1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "bus.h" 44 #include "host.h" 45 #include "sdio_bus.h" 46 #include "pwrseq.h" 47 48 #include "mmc_ops.h" 49 #include "sd_ops.h" 50 #include "sdio_ops.h" 51 52 /* If the device is not responding */ 53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 54 55 /* 56 * Background operations can take a long time, depending on the housekeeping 57 * operations the card has to perform. 58 */ 59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 60 61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 62 63 /* 64 * Enabling software CRCs on the data blocks can be a significant (30%) 65 * performance cost, and for other reasons may not always be desired. 66 * So we allow it it to be disabled. 67 */ 68 bool use_spi_crc = 1; 69 module_param(use_spi_crc, bool, 0); 70 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 /* 75 * We use the system_freezable_wq, because of two reasons. 76 * First, it allows several works (not the same work item) to be 77 * executed simultaneously. Second, the queue becomes frozen when 78 * userspace becomes frozen during system PM. 79 */ 80 return queue_delayed_work(system_freezable_wq, work, delay); 81 } 82 83 #ifdef CONFIG_FAIL_MMC_REQUEST 84 85 /* 86 * Internal function. Inject random data errors. 87 * If mmc_data is NULL no errors are injected. 88 */ 89 static void mmc_should_fail_request(struct mmc_host *host, 90 struct mmc_request *mrq) 91 { 92 struct mmc_command *cmd = mrq->cmd; 93 struct mmc_data *data = mrq->data; 94 static const int data_errors[] = { 95 -ETIMEDOUT, 96 -EILSEQ, 97 -EIO, 98 }; 99 100 if (!data) 101 return; 102 103 if (cmd->error || data->error || 104 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 105 return; 106 107 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 108 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 109 } 110 111 #else /* CONFIG_FAIL_MMC_REQUEST */ 112 113 static inline void mmc_should_fail_request(struct mmc_host *host, 114 struct mmc_request *mrq) 115 { 116 } 117 118 #endif /* CONFIG_FAIL_MMC_REQUEST */ 119 120 /** 121 * mmc_request_done - finish processing an MMC request 122 * @host: MMC host which completed request 123 * @mrq: MMC request which request 124 * 125 * MMC drivers should call this function when they have completed 126 * their processing of a request. 127 */ 128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 129 { 130 struct mmc_command *cmd = mrq->cmd; 131 int err = cmd->error; 132 133 /* Flag re-tuning needed on CRC errors */ 134 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 135 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 136 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 137 (mrq->data && mrq->data->error == -EILSEQ) || 138 (mrq->stop && mrq->stop->error == -EILSEQ))) 139 mmc_retune_needed(host); 140 141 if (err && cmd->retries && mmc_host_is_spi(host)) { 142 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 143 cmd->retries = 0; 144 } 145 146 trace_mmc_request_done(host, mrq); 147 148 if (err && cmd->retries && !mmc_card_removed(host->card)) { 149 /* 150 * Request starter must handle retries - see 151 * mmc_wait_for_req_done(). 152 */ 153 if (mrq->done) 154 mrq->done(mrq); 155 } else { 156 mmc_should_fail_request(host, mrq); 157 158 led_trigger_event(host->led, LED_OFF); 159 160 if (mrq->sbc) { 161 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 162 mmc_hostname(host), mrq->sbc->opcode, 163 mrq->sbc->error, 164 mrq->sbc->resp[0], mrq->sbc->resp[1], 165 mrq->sbc->resp[2], mrq->sbc->resp[3]); 166 } 167 168 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 169 mmc_hostname(host), cmd->opcode, err, 170 cmd->resp[0], cmd->resp[1], 171 cmd->resp[2], cmd->resp[3]); 172 173 if (mrq->data) { 174 pr_debug("%s: %d bytes transferred: %d\n", 175 mmc_hostname(host), 176 mrq->data->bytes_xfered, mrq->data->error); 177 } 178 179 if (mrq->stop) { 180 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 181 mmc_hostname(host), mrq->stop->opcode, 182 mrq->stop->error, 183 mrq->stop->resp[0], mrq->stop->resp[1], 184 mrq->stop->resp[2], mrq->stop->resp[3]); 185 } 186 187 if (mrq->done) 188 mrq->done(mrq); 189 } 190 } 191 192 EXPORT_SYMBOL(mmc_request_done); 193 194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 195 { 196 int err; 197 198 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 199 err = mmc_retune(host); 200 if (err) { 201 mrq->cmd->error = err; 202 mmc_request_done(host, mrq); 203 return; 204 } 205 206 /* 207 * For sdio rw commands we must wait for card busy otherwise some 208 * sdio devices won't work properly. 209 */ 210 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 211 int tries = 500; /* Wait aprox 500ms at maximum */ 212 213 while (host->ops->card_busy(host) && --tries) 214 mmc_delay(1); 215 216 if (tries == 0) { 217 mrq->cmd->error = -EBUSY; 218 mmc_request_done(host, mrq); 219 return; 220 } 221 } 222 223 trace_mmc_request_start(host, mrq); 224 225 host->ops->request(host, mrq); 226 } 227 228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 229 { 230 #ifdef CONFIG_MMC_DEBUG 231 unsigned int i, sz; 232 struct scatterlist *sg; 233 #endif 234 mmc_retune_hold(host); 235 236 if (mmc_card_removed(host->card)) 237 return -ENOMEDIUM; 238 239 if (mrq->sbc) { 240 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 241 mmc_hostname(host), mrq->sbc->opcode, 242 mrq->sbc->arg, mrq->sbc->flags); 243 } 244 245 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 246 mmc_hostname(host), mrq->cmd->opcode, 247 mrq->cmd->arg, mrq->cmd->flags); 248 249 if (mrq->data) { 250 pr_debug("%s: blksz %d blocks %d flags %08x " 251 "tsac %d ms nsac %d\n", 252 mmc_hostname(host), mrq->data->blksz, 253 mrq->data->blocks, mrq->data->flags, 254 mrq->data->timeout_ns / 1000000, 255 mrq->data->timeout_clks); 256 } 257 258 if (mrq->stop) { 259 pr_debug("%s: CMD%u arg %08x flags %08x\n", 260 mmc_hostname(host), mrq->stop->opcode, 261 mrq->stop->arg, mrq->stop->flags); 262 } 263 264 WARN_ON(!host->claimed); 265 266 mrq->cmd->error = 0; 267 mrq->cmd->mrq = mrq; 268 if (mrq->sbc) { 269 mrq->sbc->error = 0; 270 mrq->sbc->mrq = mrq; 271 } 272 if (mrq->data) { 273 BUG_ON(mrq->data->blksz > host->max_blk_size); 274 BUG_ON(mrq->data->blocks > host->max_blk_count); 275 BUG_ON(mrq->data->blocks * mrq->data->blksz > 276 host->max_req_size); 277 278 #ifdef CONFIG_MMC_DEBUG 279 sz = 0; 280 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 281 sz += sg->length; 282 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 283 #endif 284 285 mrq->cmd->data = mrq->data; 286 mrq->data->error = 0; 287 mrq->data->mrq = mrq; 288 if (mrq->stop) { 289 mrq->data->stop = mrq->stop; 290 mrq->stop->error = 0; 291 mrq->stop->mrq = mrq; 292 } 293 } 294 led_trigger_event(host->led, LED_FULL); 295 __mmc_start_request(host, mrq); 296 297 return 0; 298 } 299 300 /** 301 * mmc_start_bkops - start BKOPS for supported cards 302 * @card: MMC card to start BKOPS 303 * @form_exception: A flag to indicate if this function was 304 * called due to an exception raised by the card 305 * 306 * Start background operations whenever requested. 307 * When the urgent BKOPS bit is set in a R1 command response 308 * then background operations should be started immediately. 309 */ 310 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 311 { 312 int err; 313 int timeout; 314 bool use_busy_signal; 315 316 BUG_ON(!card); 317 318 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 319 return; 320 321 err = mmc_read_bkops_status(card); 322 if (err) { 323 pr_err("%s: Failed to read bkops status: %d\n", 324 mmc_hostname(card->host), err); 325 return; 326 } 327 328 if (!card->ext_csd.raw_bkops_status) 329 return; 330 331 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 332 from_exception) 333 return; 334 335 mmc_claim_host(card->host); 336 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 337 timeout = MMC_BKOPS_MAX_TIMEOUT; 338 use_busy_signal = true; 339 } else { 340 timeout = 0; 341 use_busy_signal = false; 342 } 343 344 mmc_retune_hold(card->host); 345 346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 347 EXT_CSD_BKOPS_START, 1, timeout, 348 use_busy_signal, true, false); 349 if (err) { 350 pr_warn("%s: Error %d starting bkops\n", 351 mmc_hostname(card->host), err); 352 mmc_retune_release(card->host); 353 goto out; 354 } 355 356 /* 357 * For urgent bkops status (LEVEL_2 and more) 358 * bkops executed synchronously, otherwise 359 * the operation is in progress 360 */ 361 if (!use_busy_signal) 362 mmc_card_set_doing_bkops(card); 363 else 364 mmc_retune_release(card->host); 365 out: 366 mmc_release_host(card->host); 367 } 368 EXPORT_SYMBOL(mmc_start_bkops); 369 370 /* 371 * mmc_wait_data_done() - done callback for data request 372 * @mrq: done data request 373 * 374 * Wakes up mmc context, passed as a callback to host controller driver 375 */ 376 static void mmc_wait_data_done(struct mmc_request *mrq) 377 { 378 struct mmc_context_info *context_info = &mrq->host->context_info; 379 380 context_info->is_done_rcv = true; 381 wake_up_interruptible(&context_info->wait); 382 } 383 384 static void mmc_wait_done(struct mmc_request *mrq) 385 { 386 complete(&mrq->completion); 387 } 388 389 /* 390 *__mmc_start_data_req() - starts data request 391 * @host: MMC host to start the request 392 * @mrq: data request to start 393 * 394 * Sets the done callback to be called when request is completed by the card. 395 * Starts data mmc request execution 396 */ 397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 398 { 399 int err; 400 401 mrq->done = mmc_wait_data_done; 402 mrq->host = host; 403 404 err = mmc_start_request(host, mrq); 405 if (err) { 406 mrq->cmd->error = err; 407 mmc_wait_data_done(mrq); 408 } 409 410 return err; 411 } 412 413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 414 { 415 int err; 416 417 init_completion(&mrq->completion); 418 mrq->done = mmc_wait_done; 419 420 err = mmc_start_request(host, mrq); 421 if (err) { 422 mrq->cmd->error = err; 423 complete(&mrq->completion); 424 } 425 426 return err; 427 } 428 429 /* 430 * mmc_wait_for_data_req_done() - wait for request completed 431 * @host: MMC host to prepare the command. 