xref: /openbmc/linux/drivers/mmc/core/core.c (revision bb0eb050)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
55 
56 /*
57  * Background operations can take a long time, depending on the housekeeping
58  * operations the card has to perform.
59  */
60 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
61 
62 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
63 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
64 
65 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
66 
67 /*
68  * Enabling software CRCs on the data blocks can be a significant (30%)
69  * performance cost, and for other reasons may not always be desired.
70  * So we allow it it to be disabled.
71  */
72 bool use_spi_crc = 1;
73 module_param(use_spi_crc, bool, 0);
74 
75 static int mmc_schedule_delayed_work(struct delayed_work *work,
76 				     unsigned long delay)
77 {
78 	/*
79 	 * We use the system_freezable_wq, because of two reasons.
80 	 * First, it allows several works (not the same work item) to be
81 	 * executed simultaneously. Second, the queue becomes frozen when
82 	 * userspace becomes frozen during system PM.
83 	 */
84 	return queue_delayed_work(system_freezable_wq, work, delay);
85 }
86 
87 #ifdef CONFIG_FAIL_MMC_REQUEST
88 
89 /*
90  * Internal function. Inject random data errors.
91  * If mmc_data is NULL no errors are injected.
92  */
93 static void mmc_should_fail_request(struct mmc_host *host,
94 				    struct mmc_request *mrq)
95 {
96 	struct mmc_command *cmd = mrq->cmd;
97 	struct mmc_data *data = mrq->data;
98 	static const int data_errors[] = {
99 		-ETIMEDOUT,
100 		-EILSEQ,
101 		-EIO,
102 	};
103 
104 	if (!data)
105 		return;
106 
107 	if (cmd->error || data->error ||
108 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
109 		return;
110 
111 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
112 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
113 }
114 
115 #else /* CONFIG_FAIL_MMC_REQUEST */
116 
117 static inline void mmc_should_fail_request(struct mmc_host *host,
118 					   struct mmc_request *mrq)
119 {
120 }
121 
122 #endif /* CONFIG_FAIL_MMC_REQUEST */
123 
124 static inline void mmc_complete_cmd(struct mmc_request *mrq)
125 {
126 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
127 		complete_all(&mrq->cmd_completion);
128 }
129 
130 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 	if (!mrq->cap_cmd_during_tfr)
133 		return;
134 
135 	mmc_complete_cmd(mrq);
136 
137 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
138 		 mmc_hostname(host), mrq->cmd->opcode);
139 }
140 EXPORT_SYMBOL(mmc_command_done);
141 
142 /**
143  *	mmc_request_done - finish processing an MMC request
144  *	@host: MMC host which completed request
145  *	@mrq: MMC request which request
146  *
147  *	MMC drivers should call this function when they have completed
148  *	their processing of a request.
149  */
150 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
151 {
152 	struct mmc_command *cmd = mrq->cmd;
153 	int err = cmd->error;
154 
155 	/* Flag re-tuning needed on CRC errors */
156 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
157 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
158 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
159 	    (mrq->data && mrq->data->error == -EILSEQ) ||
160 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
161 		mmc_retune_needed(host);
162 
163 	if (err && cmd->retries && mmc_host_is_spi(host)) {
164 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
165 			cmd->retries = 0;
166 	}
167 
168 	if (host->ongoing_mrq == mrq)
169 		host->ongoing_mrq = NULL;
170 
171 	mmc_complete_cmd(mrq);
172 
173 	trace_mmc_request_done(host, mrq);
174 
175 	/*
176 	 * We list various conditions for the command to be considered
177 	 * properly done:
178 	 *
179 	 * - There was no error, OK fine then
180 	 * - We are not doing some kind of retry
181 	 * - The card was removed (...so just complete everything no matter
182 	 *   if there are errors or retries)
183 	 */
184 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
185 		mmc_should_fail_request(host, mrq);
186 
187 		if (!host->ongoing_mrq)
188 			led_trigger_event(host->led, LED_OFF);
189 
190 		if (mrq->sbc) {
191 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
192 				mmc_hostname(host), mrq->sbc->opcode,
193 				mrq->sbc->error,
194 				mrq->sbc->resp[0], mrq->sbc->resp[1],
195 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
196 		}
197 
198 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
199 			mmc_hostname(host), cmd->opcode, err,
200 			cmd->resp[0], cmd->resp[1],
201 			cmd->resp[2], cmd->resp[3]);
202 
203 		if (mrq->data) {
204 			pr_debug("%s:     %d bytes transferred: %d\n",
205 				mmc_hostname(host),
206 				mrq->data->bytes_xfered, mrq->data->error);
207 		}
208 
209 		if (mrq->stop) {
210 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
211 				mmc_hostname(host), mrq->stop->opcode,
212 				mrq->stop->error,
213 				mrq->stop->resp[0], mrq->stop->resp[1],
214 				mrq->stop->resp[2], mrq->stop->resp[3]);
215 		}
216 	}
217 	/*
218 	 * Request starter must handle retries - see
219 	 * mmc_wait_for_req_done().
220 	 */
221 	if (mrq->done)
222 		mrq->done(mrq);
223 }
224 
225 EXPORT_SYMBOL(mmc_request_done);
226 
227 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
228 {
229 	int err;
230 
231 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
232 	err = mmc_retune(host);
233 	if (err) {
234 		mrq->cmd->error = err;
235 		mmc_request_done(host, mrq);
236 		return;
237 	}
238 
239 	/*
240 	 * For sdio rw commands we must wait for card busy otherwise some
241 	 * sdio devices won't work properly.
242 	 * And bypass I/O abort, reset and bus suspend operations.
243 	 */
244 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
245 	    host->ops->card_busy) {
246 		int tries = 500; /* Wait aprox 500ms at maximum */
247 
248 		while (host->ops->card_busy(host) && --tries)
249 			mmc_delay(1);
250 
251 		if (tries == 0) {
252 			mrq->cmd->error = -EBUSY;
253 			mmc_request_done(host, mrq);
254 			return;
255 		}
256 	}
257 
258 	if (mrq->cap_cmd_during_tfr) {
259 		host->ongoing_mrq = mrq;
260 		/*
261 		 * Retry path could come through here without having waiting on
262 		 * cmd_completion, so ensure it is reinitialised.
263 		 */
264 		reinit_completion(&mrq->cmd_completion);
265 	}
266 
267 	trace_mmc_request_start(host, mrq);
268 
269 	host->ops->request(host, mrq);
270 }
271 
272 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
273 {
274 	if (mrq->sbc) {
275 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
276 			 mmc_hostname(host), mrq->sbc->opcode,
277 			 mrq->sbc->arg, mrq->sbc->flags);
278 	}
279 
280 	if (mrq->cmd) {
281 		pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
282 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
283 			 mrq->cmd->flags);
284 	}
285 
286 	if (mrq->data) {
287 		pr_debug("%s:     blksz %d blocks %d flags %08x "
288 			"tsac %d ms nsac %d\n",
289 			mmc_hostname(host), mrq->data->blksz,
290 			mrq->data->blocks, mrq->data->flags,
291 			mrq->data->timeout_ns / 1000000,
292 			mrq->data->timeout_clks);
293 	}
294 
295 	if (mrq->stop) {
296 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
297 			 mmc_hostname(host), mrq->stop->opcode,
298 			 mrq->stop->arg, mrq->stop->flags);
299 	}
300 }
301 
302 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
303 {
304 #ifdef CONFIG_MMC_DEBUG
305 	unsigned int i, sz;
306 	struct scatterlist *sg;
307 #endif
308 
309 	if (mrq->cmd) {
310 		mrq->cmd->error = 0;
311 		mrq->cmd->mrq = mrq;
312 		mrq->cmd->data = mrq->data;
313 	}
314 	if (mrq->sbc) {
315 		mrq->sbc->error = 0;
316 		mrq->sbc->mrq = mrq;
317 	}
318 	if (mrq->data) {
319 		if (mrq->data->blksz > host->max_blk_size ||
320 		    mrq->data->blocks > host->max_blk_count ||
321 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
322 			return -EINVAL;
323 #ifdef CONFIG_MMC_DEBUG
324 		sz = 0;
325 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
326 			sz += sg->length;
327 		if (sz != mrq->data->blocks * mrq->data->blksz)
328 			return -EINVAL;
329 #endif
330 		mrq->data->error = 0;
331 		mrq->data->mrq = mrq;
332 		if (mrq->stop) {
333 			mrq->data->stop = mrq->stop;
334 			mrq->stop->error = 0;
335 			mrq->stop->mrq = mrq;
336 		}
337 	}
338 
339 	return 0;
340 }
341 
342 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
343 {
344 	int err;
345 
346 	mmc_retune_hold(host);
347 
348 	if (mmc_card_removed(host->card))
349 		return -ENOMEDIUM;
350 
351 	mmc_mrq_pr_debug(host, mrq);
352 
353 	WARN_ON(!host->claimed);
354 
355 	err = mmc_mrq_prep(host, mrq);
356 	if (err)
357 		return err;
358 
359 	led_trigger_event(host->led, LED_FULL);
360 	__mmc_start_request(host, mrq);
361 
362 	return 0;
363 }
364 
365 /**
366  *	mmc_start_bkops - start BKOPS for supported cards
367  *	@card: MMC card to start BKOPS
368  *	@form_exception: A flag to indicate if this function was
369  *			 called due to an exception raised by the card
370  *
371  *	Start background operations whenever requested.
372  *	When the urgent BKOPS bit is set in a R1 command response
373  *	then background operations should be started immediately.
374 */
375 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
376 {
377 	int err;
378 	int timeout;
379 	bool use_busy_signal;
380 
381 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
382 		return;
383 
384 	err = mmc_read_bkops_status(card);
385 	if (err) {
386 		pr_err("%s: Failed to read bkops status: %d\n",
387 		       mmc_hostname(card->host), err);
388 		return;
389 	}
390 
391 	if (!card->ext_csd.raw_bkops_status)
392 		return;
393 
394 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
395 	    from_exception)
396 		return;
397 
398 	mmc_claim_host(card->host);
399 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
400 		timeout = MMC_BKOPS_MAX_TIMEOUT;
401 		use_busy_signal = true;
402 	} else {
403 		timeout = 0;
404 		use_busy_signal = false;
405 	}
406 
407 	mmc_retune_hold(card->host);
408 
409 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
410 			EXT_CSD_BKOPS_START, 1, timeout, 0,
411 			use_busy_signal, true, false);
412 	if (err) {
413 		pr_warn("%s: Error %d starting bkops\n",
414 			mmc_hostname(card->host), err);
415 		mmc_retune_release(card->host);
416 		goto out;
417 	}
418 
419 	/*
420 	 * For urgent bkops status (LEVEL_2 and more)
421 	 * bkops executed synchronously, otherwise
422 	 * the operation is in progress
423 	 */
424 	if (!use_busy_signal)
425 		mmc_card_set_doing_bkops(card);
426 	else
427 		mmc_retune_release(card->host);
428 out:
429 	mmc_release_host(card->host);
430 }
431 EXPORT_SYMBOL(mmc_start_bkops);
432 
433 /*
434  * mmc_wait_data_done() - done callback for data request
435  * @mrq: done data request
436  *
437  * Wakes up mmc context, passed as a callback to host controller driver
438  */
439 static void mmc_wait_data_done(struct mmc_request *mrq)
440 {
441 	struct mmc_context_info *context_info = &mrq->host->context_info;
442 
443 	context_info->is_done_rcv = true;
444 	wake_up_interruptible(&context_info->wait);
445 }
446 
447 static void mmc_wait_done(struct mmc_request *mrq)
448 {
449 	complete(&mrq->completion);
450 }
451 
452 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
453 {
454 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
455 
456 	/*
457 	 * If there is an ongoing transfer, wait for the command line to become
458 	 * available.
