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2444 		if (max_trim < max_discard)
2445 			max_discard = max_trim;
2446 	} else if (max_discard < card->erase_size) {
2447 		max_discard = 0;
2448 	}
2449 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2450 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2451 	return max_discard;
2452 }
2453 EXPORT_SYMBOL(mmc_calc_max_discard);
2454 
2455 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2456 {
2457 	struct mmc_command cmd = {0};
2458 
2459 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2460 		return 0;
2461 
2462 	cmd.opcode = MMC_SET_BLOCKLEN;
2463 	cmd.arg = blocklen;
2464 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2465 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2466 }
2467 EXPORT_SYMBOL(mmc_set_blocklen);
2468 
2469 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2470 			bool is_rel_write)
2471 {
2472 	struct mmc_command cmd = {0};
2473 
2474 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2475 	cmd.arg = blockcount & 0x0000FFFF;
2476 	if (is_rel_write)
2477 		cmd.arg |= 1 << 31;
2478 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2479 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2480 }
2481 EXPORT_SYMBOL(mmc_set_blockcount);
2482 
2483 static void mmc_hw_reset_for_init(struct mmc_host *host)
2484 {
2485 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2486 		return;
2487 	host->ops->hw_reset(host);
2488 }
2489 
2490 int mmc_hw_reset(struct mmc_host *host)
2491 {
2492 	int ret;
2493 
2494 	if (!host->card)
2495 		return -EINVAL;
2496 
2497 	mmc_bus_get(host);
2498 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2499 		mmc_bus_put(host);
2500 		return -EOPNOTSUPP;
2501 	}
2502 
2503 	ret = host->bus_ops->reset(host);
2504 	mmc_bus_put(host);
2505 
2506 	if (ret)
2507 		pr_warn("%s: tried to reset card, got error %d\n",
2508 			mmc_hostname(host), ret);
2509 
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL(mmc_hw_reset);
2513 
2514 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2515 {
2516 	host->f_init = freq;
2517 
2518 #ifdef CONFIG_MMC_DEBUG
2519 	pr_info("%s: %s: trying to init card at %u Hz\n",
2520 		mmc_hostname(host), __func__, host->f_init);
2521 #endif
2522 	mmc_power_up(host, host->ocr_avail);
2523 
2524 	/*
2525 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2526 	 * do a hardware reset if possible.
2527 	 */
2528 	mmc_hw_reset_for_init(host);
2529 
2530 	/*
2531 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2532 	 * if the card is being re-initialized, just send it.  CMD52
2533 	 * should be ignored by SD/eMMC cards.
2534 	 * Skip it if we already know that we do not support SDIO commands
2535 	 */
2536 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2537 		sdio_reset(host);
2538 
2539 	mmc_go_idle(host);
2540 
2541 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2542 		mmc_send_if_cond(host, host->ocr_avail);
2543 
2544 	/* Order's important: probe SDIO, then SD, then MMC */
2545 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2546 		if (!mmc_attach_sdio(host))
2547 			return 0;
2548 
2549 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2550 		if (!mmc_attach_sd(host))
2551 			return 0;
2552 
2553 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2554 		if (!mmc_attach_mmc(host))
2555 			return 0;
2556 
2557 	mmc_power_off(host);
2558 	return -EIO;
2559 }
2560 
2561 int _mmc_detect_card_removed(struct mmc_host *host)
2562 {
2563 	int ret;
2564 
2565 	if (!host->card || mmc_card_removed(host->card))
2566 		return 1;
2567 
2568 	ret = host->bus_ops->alive(host);
2569 
2570 	/*
2571 	 * Card detect status and alive check may be out of sync if card is
2572 	 * removed slowly, when card detect switch changes while card/slot
2573 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2574 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2575 	 * detect work 200ms later for this case.
2576 	 */
2577 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2578 		mmc_detect_change(host, msecs_to_jiffies(200));
2579 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2580 	}
2581 
2582 	if (ret) {
2583 		mmc_card_set_removed(host->card);
2584 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 int mmc_detect_card_removed(struct mmc_host *host)
2591 {
2592 	struct mmc_card *card = host->card;
2593 	int ret;
2594 
2595 	WARN_ON(!host->claimed);
2596 
2597 	if (!card)
2598 		return 1;
2599 
2600 	if (!mmc_card_is_removable(host))
2601 		return 0;
2602 
2603 	ret = mmc_card_removed(card);
2604 	/*
2605 	 * The card will be considered unchanged unless we have been asked to
2606 	 * detect a change or host requires polling to provide card detection.
2607 	 */
2608 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2609 		return ret;
2610 
2611 	host->detect_change = 0;
2612 	if (!ret) {
2613 		ret = _mmc_detect_card_removed(host);
2614 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2615 			/*
2616 			 * Schedule a detect work as soon as possible to let a
2617 			 * rescan handle the card removal.