432 * @mrq: MMC request to wait for 433 * 434 * Blocks MMC context till host controller will ack end of data request 435 * execution or new request notification arrives from the block layer. 436 * Handles command retries. 437 * 438 * Returns enum mmc_blk_status after checking errors. 439 */ 440 static int mmc_wait_for_data_req_done(struct mmc_host *host, 441 struct mmc_request *mrq, 442 struct mmc_async_req *next_req) 443 { 444 struct mmc_command *cmd; 445 struct mmc_context_info *context_info = &host->context_info; 446 int err; 447 unsigned long flags; 448 449 while (1) { 450 wait_event_interruptible(context_info->wait, 451 (context_info->is_done_rcv || 452 context_info->is_new_req)); 453 spin_lock_irqsave(&context_info->lock, flags); 454 context_info->is_waiting_last_req = false; 455 spin_unlock_irqrestore(&context_info->lock, flags); 456 if (context_info->is_done_rcv) { 457 context_info->is_done_rcv = false; 458 context_info->is_new_req = false; 459 cmd = mrq->cmd; 460 461 if (!cmd->error || !cmd->retries || 462 mmc_card_removed(host->card)) { 463 err = host->areq->err_check(host->card, 464 host->areq); 465 break; /* return err */ 466 } else { 467 mmc_retune_recheck(host); 468 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 469 mmc_hostname(host), 470 cmd->opcode, cmd->error); 471 cmd->retries--; 472 cmd->error = 0; 473 __mmc_start_request(host, mrq); 474 continue; /* wait for done/new event again */ 475 } 476 } else if (context_info->is_new_req) { 477 context_info->is_new_req = false; 478 if (!next_req) 479 return MMC_BLK_NEW_REQUEST; 480 } 481 } 482 mmc_retune_release(host); 483 return err; 484 } 485 486 static void mmc_wait_for_req_done(struct mmc_host *host, 487 struct mmc_request *mrq) 488 { 489 struct mmc_command *cmd; 490 491 while (1) { 492 wait_for_completion(&mrq->completion); 493 494 cmd = mrq->cmd; 495 496 /* 497 * If host has timed out waiting for the sanitize 498 * to complete, card might be still in programming state 499 * so let's try to bring the card out of programming 500 * state. 501 */ 502 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 503 if (!mmc_interrupt_hpi(host->card)) { 504 pr_warn("%s: %s: Interrupted sanitize\n", 505 mmc_hostname(host), __func__); 506 cmd->error = 0; 507 break; 508 } else { 509 pr_err("%s: %s: Failed to interrupt sanitize\n", 510 mmc_hostname(host), __func__); 511 } 512 } 513 if (!cmd->error || !cmd->retries || 514 mmc_card_removed(host->card)) 515 break; 516 517 mmc_retune_recheck(host); 518 519 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 520 mmc_hostname(host), cmd->opcode, cmd->error); 521 cmd->retries--; 522 cmd->error = 0; 523 __mmc_start_request(host, mrq); 524 } 525 526 mmc_retune_release(host); 527 } 528 529 /** 530 * mmc_pre_req - Prepare for a new request 531 * @host: MMC host to prepare command 532 * @mrq: MMC request to prepare for 533 * @is_first_req: true if there is no previous started request 534 * that may run in parellel to this call, otherwise false 535 * 536 * mmc_pre_req() is called in prior to mmc_start_req() to let 537 * host prepare for the new request. Preparation of a request may be 538 * performed while another request is running on the host. 539 */ 540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 541 bool is_first_req) 542 { 543 if (host->ops->pre_req) 544 host->ops->pre_req(host, mrq, is_first_req); 545 } 546 547 /** 548 * mmc_post_req - Post process a completed request 549 * @host: MMC host to post process command 550 * @mrq: MMC request to post process for 551 * @err: Error, if non zero, clean up any resources made in pre_req 552 * 553 * Let the host post process a completed request. Post processing of 554 * a request may be performed while another reuqest is running. 555 */ 556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 557 int err) 558 { 559 if (host->ops->post_req) 560 host->ops->post_req(host, mrq, err); 561 } 562 563 /** 564 * mmc_start_req - start a non-blocking request 565 * @host: MMC host to start command 566 * @areq: async request to start 567 * @error: out parameter returns 0 for success, otherwise non zero 568 * 569 * Start a new MMC custom command request for a host. 570 * If there is on ongoing async request wait for completion 571 * of that request and start the new one and return. 572 * Does not wait for the new request to complete. 573 * 574 * Returns the completed request, NULL in case of none completed. 575 * Wait for the an ongoing request (previoulsy started) to complete and 576 * return the completed request. If there is no ongoing request, NULL 577 * is returned without waiting. NULL is not an error condition. 578 */ 579 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 580 struct mmc_async_req *areq, int *error) 581 { 582 int err = 0; 583 int start_err = 0; 584 struct mmc_async_req *data = host->areq; 585 586 /* Prepare a new request */ 587 if (areq) 588 mmc_pre_req(host, areq->mrq, !host->areq); 589 590 if (host->areq) { 591 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 592 if (err == MMC_BLK_NEW_REQUEST) { 593 if (error) 594 *error = err; 595 /* 596 * The previous request was not completed, 597 * nothing to return 598 */ 599 return NULL; 600 } 601 /* 602 * Check BKOPS urgency for each R1 response 603 */ 604 if (host->card && mmc_card_mmc(host->card) && 605 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 606 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 607 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 608 609 /* Cancel the prepared request */ 610 if (areq) 611 mmc_post_req(host, areq->mrq, -EINVAL); 612 613 mmc_start_bkops(host->card, true); 614 615 /* prepare the request again */ 616 if (areq) 617 mmc_pre_req(host, areq->mrq, !host->areq); 618 } 619 } 620 621 if (!err && areq) 622 start_err = __mmc_start_data_req(host, areq->mrq); 623 624 if (host->areq) 625 mmc_post_req(host, host->areq->mrq, 0); 626 627 /* Cancel a prepared request if it was not started. */ 628 if ((err || start_err) && areq) 629 mmc_post_req(host, areq->mrq, -EINVAL); 630 631 if (err) 632 host->areq = NULL; 633 else 634 host->areq = areq; 635 636 if (error) 637 *error = err; 638 return data; 639 } 640 EXPORT_SYMBOL(mmc_start_req); 641 642 /** 643 * mmc_wait_for_req - start a request and wait for completion 644 * @host: MMC host to start command 645 * @mrq: MMC request to start 646 * 647 * Start a new MMC custom command request for a host, and wait 648 * for the command to complete. Does not attempt to parse the 649 * response. 650 */ 651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 652 { 653 __mmc_start_req(host, mrq); 654 mmc_wait_for_req_done(host, mrq); 655 } 656 EXPORT_SYMBOL(mmc_wait_for_req); 657 658 /** 659 * mmc_interrupt_hpi - Issue for High priority Interrupt 660 * @card: the MMC card associated with the HPI transfer 661 * 662 * Issued High Priority Interrupt, and check for card status 663 * until out-of prg-state. 664 */ 665 int mmc_interrupt_hpi(struct mmc_card *card) 666 { 667 int err; 668 u32 status; 669 unsigned long prg_wait; 670 671 BUG_ON(!card); 672 673 if (!card->ext_csd.hpi_en) { 674 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 675 return 1; 676 } 677 678 mmc_claim_host(card->host); 679 err = mmc_send_status(card, &status); 680 if (err) { 681 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 682 goto out; 683 } 684 685 switch (R1_CURRENT_STATE(status)) { 686 case R1_STATE_IDLE: 687 case R1_STATE_READY: 688 case R1_STATE_STBY: 689 case R1_STATE_TRAN: 690 /* 691 * In idle and transfer states, HPI is not needed and the caller 692 * can issue the next intended command immediately 693 */ 694 goto out; 695 case R1_STATE_PRG: 696 break; 697 default: 698 /* In all other states, it's illegal to issue HPI */ 699 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 700 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 701 err = -EINVAL; 702 goto out; 703 } 704 705 err = mmc_send_hpi_cmd(card, &status); 706 if (err) 707 goto out; 708 709 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 710 do { 711 err = mmc_send_status(card, &status); 712 713 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 714 break; 715 if (time_after(jiffies, prg_wait)) 716 err = -ETIMEDOUT; 717 } while (!err); 718 719 out: 720 mmc_release_host(card->host); 721 return err; 722 } 723 EXPORT_SYMBOL(mmc_interrupt_hpi); 724 725 /** 726 * mmc_wait_for_cmd - start a command and wait for completion 727 * @host: MMC host to start command 728 * @cmd: MMC command to start 729 * @retries: maximum number of retries 730 * 731 * Start a new MMC command for a host, and wait for the command 732 * to complete. Return any error that occurred while the command 733 * was executing. Do not attempt to parse the response. 734 */ 735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 736 { 737 struct mmc_request mrq = {NULL}; 738 739 WARN_ON(!host->claimed); 740 741 memset(cmd->resp, 0, sizeof(cmd->resp)); 742 cmd->retries = retries; 743 744 mrq.cmd = cmd; 745 cmd->data = NULL; 746 747 mmc_wait_for_req(host, &mrq); 748 749 return cmd->error; 750 } 751 752 EXPORT_SYMBOL(mmc_wait_for_cmd); 753 754 /** 755 * mmc_stop_bkops - stop ongoing BKOPS 756 * @card: MMC card to check BKOPS 757 * 758 * Send HPI command to stop ongoing background operations to 759 * allow rapid servicing of foreground operations, e.g. read/ 760 * writes. Wait until the card comes out of the programming state 761 * to avoid errors in servicing read/write requests. 762 */ 763 int mmc_stop_bkops(struct mmc_card *card) 764 { 765 int err = 0; 766 767 BUG_ON(!card); 768 err = mmc_interrupt_hpi(card); 769 770 /* 771 * If err is EINVAL, we can't issue an HPI. 772 * It should complete the BKOPS. 