459 	 */
460 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
461 		wait_for_completion(&ongoing_mrq->cmd_completion);
462 }
463 
464 /*
465  *__mmc_start_data_req() - starts data request
466  * @host: MMC host to start the request
467  * @mrq: data request to start
468  *
469  * Sets the done callback to be called when request is completed by the card.
470  * Starts data mmc request execution
471  * If an ongoing transfer is already in progress, wait for the command line
472  * to become available before sending another command.
473  */
474 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
475 {
476 	int err;
477 
478 	mmc_wait_ongoing_tfr_cmd(host);
479 
480 	mrq->done = mmc_wait_data_done;
481 	mrq->host = host;
482 
483 	init_completion(&mrq->cmd_completion);
484 
485 	err = mmc_start_request(host, mrq);
486 	if (err) {
487 		mrq->cmd->error = err;
488 		mmc_complete_cmd(mrq);
489 		mmc_wait_data_done(mrq);
490 	}
491 
492 	return err;
493 }
494 
495 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
496 {
497 	int err;
498 
499 	mmc_wait_ongoing_tfr_cmd(host);
500 
501 	init_completion(&mrq->completion);
502 	mrq->done = mmc_wait_done;
503 
504 	init_completion(&mrq->cmd_completion);
505 
506 	err = mmc_start_request(host, mrq);
507 	if (err) {
508 		mrq->cmd->error = err;
509 		mmc_complete_cmd(mrq);
510 		complete(&mrq->completion);
511 	}
512 
513 	return err;
514 }
515 
516 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 	struct mmc_command *cmd;
519 
520 	while (1) {
521 		wait_for_completion(&mrq->completion);
522 
523 		cmd = mrq->cmd;
524 
525 		/*
526 		 * If host has timed out waiting for the sanitize
527 		 * to complete, card might be still in programming state
528 		 * so let's try to bring the card out of programming
529 		 * state.
530 		 */
531 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
532 			if (!mmc_interrupt_hpi(host->card)) {
533 				pr_warn("%s: %s: Interrupted sanitize\n",
534 					mmc_hostname(host), __func__);
535 				cmd->error = 0;
536 				break;
537 			} else {
538 				pr_err("%s: %s: Failed to interrupt sanitize\n",
539 				       mmc_hostname(host), __func__);
540 			}
541 		}
542 		if (!cmd->error || !cmd->retries ||
543 		    mmc_card_removed(host->card))
544 			break;
545 
546 		mmc_retune_recheck(host);
547 
548 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
549 			 mmc_hostname(host), cmd->opcode, cmd->error);
550 		cmd->retries--;
551 		cmd->error = 0;
552 		__mmc_start_request(host, mrq);
553 	}
554 
555 	mmc_retune_release(host);
556 }
557 EXPORT_SYMBOL(mmc_wait_for_req_done);
558 
559 /**
560  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
561  *	@host: MMC host
562  *	@mrq: MMC request
563  *
564  *	mmc_is_req_done() is used with requests that have
565  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
566  *	starting a request and before waiting for it to complete. That is,
567  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
568  *	and before mmc_wait_for_req_done(). If it is called at other times the
569  *	result is not meaningful.
570  */
571 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
572 {
573 	if (host->areq)
574 		return host->context_info.is_done_rcv;
575 	else
576 		return completion_done(&mrq->completion);
577 }
578 EXPORT_SYMBOL(mmc_is_req_done);
579 
580 /**
581  *	mmc_pre_req - Prepare for a new request
582  *	@host: MMC host to prepare command
583  *	@mrq: MMC request to prepare for
584  *
585  *	mmc_pre_req() is called in prior to mmc_start_req() to let
586  *	host prepare for the new request. Preparation of a request may be
587  *	performed while another request is running on the host.
588  */
589 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
590 {
591 	if (host->ops->pre_req)
592 		host->ops->pre_req(host, mrq);
593 }
594 
595 /**
596  *	mmc_post_req - Post process a completed request
597  *	@host: MMC host to post process command
598  *	@mrq: MMC request to post process for
599  *	@err: Error, if non zero, clean up any resources made in pre_req
600  *
601  *	Let the host post process a completed request. Post processing of
602  *	a request may be performed while another reuqest is running.
603  */
604 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
605 			 int err)
606 {
607 	if (host->ops->post_req)
608 		host->ops->post_req(host, mrq, err);
609 }
610 
611 /**
612  * mmc_finalize_areq() - finalize an asynchronous request
613  * @host: MMC host to finalize any ongoing request on
614  *
615  * Returns the status of the ongoing asynchronous request, but
616  * MMC_BLK_SUCCESS if no request was going on.
617  */
618 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
619 {
620 	struct mmc_context_info *context_info = &host->context_info;
621 	enum mmc_blk_status status;
622 
623 	if (!host->areq)
624 		return MMC_BLK_SUCCESS;
625 
626 	while (1) {
627 		wait_event_interruptible(context_info->wait,
628 				(context_info->is_done_rcv ||
629 				 context_info->is_new_req));
630 
631 		if (context_info->is_done_rcv) {
632 			struct mmc_command *cmd;
633 
634 			context_info->is_done_rcv = false;
635 			cmd = host->areq->mrq->cmd;
636 
637 			if (!cmd->error || !cmd->retries ||
638 			    mmc_card_removed(host->card)) {
639 				status = host->areq->err_check(host->card,
640 							       host->areq);
641 				break; /* return status */
642 			} else {
643 				mmc_retune_recheck(host);
644 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
645 					mmc_hostname(host),
646 					cmd->opcode, cmd->error);
647 				cmd->retries--;
648 				cmd->error = 0;
649 				__mmc_start_request(host, host->areq->mrq);
650 				continue; /* wait for done/new event again */
651 			}
652 		}
653 
654 		return MMC_BLK_NEW_REQUEST;
655 	}
656 
657 	mmc_retune_release(host);
658 
659 	/*
660 	 * Check BKOPS urgency for each R1 response
661 	 */
662 	if (host->card && mmc_card_mmc(host->card) &&
663 	    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
664 	     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
665 	    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
666 		mmc_start_bkops(host->card, true);
667 	}
668 
669 	return status;
670 }
671 
672 /**
673  *	mmc_start_areq - start an asynchronous request
674  *	@host: MMC host to start command
675  *	@areq: asynchronous request to start
676  *	@ret_stat: out parameter for status
677  *
678  *	Start a new MMC custom command request for a host.
679  *	If there is on ongoing async request wait for completion
680  *	of that request and start the new one and return.
681  *	Does not wait for the new request to complete.
682  *
683  *      Returns the completed request, NULL in case of none completed.
684  *	Wait for the an ongoing request (previoulsy started) to complete and
685  *	return the completed request. If there is no ongoing request, NULL
686  *	is returned without waiting. NULL is not an error condition.
687  */
688 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
689 				     struct mmc_async_req *areq,
690 				     enum mmc_blk_status *ret_stat)
691 {
692 	enum mmc_blk_status status;
693 	int start_err = 0;
694 	struct mmc_async_req *previous = host->areq;
695 
696 	/* Prepare a new request */
697 	if (areq)
698 		mmc_pre_req(host, areq->mrq);
699 
700 	/* Finalize previous request */
701 	status = mmc_finalize_areq(host);
702 	if (ret_stat)
703 		*ret_stat = status;
704 
705 	/* The previous request is still going on... */
706 	if (status == MMC_BLK_NEW_REQUEST)
707 		return NULL;
708 
709 	/* Fine so far, start the new request! */
710 	if (status == MMC_BLK_SUCCESS && areq)
711 		start_err = __mmc_start_data_req(host, areq->mrq);
712 
713 	/* Postprocess the old request at this point */
714 	if (host->areq)
715 		mmc_post_req(host, host->areq->mrq, 0);
716 
717 	/* Cancel a prepared request if it was not started. */
718 	if ((status != MMC_BLK_SUCCESS || start_err) && areq)
719 		mmc_post_req(host, areq->mrq, -EINVAL);
720 
721 	if (status != MMC_BLK_SUCCESS)
722 		host->areq = NULL;
723 	else
724 		host->areq = areq;
725 
726 	return previous;
727 }
728 EXPORT_SYMBOL(mmc_start_areq);
729 
730 /**
731  *	mmc_wait_for_req - start a request and wait for completion
732  *	@host: MMC host to start command
733  *	@mrq: MMC request to start
734  *
735  *	Start a new MMC custom command request for a host, and wait
736  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
737  *	requests, the transfer is ongoing and the caller can issue further
738  *	commands that do not use the data lines, and then wait by calling
739  *	mmc_wait_for_req_done().
740  *	Does not attempt to parse the response.
741  */
742 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
743 {
744 	__mmc_start_req(host, mrq);
745 
746 	if (!mrq->cap_cmd_during_tfr)
747 		mmc_wait_for_req_done(host, mrq);
748 }
749 EXPORT_SYMBOL(mmc_wait_for_req);
750 
751 /**
752  *	mmc_interrupt_hpi - Issue for High priority Interrupt
753  *	@card: the MMC card associated with the HPI transfer
754  *
755  *	Issued High Priority Interrupt, and check for card status
756  *	until out-of prg-state.
757  */
758 int mmc_interrupt_hpi(struct mmc_card *card)
759 {
760 	int err;
761 	u32 status;
762 	unsigned long prg_wait;
763 
764 	if (!card->ext_csd.hpi_en) {
765 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
766 		return 1;
767 	}
768 
769 	mmc_claim_host(card->host);
770 	err = mmc_send_status(card, &status);
771 	if (err) {
772 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
773 		goto out;
774 	}
775 
776 	switch (R1_CURRENT_STATE(status)) {
777 	case R1_STATE_IDLE:
778 	case R1_STATE_READY:
779 	case R1_STATE_STBY:
780 	case R1_STATE_TRAN:
781 		/*
782 		 * In idle and transfer states, HPI is not needed and the caller
783 		 * can issue the next intended command immediately
784 		 */
785 		goto out;
786 	case R1_STATE_PRG:
787 		break;
788 	default:
789 		/* In all other states, it's illegal to issue HPI */
790 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
791 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
792 		err = -EINVAL;
793 		goto out;
794 	}
795 
796 	err = mmc_send_hpi_cmd(card, &status);
797 	if (err)
798 		goto out;
799 
800 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
801 	do {
802 		err = mmc_send_status(card, &status);
803 
804 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
805 			break;
806 		if (time_after(jiffies, prg_wait))
807 			err = -ETIMEDOUT;
808 	} while (!err);
809 
810 out:
811 	mmc_release_host(card->host);
812 	return err;
813 }
814 EXPORT_SYMBOL(mmc_interrupt_hpi);
815 
816 /**
817  *	mmc_wait_for_cmd - start a command and wait for completion
818  *	@host: MMC host to start command
819  *	@cmd: MMC command to start
820  *	@retries: maximum number of retries
821  *
822  *	Start a new MMC command for a host, and wait for the command
823  *	to complete.  Return any error that occurred while the command
824  *	was executing.  Do not attempt to parse the response.