2618 			 */
2619 			cancel_delayed_work(&host->detect);
2620 			_mmc_detect_change(host, 0, false);
2621 		}
2622 	}
2623 
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL(mmc_detect_card_removed);
2627 
2628 void mmc_rescan(struct work_struct *work)
2629 {
2630 	struct mmc_host *host =
2631 		container_of(work, struct mmc_host, detect.work);
2632 	int i;
2633 
2634 	if (host->rescan_disable)
2635 		return;
2636 
2637 	/* If there is a non-removable card registered, only scan once */
2638 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2639 		return;
2640 	host->rescan_entered = 1;
2641 
2642 	if (host->trigger_card_event && host->ops->card_event) {
2643 		mmc_claim_host(host);
2644 		host->ops->card_event(host);
2645 		mmc_release_host(host);
2646 		host->trigger_card_event = false;
2647 	}
2648 
2649 	mmc_bus_get(host);
2650 
2651 	/*
2652 	 * if there is a _removable_ card registered, check whether it is
2653 	 * still present
2654 	 */
2655 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2656 		host->bus_ops->detect(host);
2657 
2658 	host->detect_change = 0;
2659 
2660 	/*
2661 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2662 	 * the card is no longer present.
2663 	 */
2664 	mmc_bus_put(host);
2665 	mmc_bus_get(host);
2666 
2667 	/* if there still is a card present, stop here */
2668 	if (host->bus_ops != NULL) {
2669 		mmc_bus_put(host);
2670 		goto out;
2671 	}
2672 
2673 	/*
2674 	 * Only we can add a new handler, so it's safe to
2675 	 * release the lock here.
2676 	 */
2677 	mmc_bus_put(host);
2678 
2679 	mmc_claim_host(host);
2680 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2681 			host->ops->get_cd(host) == 0) {
2682 		mmc_power_off(host);
2683 		mmc_release_host(host);
2684 		goto out;
2685 	}
2686 
2687 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2688 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2689 			break;
2690 		if (freqs[i] <= host->f_min)
2691 			break;
2692 	}
2693 	mmc_release_host(host);
2694 
2695  out:
2696 	if (host->caps & MMC_CAP_NEEDS_POLL)
2697 		mmc_schedule_delayed_work(&host->detect, HZ);
2698 }
2699 
2700 void mmc_start_host(struct mmc_host *host)
2701 {
2702 	host->f_init = max(freqs[0], host->f_min);
2703 	host->rescan_disable = 0;
2704 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2705 
2706 	mmc_claim_host(host);
2707 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2708 		mmc_power_off(host);
2709 	else
2710 		mmc_power_up(host, host->ocr_avail);
2711 	mmc_release_host(host);
2712 
2713 	mmc_gpiod_request_cd_irq(host);
2714 	_mmc_detect_change(host, 0, false);
2715 }
2716 
2717 void mmc_stop_host(struct mmc_host *host)
2718 {
2719 #ifdef CONFIG_MMC_DEBUG
2720 	unsigned long flags;
2721 	spin_lock_irqsave(&host->lock, flags);
2722 	host->removed = 1;
2723 	spin_unlock_irqrestore(&host->lock, flags);
2724 #endif
2725 	if (host->slot.cd_irq >= 0)
2726 		disable_irq(host->slot.cd_irq);
2727 
2728 	host->rescan_disable = 1;
2729 	cancel_delayed_work_sync(&host->detect);
2730 
2731 	/* clear pm flags now and let card drivers set them as needed */
2732 	host->pm_flags = 0;
2733 
2734 	mmc_bus_get(host);
2735 	if (host->bus_ops && !host->bus_dead) {
2736 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2737 		host->bus_ops->remove(host);
2738 		mmc_claim_host(host);
2739 		mmc_detach_bus(host);
2740 		mmc_power_off(host);
2741 		mmc_release_host(host);
2742 		mmc_bus_put(host);
2743 		return;
2744 	}
2745 	mmc_bus_put(host);
2746 
2747 	BUG_ON(host->card);
2748 
2749 	mmc_claim_host(host);
2750 	mmc_power_off(host);
2751 	mmc_release_host(host);
2752 }
2753 
2754 int mmc_power_save_host(struct mmc_host *host)
2755 {
2756 	int ret = 0;
2757 
2758 #ifdef CONFIG_MMC_DEBUG
2759 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2760 #endif
2761 
2762 	mmc_bus_get(host);
2763 
2764 	if (!host->bus_ops || host->bus_dead) {
2765 		mmc_bus_put(host);
2766 		return -EINVAL;
2767 	}
2768 
2769 	if (host->bus_ops->power_save)
2770 		ret = host->bus_ops->power_save(host);
2771 
2772 	mmc_bus_put(host);
2773 
2774 	mmc_power_off(host);
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL(mmc_power_save_host);
2779 
2780 int mmc_power_restore_host(struct mmc_host *host)
2781 {
2782 	int ret;
2783 
2784 #ifdef CONFIG_MMC_DEBUG
2785 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2786 #endif
2787 
2788 	mmc_bus_get(host);
2789 
2790 	if (!host->bus_ops || host->bus_dead) {
2791 		mmc_bus_put(host);
2792 		return -EINVAL;
2793 	}
2794 
2795 	mmc_power_up(host, host->card->ocr);
2796 	ret = host->bus_ops->power_restore(host);
2797 
2798 	mmc_bus_put(host);
2799 
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL(mmc_power_restore_host);
2803 
2804 /*
2805  * Flush the cache to the non-volatile storage.