773 */ 774 if (!err || (err == -EINVAL)) { 775 mmc_card_clr_doing_bkops(card); 776 mmc_retune_release(card->host); 777 err = 0; 778 } 779 780 return err; 781 } 782 EXPORT_SYMBOL(mmc_stop_bkops); 783 784 int mmc_read_bkops_status(struct mmc_card *card) 785 { 786 int err; 787 u8 *ext_csd; 788 789 mmc_claim_host(card->host); 790 err = mmc_get_ext_csd(card, &ext_csd); 791 mmc_release_host(card->host); 792 if (err) 793 return err; 794 795 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 796 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 797 kfree(ext_csd); 798 return 0; 799 } 800 EXPORT_SYMBOL(mmc_read_bkops_status); 801 802 /** 803 * mmc_set_data_timeout - set the timeout for a data command 804 * @data: data phase for command 805 * @card: the MMC card associated with the data transfer 806 * 807 * Computes the data timeout parameters according to the 808 * correct algorithm given the card type. 809 */ 810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 811 { 812 unsigned int mult; 813 814 /* 815 * SDIO cards only define an upper 1 s limit on access. 816 */ 817 if (mmc_card_sdio(card)) { 818 data->timeout_ns = 1000000000; 819 data->timeout_clks = 0; 820 return; 821 } 822 823 /* 824 * SD cards use a 100 multiplier rather than 10 825 */ 826 mult = mmc_card_sd(card) ? 100 : 10; 827 828 /* 829 * Scale up the multiplier (and therefore the timeout) by 830 * the r2w factor for writes. 831 */ 832 if (data->flags & MMC_DATA_WRITE) 833 mult <<= card->csd.r2w_factor; 834 835 data->timeout_ns = card->csd.tacc_ns * mult; 836 data->timeout_clks = card->csd.tacc_clks * mult; 837 838 /* 839 * SD cards also have an upper limit on the timeout. 840 */ 841 if (mmc_card_sd(card)) { 842 unsigned int timeout_us, limit_us; 843 844 timeout_us = data->timeout_ns / 1000; 845 if (card->host->ios.clock) 846 timeout_us += data->timeout_clks * 1000 / 847 (card->host->ios.clock / 1000); 848 849 if (data->flags & MMC_DATA_WRITE) 850 /* 851 * The MMC spec "It is strongly recommended 852 * for hosts to implement more than 500ms 853 * timeout value even if the card indicates 854 * the 250ms maximum busy length." Even the 855 * previous value of 300ms is known to be 856 * insufficient for some cards. 857 */ 858 limit_us = 3000000; 859 else 860 limit_us = 100000; 861 862 /* 863 * SDHC cards always use these fixed values. 864 */ 865 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 866 data->timeout_ns = limit_us * 1000; 867 data->timeout_clks = 0; 868 } 869 870 /* assign limit value if invalid */ 871 if (timeout_us == 0) 872 data->timeout_ns = limit_us * 1000; 873 } 874 875 /* 876 * Some cards require longer data read timeout than indicated in CSD. 877 * Address this by setting the read timeout to a "reasonably high" 878 * value. For the cards tested, 600ms has proven enough. If necessary, 879 * this value can be increased if other problematic cards require this. 880 */ 881 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 882 data->timeout_ns = 600000000; 883 data->timeout_clks = 0; 884 } 885 886 /* 887 * Some cards need very high timeouts if driven in SPI mode. 888 * The worst observed timeout was 900ms after writing a 889 * continuous stream of data until the internal logic 890 * overflowed. 891 */ 892 if (mmc_host_is_spi(card->host)) { 893 if (data->flags & MMC_DATA_WRITE) { 894 if (data->timeout_ns < 1000000000) 895 data->timeout_ns = 1000000000; /* 1s */ 896 } else { 897 if (data->timeout_ns < 100000000) 898 data->timeout_ns = 100000000; /* 100ms */ 899 } 900 } 901 } 902 EXPORT_SYMBOL(mmc_set_data_timeout); 903 904 /** 905 * mmc_align_data_size - pads a transfer size to a more optimal value 906 * @card: the MMC card associated with the data transfer 907 * @sz: original transfer size 908 * 909 * Pads the original data size with a number of extra bytes in 910 * order to avoid controller bugs and/or performance hits 911 * (e.g. some controllers revert to PIO for certain sizes). 912 * 913 * Returns the improved size, which might be unmodified. 914 * 915 * Note that this function is only relevant when issuing a 916 * single scatter gather entry. 917 */ 918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 919 { 920 /* 921 * FIXME: We don't have a system for the controller to tell 922 * the core about its problems yet, so for now we just 32-bit 923 * align the size. 924 */ 925 sz = ((sz + 3) / 4) * 4; 926 927 return sz; 928 } 929 EXPORT_SYMBOL(mmc_align_data_size); 930 931 /** 932 * __mmc_claim_host - exclusively claim a host 933 * @host: mmc host to claim 934 * @abort: whether or not the operation should be aborted 935 * 936 * Claim a host for a set of operations. If @abort is non null and 937 * dereference a non-zero value then this will return prematurely with 938 * that non-zero value without acquiring the lock. Returns zero 939 * with the lock held otherwise. 940 */ 941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 942 { 943 DECLARE_WAITQUEUE(wait, current); 944 unsigned long flags; 945 int stop; 946 bool pm = false; 947 948 might_sleep(); 949 950 add_wait_queue(&host->wq, &wait); 951 spin_lock_irqsave(&host->lock, flags); 952 while (1) { 953 set_current_state(TASK_UNINTERRUPTIBLE); 954 stop = abort ? atomic_read(abort) : 0; 955 if (stop || !host->claimed || host->claimer == current) 956 break; 957 spin_unlock_irqrestore(&host->lock, flags); 958 schedule(); 959 spin_lock_irqsave(&host->lock, flags); 960 } 961 set_current_state(TASK_RUNNING); 962 if (!stop) { 963 host->claimed = 1; 964 host->claimer = current; 965 host->claim_cnt += 1; 966 if (host->claim_cnt == 1) 967 pm = true; 968 } else 969 wake_up(&host->wq); 970 spin_unlock_irqrestore(&host->lock, flags); 971 remove_wait_queue(&host->wq, &wait); 972 973 if (pm) 974 pm_runtime_get_sync(mmc_dev(host)); 975 976 return stop; 977 } 978 EXPORT_SYMBOL(__mmc_claim_host); 979 980 /** 981 * mmc_release_host - release a host 982 * @host: mmc host to release 983 * 984 * Release a MMC host, allowing others to claim the host 985 * for their operations. 986 */ 987 void mmc_release_host(struct mmc_host *host) 988 { 989 unsigned long flags; 990 991 WARN_ON(!host->claimed); 992 993 spin_lock_irqsave(&host->lock, flags); 994 if (--host->claim_cnt) { 995 /* Release for nested claim */ 996 spin_unlock_irqrestore(&host->lock, flags); 997 } else { 998 host->claimed = 0; 999 host->claimer = NULL; 1000 spin_unlock_irqrestore(&host->lock, flags); 1001 wake_up(&host->wq); 1002 pm_runtime_mark_last_busy(mmc_dev(host)); 1003 pm_runtime_put_autosuspend(mmc_dev(host)); 1004 } 1005 } 1006 EXPORT_SYMBOL(mmc_release_host); 1007 1008 /* 1009 * This is a helper function, which fetches a runtime pm reference for the 1010 * card device and also claims the host. 1011 */ 1012 void mmc_get_card(struct mmc_card *card) 1013 { 1014 pm_runtime_get_sync(&card->dev); 1015 mmc_claim_host(card->host); 1016 } 1017 EXPORT_SYMBOL(mmc_get_card); 1018 1019 /* 1020 * This is a helper function, which releases the host and drops the runtime 1021 * pm reference for the card device. 1022 */ 1023 void mmc_put_card(struct mmc_card *card) 1024 { 1025 mmc_release_host(card->host); 1026 pm_runtime_mark_last_busy(&card->dev); 1027 pm_runtime_put_autosuspend(&card->dev); 1028 } 1029 EXPORT_SYMBOL(mmc_put_card); 1030 1031 /* 1032 * Internal function that does the actual ios call to the host driver, 1033 * optionally printing some debug output. 1034 */ 1035 static inline void mmc_set_ios(struct mmc_host *host) 1036 { 1037 struct mmc_ios *ios = &host->ios; 1038 1039 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1040 "width %u timing %u\n", 1041 mmc_hostname(host), ios->clock, ios->bus_mode, 1042 ios->power_mode, ios->chip_select, ios->vdd, 1043 1 << ios->bus_width, ios->timing); 1044 1045 host->ops->set_ios(host, ios); 1046 } 1047 1048 /* 1049 * Control chip select pin on a host. 1050 */ 1051 void mmc_set_chip_select(struct mmc_host *host, int mode) 1052 { 1053 host->ios.chip_select = mode; 1054 mmc_set_ios(host); 1055 } 1056 1057 /* 1058 * Sets the host clock to the highest possible frequency that 1059 * is below "hz". 1060 */ 1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1062 { 1063 WARN_ON(hz && hz < host->f_min); 1064 1065 if (hz > host->f_max) 1066 hz = host->f_max; 1067 1068 host->ios.clock = hz; 1069 mmc_set_ios(host); 1070 } 1071 1072 int mmc_execute_tuning(struct mmc_card *card) 1073 { 1074 struct mmc_host *host = card->host; 1075 u32 opcode; 1076 int err; 1077 1078 if (!host->ops->execute_tuning) 1079 return 0; 1080 1081 if (mmc_card_mmc(card)) 1082 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1083 else 1084 opcode = MMC_SEND_TUNING_BLOCK; 1085 1086 err = host->ops->execute_tuning(host, opcode); 1087 1088 if (err) 1089 pr_err("%s: tuning execution failed: %d\n", 1090 mmc_hostname(host), err); 1091 else 1092 mmc_retune_enable(host); 1093 1094 return err; 1095 } 1096 1097 /* 1098 * Change the bus mode (open drain/push-pull) of a host. 1099 */ 1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1101 { 1102 host->ios.bus_mode = mode; 1103 mmc_set_ios(host); 1104 } 1105 1106 /* 1107 * Change data bus width of a host. 1108 */ 1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1110 { 1111 host->ios.bus_width = width; 1112 mmc_set_ios(host); 1113 } 1114 1115 /* 1116 * Set initial state after a power cycle or a hw_reset. 1117 */ 1118 void mmc_set_initial_state(struct mmc_host *host) 1119 { 1120 mmc_retune_disable(host); 1121 1122 if (mmc_host_is_spi(host)) 1123 host->ios.chip_select = MMC_CS_HIGH; 1124 else 1125 host->ios.chip_select = MMC_CS_DONTCARE; 1126 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1127 host->ios.bus_width = MMC_BUS_WIDTH_1; 1128 host->ios.timing = MMC_TIMING_LEGACY; 1129 host->ios.drv_type = 0; 1130 host->ios.enhanced_strobe = false; 1131 1132 /* 1133 * Make sure we are in non-enhanced strobe mode before we 1134 * actually enable it in ext_csd. 1135 */ 1136 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1137 host->ops->hs400_enhanced_strobe) 1138 host->ops->hs400_enhanced_strobe(host, &host->ios); 1139 1140 mmc_set_ios(host); 1141 } 1142 1143 /** 1144 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1145 * @vdd: voltage (mV) 1146 * @low_bits: prefer low bits in boundary cases 1147 * 1148 * This function returns the OCR bit number according to the provided @vdd 1149 * value. If conversion is not possible a negative errno value returned. 