825  */
826 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
827 {
828 	struct mmc_request mrq = {};
829 
830 	WARN_ON(!host->claimed);
831 
832 	memset(cmd->resp, 0, sizeof(cmd->resp));
833 	cmd->retries = retries;
834 
835 	mrq.cmd = cmd;
836 	cmd->data = NULL;
837 
838 	mmc_wait_for_req(host, &mrq);
839 
840 	return cmd->error;
841 }
842 
843 EXPORT_SYMBOL(mmc_wait_for_cmd);
844 
845 /**
846  *	mmc_stop_bkops - stop ongoing BKOPS
847  *	@card: MMC card to check BKOPS
848  *
849  *	Send HPI command to stop ongoing background operations to
850  *	allow rapid servicing of foreground operations, e.g. read/
851  *	writes. Wait until the card comes out of the programming state
852  *	to avoid errors in servicing read/write requests.
853  */
854 int mmc_stop_bkops(struct mmc_card *card)
855 {
856 	int err = 0;
857 
858 	err = mmc_interrupt_hpi(card);
859 
860 	/*
861 	 * If err is EINVAL, we can't issue an HPI.
862 	 * It should complete the BKOPS.
863 	 */
864 	if (!err || (err == -EINVAL)) {
865 		mmc_card_clr_doing_bkops(card);
866 		mmc_retune_release(card->host);
867 		err = 0;
868 	}
869 
870 	return err;
871 }
872 EXPORT_SYMBOL(mmc_stop_bkops);
873 
874 int mmc_read_bkops_status(struct mmc_card *card)
875 {
876 	int err;
877 	u8 *ext_csd;
878 
879 	mmc_claim_host(card->host);
880 	err = mmc_get_ext_csd(card, &ext_csd);
881 	mmc_release_host(card->host);
882 	if (err)
883 		return err;
884 
885 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
886 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
887 	kfree(ext_csd);
888 	return 0;
889 }
890 EXPORT_SYMBOL(mmc_read_bkops_status);
891 
892 /**
893  *	mmc_set_data_timeout - set the timeout for a data command
894  *	@data: data phase for command
895  *	@card: the MMC card associated with the data transfer
896  *
897  *	Computes the data timeout parameters according to the
898  *	correct algorithm given the card type.
899  */
900 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
901 {
902 	unsigned int mult;
903 
904 	/*
905 	 * SDIO cards only define an upper 1 s limit on access.
906 	 */
907 	if (mmc_card_sdio(card)) {
908 		data->timeout_ns = 1000000000;
909 		data->timeout_clks = 0;
910 		return;
911 	}
912 
913 	/*
914 	 * SD cards use a 100 multiplier rather than 10
915 	 */
916 	mult = mmc_card_sd(card) ? 100 : 10;
917 
918 	/*
919 	 * Scale up the multiplier (and therefore the timeout) by
920 	 * the r2w factor for writes.
921 	 */
922 	if (data->flags & MMC_DATA_WRITE)
923 		mult <<= card->csd.r2w_factor;
924 
925 	data->timeout_ns = card->csd.tacc_ns * mult;
926 	data->timeout_clks = card->csd.tacc_clks * mult;
927 
928 	/*
929 	 * SD cards also have an upper limit on the timeout.
930 	 */
931 	if (mmc_card_sd(card)) {
932 		unsigned int timeout_us, limit_us;
933 
934 		timeout_us = data->timeout_ns / 1000;
935 		if (card->host->ios.clock)
936 			timeout_us += data->timeout_clks * 1000 /
937 				(card->host->ios.clock / 1000);
938 
939 		if (data->flags & MMC_DATA_WRITE)
940 			/*
941 			 * The MMC spec "It is strongly recommended
942 			 * for hosts to implement more than 500ms
943 			 * timeout value even if the card indicates
944 			 * the 250ms maximum busy length."  Even the
945 			 * previous value of 300ms is known to be
946 			 * insufficient for some cards.
947 			 */
948 			limit_us = 3000000;
949 		else
950 			limit_us = 100000;
951 
952 		/*
953 		 * SDHC cards always use these fixed values.
954 		 */
955 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
956 			data->timeout_ns = limit_us * 1000;
957 			data->timeout_clks = 0;
958 		}
959 
960 		/* assign limit value if invalid */
961 		if (timeout_us == 0)
962 			data->timeout_ns = limit_us * 1000;
963 	}
964 
965 	/*
966 	 * Some cards require longer data read timeout than indicated in CSD.
967 	 * Address this by setting the read timeout to a "reasonably high"
968 	 * value. For the cards tested, 600ms has proven enough. If necessary,
969 	 * this value can be increased if other problematic cards require this.
970 	 */
971 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
972 		data->timeout_ns = 600000000;
973 		data->timeout_clks = 0;
974 	}
975 
976 	/*
977 	 * Some cards need very high timeouts if driven in SPI mode.
978 	 * The worst observed timeout was 900ms after writing a
979 	 * continuous stream of data until the internal logic
980 	 * overflowed.
981 	 */
982 	if (mmc_host_is_spi(card->host)) {
983 		if (data->flags & MMC_DATA_WRITE) {
984 			if (data->timeout_ns < 1000000000)
985 				data->timeout_ns = 1000000000;	/* 1s */
986 		} else {
987 			if (data->timeout_ns < 100000000)
988 				data->timeout_ns =  100000000;	/* 100ms */
989 		}
990 	}
991 }
992 EXPORT_SYMBOL(mmc_set_data_timeout);
993 
994 /**
995  *	mmc_align_data_size - pads a transfer size to a more optimal value
996  *	@card: the MMC card associated with the data transfer
997  *	@sz: original transfer size
998  *
999  *	Pads the original data size with a number of extra bytes in
1000  *	order to avoid controller bugs and/or performance hits
1001  *	(e.g. some controllers revert to PIO for certain sizes).
1002  *
1003  *	Returns the improved size, which might be unmodified.
1004  *
1005  *	Note that this function is only relevant when issuing a
1006  *	single scatter gather entry.
1007  */
1008 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
1009 {
1010 	/*
1011 	 * FIXME: We don't have a system for the controller to tell
1012 	 * the core about its problems yet, so for now we just 32-bit
1013 	 * align the size.
1014 	 */
1015 	sz = ((sz + 3) / 4) * 4;
1016 
1017 	return sz;
1018 }
1019 EXPORT_SYMBOL(mmc_align_data_size);
1020 
1021 /**
1022  *	__mmc_claim_host - exclusively claim a host
1023  *	@host: mmc host to claim
1024  *	@abort: whether or not the operation should be aborted
1025  *
1026  *	Claim a host for a set of operations.  If @abort is non null and
1027  *	dereference a non-zero value then this will return prematurely with
1028  *	that non-zero value without acquiring the lock.  Returns zero
1029  *	with the lock held otherwise.
1030  */
1031 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1032 {
1033 	DECLARE_WAITQUEUE(wait, current);
1034 	unsigned long flags;
1035 	int stop;
1036 	bool pm = false;
1037 
1038 	might_sleep();
1039 
1040 	add_wait_queue(&host->wq, &wait);
1041 	spin_lock_irqsave(&host->lock, flags);
1042 	while (1) {
1043 		set_current_state(TASK_UNINTERRUPTIBLE);
1044 		stop = abort ? atomic_read(abort) : 0;
1045 		if (stop || !host->claimed || host->claimer == current)
1046 			break;
1047 		spin_unlock_irqrestore(&host->lock, flags);
1048 		schedule();
1049 		spin_lock_irqsave(&host->lock, flags);
1050 	}
1051 	set_current_state(TASK_RUNNING);
1052 	if (!stop) {
1053 		host->claimed = 1;
1054 		host->claimer = current;
1055 		host->claim_cnt += 1;
1056 		if (host->claim_cnt == 1)
1057 			pm = true;
1058 	} else
1059 		wake_up(&host->wq);
1060 	spin_unlock_irqrestore(&host->lock, flags);
1061 	remove_wait_queue(&host->wq, &wait);
1062 
1063 	if (pm)
1064 		pm_runtime_get_sync(mmc_dev(host));
1065 
1066 	return stop;
1067 }
1068 EXPORT_SYMBOL(__mmc_claim_host);
1069 
1070 /**
1071  *	mmc_release_host - release a host
1072  *	@host: mmc host to release
1073  *
1074  *	Release a MMC host, allowing others to claim the host
1075  *	for their operations.
1076  */
1077 void mmc_release_host(struct mmc_host *host)
1078 {
1079 	unsigned long flags;
1080 
1081 	WARN_ON(!host->claimed);
1082 
1083 	spin_lock_irqsave(&host->lock, flags);
1084 	if (--host->claim_cnt) {
1085 		/* Release for nested claim */
1086 		spin_unlock_irqrestore(&host->lock, flags);
1087 	} else {
1088 		host->claimed = 0;
1089 		host->claimer = NULL;
1090 		spin_unlock_irqrestore(&host->lock, flags);
1091 		wake_up(&host->wq);
1092 		pm_runtime_mark_last_busy(mmc_dev(host));
1093 		pm_runtime_put_autosuspend(mmc_dev(host));
1094 	}
1095 }
1096 EXPORT_SYMBOL(mmc_release_host);
1097 
1098 /*
1099  * This is a helper function, which fetches a runtime pm reference for the
1100  * card device and also claims the host.
1101  */
1102 void mmc_get_card(struct mmc_card *card)
1103 {
1104 	pm_runtime_get_sync(&card->dev);
1105 	mmc_claim_host(card->host);
1106 }
1107 EXPORT_SYMBOL(mmc_get_card);
1108 
1109 /*
1110  * This is a helper function, which releases the host and drops the runtime
1111  * pm reference for the card device.
1112  */
1113 void mmc_put_card(struct mmc_card *card)
1114 {
1115 	mmc_release_host(card->host);
1116 	pm_runtime_mark_last_busy(&card->dev);
1117 	pm_runtime_put_autosuspend(&card->dev);
1118 }
1119 EXPORT_SYMBOL(mmc_put_card);
1120 
1121 /*
1122  * Internal function that does the actual ios call to the host driver,
1123  * optionally printing some debug output.
1124  */
1125 static inline void mmc_set_ios(struct mmc_host *host)
1126 {
1127 	struct mmc_ios *ios = &host->ios;
1128 
1129 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1130 		"width %u timing %u\n",
1131 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1132 		 ios->power_mode, ios->chip_select, ios->vdd,
1133 		 1 << ios->bus_width, ios->timing);
1134 
1135 	host->ops->set_ios(host, ios);
1136 }
1137 
1138 /*
1139  * Control chip select pin on a host.
1140  */
1141 void mmc_set_chip_select(struct mmc_host *host, int mode)
1142 {
1143 	host->ios.chip_select = mode;
1144 	mmc_set_ios(host);
1145 }
1146 
1147 /*
1148  * Sets the host clock to the highest possible frequency that
1149  * is below "hz".
1150  */
1151 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1152 {
1153 	WARN_ON(hz && hz < host->f_min);
1154 
1155 	if (hz > host->f_max)
1156 		hz = host->f_max;
1157 
1158 	host->ios.clock = hz;
1159 	mmc_set_ios(host);
1160 }
1161 
1162 int mmc_execute_tuning(struct mmc_card *card)
1163 {
1164 	struct mmc_host *host = card->host;
1165 	u32 opcode;
1166 	int err;
1167 
1168 	if (!host->ops->execute_tuning)
1169 		return 0;
1170 
1171 	if (mmc_card_mmc(card))
1172 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1173 	else
1174 		opcode = MMC_SEND_TUNING_BLOCK;
1175 
1176 	err = host->ops->execute_tuning(host, opcode);
1177 
1178 	if (err)
1179 		pr_err("%s: tuning execution failed: %d\n",
1180 			mmc_hostname(host), err);
1181 	else
1182 		mmc_retune_enable(host);
1183 
1184 	return err;
1185 }
1186 
1187 /*
1188  * Change the bus mode (open drain/push-pull) of a host.