2806  */
2807 int mmc_flush_cache(struct mmc_card *card)
2808 {
2809 	int err = 0;
2810 
2811 	if (mmc_card_mmc(card) &&
2812 			(card->ext_csd.cache_size > 0) &&
2813 			(card->ext_csd.cache_ctrl & 1)) {
2814 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2815 				EXT_CSD_FLUSH_CACHE, 1, 0);
2816 		if (err)
2817 			pr_err("%s: cache flush error %d\n",
2818 					mmc_hostname(card->host), err);
2819 	}
2820 
2821 	return err;
2822 }
2823 EXPORT_SYMBOL(mmc_flush_cache);
2824 
2825 #ifdef CONFIG_PM_SLEEP
2826 /* Do the card removal on suspend if card is assumed removeable
2827  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2828    to sync the card.
2829 */
2830 static int mmc_pm_notify(struct notifier_block *notify_block,
2831 			unsigned long mode, void *unused)
2832 {
2833 	struct mmc_host *host = container_of(
2834 		notify_block, struct mmc_host, pm_notify);
2835 	unsigned long flags;
2836 	int err = 0;
2837 
2838 	switch (mode) {
2839 	case PM_HIBERNATION_PREPARE:
2840 	case PM_SUSPEND_PREPARE:
2841 	case PM_RESTORE_PREPARE:
2842 		spin_lock_irqsave(&host->lock, flags);
2843 		host->rescan_disable = 1;
2844 		spin_unlock_irqrestore(&host->lock, flags);
2845 		cancel_delayed_work_sync(&host->detect);
2846 
2847 		if (!host->bus_ops)
2848 			break;
2849 
2850 		/* Validate prerequisites for suspend */
2851 		if (host->bus_ops->pre_suspend)
2852 			err = host->bus_ops->pre_suspend(host);
2853 		if (!err)
2854 			break;
2855 
2856 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2857 		host->bus_ops->remove(host);
2858 		mmc_claim_host(host);
2859 		mmc_detach_bus(host);
2860 		mmc_power_off(host);
2861 		mmc_release_host(host);
2862 		host->pm_flags = 0;
2863 		break;
2864 
2865 	case PM_POST_SUSPEND:
2866 	case PM_POST_HIBERNATION:
2867 	case PM_POST_RESTORE:
2868 
2869 		spin_lock_irqsave(&host->lock, flags);
2870 		host->rescan_disable = 0;
2871 		spin_unlock_irqrestore(&host->lock, flags);
2872 		_mmc_detect_change(host, 0, false);
2873 
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 void mmc_register_pm_notifier(struct mmc_host *host)
2880 {
2881 	host->pm_notify.notifier_call = mmc_pm_notify;
2882 	register_pm_notifier(&host->pm_notify);
2883 }
2884 
2885 void mmc_unregister_pm_notifier(struct mmc_host *host)
2886 {
2887 	unregister_pm_notifier(&host->pm_notify);
2888 }
2889 #endif
2890 
2891 /**
2892  * mmc_init_context_info() - init synchronization context
2893  * @host: mmc host
2894  *
2895  * Init struct context_info needed to implement asynchronous
2896  * request mechanism, used by mmc core, host driver and mmc requests
2897  * supplier.
2898  */
2899 void mmc_init_context_info(struct mmc_host *host)
2900 {
2901 	spin_lock_init(&host->context_info.lock);
2902 	host->context_info.is_new_req = false;
2903 	host->context_info.is_done_rcv = false;
2904 	host->context_info.is_waiting_last_req = false;
2905 	init_waitqueue_head(&host->context_info.wait);
2906 }
2907 
2908 static int __init mmc_init(void)
2909 {
2910 	int ret;
2911 
2912 	ret = mmc_register_bus();
2913 	if (ret)
2914 		return ret;
2915 
2916 	ret = mmc_register_host_class();
2917 	if (ret)
2918 		goto unregister_bus;
2919 
2920 	ret = sdio_register_bus();
2921 	if (ret)
2922 		goto unregister_host_class;
2923 
2924 	return 0;
2925 
2926 unregister_host_class:
2927 	mmc_unregister_host_class();
2928 unregister_bus:
2929 	mmc_unregister_bus();
2930 	return ret;
2931 }
2932 
2933 static void __exit mmc_exit(void)
2934 {
2935 	sdio_unregister_bus();
2936 	mmc_unregister_host_class();
2937 	mmc_unregister_bus();
2938 }
2939 
2940 subsys_initcall(mmc_init);
2941 module_exit(mmc_exit);
2942 
2943 MODULE_LICENSE("GPL");
2944