1150 * 1151 * Depending on the @low_bits flag the function prefers low or high OCR bits 1152 * on boundary voltages. For example, 1153 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1154 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1155 * 1156 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1157 */ 1158 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1159 { 1160 const int max_bit = ilog2(MMC_VDD_35_36); 1161 int bit; 1162 1163 if (vdd < 1650 || vdd > 3600) 1164 return -EINVAL; 1165 1166 if (vdd >= 1650 && vdd <= 1950) 1167 return ilog2(MMC_VDD_165_195); 1168 1169 if (low_bits) 1170 vdd -= 1; 1171 1172 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1173 bit = (vdd - 2000) / 100 + 8; 1174 if (bit > max_bit) 1175 return max_bit; 1176 return bit; 1177 } 1178 1179 /** 1180 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1181 * @vdd_min: minimum voltage value (mV) 1182 * @vdd_max: maximum voltage value (mV) 1183 * 1184 * This function returns the OCR mask bits according to the provided @vdd_min 1185 * and @vdd_max values. If conversion is not possible the function returns 0. 1186 * 1187 * Notes wrt boundary cases: 1188 * This function sets the OCR bits for all boundary voltages, for example 1189 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1190 * MMC_VDD_34_35 mask. 1191 */ 1192 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1193 { 1194 u32 mask = 0; 1195 1196 if (vdd_max < vdd_min) 1197 return 0; 1198 1199 /* Prefer high bits for the boundary vdd_max values. */ 1200 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1201 if (vdd_max < 0) 1202 return 0; 1203 1204 /* Prefer low bits for the boundary vdd_min values. */ 1205 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1206 if (vdd_min < 0) 1207 return 0; 1208 1209 /* Fill the mask, from max bit to min bit. */ 1210 while (vdd_max >= vdd_min) 1211 mask |= 1 << vdd_max--; 1212 1213 return mask; 1214 } 1215 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1216 1217 #ifdef CONFIG_OF 1218 1219 /** 1220 * mmc_of_parse_voltage - return mask of supported voltages 1221 * @np: The device node need to be parsed. 1222 * @mask: mask of voltages available for MMC/SD/SDIO 1223 * 1224 * Parse the "voltage-ranges" DT property, returning zero if it is not 1225 * found, negative errno if the voltage-range specification is invalid, 1226 * or one if the voltage-range is specified and successfully parsed. 1227 */ 1228 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1229 { 1230 const u32 *voltage_ranges; 1231 int num_ranges, i; 1232 1233 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1234 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1235 if (!voltage_ranges) { 1236 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1237 return 0; 1238 } 1239 if (!num_ranges) { 1240 pr_err("%s: voltage-ranges empty\n", np->full_name); 1241 return -EINVAL; 1242 } 1243 1244 for (i = 0; i < num_ranges; i++) { 1245 const int j = i * 2; 1246 u32 ocr_mask; 1247 1248 ocr_mask = mmc_vddrange_to_ocrmask( 1249 be32_to_cpu(voltage_ranges[j]), 1250 be32_to_cpu(voltage_ranges[j + 1])); 1251 if (!ocr_mask) { 1252 pr_err("%s: voltage-range #%d is invalid\n", 1253 np->full_name, i); 1254 return -EINVAL; 1255 } 1256 *mask |= ocr_mask; 1257 } 1258 1259 return 1; 1260 } 1261 EXPORT_SYMBOL(mmc_of_parse_voltage); 1262 1263 #endif /* CONFIG_OF */ 1264 1265 static int mmc_of_get_func_num(struct device_node *node) 1266 { 1267 u32 reg; 1268 int ret; 1269 1270 ret = of_property_read_u32(node, "reg", ®); 1271 if (ret < 0) 1272 return ret; 1273 1274 return reg; 1275 } 1276 1277 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1278 unsigned func_num) 1279 { 1280 struct device_node *node; 1281 1282 if (!host->parent || !host->parent->of_node) 1283 return NULL; 1284 1285 for_each_child_of_node(host->parent->of_node, node) { 1286 if (mmc_of_get_func_num(node) == func_num) 1287 return node; 1288 } 1289 1290 return NULL; 1291 } 1292 1293 #ifdef CONFIG_REGULATOR 1294 1295 /** 1296 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1297 * @vdd_bit: OCR bit number 1298 * @min_uV: minimum voltage value (mV) 1299 * @max_uV: maximum voltage value (mV) 1300 * 1301 * This function returns the voltage range according to the provided OCR 1302 * bit number. If conversion is not possible a negative errno value returned. 1303 */ 1304 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1305 { 1306 int tmp; 1307 1308 if (!vdd_bit) 1309 return -EINVAL; 1310 1311 /* 1312 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1313 * bits this regulator doesn't quite support ... don't 1314 * be too picky, most cards and regulators are OK with 1315 * a 0.1V range goof (it's a small error percentage). 1316 */ 1317 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1318 if (tmp == 0) { 1319 *min_uV = 1650 * 1000; 1320 *max_uV = 1950 * 1000; 1321 } else { 1322 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1323 *max_uV = *min_uV + 100 * 1000; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * mmc_regulator_get_ocrmask - return mask of supported voltages 1331 * @supply: regulator to use 1332 * 1333 * This returns either a negative errno, or a mask of voltages that 1334 * can be provided to MMC/SD/SDIO devices using the specified voltage 1335 * regulator. This would normally be called before registering the 1336 * MMC host adapter. 1337 */ 1338 int mmc_regulator_get_ocrmask(struct regulator *supply) 1339 { 1340 int result = 0; 1341 int count; 1342 int i; 1343 int vdd_uV; 1344 int vdd_mV; 1345 1346 count = regulator_count_voltages(supply); 1347 if (count < 0) 1348 return count; 1349 1350 for (i = 0; i < count; i++) { 1351 vdd_uV = regulator_list_voltage(supply, i); 1352 if (vdd_uV <= 0) 1353 continue; 1354 1355 vdd_mV = vdd_uV / 1000; 1356 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1357 } 1358 1359 if (!result) { 1360 vdd_uV = regulator_get_voltage(supply); 1361 if (vdd_uV <= 0) 1362 return vdd_uV; 1363 1364 vdd_mV = vdd_uV / 1000; 1365 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1366 } 1367 1368 return result; 1369 } 1370 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1371 1372 /** 1373 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1374 * @mmc: the host to regulate 1375 * @supply: regulator to use 1376 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1377 * 1378 * Returns zero on success, else negative errno. 1379 * 1380 * MMC host drivers may use this to enable or disable a regulator using 1381 * a particular supply voltage. This would normally be called from the 1382 * set_ios() method. 1383 */ 1384 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1385 struct regulator *supply, 1386 unsigned short vdd_bit) 1387 { 1388 int result = 0; 1389 int min_uV, max_uV; 1390 1391 if (vdd_bit) { 1392 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1393 1394 result = regulator_set_voltage(supply, min_uV, max_uV); 1395 if (result == 0 && !mmc->regulator_enabled) { 1396 result = regulator_enable(supply); 1397 if (!result) 1398 mmc->regulator_enabled = true; 1399 } 1400 } else if (mmc->regulator_enabled) { 1401 result = regulator_disable(supply); 1402 if (result == 0) 1403 mmc->regulator_enabled = false; 1404 } 1405 1406 if (result) 1407 dev_err(mmc_dev(mmc), 1408 "could not set regulator OCR (%d)\n", result); 1409 return result; 1410 } 1411 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1412 1413 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1414 int min_uV, int target_uV, 1415 int max_uV) 1416 { 1417 /* 1418 * Check if supported first to avoid errors since we may try several 1419 * signal levels during power up and don't want to show errors. 1420 */ 1421 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1422 return -EINVAL; 1423 1424 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1425 max_uV); 1426 } 1427 1428 /** 1429 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1430 * 1431 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1432 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1433 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1434 * SD card spec also define VQMMC in terms of VMMC. 1435 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1436 * 1437 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1438 * requested voltage. This is definitely a good idea for UHS where there's a 1439 * separate regulator on the card that's trying to make 1.8V and it's best if 1440 * we match. 1441 * 1442 * This function is expected to be used by a controller's 1443 * start_signal_voltage_switch() function. 1444 */ 1445 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1446 { 1447 struct device *dev = mmc_dev(mmc); 1448 int ret, volt, min_uV, max_uV; 1449 1450 /* If no vqmmc supply then we can't change the voltage */ 1451 if (IS_ERR(mmc->supply.vqmmc)) 1452 return -EINVAL; 1453 1454 switch (ios->signal_voltage) { 1455 case MMC_SIGNAL_VOLTAGE_120: 1456 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1457 1100000, 1200000, 1300000); 1458 case MMC_SIGNAL_VOLTAGE_180: 1459 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1460 1700000, 1800000, 1950000); 1461 case MMC_SIGNAL_VOLTAGE_330: 1462 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1463 if (ret < 0) 1464 return ret; 1465 1466 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1467 __func__, volt, max_uV); 1468 1469 min_uV = max(volt - 300000, 2700000); 1470 max_uV = min(max_uV + 200000, 3600000); 1471 1472 /* 1473 * Due to a limitation in the current implementation of 1474 * regulator_set_voltage_triplet() which is taking the lowest 1475 * voltage possible if below the target, search for a suitable 1476 * voltage in two steps and try to stay close to vmmc 1477 * with a 0.3V tolerance at first. 