1189  */
1190 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1191 {
1192 	host->ios.bus_mode = mode;
1193 	mmc_set_ios(host);
1194 }
1195 
1196 /*
1197  * Change data bus width of a host.
1198  */
1199 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1200 {
1201 	host->ios.bus_width = width;
1202 	mmc_set_ios(host);
1203 }
1204 
1205 /*
1206  * Set initial state after a power cycle or a hw_reset.
1207  */
1208 void mmc_set_initial_state(struct mmc_host *host)
1209 {
1210 	mmc_retune_disable(host);
1211 
1212 	if (mmc_host_is_spi(host))
1213 		host->ios.chip_select = MMC_CS_HIGH;
1214 	else
1215 		host->ios.chip_select = MMC_CS_DONTCARE;
1216 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1217 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1218 	host->ios.timing = MMC_TIMING_LEGACY;
1219 	host->ios.drv_type = 0;
1220 	host->ios.enhanced_strobe = false;
1221 
1222 	/*
1223 	 * Make sure we are in non-enhanced strobe mode before we
1224 	 * actually enable it in ext_csd.
1225 	 */
1226 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1227 	     host->ops->hs400_enhanced_strobe)
1228 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1229 
1230 	mmc_set_ios(host);
1231 }
1232 
1233 /**
1234  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1235  * @vdd:	voltage (mV)
1236  * @low_bits:	prefer low bits in boundary cases
1237  *
1238  * This function returns the OCR bit number according to the provided @vdd
1239  * value. If conversion is not possible a negative errno value returned.
1240  *
1241  * Depending on the @low_bits flag the function prefers low or high OCR bits
1242  * on boundary voltages. For example,
1243  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1244  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1245  *
1246  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1247  */
1248 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1249 {
1250 	const int max_bit = ilog2(MMC_VDD_35_36);
1251 	int bit;
1252 
1253 	if (vdd < 1650 || vdd > 3600)
1254 		return -EINVAL;
1255 
1256 	if (vdd >= 1650 && vdd <= 1950)
1257 		return ilog2(MMC_VDD_165_195);
1258 
1259 	if (low_bits)
1260 		vdd -= 1;
1261 
1262 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1263 	bit = (vdd - 2000) / 100 + 8;
1264 	if (bit > max_bit)
1265 		return max_bit;
1266 	return bit;
1267 }
1268 
1269 /**
1270  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1271  * @vdd_min:	minimum voltage value (mV)
1272  * @vdd_max:	maximum voltage value (mV)
1273  *
1274  * This function returns the OCR mask bits according to the provided @vdd_min
1275  * and @vdd_max values. If conversion is not possible the function returns 0.
1276  *
1277  * Notes wrt boundary cases:
1278  * This function sets the OCR bits for all boundary voltages, for example
1279  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1280  * MMC_VDD_34_35 mask.
1281  */
1282 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1283 {
1284 	u32 mask = 0;
1285 
1286 	if (vdd_max < vdd_min)
1287 		return 0;
1288 
1289 	/* Prefer high bits for the boundary vdd_max values. */
1290 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1291 	if (vdd_max < 0)
1292 		return 0;
1293 
1294 	/* Prefer low bits for the boundary vdd_min values. */
1295 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1296 	if (vdd_min < 0)
1297 		return 0;
1298 
1299 	/* Fill the mask, from max bit to min bit. */
1300 	while (vdd_max >= vdd_min)
1301 		mask |= 1 << vdd_max--;
1302 
1303 	return mask;
1304 }
1305 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1306 
1307 #ifdef CONFIG_OF
1308 
1309 /**
1310  * mmc_of_parse_voltage - return mask of supported voltages
1311  * @np: The device node need to be parsed.
1312  * @mask: mask of voltages available for MMC/SD/SDIO
1313  *
1314  * Parse the "voltage-ranges" DT property, returning zero if it is not
1315  * found, negative errno if the voltage-range specification is invalid,
1316  * or one if the voltage-range is specified and successfully parsed.
1317  */
1318 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1319 {
1320 	const u32 *voltage_ranges;
1321 	int num_ranges, i;
1322 
1323 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1324 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1325 	if (!voltage_ranges) {
1326 		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1327 		return 0;
1328 	}
1329 	if (!num_ranges) {
1330 		pr_err("%s: voltage-ranges empty\n", np->full_name);
1331 		return -EINVAL;
1332 	}
1333 
1334 	for (i = 0; i < num_ranges; i++) {
1335 		const int j = i * 2;
1336 		u32 ocr_mask;
1337 
1338 		ocr_mask = mmc_vddrange_to_ocrmask(
1339 				be32_to_cpu(voltage_ranges[j]),
1340 				be32_to_cpu(voltage_ranges[j + 1]));
1341 		if (!ocr_mask) {
1342 			pr_err("%s: voltage-range #%d is invalid\n",
1343 				np->full_name, i);
1344 			return -EINVAL;
1345 		}
1346 		*mask |= ocr_mask;
1347 	}
1348 
1349 	return 1;
1350 }
1351 EXPORT_SYMBOL(mmc_of_parse_voltage);
1352 
1353 #endif /* CONFIG_OF */
1354 
1355 static int mmc_of_get_func_num(struct device_node *node)
1356 {
1357 	u32 reg;
1358 	int ret;
1359 
1360 	ret = of_property_read_u32(node, "reg", &reg);
1361 	if (ret < 0)
1362 		return ret;
1363 
1364 	return reg;
1365 }
1366 
1367 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1368 		unsigned func_num)
1369 {
1370 	struct device_node *node;
1371 
1372 	if (!host->parent || !host->parent->of_node)
1373 		return NULL;
1374 
1375 	for_each_child_of_node(host->parent->of_node, node) {
1376 		if (mmc_of_get_func_num(node) == func_num)
1377 			return node;
1378 	}
1379 
1380 	return NULL;
1381 }
1382 
1383 #ifdef CONFIG_REGULATOR
1384 
1385 /**
1386  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1387  * @vdd_bit:	OCR bit number
1388  * @min_uV:	minimum voltage value (mV)
1389  * @max_uV:	maximum voltage value (mV)
1390  *
1391  * This function returns the voltage range according to the provided OCR
1392  * bit number. If conversion is not possible a negative errno value returned.
1393  */
1394 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1395 {
1396 	int		tmp;
1397 
1398 	if (!vdd_bit)
1399 		return -EINVAL;
1400 
1401 	/*
1402 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1403 	 * bits this regulator doesn't quite support ... don't
1404 	 * be too picky, most cards and regulators are OK with
1405 	 * a 0.1V range goof (it's a small error percentage).
1406 	 */
1407 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1408 	if (tmp == 0) {
1409 		*min_uV = 1650 * 1000;
1410 		*max_uV = 1950 * 1000;
1411 	} else {
1412 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1413 		*max_uV = *min_uV + 100 * 1000;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * mmc_regulator_get_ocrmask - return mask of supported voltages
1421  * @supply: regulator to use
1422  *
1423  * This returns either a negative errno, or a mask of voltages that
1424  * can be provided to MMC/SD/SDIO devices using the specified voltage
1425  * regulator.  This would normally be called before registering the
1426  * MMC host adapter.
1427  */
1428 int mmc_regulator_get_ocrmask(struct regulator *supply)
1429 {
1430 	int			result = 0;
1431 	int			count;
1432 	int			i;
1433 	int			vdd_uV;
1434 	int			vdd_mV;
1435 
1436 	count = regulator_count_voltages(supply);
1437 	if (count < 0)
1438 		return count;
1439 
1440 	for (i = 0; i < count; i++) {
1441 		vdd_uV = regulator_list_voltage(supply, i);
1442 		if (vdd_uV <= 0)
1443 			continue;
1444 
1445 		vdd_mV = vdd_uV / 1000;
1446 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1447 	}
1448 
1449 	if (!result) {
1450 		vdd_uV = regulator_get_voltage(supply);
1451 		if (vdd_uV <= 0)
1452 			return vdd_uV;
1453 
1454 		vdd_mV = vdd_uV / 1000;
1455 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1456 	}
1457 
1458 	return result;
1459 }
1460 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1461 
1462 /**
1463  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1464  * @mmc: the host to regulate
1465  * @supply: regulator to use
1466  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1467  *
1468  * Returns zero on success, else negative errno.
1469  *
1470  * MMC host drivers may use this to enable or disable a regulator using
1471  * a particular supply voltage.  This would normally be called from the
1472  * set_ios() method.
1473  */
1474 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1475 			struct regulator *supply,
1476 			unsigned short vdd_bit)
1477 {
1478 	int			result = 0;
1479 	int			min_uV, max_uV;
1480 
1481 	if (vdd_bit) {
1482 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1483 
1484 		result = regulator_set_voltage(supply, min_uV, max_uV);
1485 		if (result == 0 && !mmc->regulator_enabled) {
1486 			result = regulator_enable(supply);
1487 			if (!result)
1488 				mmc->regulator_enabled = true;
1489 		}
1490 	} else if (mmc->regulator_enabled) {
1491 		result = regulator_disable(supply);
1492 		if (result == 0)
1493 			mmc->regulator_enabled = false;
1494 	}
1495 
1496 	if (result)
1497 		dev_err(mmc_dev(mmc),
1498 			"could not set regulator OCR (%d)\n", result);
1499 	return result;
1500 }
1501 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1502 
1503 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1504 						  int min_uV, int target_uV,
1505 						  int max_uV)
1506 {
1507 	/*
1508 	 * Check if supported first to avoid errors since we may try several
1509 	 * signal levels during power up and don't want to show errors.
1510 	 */
1511 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1512 		return -EINVAL;
1513 
1514 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1515 					     max_uV);
1516 }
1517 
1518 /**
1519  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1520  *
1521  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1522  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1523  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1524  * SD card spec also define VQMMC in terms of VMMC.
1525  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1526  *
1527  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1528  * requested voltage.  This is definitely a good idea for UHS where there's a
1529  * separate regulator on the card that's trying to make 1.8V and it's best if
1530  * we match.
1531  *
1532  * This function is expected to be used by a controller's
1533  * start_signal_voltage_switch() function.
1534  */
1535 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1536 {
1537 	struct device *dev = mmc_dev(mmc);
1538 	int ret, volt, min_uV, max_uV;
1539 
1540 	/* If no vqmmc supply then we can't change the voltage */
1541 	if (IS_ERR(mmc->supply.vqmmc))
1542 		return -EINVAL;
1543 
1544 	switch (ios->signal_voltage) {
1545 	case MMC_SIGNAL_VOLTAGE_120:
1546 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1547 						1100000, 1200000, 1300000);
1548 	case MMC_SIGNAL_VOLTAGE_180:
1549 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1550 						1700000, 1800000, 1950000);
1551 	case MMC_SIGNAL_VOLTAGE_330:
1552 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1553 		if (ret < 0)
1554 			return ret;
1555 
1556 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1557 			__func__, volt, max_uV);
1558 
1559 		min_uV = max(volt - 300000, 2700000);
1560 		max_uV = min(max_uV + 200000, 3600000);
1561 
1562 		/*
1563 		 * Due to a limitation in the current implementation of
1564 		 * regulator_set_voltage_triplet() which is taking the lowest
1565 		 * voltage possible if below the target, search for a suitable
1566 		 * voltage in two steps and try to stay close to vmmc
1567 		 * with a 0.3V tolerance at first.
