xref: /openbmc/linux/drivers/mmc/core/core.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/host.h>
28 #include <linux/mmc/mmc.h>
29 #include <linux/mmc/sd.h>
30 
31 #include "core.h"
32 #include "bus.h"
33 #include "host.h"
34 #include "sdio_bus.h"
35 
36 #include "mmc_ops.h"
37 #include "sd_ops.h"
38 #include "sdio_ops.h"
39 
40 static struct workqueue_struct *workqueue;
41 
42 /*
43  * Enabling software CRCs on the data blocks can be a significant (30%)
44  * performance cost, and for other reasons may not always be desired.
45  * So we allow it it to be disabled.
46  */
47 int use_spi_crc = 1;
48 module_param(use_spi_crc, bool, 0);
49 
50 /*
51  * We normally treat cards as removed during suspend if they are not
52  * known to be on a non-removable bus, to avoid the risk of writing
53  * back data to a different card after resume.  Allow this to be
54  * overridden if necessary.
55  */
56 #ifdef CONFIG_MMC_UNSAFE_RESUME
57 int mmc_assume_removable;
58 #else
59 int mmc_assume_removable = 1;
60 #endif
61 EXPORT_SYMBOL(mmc_assume_removable);
62 module_param_named(removable, mmc_assume_removable, bool, 0644);
63 MODULE_PARM_DESC(
64 	removable,
65 	"MMC/SD cards are removable and may be removed during suspend");
66 
67 /*
68  * Internal function. Schedule delayed work in the MMC work queue.
69  */
70 static int mmc_schedule_delayed_work(struct delayed_work *work,
71 				     unsigned long delay)
72 {
73 	return queue_delayed_work(workqueue, work, delay);
74 }
75 
76 /*
77  * Internal function. Flush all scheduled work from the MMC work queue.
78  */
79 static void mmc_flush_scheduled_work(void)
80 {
81 	flush_workqueue(workqueue);
82 }
83 
84 /**
85  *	mmc_request_done - finish processing an MMC request
86  *	@host: MMC host which completed request
87  *	@mrq: MMC request which request
88  *
89  *	MMC drivers should call this function when they have completed
90  *	their processing of a request.
91  */
92 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
93 {
94 	struct mmc_command *cmd = mrq->cmd;
95 	int err = cmd->error;
96 
97 	if (err && cmd->retries && mmc_host_is_spi(host)) {
98 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
99 			cmd->retries = 0;
100 	}
101 
102 	if (err && cmd->retries) {
103 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
104 			mmc_hostname(host), cmd->opcode, err);
105 
106 		cmd->retries--;
107 		cmd->error = 0;
108 		host->ops->request(host, mrq);
109 	} else {
110 		led_trigger_event(host->led, LED_OFF);
111 
112 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
113 			mmc_hostname(host), cmd->opcode, err,
114 			cmd->resp[0], cmd->resp[1],
115 			cmd->resp[2], cmd->resp[3]);
116 
117 		if (mrq->data) {
118 			pr_debug("%s:     %d bytes transferred: %d\n",
119 				mmc_hostname(host),
120 				mrq->data->bytes_xfered, mrq->data->error);
121 		}
122 
123 		if (mrq->stop) {
124 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
125 				mmc_hostname(host), mrq->stop->opcode,
126 				mrq->stop->error,
127 				mrq->stop->resp[0], mrq->stop->resp[1],
128 				mrq->stop->resp[2], mrq->stop->resp[3]);
129 		}
130 
131 		if (mrq->done)
132 			mrq->done(mrq);
133 	}
134 }
135 
136 EXPORT_SYMBOL(mmc_request_done);
137 
138 static void
139 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 #ifdef CONFIG_MMC_DEBUG
142 	unsigned int i, sz;
143 	struct scatterlist *sg;
144 #endif
145 
146 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
147 		 mmc_hostname(host), mrq->cmd->opcode,
148 		 mrq->cmd->arg, mrq->cmd->flags);
149 
150 	if (mrq->data) {
151 		pr_debug("%s:     blksz %d blocks %d flags %08x "
152 			"tsac %d ms nsac %d\n",
153 			mmc_hostname(host), mrq->data->blksz,
154 			mrq->data->blocks, mrq->data->flags,
155 			mrq->data->timeout_ns / 1000000,
156 			mrq->data->timeout_clks);
157 	}
158 
159 	if (mrq->stop) {
160 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
161 			 mmc_hostname(host), mrq->stop->opcode,
162 			 mrq->stop->arg, mrq->stop->flags);
163 	}
164 
165 	WARN_ON(!host->claimed);
166 
167 	led_trigger_event(host->led, LED_FULL);
168 
169 	mrq->cmd->error = 0;
170 	mrq->cmd->mrq = mrq;
171 	if (mrq->data) {
172 		BUG_ON(mrq->data->blksz > host->max_blk_size);
173 		BUG_ON(mrq->data->blocks > host->max_blk_count);
174 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
175 			host->max_req_size);
176 
177 #ifdef CONFIG_MMC_DEBUG
178 		sz = 0;
179 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
180 			sz += sg->length;
181 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
182 #endif
183 
184 		mrq->cmd->data = mrq->data;
185 		mrq->data->error = 0;
186 		mrq->data->mrq = mrq;
187 		if (mrq->stop) {
188 			mrq->data->stop = mrq->stop;
189 			mrq->stop->error = 0;
190 			mrq->stop->mrq = mrq;
191 		}
192 	}
193 	host->ops->request(host, mrq);
194 }
195 
196 static void mmc_wait_done(struct mmc_request *mrq)
197 {
198 	complete(mrq->done_data);
199 }
200 
201 /**
202  *	mmc_wait_for_req - start a request and wait for completion
203  *	@host: MMC host to start command
204  *	@mrq: MMC request to start
205  *
206  *	Start a new MMC custom command request for a host, and wait
207  *	for the command to complete. Does not attempt to parse the
208  *	response.