1478 */ 1479 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1480 min_uV, volt, max_uV)) 1481 return 0; 1482 1483 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1484 2700000, volt, 3600000); 1485 default: 1486 return -EINVAL; 1487 } 1488 } 1489 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1490 1491 #endif /* CONFIG_REGULATOR */ 1492 1493 int mmc_regulator_get_supply(struct mmc_host *mmc) 1494 { 1495 struct device *dev = mmc_dev(mmc); 1496 int ret; 1497 1498 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1499 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1500 1501 if (IS_ERR(mmc->supply.vmmc)) { 1502 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1503 return -EPROBE_DEFER; 1504 dev_dbg(dev, "No vmmc regulator found\n"); 1505 } else { 1506 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1507 if (ret > 0) 1508 mmc->ocr_avail = ret; 1509 else 1510 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1511 } 1512 1513 if (IS_ERR(mmc->supply.vqmmc)) { 1514 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1515 return -EPROBE_DEFER; 1516 dev_dbg(dev, "No vqmmc regulator found\n"); 1517 } 1518 1519 return 0; 1520 } 1521 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1522 1523 /* 1524 * Mask off any voltages we don't support and select 1525 * the lowest voltage 1526 */ 1527 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1528 { 1529 int bit; 1530 1531 /* 1532 * Sanity check the voltages that the card claims to 1533 * support. 1534 */ 1535 if (ocr & 0x7F) { 1536 dev_warn(mmc_dev(host), 1537 "card claims to support voltages below defined range\n"); 1538 ocr &= ~0x7F; 1539 } 1540 1541 ocr &= host->ocr_avail; 1542 if (!ocr) { 1543 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1544 return 0; 1545 } 1546 1547 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1548 bit = ffs(ocr) - 1; 1549 ocr &= 3 << bit; 1550 mmc_power_cycle(host, ocr); 1551 } else { 1552 bit = fls(ocr) - 1; 1553 ocr &= 3 << bit; 1554 if (bit != host->ios.vdd) 1555 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1556 } 1557 1558 return ocr; 1559 } 1560 1561 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1562 { 1563 int err = 0; 1564 int old_signal_voltage = host->ios.signal_voltage; 1565 1566 host->ios.signal_voltage = signal_voltage; 1567 if (host->ops->start_signal_voltage_switch) 1568 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1569 1570 if (err) 1571 host->ios.signal_voltage = old_signal_voltage; 1572 1573 return err; 1574 1575 } 1576 1577 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1578 { 1579 struct mmc_command cmd = {0}; 1580 int err = 0; 1581 u32 clock; 1582 1583 BUG_ON(!host); 1584 1585 /* 1586 * Send CMD11 only if the request is to switch the card to 1587 * 1.8V signalling. 1588 */ 1589 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1590 return __mmc_set_signal_voltage(host, signal_voltage); 1591 1592 /* 1593 * If we cannot switch voltages, return failure so the caller 1594 * can continue without UHS mode 1595 */ 1596 if (!host->ops->start_signal_voltage_switch) 1597 return -EPERM; 1598 if (!host->ops->card_busy) 1599 pr_warn("%s: cannot verify signal voltage switch\n", 1600 mmc_hostname(host)); 1601 1602 cmd.opcode = SD_SWITCH_VOLTAGE; 1603 cmd.arg = 0; 1604 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1605 1606 err = mmc_wait_for_cmd(host, &cmd, 0); 1607 if (err) 1608 return err; 1609 1610 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1611 return -EIO; 1612 1613 /* 1614 * The card should drive cmd and dat[0:3] low immediately 1615 * after the response of cmd11, but wait 1 ms to be sure 1616 */ 1617 mmc_delay(1); 1618 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1619 err = -EAGAIN; 1620 goto power_cycle; 1621 } 1622 /* 1623 * During a signal voltage level switch, the clock must be gated 1624 * for 5 ms according to the SD spec 1625 */ 1626 clock = host->ios.clock; 1627 host->ios.clock = 0; 1628 mmc_set_ios(host); 1629 1630 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1631 /* 1632 * Voltages may not have been switched, but we've already 1633 * sent CMD11, so a power cycle is required anyway 1634 */ 1635 err = -EAGAIN; 1636 goto power_cycle; 1637 } 1638 1639 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1640 mmc_delay(10); 1641 host->ios.clock = clock; 1642 mmc_set_ios(host); 1643 1644 /* Wait for at least 1 ms according to spec */ 1645 mmc_delay(1); 1646 1647 /* 1648 * Failure to switch is indicated by the card holding 1649 * dat[0:3] low 1650 */ 1651 if (host->ops->card_busy && host->ops->card_busy(host)) 1652 err = -EAGAIN; 1653 1654 power_cycle: 1655 if (err) { 1656 pr_debug("%s: Signal voltage switch failed, " 1657 "power cycling card\n", mmc_hostname(host)); 1658 mmc_power_cycle(host, ocr); 1659 } 1660 1661 return err; 1662 } 1663 1664 /* 1665 * Select timing parameters for host. 1666 */ 1667 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1668 { 1669 host->ios.timing = timing; 1670 mmc_set_ios(host); 1671 } 1672 1673 /* 1674 * Select appropriate driver type for host. 1675 */ 1676 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1677 { 1678 host->ios.drv_type = drv_type; 1679 mmc_set_ios(host); 1680 } 1681 1682 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1683 int card_drv_type, int *drv_type) 1684 { 1685 struct mmc_host *host = card->host; 1686 int host_drv_type = SD_DRIVER_TYPE_B; 1687 1688 *drv_type = 0; 1689 1690 if (!host->ops->select_drive_strength) 1691 return 0; 1692 1693 /* Use SD definition of driver strength for hosts */ 1694 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1695 host_drv_type |= SD_DRIVER_TYPE_A; 1696 1697 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1698 host_drv_type |= SD_DRIVER_TYPE_C; 1699 1700 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1701 host_drv_type |= SD_DRIVER_TYPE_D; 1702 1703 /* 1704 * The drive strength that the hardware can support 1705 * depends on the board design. Pass the appropriate 1706 * information and let the hardware specific code 1707 * return what is possible given the options 1708 */ 1709 return host->ops->select_drive_strength(card, max_dtr, 1710 host_drv_type, 1711 card_drv_type, 1712 drv_type); 1713 } 1714 1715 /* 1716 * Apply power to the MMC stack. This is a two-stage process. 1717 * First, we enable power to the card without the clock running. 1718 * We then wait a bit for the power to stabilise. Finally, 1719 * enable the bus drivers and clock to the card. 1720 * 1721 * We must _NOT_ enable the clock prior to power stablising. 1722 * 1723 * If a host does all the power sequencing itself, ignore the 1724 * initial MMC_POWER_UP stage. 1725 */ 1726 void mmc_power_up(struct mmc_host *host, u32 ocr) 1727 { 1728 if (host->ios.power_mode == MMC_POWER_ON) 1729 return; 1730 1731 mmc_pwrseq_pre_power_on(host); 1732 1733 host->ios.vdd = fls(ocr) - 1; 1734 host->ios.power_mode = MMC_POWER_UP; 1735 /* Set initial state and call mmc_set_ios */ 1736 mmc_set_initial_state(host); 1737 1738 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1739 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1740 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1741 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1742 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1743 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1744 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1745 1746 /* 1747 * This delay should be sufficient to allow the power supply 1748 * to reach the minimum voltage. 1749 */ 1750 mmc_delay(10); 1751 1752 mmc_pwrseq_post_power_on(host); 1753 1754 host->ios.clock = host->f_init; 1755 1756 host->ios.power_mode = MMC_POWER_ON; 1757 mmc_set_ios(host); 1758 1759 /* 1760 * This delay must be at least 74 clock sizes, or 1 ms, or the 1761 * time required to reach a stable voltage. 1762 */ 1763 mmc_delay(10); 1764 } 1765 1766 void mmc_power_off(struct mmc_host *host) 1767 { 1768 if (host->ios.power_mode == MMC_POWER_OFF) 1769 return; 1770 1771 mmc_pwrseq_power_off(host); 1772 1773 host->ios.clock = 0; 1774 host->ios.vdd = 0; 1775 1776 host->ios.power_mode = MMC_POWER_OFF; 1777 /* Set initial state and call mmc_set_ios */ 1778 mmc_set_initial_state(host); 1779 1780 /* 1781 * Some configurations, such as the 802.11 SDIO card in the OLPC 1782 * XO-1.5, require a short delay after poweroff before the card 1783 * can be successfully turned on again. 1784 */ 1785 mmc_delay(1); 1786 } 1787 1788 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1789 { 1790 mmc_power_off(host); 1791 /* Wait at least 1 ms according to SD spec */ 1792 mmc_delay(1); 1793 mmc_power_up(host, ocr); 1794 } 1795 1796 /* 1797 * Cleanup when the last reference to the bus operator is dropped. 1798 */ 1799 static void __mmc_release_bus(struct mmc_host *host) 1800 { 1801 BUG_ON(!host); 1802 BUG_ON(host->bus_refs); 1803 BUG_ON(!host->bus_dead); 1804 1805 host->bus_ops = NULL; 1806 } 1807 1808 /* 1809 * Increase reference count of bus operator 1810 */ 1811 static inline void mmc_bus_get(struct mmc_host *host) 1812 { 1813 unsigned long flags; 1814 1815 spin_lock_irqsave(&host->lock, flags); 1816 host->bus_refs++; 1817 spin_unlock_irqrestore(&host->lock, flags); 1818 } 1819 1820 /* 1821 * Decrease reference count of bus operator and free it if 1822 * it is the last reference. 1823 */ 1824 static inline void mmc_bus_put(struct mmc_host *host) 1825 { 1826 unsigned long flags; 1827 1828 spin_lock_irqsave(&host->lock, flags); 1829 host->bus_refs--; 1830 if ((host->bus_refs == 0) && host->bus_ops) 1831 __mmc_release_bus(host); 1832 spin_unlock_irqrestore(&host->lock, flags); 1833 } 1834 1835 /* 1836 * Assign a mmc bus handler to a host. Only one bus handler may control a 1837 * host at any given time. 1838 */ 1839 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1840 { 1841 unsigned long flags; 1842 1843 BUG_ON(!host); 1844 BUG_ON(!ops); 1845 1846 WARN_ON(!host->claimed); 1847 1848 spin_lock_irqsave(&host->lock, flags); 1849 1850 BUG_ON(host->bus_ops); 1851 BUG_ON(host->bus_refs); 1852 1853 host->bus_ops = ops; 1854 host->bus_refs = 1; 1855 host->bus_dead = 0; 1856 1857 spin_unlock_irqrestore(&host->lock, flags); 1858 } 1859 1860 /* 1861 * Remove the current bus handler from a host. 1862 */ 1863 void mmc_detach_bus(struct mmc_host *host) 1864 { 1865 unsigned long flags; 1866 1867 BUG_ON(!host); 1868 1869 WARN_ON(!host->claimed); 1870 WARN_ON(!host->bus_ops); 1871 1872 spin_lock_irqsave(&host->lock, flags); 1873 1874 host->bus_dead = 1; 1875 1876 spin_unlock_irqrestore(&host->lock, flags); 1877 1878 mmc_bus_put(host); 1879 } 1880 1881 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1882 bool cd_irq) 1883 { 1884 #ifdef CONFIG_MMC_DEBUG 1885 unsigned long flags; 1886 spin_lock_irqsave(&host->lock, flags); 1887 WARN_ON(host->removed); 1888 spin_unlock_irqrestore(&host->lock, flags); 1889 #endif 1890 1891 /* 1892 * If the device is configured as wakeup, we prevent a new sleep for 1893 * 5 s to give provision for user space to consume the event. 