1568 		 */
1569 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1570 						min_uV, volt, max_uV))
1571 			return 0;
1572 
1573 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1574 						2700000, volt, 3600000);
1575 	default:
1576 		return -EINVAL;
1577 	}
1578 }
1579 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1580 
1581 #endif /* CONFIG_REGULATOR */
1582 
1583 int mmc_regulator_get_supply(struct mmc_host *mmc)
1584 {
1585 	struct device *dev = mmc_dev(mmc);
1586 	int ret;
1587 
1588 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1589 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1590 
1591 	if (IS_ERR(mmc->supply.vmmc)) {
1592 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1593 			return -EPROBE_DEFER;
1594 		dev_dbg(dev, "No vmmc regulator found\n");
1595 	} else {
1596 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1597 		if (ret > 0)
1598 			mmc->ocr_avail = ret;
1599 		else
1600 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1601 	}
1602 
1603 	if (IS_ERR(mmc->supply.vqmmc)) {
1604 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1605 			return -EPROBE_DEFER;
1606 		dev_dbg(dev, "No vqmmc regulator found\n");
1607 	}
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1612 
1613 /*
1614  * Mask off any voltages we don't support and select
1615  * the lowest voltage
1616  */
1617 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1618 {
1619 	int bit;
1620 
1621 	/*
1622 	 * Sanity check the voltages that the card claims to
1623 	 * support.
1624 	 */
1625 	if (ocr & 0x7F) {
1626 		dev_warn(mmc_dev(host),
1627 		"card claims to support voltages below defined range\n");
1628 		ocr &= ~0x7F;
1629 	}
1630 
1631 	ocr &= host->ocr_avail;
1632 	if (!ocr) {
1633 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1634 		return 0;
1635 	}
1636 
1637 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1638 		bit = ffs(ocr) - 1;
1639 		ocr &= 3 << bit;
1640 		mmc_power_cycle(host, ocr);
1641 	} else {
1642 		bit = fls(ocr) - 1;
1643 		ocr &= 3 << bit;
1644 		if (bit != host->ios.vdd)
1645 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1646 	}
1647 
1648 	return ocr;
1649 }
1650 
1651 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1652 {
1653 	int err = 0;
1654 	int old_signal_voltage = host->ios.signal_voltage;
1655 
1656 	host->ios.signal_voltage = signal_voltage;
1657 	if (host->ops->start_signal_voltage_switch)
1658 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1659 
1660 	if (err)
1661 		host->ios.signal_voltage = old_signal_voltage;
1662 
1663 	return err;
1664 
1665 }
1666 
1667 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1668 {
1669 	struct mmc_command cmd = {};
1670 	int err = 0;
1671 	u32 clock;
1672 
1673 	/*
1674 	 * If we cannot switch voltages, return failure so the caller
1675 	 * can continue without UHS mode
1676 	 */
1677 	if (!host->ops->start_signal_voltage_switch)
1678 		return -EPERM;
1679 	if (!host->ops->card_busy)
1680 		pr_warn("%s: cannot verify signal voltage switch\n",
1681 			mmc_hostname(host));
1682 
1683 	cmd.opcode = SD_SWITCH_VOLTAGE;
1684 	cmd.arg = 0;
1685 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1686 
1687 	err = mmc_wait_for_cmd(host, &cmd, 0);
1688 	if (err)
1689 		return err;
1690 
1691 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1692 		return -EIO;
1693 
1694 	/*
1695 	 * The card should drive cmd and dat[0:3] low immediately
1696 	 * after the response of cmd11, but wait 1 ms to be sure
1697 	 */
1698 	mmc_delay(1);
1699 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1700 		err = -EAGAIN;
1701 		goto power_cycle;
1702 	}
1703 	/*
1704 	 * During a signal voltage level switch, the clock must be gated
1705 	 * for 5 ms according to the SD spec
1706 	 */
1707 	clock = host->ios.clock;
1708 	host->ios.clock = 0;
1709 	mmc_set_ios(host);
1710 
1711 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
1712 		/*
1713 		 * Voltages may not have been switched, but we've already
1714 		 * sent CMD11, so a power cycle is required anyway
1715 		 */
1716 		err = -EAGAIN;
1717 		goto power_cycle;
1718 	}
1719 
1720 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1721 	mmc_delay(10);
1722 	host->ios.clock = clock;
1723 	mmc_set_ios(host);
1724 
1725 	/* Wait for at least 1 ms according to spec */
1726 	mmc_delay(1);
1727 
1728 	/*
1729 	 * Failure to switch is indicated by the card holding
1730 	 * dat[0:3] low
1731 	 */
1732 	if (host->ops->card_busy && host->ops->card_busy(host))
1733 		err = -EAGAIN;
1734 
1735 power_cycle:
1736 	if (err) {
1737 		pr_debug("%s: Signal voltage switch failed, "
1738 			"power cycling card\n", mmc_hostname(host));
1739 		mmc_power_cycle(host, ocr);
1740 	}
1741 
1742 	return err;
1743 }
1744 
1745 /*
1746  * Select timing parameters for host.
1747  */
1748 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1749 {
1750 	host->ios.timing = timing;
1751 	mmc_set_ios(host);
1752 }
1753 
1754 /*
1755  * Select appropriate driver type for host.
1756  */
1757 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1758 {
1759 	host->ios.drv_type = drv_type;
1760 	mmc_set_ios(host);
1761 }
1762 
1763 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1764 			      int card_drv_type, int *drv_type)
1765 {
1766 	struct mmc_host *host = card->host;
1767 	int host_drv_type = SD_DRIVER_TYPE_B;
1768 
1769 	*drv_type = 0;
1770 
1771 	if (!host->ops->select_drive_strength)
1772 		return 0;
1773 
1774 	/* Use SD definition of driver strength for hosts */
1775 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1776 		host_drv_type |= SD_DRIVER_TYPE_A;
1777 
1778 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1779 		host_drv_type |= SD_DRIVER_TYPE_C;
1780 
1781 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1782 		host_drv_type |= SD_DRIVER_TYPE_D;
1783 
1784 	/*
1785 	 * The drive strength that the hardware can support
1786 	 * depends on the board design.  Pass the appropriate
1787 	 * information and let the hardware specific code
1788 	 * return what is possible given the options
1789 	 */
1790 	return host->ops->select_drive_strength(card, max_dtr,
1791 						host_drv_type,
1792 						card_drv_type,
1793 						drv_type);
1794 }
1795 
1796 /*
1797  * Apply power to the MMC stack.  This is a two-stage process.
1798  * First, we enable power to the card without the clock running.
1799  * We then wait a bit for the power to stabilise.  Finally,
1800  * enable the bus drivers and clock to the card.
1801  *
1802  * We must _NOT_ enable the clock prior to power stablising.
1803  *
1804  * If a host does all the power sequencing itself, ignore the
1805  * initial MMC_POWER_UP stage.
1806  */
1807 void mmc_power_up(struct mmc_host *host, u32 ocr)
1808 {
1809 	if (host->ios.power_mode == MMC_POWER_ON)
1810 		return;
1811 
1812 	mmc_pwrseq_pre_power_on(host);
1813 
1814 	host->ios.vdd = fls(ocr) - 1;
1815 	host->ios.power_mode = MMC_POWER_UP;
1816 	/* Set initial state and call mmc_set_ios */
1817 	mmc_set_initial_state(host);
1818 
1819 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1820 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1821 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1822 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1823 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1824 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1825 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1826 
1827 	/*
1828 	 * This delay should be sufficient to allow the power supply
1829 	 * to reach the minimum voltage.
1830 	 */
1831 	mmc_delay(10);
1832 
1833 	mmc_pwrseq_post_power_on(host);
1834 
1835 	host->ios.clock = host->f_init;
1836 
1837 	host->ios.power_mode = MMC_POWER_ON;
1838 	mmc_set_ios(host);
1839 
1840 	/*
1841 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1842 	 * time required to reach a stable voltage.
1843 	 */
1844 	mmc_delay(10);
1845 }
1846 
1847 void mmc_power_off(struct mmc_host *host)
1848 {
1849 	if (host->ios.power_mode == MMC_POWER_OFF)
1850 		return;
1851 
1852 	mmc_pwrseq_power_off(host);
1853 
1854 	host->ios.clock = 0;
1855 	host->ios.vdd = 0;
1856 
1857 	host->ios.power_mode = MMC_POWER_OFF;
1858 	/* Set initial state and call mmc_set_ios */
1859 	mmc_set_initial_state(host);
1860 
1861 	/*
1862 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1863 	 * XO-1.5, require a short delay after poweroff before the card
1864 	 * can be successfully turned on again.
1865 	 */
1866 	mmc_delay(1);
1867 }
1868 
1869 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1870 {
1871 	mmc_power_off(host);
1872 	/* Wait at least 1 ms according to SD spec */
1873 	mmc_delay(1);
1874 	mmc_power_up(host, ocr);
1875 }
1876 
1877 /*
1878  * Cleanup when the last reference to the bus operator is dropped.
1879  */
1880 static void __mmc_release_bus(struct mmc_host *host)
1881 {
1882 	WARN_ON(!host->bus_dead);
1883 
1884 	host->bus_ops = NULL;
1885 }
1886 
1887 /*
1888  * Increase reference count of bus operator
1889  */
1890 static inline void mmc_bus_get(struct mmc_host *host)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(&host->lock, flags);
1895 	host->bus_refs++;
1896 	spin_unlock_irqrestore(&host->lock, flags);
1897 }
1898 
1899 /*
1900  * Decrease reference count of bus operator and free it if
1901  * it is the last reference.
1902  */
1903 static inline void mmc_bus_put(struct mmc_host *host)
1904 {
1905 	unsigned long flags;
1906 
1907 	spin_lock_irqsave(&host->lock, flags);
1908 	host->bus_refs--;
1909 	if ((host->bus_refs == 0) && host->bus_ops)
1910 		__mmc_release_bus(host);
1911 	spin_unlock_irqrestore(&host->lock, flags);
1912 }
1913 
1914 /*
1915  * Assign a mmc bus handler to a host. Only one bus handler may control a
1916  * host at any given time.
1917  */
1918 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1919 {
1920 	unsigned long flags;
1921 
1922 	WARN_ON(!host->claimed);
1923 
1924 	spin_lock_irqsave(&host->lock, flags);
1925 
1926 	WARN_ON(host->bus_ops);
1927 	WARN_ON(host->bus_refs);
1928 
1929 	host->bus_ops = ops;
1930 	host->bus_refs = 1;
1931 	host->bus_dead = 0;
1932 
1933 	spin_unlock_irqrestore(&host->lock, flags);
1934 }
1935 
1936 /*
1937  * Remove the current bus handler from a host.
1938  */
1939 void mmc_detach_bus(struct mmc_host *host)
1940 {
1941 	unsigned long flags;
1942 
1943 	WARN_ON(!host->claimed);
1944 	WARN_ON(!host->bus_ops);
1945 
1946 	spin_lock_irqsave(&host->lock, flags);
1947 
1948 	host->bus_dead = 1;
1949 
1950 	spin_unlock_irqrestore(&host->lock, flags);
1951 
1952 	mmc_bus_put(host);
1953 }
1954 
1955 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1956 				bool cd_irq)
1957 {
1958 #ifdef CONFIG_MMC_DEBUG
1959 	unsigned long flags;
1960 	spin_lock_irqsave(&host->lock, flags);
1961 	WARN_ON(host->removed);
1962 	spin_unlock_irqrestore(&host->lock, flags);
1963 #endif
1964 
1965 	/*
1966 	 * If the device is configured as wakeup, we prevent a new sleep for
1967 	 * 5 s to give provision for user space to consume the event.
1968 	 */
1969 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1970 		device_can_wakeup(mmc_dev(host)))
1971 		pm_wakeup_event(mmc_dev(host), 5000);
1972 
1973 	host->detect_change = 1;
1974 	mmc_schedule_delayed_work(&host->detect, delay);
1975 }
1976 
1977 /**
1978  *	mmc_detect_change - process change of state on a MMC socket
1979  *	@host: host which changed state.
1980  *	@delay: optional delay to wait before detection (jiffies)
1981  *
1982  *	MMC drivers should call this when they detect a card has been
1983  *	inserted or removed. The MMC layer will confirm that any
1984  *	present card is still functional, and initialize any newly
1985  *	inserted.
1986  */
1987 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1988 {
1989 	_mmc_detect_change(host, delay, true);
1990 }
1991 EXPORT_SYMBOL(mmc_detect_change);
1992 
1993 void mmc_init_erase(struct mmc_card *card)
1994 {
1995 	unsigned int sz;
1996 
1997 	if (is_power_of_2(card->erase_size))
1998 		card->erase_shift = ffs(card->erase_size) - 1;
1999 	else
2000 		card->erase_shift = 0;
2001 
2002 	/*
2003 	 * It is possible to erase an arbitrarily large area of an SD or MMC
2004 	 * card.  That is not desirable because it can take a long time
2005 	 * (minutes) potentially delaying more important I/O, and also the
2006 	 * timeout calculations become increasingly hugely over-estimated.
2007 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
2008 	 * to that size and alignment.
2009 	 *
2010 	 * For SD cards that define Allocation Unit size, limit erases to one
2011 	 * Allocation Unit at a time.
2012 	 * For MMC, have a stab at ai good value and for modern cards it will
2013 	 * end up being 4MiB. Note that if the value is too small, it can end
2014 	 * up taking longer to erase. Also note, erase_size is already set to
2015 	 * High Capacity Erase Size if available when this function is called.
2016 	 */
2017 	if (mmc_card_sd(card) && card->ssr.au) {
2018 		card->pref_erase = card->ssr.au;
2019 		card->erase_shift = ffs(card->ssr.au) - 1;
2020 	} else if (card->erase_size) {
2021 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2022 		if (sz < 128)
2023 			card->pref_erase = 512 * 1024 / 512;
2024 		else if (sz < 512)
2025 			card->pref_erase = 1024 * 1024 / 512;
2026 		else if (sz < 1024)
2027 			card->pref_erase = 2 * 1024 * 1024 / 512;
2028 		else
2029 			card->pref_erase = 4 * 1024 * 1024 / 512;
2030 		if (card->pref_erase < card->erase_size)
2031 			card->pref_erase = card->erase_size;
2032 		else {
2033 			sz = card->pref_erase % card->erase_size;
2034 			if (sz)
2035 				card->pref_erase += card->erase_size - sz;
2036 		}
2037 	} else
2038 		card->pref_erase = 0;
2039 }
2040 
2041 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2042 				          unsigned int arg, unsigned int qty)
2043 {
2044 	unsigned int erase_timeout;
2045 
2046 	if (arg == MMC_DISCARD_ARG ||
2047 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2048 		erase_timeout = card->ext_csd.trim_timeout;
2049 	} else if (card->ext_csd.erase_group_def & 1) {
2050 		/* High Capacity Erase Group Size uses HC timeouts */
2051 		if (arg == MMC_TRIM_ARG)
2052 			erase_timeout = card->ext_csd.trim_timeout;
2053 		else
2054 			erase_timeout = card->ext_csd.hc_erase_timeout;
2055 	} else {
2056 		/* CSD Erase Group Size uses write timeout */
2057 		unsigned int mult = (10 << card->csd.r2w_factor);
2058 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
2059 		unsigned int timeout_us;
2060 
2061 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2062 		if (card->csd.tacc_ns < 1000000)
2063 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
2064 		else
2065 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
2066 
2067 		/*
2068 		 * ios.clock is only a target.  The real clock rate might be
2069 		 * less but not that much less, so fudge it by multiplying by 2.
2070 		 */
2071 		timeout_clks <<= 1;
2072 		timeout_us += (timeout_clks * 1000) /
2073 			      (card->host->ios.clock / 1000);
2074 
2075 		erase_timeout = timeout_us / 1000;
2076 
2077 		/*
2078 		 * Theoretically, the calculation could underflow so round up
2079 		 * to 1ms in that case.
2080 		 */
2081 		if (!erase_timeout)
2082 			erase_timeout = 1;
2083 	}
2084 
2085 	/* Multiplier for secure operations */
2086 	if (arg & MMC_SECURE_ARGS) {
2087 		if (arg == MMC_SECURE_ERASE_ARG)
2088 			erase_timeout *= card->ext_csd.sec_erase_mult;
2089 		else
2090 			erase_timeout *= card->ext_csd.sec_trim_mult;
2091 	}
2092 
2093 	erase_timeout *= qty;
2094 
2095 	/*
2096 	 * Ensure at least a 1 second timeout for SPI as per
2097 	 * 'mmc_set_data_timeout()'
2098 	 */
2099 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2100 		erase_timeout = 1000;
2101 
2102 	return erase_timeout;
2103 }
2104 
2105 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2106 					 unsigned int arg,
2107 					 unsigned int qty)
2108 {
2109 	unsigned int erase_timeout;
2110 
2111 	if (card->ssr.erase_timeout) {
2112 		/* Erase timeout specified in SD Status Register (SSR) */
2113 		erase_timeout = card->ssr.erase_timeout * qty +
2114 				card->ssr.erase_offset;
2115 	} else {
2116 		/*
2117 		 * Erase timeout not specified in SD Status Register (SSR) so
2118 		 * use 250ms per write block.
2119 		 */
2120 		erase_timeout = 250 * qty;
2121 	}
2122 
2123 	/* Must not be less than 1 second */
2124 	if (erase_timeout < 1000)
2125 		erase_timeout = 1000;
2126 
2127 	return erase_timeout;
2128 }
2129 
2130 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2131 				      unsigned int arg,
2132 				      unsigned int qty)
2133 {
2134 	if (mmc_card_sd(card))
2135 		return mmc_sd_erase_timeout(card, arg, qty);
2136 	else
2137 		return mmc_mmc_erase_timeout(card, arg, qty);
2138 }
2139 
2140 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2141 			unsigned int to, unsigned int arg)
2142 {
2143 	struct mmc_command cmd = {};
2144 	unsigned int qty = 0, busy_timeout = 0;
2145 	bool use_r1b_resp = false;
2146 	unsigned long timeout;
2147 	int err;
2148 
2149 	mmc_retune_hold(card->host);
2150 
2151 	/*
2152 	 * qty is used to calculate the erase timeout which depends on how many
2153 	 * erase groups (or allocation units in SD terminology) are affected.
2154 	 * We count erasing part of an erase group as one erase group.
2155 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2156 	 * erase group size is almost certainly also power of 2, but it does not
2157 	 * seem to insist on that in the JEDEC standard, so we fall back to
2158 	 * division in that case.  SD may not specify an allocation unit size,
2159 	 * in which case the timeout is based on the number of write blocks.
2160 	 *
2161 	 * Note that the timeout for secure trim 2 will only be correct if the
2162 	 * number of erase groups specified is the same as the total of all
2163 	 * preceding secure trim 1 commands.  Since the power may have been
2164 	 * lost since the secure trim 1 commands occurred, it is generally
2165 	 * impossible to calculate the secure trim 2 timeout correctly.
2166 	 */
2167 	if (card->erase_shift)
2168 		qty += ((to >> card->erase_shift) -
2169 			(from >> card->erase_shift)) + 1;
2170 	else if (mmc_card_sd(card))
2171 		qty += to - from + 1;
2172 	else
2173 		qty += ((to / card->erase_size) -
2174 			(from / card->erase_size)) + 1;
2175 
2176 	if (!mmc_card_blockaddr(card)) {
2177 		from <<= 9;
2178 		to <<= 9;
2179 	}
2180 
2181 	if (mmc_card_sd(card))
2182 		cmd.opcode = SD_ERASE_WR_BLK_START;
2183 	else
2184 		cmd.opcode = MMC_ERASE_GROUP_START;
2185 	cmd.arg = from;
2186 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2187 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2188 	if (err) {
2189 		pr_err("mmc_erase: group start error %d, "
2190 		       "status %#x\n", err, cmd.resp[0]);
2191 		err = -EIO;
2192 		goto out;
2193 	}
2194 
2195 	memset(&cmd, 0, sizeof(struct mmc_command));
2196 	if (mmc_card_sd(card))
2197 		cmd.opcode = SD_ERASE_WR_BLK_END;
2198 	else
2199 		cmd.opcode = MMC_ERASE_GROUP_END;
2200 	cmd.arg = to;
2201 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2202 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2203 	if (err) {
2204 		pr_err("mmc_erase: group end error %d, status %#x\n",
2205 		       err, cmd.resp[0]);
2206 		err = -EIO;
2207 		goto out;
2208 	}
2209 
2210 	memset(&cmd, 0, sizeof(struct mmc_command));
2211 	cmd.opcode = MMC_ERASE;
2212 	cmd.arg = arg;
2213 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2214 	/*
2215 	 * If the host controller supports busy signalling and the timeout for
2216 	 * the erase operation does not exceed the max_busy_timeout, we should
2217 	 * use R1B response. Or we need to prevent the host from doing hw busy
2218 	 * detection, which is done by converting to a R1 response instead.
2219 	 */
2220 	if (card->host->max_busy_timeout &&
2221 	    busy_timeout > card->host->max_busy_timeout) {
2222 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2223 	} else {
2224 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2225 		cmd.busy_timeout = busy_timeout;
2226 		use_r1b_resp = true;
2227 	}
2228 
2229 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2230 	if (err) {
2231 		pr_err("mmc_erase: erase error %d, status %#x\n",
2232 		       err, cmd.resp[0]);
2233 		err = -EIO;
2234 		goto out;
2235 	}
2236 
2237 	if (mmc_host_is_spi(card->host))
2238 		goto out;
2239 
2240 	/*
2241 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2242 	 * shall be avoided.
2243 	 */
2244 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2245 		goto out;
2246 
2247 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2248 	do {
2249 		memset(&cmd, 0, sizeof(struct mmc_command));
2250 		cmd.opcode = MMC_SEND_STATUS;
2251 		cmd.arg = card->rca << 16;
2252 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2253 		/* Do not retry else we can't see errors */
2254 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2255 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2256 			pr_err("error %d requesting status %#x\n",
2257 				err, cmd.resp[0]);
2258 			err = -EIO;
2259 			goto out;
2260 		}
2261 
2262 		/* Timeout if the device never becomes ready for data and
2263 		 * never leaves the program state.
2264 		 */
2265 		if (time_after(jiffies, timeout)) {
2266 			pr_err("%s: Card stuck in programming state! %s\n",
2267 				mmc_hostname(card->host), __func__);
2268 			err =  -EIO;
2269 			goto out;
2270 		}
2271 
2272 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2273 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2274 out:
2275 	mmc_retune_release(card->host);
2276 	return err;
2277 }
2278 
2279 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2280 					 unsigned int *from,
2281 					 unsigned int *to,
2282 					 unsigned int nr)
2283 {
2284 	unsigned int from_new = *from, nr_new = nr, rem;
2285 
2286 	/*
2287 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2288 	 * to align the erase size efficiently.