1894 */ 1895 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1896 device_can_wakeup(mmc_dev(host))) 1897 pm_wakeup_event(mmc_dev(host), 5000); 1898 1899 host->detect_change = 1; 1900 mmc_schedule_delayed_work(&host->detect, delay); 1901 } 1902 1903 /** 1904 * mmc_detect_change - process change of state on a MMC socket 1905 * @host: host which changed state. 1906 * @delay: optional delay to wait before detection (jiffies) 1907 * 1908 * MMC drivers should call this when they detect a card has been 1909 * inserted or removed. The MMC layer will confirm that any 1910 * present card is still functional, and initialize any newly 1911 * inserted. 1912 */ 1913 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1914 { 1915 _mmc_detect_change(host, delay, true); 1916 } 1917 EXPORT_SYMBOL(mmc_detect_change); 1918 1919 void mmc_init_erase(struct mmc_card *card) 1920 { 1921 unsigned int sz; 1922 1923 if (is_power_of_2(card->erase_size)) 1924 card->erase_shift = ffs(card->erase_size) - 1; 1925 else 1926 card->erase_shift = 0; 1927 1928 /* 1929 * It is possible to erase an arbitrarily large area of an SD or MMC 1930 * card. That is not desirable because it can take a long time 1931 * (minutes) potentially delaying more important I/O, and also the 1932 * timeout calculations become increasingly hugely over-estimated. 1933 * Consequently, 'pref_erase' is defined as a guide to limit erases 1934 * to that size and alignment. 1935 * 1936 * For SD cards that define Allocation Unit size, limit erases to one 1937 * Allocation Unit at a time. 1938 * For MMC, have a stab at ai good value and for modern cards it will 1939 * end up being 4MiB. Note that if the value is too small, it can end 1940 * up taking longer to erase. Also note, erase_size is already set to 1941 * High Capacity Erase Size if available when this function is called. 1942 */ 1943 if (mmc_card_sd(card) && card->ssr.au) { 1944 card->pref_erase = card->ssr.au; 1945 card->erase_shift = ffs(card->ssr.au) - 1; 1946 } else if (card->erase_size) { 1947 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1948 if (sz < 128) 1949 card->pref_erase = 512 * 1024 / 512; 1950 else if (sz < 512) 1951 card->pref_erase = 1024 * 1024 / 512; 1952 else if (sz < 1024) 1953 card->pref_erase = 2 * 1024 * 1024 / 512; 1954 else 1955 card->pref_erase = 4 * 1024 * 1024 / 512; 1956 if (card->pref_erase < card->erase_size) 1957 card->pref_erase = card->erase_size; 1958 else { 1959 sz = card->pref_erase % card->erase_size; 1960 if (sz) 1961 card->pref_erase += card->erase_size - sz; 1962 } 1963 } else 1964 card->pref_erase = 0; 1965 } 1966 1967 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1968 unsigned int arg, unsigned int qty) 1969 { 1970 unsigned int erase_timeout; 1971 1972 if (arg == MMC_DISCARD_ARG || 1973 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1974 erase_timeout = card->ext_csd.trim_timeout; 1975 } else if (card->ext_csd.erase_group_def & 1) { 1976 /* High Capacity Erase Group Size uses HC timeouts */ 1977 if (arg == MMC_TRIM_ARG) 1978 erase_timeout = card->ext_csd.trim_timeout; 1979 else 1980 erase_timeout = card->ext_csd.hc_erase_timeout; 1981 } else { 1982 /* CSD Erase Group Size uses write timeout */ 1983 unsigned int mult = (10 << card->csd.r2w_factor); 1984 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1985 unsigned int timeout_us; 1986 1987 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1988 if (card->csd.tacc_ns < 1000000) 1989 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1990 else 1991 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1992 1993 /* 1994 * ios.clock is only a target. The real clock rate might be 1995 * less but not that much less, so fudge it by multiplying by 2. 1996 */ 1997 timeout_clks <<= 1; 1998 timeout_us += (timeout_clks * 1000) / 1999 (card->host->ios.clock / 1000); 2000 2001 erase_timeout = timeout_us / 1000; 2002 2003 /* 2004 * Theoretically, the calculation could underflow so round up 2005 * to 1ms in that case. 2006 */ 2007 if (!erase_timeout) 2008 erase_timeout = 1; 2009 } 2010 2011 /* Multiplier for secure operations */ 2012 if (arg & MMC_SECURE_ARGS) { 2013 if (arg == MMC_SECURE_ERASE_ARG) 2014 erase_timeout *= card->ext_csd.sec_erase_mult; 2015 else 2016 erase_timeout *= card->ext_csd.sec_trim_mult; 2017 } 2018 2019 erase_timeout *= qty; 2020 2021 /* 2022 * Ensure at least a 1 second timeout for SPI as per 2023 * 'mmc_set_data_timeout()' 2024 */ 2025 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2026 erase_timeout = 1000; 2027 2028 return erase_timeout; 2029 } 2030 2031 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2032 unsigned int arg, 2033 unsigned int qty) 2034 { 2035 unsigned int erase_timeout; 2036 2037 if (card->ssr.erase_timeout) { 2038 /* Erase timeout specified in SD Status Register (SSR) */ 2039 erase_timeout = card->ssr.erase_timeout * qty + 2040 card->ssr.erase_offset; 2041 } else { 2042 /* 2043 * Erase timeout not specified in SD Status Register (SSR) so 2044 * use 250ms per write block. 2045 */ 2046 erase_timeout = 250 * qty; 2047 } 2048 2049 /* Must not be less than 1 second */ 2050 if (erase_timeout < 1000) 2051 erase_timeout = 1000; 2052 2053 return erase_timeout; 2054 } 2055 2056 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2057 unsigned int arg, 2058 unsigned int qty) 2059 { 2060 if (mmc_card_sd(card)) 2061 return mmc_sd_erase_timeout(card, arg, qty); 2062 else 2063 return mmc_mmc_erase_timeout(card, arg, qty); 2064 } 2065 2066 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2067 unsigned int to, unsigned int arg) 2068 { 2069 struct mmc_command cmd = {0}; 2070 unsigned int qty = 0, busy_timeout = 0; 2071 bool use_r1b_resp = false; 2072 unsigned long timeout; 2073 int err; 2074 2075 mmc_retune_hold(card->host); 2076 2077 /* 2078 * qty is used to calculate the erase timeout which depends on how many 2079 * erase groups (or allocation units in SD terminology) are affected. 2080 * We count erasing part of an erase group as one erase group. 2081 * For SD, the allocation units are always a power of 2. For MMC, the 2082 * erase group size is almost certainly also power of 2, but it does not 2083 * seem to insist on that in the JEDEC standard, so we fall back to 2084 * division in that case. SD may not specify an allocation unit size, 2085 * in which case the timeout is based on the number of write blocks. 2086 * 2087 * Note that the timeout for secure trim 2 will only be correct if the 2088 * number of erase groups specified is the same as the total of all 2089 * preceding secure trim 1 commands. Since the power may have been 2090 * lost since the secure trim 1 commands occurred, it is generally 2091 * impossible to calculate the secure trim 2 timeout correctly. 2092 */ 2093 if (card->erase_shift) 2094 qty += ((to >> card->erase_shift) - 2095 (from >> card->erase_shift)) + 1; 2096 else if (mmc_card_sd(card)) 2097 qty += to - from + 1; 2098 else 2099 qty += ((to / card->erase_size) - 2100 (from / card->erase_size)) + 1; 2101 2102 if (!mmc_card_blockaddr(card)) { 2103 from <<= 9; 2104 to <<= 9; 2105 } 2106 2107 if (mmc_card_sd(card)) 2108 cmd.opcode = SD_ERASE_WR_BLK_START; 2109 else 2110 cmd.opcode = MMC_ERASE_GROUP_START; 2111 cmd.arg = from; 2112 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2113 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2114 if (err) { 2115 pr_err("mmc_erase: group start error %d, " 2116 "status %#x\n", err, cmd.resp[0]); 2117 err = -EIO; 2118 goto out; 2119 } 2120 2121 memset(&cmd, 0, sizeof(struct mmc_command)); 2122 if (mmc_card_sd(card)) 2123 cmd.opcode = SD_ERASE_WR_BLK_END; 2124 else 2125 cmd.opcode = MMC_ERASE_GROUP_END; 2126 cmd.arg = to; 2127 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2128 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2129 if (err) { 2130 pr_err("mmc_erase: group end error %d, status %#x\n", 2131 err, cmd.resp[0]); 2132 err = -EIO; 2133 goto out; 2134 } 2135 2136 memset(&cmd, 0, sizeof(struct mmc_command)); 2137 cmd.opcode = MMC_ERASE; 2138 cmd.arg = arg; 2139 busy_timeout = mmc_erase_timeout(card, arg, qty); 2140 /* 2141 * If the host controller supports busy signalling and the timeout for 2142 * the erase operation does not exceed the max_busy_timeout, we should 2143 * use R1B response. Or we need to prevent the host from doing hw busy 2144 * detection, which is done by converting to a R1 response instead. 2145 */ 2146 if (card->host->max_busy_timeout && 2147 busy_timeout > card->host->max_busy_timeout) { 2148 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2149 } else { 2150 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2151 cmd.busy_timeout = busy_timeout; 2152 use_r1b_resp = true; 2153 } 2154 2155 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2156 if (err) { 2157 pr_err("mmc_erase: erase error %d, status %#x\n", 2158 err, cmd.resp[0]); 2159 err = -EIO; 2160 goto out; 2161 } 2162 2163 if (mmc_host_is_spi(card->host)) 2164 goto out; 2165 2166 /* 2167 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2168 * shall be avoided. 2169 */ 2170 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2171 goto out; 2172 2173 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2174 do { 2175 memset(&cmd, 0, sizeof(struct mmc_command)); 2176 cmd.opcode = MMC_SEND_STATUS; 2177 cmd.arg = card->rca << 16; 2178 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2179 /* Do not retry else we can't see errors */ 2180 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2181 if (err || (cmd.resp[0] & 0xFDF92000)) { 2182 pr_err("error %d requesting status %#x\n", 2183 err, cmd.resp[0]); 2184 err = -EIO; 2185 goto out; 2186 } 2187 2188 /* Timeout if the device never becomes ready for data and 2189 * never leaves the program state. 