2289 	 */
2290 	if (is_power_of_2(card->erase_size)) {
2291 		unsigned int temp = from_new;
2292 
2293 		from_new = round_up(temp, card->erase_size);
2294 		rem = from_new - temp;
2295 
2296 		if (nr_new > rem)
2297 			nr_new -= rem;
2298 		else
2299 			return 0;
2300 
2301 		nr_new = round_down(nr_new, card->erase_size);
2302 	} else {
2303 		rem = from_new % card->erase_size;
2304 		if (rem) {
2305 			rem = card->erase_size - rem;
2306 			from_new += rem;
2307 			if (nr_new > rem)
2308 				nr_new -= rem;
2309 			else
2310 				return 0;
2311 		}
2312 
2313 		rem = nr_new % card->erase_size;
2314 		if (rem)
2315 			nr_new -= rem;
2316 	}
2317 
2318 	if (nr_new == 0)
2319 		return 0;
2320 
2321 	*to = from_new + nr_new;
2322 	*from = from_new;
2323 
2324 	return nr_new;
2325 }
2326 
2327 /**
2328  * mmc_erase - erase sectors.
2329  * @card: card to erase
2330  * @from: first sector to erase
2331  * @nr: number of sectors to erase
2332  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2333  *
2334  * Caller must claim host before calling this function.
2335  */
2336 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2337 	      unsigned int arg)
2338 {
2339 	unsigned int rem, to = from + nr;
2340 	int err;
2341 
2342 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2343 	    !(card->csd.cmdclass & CCC_ERASE))
2344 		return -EOPNOTSUPP;
2345 
2346 	if (!card->erase_size)
2347 		return -EOPNOTSUPP;
2348 
2349 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2350 		return -EOPNOTSUPP;
2351 
2352 	if ((arg & MMC_SECURE_ARGS) &&
2353 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2354 		return -EOPNOTSUPP;
2355 
2356 	if ((arg & MMC_TRIM_ARGS) &&
2357 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2358 		return -EOPNOTSUPP;
2359 
2360 	if (arg == MMC_SECURE_ERASE_ARG) {
2361 		if (from % card->erase_size || nr % card->erase_size)
2362 			return -EINVAL;
2363 	}
2364 
2365 	if (arg == MMC_ERASE_ARG)
2366 		nr = mmc_align_erase_size(card, &from, &to, nr);
2367 
2368 	if (nr == 0)
2369 		return 0;
2370 
2371 	if (to <= from)
2372 		return -EINVAL;
2373 
2374 	/* 'from' and 'to' are inclusive */
2375 	to -= 1;
2376 
2377 	/*
2378 	 * Special case where only one erase-group fits in the timeout budget:
2379 	 * If the region crosses an erase-group boundary on this particular
2380 	 * case, we will be trimming more than one erase-group which, does not
2381 	 * fit in the timeout budget of the controller, so we need to split it
2382 	 * and call mmc_do_erase() twice if necessary. This special case is
2383 	 * identified by the card->eg_boundary flag.
2384 	 */
2385 	rem = card->erase_size - (from % card->erase_size);
2386 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2387 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2388 		from += rem;
2389 		if ((err) || (to <= from))
2390 			return err;
2391 	}
2392 
2393 	return mmc_do_erase(card, from, to, arg);
2394 }
2395 EXPORT_SYMBOL(mmc_erase);
2396 
2397 int mmc_can_erase(struct mmc_card *card)
2398 {
2399 	if ((card->host->caps & MMC_CAP_ERASE) &&
2400 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2401 		return 1;
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL(mmc_can_erase);
2405 
2406 int mmc_can_trim(struct mmc_card *card)
2407 {
2408 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2409 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2410 		return 1;
2411 	return 0;
2412 }
2413 EXPORT_SYMBOL(mmc_can_trim);
2414 
2415 int mmc_can_discard(struct mmc_card *card)
2416 {
2417 	/*
2418 	 * As there's no way to detect the discard support bit at v4.5
2419 	 * use the s/w feature support filed.
2420 	 */
2421 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2422 		return 1;
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(mmc_can_discard);
2426 
2427 int mmc_can_sanitize(struct mmc_card *card)
2428 {
2429 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2430 		return 0;
2431 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2432 		return 1;
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL(mmc_can_sanitize);
2436 
2437 int mmc_can_secure_erase_trim(struct mmc_card *card)
2438 {
2439 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2440 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2441 		return 1;
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2445 
2446 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2447 			    unsigned int nr)
2448 {
2449 	if (!card->erase_size)
2450 		return 0;
2451 	if (from % card->erase_size || nr % card->erase_size)
2452 		return 0;
2453 	return 1;
2454 }
2455 EXPORT_SYMBOL(mmc_erase_group_aligned);
2456 
2457 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2458 					    unsigned int arg)
2459 {
2460 	struct mmc_host *host = card->host;
2461 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2462 	unsigned int last_timeout = 0;
2463 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2464 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2465 
2466 	if (card->erase_shift) {
2467 		max_qty = UINT_MAX >> card->erase_shift;
2468 		min_qty = card->pref_erase >> card->erase_shift;
2469 	} else if (mmc_card_sd(card)) {
2470 		max_qty = UINT_MAX;
2471 		min_qty = card->pref_erase;
2472 	} else {
2473 		max_qty = UINT_MAX / card->erase_size;
2474 		min_qty = card->pref_erase / card->erase_size;
2475 	}
2476 
2477 	/*
2478 	 * We should not only use 'host->max_busy_timeout' as the limitation
2479 	 * when deciding the max discard sectors. We should set a balance value
2480 	 * to improve the erase speed, and it can not get too long timeout at
2481 	 * the same time.
2482 	 *
2483 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2484 	 * matter what size of 'host->max_busy_timeout', but if the
2485 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2486 	 * then we can continue to increase the max discard sectors until we
2487 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2488 	 * isn't specified, use the default max erase timeout.
2489 	 */
2490 	do {
2491 		y = 0;
2492 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2493 			timeout = mmc_erase_timeout(card, arg, qty + x);
2494 
2495 			if (qty + x > min_qty && timeout > max_busy_timeout)
2496 				break;
2497 
2498 			if (timeout < last_timeout)
2499 				break;
2500 			last_timeout = timeout;
2501 			y = x;
2502 		}
2503 		qty += y;
2504 	} while (y);
2505 
2506 	if (!qty)
2507 		return 0;
2508 
2509 	/*
2510 	 * When specifying a sector range to trim, chances are we might cross
2511 	 * an erase-group boundary even if the amount of sectors is less than
2512 	 * one erase-group.
2513 	 * If we can only fit one erase-group in the controller timeout budget,
2514 	 * we have to care that erase-group boundaries are not crossed by a
2515 	 * single trim operation. We flag that special case with "eg_boundary".
2516 	 * In all other cases we can just decrement qty and pretend that we
2517 	 * always touch (qty + 1) erase-groups as a simple optimization.
2518 	 */
2519 	if (qty == 1)
2520 		card->eg_boundary = 1;
2521 	else
2522 		qty--;
2523 
2524 	/* Convert qty to sectors */
2525 	if (card->erase_shift)
2526 		max_discard = qty << card->erase_shift;
2527 	else if (mmc_card_sd(card))
2528 		max_discard = qty + 1;
2529 	else
2530 		max_discard = qty * card->erase_size;
2531 
2532 	return max_discard;
2533 }
2534 
2535 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2536 {
2537 	struct mmc_host *host = card->host;
2538 	unsigned int max_discard, max_trim;
2539 
2540 	/*
2541 	 * Without erase_group_def set, MMC erase timeout depends on clock
2542 	 * frequence which can change.  In that case, the best choice is
2543 	 * just the preferred erase size.
2544 	 */
2545 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2546 		return card->pref_erase;
2547 
2548 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2549 	if (mmc_can_trim(card)) {
2550 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2551 		if (max_trim < max_discard)
2552 			max_discard = max_trim;
2553 	} else if (max_discard < card->erase_size) {
2554 		max_discard = 0;
2555 	}
2556 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2557 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2558 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2559 	return max_discard;
2560 }
2561 EXPORT_SYMBOL(mmc_calc_max_discard);
2562 
2563 bool mmc_card_is_blockaddr(struct mmc_card *card)
2564 {
2565 	return card ? mmc_card_blockaddr(card) : false;
2566 }
2567 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2568 
2569 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2570 {
2571 	struct mmc_command cmd = {};
2572 
2573 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2574 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2575 		return 0;
2576 
2577 	cmd.opcode = MMC_SET_BLOCKLEN;
2578 	cmd.arg = blocklen;
2579 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2580 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2581 }
2582 EXPORT_SYMBOL(mmc_set_blocklen);
2583 
2584 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2585 			bool is_rel_write)
2586 {
2587 	struct mmc_command cmd = {};
2588 
2589 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2590 	cmd.arg = blockcount & 0x0000FFFF;
2591 	if (is_rel_write)
2592 		cmd.arg |= 1 << 31;
2593 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2594 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2595 }
2596 EXPORT_SYMBOL(mmc_set_blockcount);
2597 
2598 static void mmc_hw_reset_for_init(struct mmc_host *host)
2599 {
2600 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2601 		return;
2602 	host->ops->hw_reset(host);
2603 }
2604 
2605 int mmc_hw_reset(struct mmc_host *host)
2606 {
2607 	int ret;
2608 
2609 	if (!host->card)
2610 		return -EINVAL;
2611 
2612 	mmc_bus_get(host);
2613 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2614 		mmc_bus_put(host);
2615 		return -EOPNOTSUPP;
2616 	}
2617 
2618 	ret = host->bus_ops->reset(host);
2619 	mmc_bus_put(host);
2620 
2621 	if (ret)
2622 		pr_warn("%s: tried to reset card, got error %d\n",
2623 			mmc_hostname(host), ret);
2624 
2625 	return ret;
2626 }
2627 EXPORT_SYMBOL(mmc_hw_reset);
2628 
2629 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2630 {
2631 	host->f_init = freq;
2632 
2633 #ifdef CONFIG_MMC_DEBUG
2634 	pr_info("%s: %s: trying to init card at %u Hz\n",
2635 		mmc_hostname(host), __func__, host->f_init);
2636 #endif
2637 	mmc_power_up(host, host->ocr_avail);
2638 
2639 	/*
2640 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2641 	 * do a hardware reset if possible.
2642 	 */
2643 	mmc_hw_reset_for_init(host);
2644 
2645 	/*
2646 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2647 	 * if the card is being re-initialized, just send it.  CMD52
2648 	 * should be ignored by SD/eMMC cards.
2649 	 * Skip it if we already know that we do not support SDIO commands
2650 	 */
2651 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2652 		sdio_reset(host);
2653 
2654 	mmc_go_idle(host);
2655 
2656 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2657 		mmc_send_if_cond(host, host->ocr_avail);
2658 
2659 	/* Order's important: probe SDIO, then SD, then MMC */
2660 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2661 		if (!mmc_attach_sdio(host))
2662 			return 0;
2663 
2664 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2665 		if (!mmc_attach_sd(host))
2666 			return 0;
2667 
2668 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2669 		if (!mmc_attach_mmc(host))
2670 			return 0;
2671 
2672 	mmc_power_off(host);
2673 	return -EIO;
2674 }
2675 
2676 int _mmc_detect_card_removed(struct mmc_host *host)
2677 {
2678 	int ret;
2679 
2680 	if (!host->card || mmc_card_removed(host->card))
2681 		return 1;
2682 
2683 	ret = host->bus_ops->alive(host);
2684 
2685 	/*
2686 	 * Card detect status and alive check may be out of sync if card is
2687 	 * removed slowly, when card detect switch changes while card/slot
2688 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2689 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2690 	 * detect work 200ms later for this case.
2691 	 */
2692 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2693 		mmc_detect_change(host, msecs_to_jiffies(200));
2694 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2695 	}
2696 
2697 	if (ret) {
2698 		mmc_card_set_removed(host->card);
2699 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 int mmc_detect_card_removed(struct mmc_host *host)
2706 {
2707 	struct mmc_card *card = host->card;
2708 	int ret;
2709 
2710 	WARN_ON(!host->claimed);
2711 
2712 	if (!card)
2713 		return 1;
2714 
2715 	if (!mmc_card_is_removable(host))
2716 		return 0;
2717 
2718 	ret = mmc_card_removed(card);
2719 	/*
2720 	 * The card will be considered unchanged unless we have been asked to
2721 	 * detect a change or host requires polling to provide card detection.
2722 	 */
2723 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2724 		return ret;
2725 
2726 	host->detect_change = 0;
2727 	if (!ret) {
2728 		ret = _mmc_detect_card_removed(host);
2729 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2730 			/*
2731 			 * Schedule a detect work as soon as possible to let a
2732 			 * rescan handle the card removal.
2733 			 */
2734 			cancel_delayed_work(&host->detect);
2735 			_mmc_detect_change(host, 0, false);
2736 		}
2737 	}
2738 
2739 	return ret;
2740 }
2741 EXPORT_SYMBOL(mmc_detect_card_removed);
2742 
2743 void mmc_rescan(struct work_struct *work)
2744 {
2745 	struct mmc_host *host =
2746 		container_of(work, struct mmc_host, detect.work);
2747 	int i;
2748 
2749 	if (host->rescan_disable)
2750 		return;
2751 
2752 	/* If there is a non-removable card registered, only scan once */
2753 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2754 		return;
2755 	host->rescan_entered = 1;
2756 
2757 	if (host->trigger_card_event && host->ops->card_event) {
2758 		mmc_claim_host(host);
2759 		host->ops->card_event(host);
2760 		mmc_release_host(host);
2761 		host->trigger_card_event = false;
2762 	}
2763 
2764 	mmc_bus_get(host);
2765 
2766 	/*
2767 	 * if there is a _removable_ card registered, check whether it is
2768 	 * still present
2769 	 */
2770 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2771 		host->bus_ops->detect(host);
2772 
2773 	host->detect_change = 0;
2774 
2775 	/*
2776 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2777 	 * the card is no longer present.
2778 	 */
2779 	mmc_bus_put(host);
2780 	mmc_bus_get(host);
2781 
2782 	/* if there still is a card present, stop here */
2783 	if (host->bus_ops != NULL) {
2784 		mmc_bus_put(host);
2785 		goto out;
2786 	}
2787 
2788 	/*
2789 	 * Only we can add a new handler, so it's safe to
2790 	 * release the lock here.
2791 	 */
2792 	mmc_bus_put(host);
2793 
2794 	mmc_claim_host(host);
2795 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2796 			host->ops->get_cd(host) == 0) {
2797 		mmc_power_off(host);
2798 		mmc_release_host(host);
2799 		goto out;
2800 	}
2801 
2802 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2803 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2804 			break;
2805 		if (freqs[i] <= host->f_min)
2806 			break;
2807 	}
2808 	mmc_release_host(host);
2809 
2810  out:
2811 	if (host->caps & MMC_CAP_NEEDS_POLL)
2812 		mmc_schedule_delayed_work(&host->detect, HZ);
2813 }
2814 
2815 void mmc_start_host(struct mmc_host *host)
2816 {
2817 	host->f_init = max(freqs[0], host->f_min);
2818 	host->rescan_disable = 0;
2819 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2820 
2821 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2822 		mmc_claim_host(host);
2823 		mmc_power_up(host, host->ocr_avail);
2824 		mmc_release_host(host);
2825 	}
2826 
2827 	mmc_gpiod_request_cd_irq(host);
2828 	_mmc_detect_change(host, 0, false);
2829 }
2830 
2831 void mmc_stop_host(struct mmc_host *host)
2832 {
2833 #ifdef CONFIG_MMC_DEBUG
2834 	unsigned long flags;
2835 	spin_lock_irqsave(&host->lock, flags);
2836 	host->removed = 1;
2837 	spin_unlock_irqrestore(&host->lock, flags);
2838 #endif
2839 	if (host->slot.cd_irq >= 0)
2840 		disable_irq(host->slot.cd_irq);
2841 
2842 	host->rescan_disable = 1;
2843 	cancel_delayed_work_sync(&host->detect);
2844 
2845 	/* clear pm flags now and let card drivers set them as needed */
2846 	host->pm_flags = 0;
2847 
2848 	mmc_bus_get(host);
2849 	if (host->bus_ops && !host->bus_dead) {
2850 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2851 		host->bus_ops->remove(host);
2852 		mmc_claim_host(host);
2853 		mmc_detach_bus(host);
2854 		mmc_power_off(host);
2855 		mmc_release_host(host);
2856 		mmc_bus_put(host);
2857 		return;
2858 	}
2859 	mmc_bus_put(host);
2860 
2861 	mmc_claim_host(host);
2862 	mmc_power_off(host);
2863 	mmc_release_host(host);
2864 }
2865 
2866 int mmc_power_save_host(struct mmc_host *host)
2867 {
2868 	int ret = 0;
2869 
2870 #ifdef CONFIG_MMC_DEBUG
2871 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2872 #endif
2873 
2874 	mmc_bus_get(host);
2875 
2876 	if (!host->bus_ops || host->bus_dead) {
2877 		mmc_bus_put(host);
2878 		return -EINVAL;
2879 	}
2880 
2881 	if (host->bus_ops->power_save)
2882 		ret = host->bus_ops->power_save(host);
2883 
2884 	mmc_bus_put(host);
2885 
2886 	mmc_power_off(host);
2887 
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL(mmc_power_save_host);
2891 
2892 int mmc_power_restore_host(struct mmc_host *host)
2893 {
2894 	int ret;
2895 
2896 #ifdef CONFIG_MMC_DEBUG
2897 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2898 #endif
2899 
2900 	mmc_bus_get(host);
2901 
2902 	if (!host->bus_ops || host->bus_dead) {
2903 		mmc_bus_put(host);
2904 		return -EINVAL;
2905 	}
2906 
2907 	mmc_power_up(host, host->card->ocr);
2908 	ret = host->bus_ops->power_restore(host);
2909 
2910 	mmc_bus_put(host);
2911 
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL(mmc_power_restore_host);
2915 
2916 /*
2917  * Flush the cache to the non-volatile storage.
2918  */
2919 int mmc_flush_cache(struct mmc_card *card)
2920 {
2921 	int err = 0;
2922 
2923 	if (mmc_card_mmc(card) &&
2924 			(card->ext_csd.cache_size > 0) &&
2925 			(card->ext_csd.cache_ctrl & 1)) {
2926 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2927 				EXT_CSD_FLUSH_CACHE, 1, 0);
2928 		if (err)
2929 			pr_err("%s: cache flush error %d\n",
2930 					mmc_hostname(card->host), err);
2931 	}
2932 
2933 	return err;
2934 }
2935 EXPORT_SYMBOL(mmc_flush_cache);
2936 
2937 #ifdef CONFIG_PM_SLEEP
2938 /* Do the card removal on suspend if card is assumed removeable
2939  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2940    to sync the card.
2941 */
2942 static int mmc_pm_notify(struct notifier_block *notify_block,
2943 			unsigned long mode, void *unused)
2944 {
2945 	struct mmc_host *host = container_of(
2946 		notify_block, struct mmc_host, pm_notify);
2947 	unsigned long flags;
2948 	int err = 0;
2949 
2950 	switch (mode) {
2951 	case PM_HIBERNATION_PREPARE:
2952 	case PM_SUSPEND_PREPARE:
2953 	case PM_RESTORE_PREPARE:
2954 		spin_lock_irqsave(&host->lock, flags);
2955 		host->rescan_disable = 1;
2956 		spin_unlock_irqrestore(&host->lock, flags);
2957 		cancel_delayed_work_sync(&host->detect);
2958 
2959 		if (!host->bus_ops)
2960 			break;
2961 
2962 		/* Validate prerequisites for suspend */
2963 		if (host->bus_ops->pre_suspend)
2964 			err = host->bus_ops->pre_suspend(host);
2965 		if (!err)
2966 			break;
2967 
2968 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2969 		host->bus_ops->remove(host);
2970 		mmc_claim_host(host);
2971 		mmc_detach_bus(host);
2972 		mmc_power_off(host);
2973 		mmc_release_host(host);
2974 		host->pm_flags = 0;
2975 		break;
2976 
2977 	case PM_POST_SUSPEND:
2978 	case PM_POST_HIBERNATION:
2979 	case PM_POST_RESTORE:
2980 
2981 		spin_lock_irqsave(&host->lock, flags);
2982 		host->rescan_disable = 0;
2983 		spin_unlock_irqrestore(&host->lock, flags);
2984 		_mmc_detect_change(host, 0, false);
2985 
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 void mmc_register_pm_notifier(struct mmc_host *host)
2992 {
2993 	host->pm_notify.notifier_call = mmc_pm_notify;
2994 	register_pm_notifier(&host->pm_notify);
2995 }
2996 
2997 void mmc_unregister_pm_notifier(struct mmc_host *host)
2998 {
2999 	unregister_pm_notifier(&host->pm_notify);
3000 }
3001 #endif
3002 
3003 /**
3004  * mmc_init_context_info() - init synchronization context
3005  * @host: mmc host
3006  *
3007  * Init struct context_info needed to implement asynchronous
3008  * request mechanism, used by mmc core, host driver and mmc requests
3009  * supplier.
3010  */
3011 void mmc_init_context_info(struct mmc_host *host)
3012 {
3013 	host->context_info.is_new_req = false;
3014 	host->context_info.is_done_rcv = false;
3015 	host->context_info.is_waiting_last_req = false;
3016 	init_waitqueue_head(&host->context_info.wait);
3017 }
3018 
3019 static int __init mmc_init(void)
3020 {
3021 	int ret;
3022 
3023 	ret = mmc_register_bus();
3024 	if (ret)
3025 		return ret;
3026 
3027 	ret = mmc_register_host_class();
3028 	if (ret)
3029 		goto unregister_bus;
3030 
3031 	ret = sdio_register_bus();
3032 	if (ret)
3033 		goto unregister_host_class;
3034 
3035 	return 0;
3036 
3037 unregister_host_class:
3038 	mmc_unregister_host_class();
3039 unregister_bus:
3040 	mmc_unregister_bus();
3041 	return ret;
3042 }
3043 
3044 static void __exit mmc_exit(void)
3045 {
3046 	sdio_unregister_bus();
3047 	mmc_unregister_host_class();
3048 	mmc_unregister_bus();
3049 }
3050 
3051 subsys_initcall(mmc_init);
3052 module_exit(mmc_exit);
3053 
3054 MODULE_LICENSE("GPL");
3055