2190 */ 2191 if (time_after(jiffies, timeout)) { 2192 pr_err("%s: Card stuck in programming state! %s\n", 2193 mmc_hostname(card->host), __func__); 2194 err = -EIO; 2195 goto out; 2196 } 2197 2198 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2199 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2200 out: 2201 mmc_retune_release(card->host); 2202 return err; 2203 } 2204 2205 /** 2206 * mmc_erase - erase sectors. 2207 * @card: card to erase 2208 * @from: first sector to erase 2209 * @nr: number of sectors to erase 2210 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2211 * 2212 * Caller must claim host before calling this function. 2213 */ 2214 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2215 unsigned int arg) 2216 { 2217 unsigned int rem, to = from + nr; 2218 int err; 2219 2220 if (!(card->host->caps & MMC_CAP_ERASE) || 2221 !(card->csd.cmdclass & CCC_ERASE)) 2222 return -EOPNOTSUPP; 2223 2224 if (!card->erase_size) 2225 return -EOPNOTSUPP; 2226 2227 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2228 return -EOPNOTSUPP; 2229 2230 if ((arg & MMC_SECURE_ARGS) && 2231 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2232 return -EOPNOTSUPP; 2233 2234 if ((arg & MMC_TRIM_ARGS) && 2235 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2236 return -EOPNOTSUPP; 2237 2238 if (arg == MMC_SECURE_ERASE_ARG) { 2239 if (from % card->erase_size || nr % card->erase_size) 2240 return -EINVAL; 2241 } 2242 2243 if (arg == MMC_ERASE_ARG) { 2244 rem = from % card->erase_size; 2245 if (rem) { 2246 rem = card->erase_size - rem; 2247 from += rem; 2248 if (nr > rem) 2249 nr -= rem; 2250 else 2251 return 0; 2252 } 2253 rem = nr % card->erase_size; 2254 if (rem) 2255 nr -= rem; 2256 } 2257 2258 if (nr == 0) 2259 return 0; 2260 2261 to = from + nr; 2262 2263 if (to <= from) 2264 return -EINVAL; 2265 2266 /* 'from' and 'to' are inclusive */ 2267 to -= 1; 2268 2269 /* 2270 * Special case where only one erase-group fits in the timeout budget: 2271 * If the region crosses an erase-group boundary on this particular 2272 * case, we will be trimming more than one erase-group which, does not 2273 * fit in the timeout budget of the controller, so we need to split it 2274 * and call mmc_do_erase() twice if necessary. This special case is 2275 * identified by the card->eg_boundary flag. 2276 */ 2277 rem = card->erase_size - (from % card->erase_size); 2278 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2279 err = mmc_do_erase(card, from, from + rem - 1, arg); 2280 from += rem; 2281 if ((err) || (to <= from)) 2282 return err; 2283 } 2284 2285 return mmc_do_erase(card, from, to, arg); 2286 } 2287 EXPORT_SYMBOL(mmc_erase); 2288 2289 int mmc_can_erase(struct mmc_card *card) 2290 { 2291 if ((card->host->caps & MMC_CAP_ERASE) && 2292 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2293 return 1; 2294 return 0; 2295 } 2296 EXPORT_SYMBOL(mmc_can_erase); 2297 2298 int mmc_can_trim(struct mmc_card *card) 2299 { 2300 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2301 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2302 return 1; 2303 return 0; 2304 } 2305 EXPORT_SYMBOL(mmc_can_trim); 2306 2307 int mmc_can_discard(struct mmc_card *card) 2308 { 2309 /* 2310 * As there's no way to detect the discard support bit at v4.5 2311 * use the s/w feature support filed. 2312 */ 2313 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2314 return 1; 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(mmc_can_discard); 2318 2319 int mmc_can_sanitize(struct mmc_card *card) 2320 { 2321 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2322 return 0; 2323 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2324 return 1; 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(mmc_can_sanitize); 2328 2329 int mmc_can_secure_erase_trim(struct mmc_card *card) 2330 { 2331 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2332 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2333 return 1; 2334 return 0; 2335 } 2336 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2337 2338 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2339 unsigned int nr) 2340 { 2341 if (!card->erase_size) 2342 return 0; 2343 if (from % card->erase_size || nr % card->erase_size) 2344 return 0; 2345 return 1; 2346 } 2347 EXPORT_SYMBOL(mmc_erase_group_aligned); 2348 2349 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2350 unsigned int arg) 2351 { 2352 struct mmc_host *host = card->host; 2353 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2354 unsigned int last_timeout = 0; 2355 2356 if (card->erase_shift) { 2357 max_qty = UINT_MAX >> card->erase_shift; 2358 min_qty = card->pref_erase >> card->erase_shift; 2359 } else if (mmc_card_sd(card)) { 2360 max_qty = UINT_MAX; 2361 min_qty = card->pref_erase; 2362 } else { 2363 max_qty = UINT_MAX / card->erase_size; 2364 min_qty = card->pref_erase / card->erase_size; 2365 } 2366 2367 /* 2368 * We should not only use 'host->max_busy_timeout' as the limitation 2369 * when deciding the max discard sectors. We should set a balance value 2370 * to improve the erase speed, and it can not get too long timeout at 2371 * the same time. 2372 * 2373 * Here we set 'card->pref_erase' as the minimal discard sectors no 2374 * matter what size of 'host->max_busy_timeout', but if the 2375 * 'host->max_busy_timeout' is large enough for more discard sectors, 2376 * then we can continue to increase the max discard sectors until we 2377 * get a balance value. 2378 */ 2379 do { 2380 y = 0; 2381 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2382 timeout = mmc_erase_timeout(card, arg, qty + x); 2383 2384 if (qty + x > min_qty && 2385 timeout > host->max_busy_timeout) 2386 break; 2387 2388 if (timeout < last_timeout) 2389 break; 2390 last_timeout = timeout; 2391 y = x; 2392 } 2393 qty += y; 2394 } while (y); 2395 2396 if (!qty) 2397 return 0; 2398 2399 /* 2400 * When specifying a sector range to trim, chances are we might cross 2401 * an erase-group boundary even if the amount of sectors is less than 2402 * one erase-group. 2403 * If we can only fit one erase-group in the controller timeout budget, 2404 * we have to care that erase-group boundaries are not crossed by a 2405 * single trim operation. We flag that special case with "eg_boundary". 2406 * In all other cases we can just decrement qty and pretend that we 2407 * always touch (qty + 1) erase-groups as a simple optimization. 2408 */ 2409 if (qty == 1) 2410 card->eg_boundary = 1; 2411 else 2412 qty--; 2413 2414 /* Convert qty to sectors */ 2415 if (card->erase_shift) 2416 max_discard = qty << card->erase_shift; 2417 else if (mmc_card_sd(card)) 2418 max_discard = qty + 1; 2419 else 2420 max_discard = qty * card->erase_size; 2421 2422 return max_discard; 2423 } 2424 2425 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2426 { 2427 struct mmc_host *host = card->host; 2428 unsigned int max_discard, max_trim; 2429 2430 if (!host->max_busy_timeout) 2431 return UINT_MAX; 2432 2433 /* 2434 * Without erase_group_def set, MMC erase timeout depends on clock 2435 * frequence which can change. In that case, the best choice is 2436 * just the preferred erase size. 2437 */ 2438 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2439 return card->pref_erase; 2440 2441 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2442 if (mmc_can_trim(card)) { 2443 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2444 if (max_trim < max_discard) 2445 max_discard = max_trim; 2446 } else if (max_discard < card->erase_size) { 2447 max_discard = 0; 2448 } 2449 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2450 mmc_hostname(host), max_discard, host->max_busy_timeout); 2451 return max_discard; 2452 } 2453 EXPORT_SYMBOL(mmc_calc_max_discard); 2454 2455 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2456 { 2457 struct mmc_command cmd = {0}; 2458 2459 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2460 return 0; 2461 2462 cmd.opcode = MMC_SET_BLOCKLEN; 2463 cmd.arg = blocklen; 2464 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2465 return mmc_wait_for_cmd(card->host, &cmd, 5); 2466 } 2467 EXPORT_SYMBOL(mmc_set_blocklen); 2468 2469 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2470 bool is_rel_write) 2471 { 2472 struct mmc_command cmd = {0}; 2473 2474 cmd.opcode = MMC_SET_BLOCK_COUNT; 2475 cmd.arg = blockcount & 0x0000FFFF; 2476 if (is_rel_write) 2477 cmd.arg |= 1 << 31; 2478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2479 return mmc_wait_for_cmd(card->host, &cmd, 5); 2480 } 2481 EXPORT_SYMBOL(mmc_set_blockcount); 2482 2483 static void mmc_hw_reset_for_init(struct mmc_host *host) 2484 { 2485 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2486 return; 2487 host->ops->hw_reset(host); 2488 } 2489 2490 int mmc_hw_reset(struct mmc_host *host) 2491 { 2492 int ret; 2493 2494 if (!host->card) 2495 return -EINVAL; 2496 2497 mmc_bus_get(host); 2498 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2499 mmc_bus_put(host); 2500 return -EOPNOTSUPP; 2501 } 2502 2503 ret = host->bus_ops->reset(host); 2504 mmc_bus_put(host); 2505 2506 if (ret) 2507 pr_warn("%s: tried to reset card, got error %d\n", 2508 mmc_hostname(host), ret); 2509 2510 return ret; 2511 } 2512 EXPORT_SYMBOL(mmc_hw_reset); 2513 2514 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2515 { 2516 host->f_init = freq; 2517 2518 #ifdef CONFIG_MMC_DEBUG 2519 pr_info("%s: %s: trying to init card at %u Hz\n", 2520 mmc_hostname(host), __func__, host->f_init); 2521 #endif 2522 mmc_power_up(host, host->ocr_avail); 2523 2524 /* 2525 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2526 * do a hardware reset if possible. 2527 */ 2528 mmc_hw_reset_for_init(host); 2529 2530 /* 2531 * sdio_reset sends CMD52 to reset card. Since we do not know 2532 * if the card is being re-initialized, just send it. CMD52 2533 * should be ignored by SD/eMMC cards. 2534 * Skip it if we already know that we do not support SDIO commands 2535 */ 2536 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2537 sdio_reset(host); 2538 2539 mmc_go_idle(host); 2540 2541 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2542 mmc_send_if_cond(host, host->ocr_avail); 2543 2544 /* Order's important: probe SDIO, then SD, then MMC */ 2545 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2546 if (!mmc_attach_sdio(host)) 2547 return 0; 2548 2549 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2550 if (!mmc_attach_sd(host)) 2551 return 0; 2552 2553 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2554 if (!mmc_attach_mmc(host)) 2555 return 0; 2556 2557 mmc_power_off(host); 2558 return -EIO; 2559 } 2560 2561 int _mmc_detect_card_removed(struct mmc_host *host) 2562 { 2563 int ret; 2564 2565 if (!host->card || mmc_card_removed(host->card)) 2566 return 1; 2567 2568 ret = host->bus_ops->alive(host); 2569 2570 /* 2571 * Card detect status and alive check may be out of sync if card is 2572 * removed slowly, when card detect switch changes while card/slot 2573 * pads are still contacted in hardware (refer to "SD Card Mechanical 2574 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2575 * detect work 200ms later for this case. 2576 */ 2577 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2578 mmc_detect_change(host, msecs_to_jiffies(200)); 2579 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2580 } 2581 2582 if (ret) { 2583 mmc_card_set_removed(host->card); 2584 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2585 } 2586 2587 return ret; 2588 } 2589 2590 int mmc_detect_card_removed(struct mmc_host *host) 2591 { 2592 struct mmc_card *card = host->card; 2593 int ret; 2594 2595 WARN_ON(!host->claimed); 2596 2597 if (!card) 2598 return 1; 2599 2600 if (!mmc_card_is_removable(host)) 2601 return 0; 2602 2603 ret = mmc_card_removed(card); 2604 /* 2605 * The card will be considered unchanged unless we have been asked to 2606 * detect a change or host requires polling to provide card detection. 2607 */ 2608 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2609 return ret; 2610 2611 host->detect_change = 0; 2612 if (!ret) { 2613 ret = _mmc_detect_card_removed(host); 2614 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2615 /* 2616 * Schedule a detect work as soon as possible to let a 2617 * rescan handle the card removal. 2618 */ 2619 cancel_delayed_work(&host->detect); 2620 _mmc_detect_change(host, 0, false); 2621 } 2622 } 2623 2624 return ret; 2625 } 2626 EXPORT_SYMBOL(mmc_detect_card_removed); 2627 2628 void mmc_rescan(struct work_struct *work) 2629 { 2630 struct mmc_host *host = 2631 container_of(work, struct mmc_host, detect.work); 2632 int i; 2633 2634 if (host->rescan_disable) 2635 return; 2636 2637 /* If there is a non-removable card registered, only scan once */ 2638 if (!mmc_card_is_removable(host) && host->rescan_entered) 2639 return; 2640 host->rescan_entered = 1; 2641 2642 if (host->trigger_card_event && host->ops->card_event) { 2643 mmc_claim_host(host); 2644 host->ops->card_event(host); 2645 mmc_release_host(host); 2646 host->trigger_card_event = false; 2647 } 2648 2649 mmc_bus_get(host); 2650 2651 /* 2652 * if there is a _removable_ card registered, check whether it is 2653 * still present 2654 */ 2655 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2656 host->bus_ops->detect(host); 2657 2658 host->detect_change = 0; 2659 2660 /* 2661 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2662 * the card is no longer present. 2663 */ 2664 mmc_bus_put(host); 2665 mmc_bus_get(host); 2666 2667 /* if there still is a card present, stop here */ 2668 if (host->bus_ops != NULL) { 2669 mmc_bus_put(host); 2670 goto out; 2671 } 2672 2673 /* 2674 * Only we can add a new handler, so it's safe to 2675 * release the lock here. 2676 */ 2677 mmc_bus_put(host); 2678 2679 mmc_claim_host(host); 2680 if (mmc_card_is_removable(host) && host->ops->get_cd && 2681 host->ops->get_cd(host) == 0) { 2682 mmc_power_off(host); 2683 mmc_release_host(host); 2684 goto out; 2685 } 2686 2687 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2688 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2689 break; 2690 if (freqs[i] <= host->f_min) 2691 break; 2692 } 2693 mmc_release_host(host); 2694 2695 out: 2696 if (host->caps & MMC_CAP_NEEDS_POLL) 2697 mmc_schedule_delayed_work(&host->detect, HZ); 2698 } 2699 2700 void mmc_start_host(struct mmc_host *host) 2701 { 2702 host->f_init = max(freqs[0], host->f_min); 2703 host->rescan_disable = 0; 2704 host->ios.power_mode = MMC_POWER_UNDEFINED; 2705 2706 mmc_claim_host(host); 2707 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2708 mmc_power_off(host); 2709 else 2710 mmc_power_up(host, host->ocr_avail); 2711 mmc_release_host(host); 2712 2713 mmc_gpiod_request_cd_irq(host); 2714 _mmc_detect_change(host, 0, false); 2715 } 2716 2717 void mmc_stop_host(struct mmc_host *host) 2718 { 2719 #ifdef CONFIG_MMC_DEBUG 2720 unsigned long flags; 2721 spin_lock_irqsave(&host->lock, flags); 2722 host->removed = 1; 2723 spin_unlock_irqrestore(&host->lock, flags); 2724 #endif 2725 if (host->slot.cd_irq >= 0) 2726 disable_irq(host->slot.cd_irq); 2727 2728 host->rescan_disable = 1; 2729 cancel_delayed_work_sync(&host->detect); 2730 2731 /* clear pm flags now and let card drivers set them as needed */ 2732 host->pm_flags = 0; 2733 2734 mmc_bus_get(host); 2735 if (host->bus_ops && !host->bus_dead) { 2736 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2737 host->bus_ops->remove(host); 2738 mmc_claim_host(host); 2739 mmc_detach_bus(host); 2740 mmc_power_off(host); 2741 mmc_release_host(host); 2742 mmc_bus_put(host); 2743 return; 2744 } 2745 mmc_bus_put(host); 2746 2747 BUG_ON(host->card); 2748 2749 mmc_claim_host(host); 2750 mmc_power_off(host); 2751 mmc_release_host(host); 2752 } 2753 2754 int mmc_power_save_host(struct mmc_host *host) 2755 { 2756 int ret = 0; 2757 2758 #ifdef CONFIG_MMC_DEBUG 2759 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2760 #endif 2761 2762 mmc_bus_get(host); 2763 2764 if (!host->bus_ops || host->bus_dead) { 2765 mmc_bus_put(host); 2766 return -EINVAL; 2767 } 2768 2769 if (host->bus_ops->power_save) 2770 ret = host->bus_ops->power_save(host); 2771 2772 mmc_bus_put(host); 2773 2774 mmc_power_off(host); 2775 2776 return ret; 2777 } 2778 EXPORT_SYMBOL(mmc_power_save_host); 2779 2780 int mmc_power_restore_host(struct mmc_host *host) 2781 { 2782 int ret; 2783 2784 #ifdef CONFIG_MMC_DEBUG 2785 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2786 #endif 2787 2788 mmc_bus_get(host); 2789 2790 if (!host->bus_ops || host->bus_dead) { 2791 mmc_bus_put(host); 2792 return -EINVAL; 2793 } 2794 2795 mmc_power_up(host, host->card->ocr); 2796 ret = host->bus_ops->power_restore(host); 2797 2798 mmc_bus_put(host); 2799 2800 return ret; 2801 } 2802 EXPORT_SYMBOL(mmc_power_restore_host); 2803 2804 /* 2805 * Flush the cache to the non-volatile storage. 2806 */ 2807 int mmc_flush_cache(struct mmc_card *card) 2808 { 2809 int err = 0; 2810 2811 if (mmc_card_mmc(card) && 2812 (card->ext_csd.cache_size > 0) && 2813 (card->ext_csd.cache_ctrl & 1)) { 2814 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2815 EXT_CSD_FLUSH_CACHE, 1, 0); 2816 if (err) 2817 pr_err("%s: cache flush error %d\n", 2818 mmc_hostname(card->host), err); 2819 } 2820 2821 return err; 2822 } 2823 EXPORT_SYMBOL(mmc_flush_cache); 2824 2825 #ifdef CONFIG_PM_SLEEP 2826 /* Do the card removal on suspend if card is assumed removeable 2827 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2828 to sync the card. 2829 */ 2830 static int mmc_pm_notify(struct notifier_block *notify_block, 2831 unsigned long mode, void *unused) 2832 { 2833 struct mmc_host *host = container_of( 2834 notify_block, struct mmc_host, pm_notify); 2835 unsigned long flags; 2836 int err = 0; 2837 2838 switch (mode) { 2839 case PM_HIBERNATION_PREPARE: 2840 case PM_SUSPEND_PREPARE: 2841 case PM_RESTORE_PREPARE: 2842 spin_lock_irqsave(&host->lock, flags); 2843 host->rescan_disable = 1; 2844 spin_unlock_irqrestore(&host->lock, flags); 2845 cancel_delayed_work_sync(&host->detect); 2846 2847 if (!host->bus_ops) 2848 break; 2849 2850 /* Validate prerequisites for suspend */ 2851 if (host->bus_ops->pre_suspend) 2852 err = host->bus_ops->pre_suspend(host); 2853 if (!err) 2854 break; 2855 2856 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2857 host->bus_ops->remove(host); 2858 mmc_claim_host(host); 2859 mmc_detach_bus(host); 2860 mmc_power_off(host); 2861 mmc_release_host(host); 2862 host->pm_flags = 0; 2863 break; 2864 2865 case PM_POST_SUSPEND: 2866 case PM_POST_HIBERNATION: 2867 case PM_POST_RESTORE: 2868 2869 spin_lock_irqsave(&host->lock, flags); 2870 host->rescan_disable = 0; 2871 spin_unlock_irqrestore(&host->lock, flags); 2872 _mmc_detect_change(host, 0, false); 2873 2874 } 2875 2876 return 0; 2877 } 2878 2879 void mmc_register_pm_notifier(struct mmc_host *host) 2880 { 2881 host->pm_notify.notifier_call = mmc_pm_notify; 2882 register_pm_notifier(&host->pm_notify); 2883 } 2884 2885 void mmc_unregister_pm_notifier(struct mmc_host *host) 2886 { 2887 unregister_pm_notifier(&host->pm_notify); 2888 } 2889 #endif 2890 2891 /** 2892 * mmc_init_context_info() - init synchronization context 2893 * @host: mmc host 2894 * 2895 * Init struct context_info needed to implement asynchronous 2896 * request mechanism, used by mmc core, host driver and mmc requests 2897 * supplier. 2898 */ 2899 void mmc_init_context_info(struct mmc_host *host) 2900 { 2901 spin_lock_init(&host->context_info.lock); 2902 host->context_info.is_new_req = false; 2903 host->context_info.is_done_rcv = false; 2904 host->context_info.is_waiting_last_req = false; 2905 init_waitqueue_head(&host->context_info.wait); 2906 } 2907 2908 static int __init mmc_init(void) 2909 { 2910 int ret; 2911 2912 ret = mmc_register_bus(); 2913 if (ret) 2914 return ret; 2915 2916 ret = mmc_register_host_class(); 2917 if (ret) 2918 goto unregister_bus; 2919 2920 ret = sdio_register_bus(); 2921 if (ret) 2922 goto unregister_host_class; 2923 2924 return 0; 2925 2926 unregister_host_class: 2927 mmc_unregister_host_class(); 2928 unregister_bus: 2929 mmc_unregister_bus(); 2930 return ret; 2931 } 2932 2933 static void __exit mmc_exit(void) 2934 { 2935 sdio_unregister_bus(); 2936 mmc_unregister_host_class(); 2937 mmc_unregister_bus(); 2938 } 2939 2940 subsys_initcall(mmc_init); 2941 module_exit(mmc_exit); 2942 2943 MODULE_LICENSE("GPL"); 2944