209  */
210 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
211 {
212 	DECLARE_COMPLETION_ONSTACK(complete);
213 
214 	mrq->done_data = &complete;
215 	mrq->done = mmc_wait_done;
216 
217 	mmc_start_request(host, mrq);
218 
219 	wait_for_completion(&complete);
220 }
221 
222 EXPORT_SYMBOL(mmc_wait_for_req);
223 
224 /**
225  *	mmc_wait_for_cmd - start a command and wait for completion
226  *	@host: MMC host to start command
227  *	@cmd: MMC command to start
228  *	@retries: maximum number of retries
229  *
230  *	Start a new MMC command for a host, and wait for the command
231  *	to complete.  Return any error that occurred while the command
232  *	was executing.  Do not attempt to parse the response.
233  */
234 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
235 {
236 	struct mmc_request mrq;
237 
238 	WARN_ON(!host->claimed);
239 
240 	memset(&mrq, 0, sizeof(struct mmc_request));
241 
242 	memset(cmd->resp, 0, sizeof(cmd->resp));
243 	cmd->retries = retries;
244 
245 	mrq.cmd = cmd;
246 	cmd->data = NULL;
247 
248 	mmc_wait_for_req(host, &mrq);
249 
250 	return cmd->error;
251 }
252 
253 EXPORT_SYMBOL(mmc_wait_for_cmd);
254 
255 /**
256  *	mmc_set_data_timeout - set the timeout for a data command
257  *	@data: data phase for command
258  *	@card: the MMC card associated with the data transfer
259  *
260  *	Computes the data timeout parameters according to the
261  *	correct algorithm given the card type.
262  */
263 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
264 {
265 	unsigned int mult;
266 
267 	/*
268 	 * SDIO cards only define an upper 1 s limit on access.
269 	 */
270 	if (mmc_card_sdio(card)) {
271 		data->timeout_ns = 1000000000;
272 		data->timeout_clks = 0;
273 		return;
274 	}
275 
276 	/*
277 	 * SD cards use a 100 multiplier rather than 10
278 	 */
279 	mult = mmc_card_sd(card) ? 100 : 10;
280 
281 	/*
282 	 * Scale up the multiplier (and therefore the timeout) by
283 	 * the r2w factor for writes.
284 	 */
285 	if (data->flags & MMC_DATA_WRITE)
286 		mult <<= card->csd.r2w_factor;
287 
288 	data->timeout_ns = card->csd.tacc_ns * mult;
289 	data->timeout_clks = card->csd.tacc_clks * mult;
290 
291 	/*
292 	 * SD cards also have an upper limit on the timeout.
293 	 */
294 	if (mmc_card_sd(card)) {
295 		unsigned int timeout_us, limit_us;
296 
297 		timeout_us = data->timeout_ns / 1000;
298 		timeout_us += data->timeout_clks * 1000 /
299 			(card->host->ios.clock / 1000);
300 
301 		if (data->flags & MMC_DATA_WRITE)
302 			/*
303 			 * The limit is really 250 ms, but that is
304 			 * insufficient for some crappy cards.
305 			 */
306 			limit_us = 300000;
307 		else
308 			limit_us = 100000;
309 
310 		/*
311 		 * SDHC cards always use these fixed values.
312 		 */
313 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
314 			data->timeout_ns = limit_us * 1000;
315 			data->timeout_clks = 0;
316 		}
317 	}
318 	/*
319 	 * Some cards need very high timeouts if driven in SPI mode.
320 	 * The worst observed timeout was 900ms after writing a
321 	 * continuous stream of data until the internal logic
322 	 * overflowed.
323 	 */
324 	if (mmc_host_is_spi(card->host)) {
325 		if (data->flags & MMC_DATA_WRITE) {
326 			if (data->timeout_ns < 1000000000)
327 				data->timeout_ns = 1000000000;	/* 1s */
328 		} else {
329 			if (data->timeout_ns < 100000000)
330 				data->timeout_ns =  100000000;	/* 100ms */
331 		}
332 	}
333 }
334 EXPORT_SYMBOL(mmc_set_data_timeout);
335 
336 /**
337  *	mmc_align_data_size - pads a transfer size to a more optimal value
338  *	@card: the MMC card associated with the data transfer
339  *	@sz: original transfer size
340  *
341  *	Pads the original data size with a number of extra bytes in
342  *	order to avoid controller bugs and/or performance hits
343  *	(e.g. some controllers revert to PIO for certain sizes).
344  *
345  *	Returns the improved size, which might be unmodified.
346  *
347  *	Note that this function is only relevant when issuing a
348  *	single scatter gather entry.
349  */
350 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
351 {
352 	/*
353 	 * FIXME: We don't have a system for the controller to tell
354 	 * the core about its problems yet, so for now we just 32-bit
355 	 * align the size.
356 	 */
357 	sz = ((sz + 3) / 4) * 4;
358 
359 	return sz;
360 }
361 EXPORT_SYMBOL(mmc_align_data_size);
362 
363 /**
364  *	mmc_host_enable - enable a host.
365  *	@host: mmc host to enable
366  *
367  *	Hosts that support power saving can use the 'enable' and 'disable'
368  *	methods to exit and enter power saving states. For more information
369  *	see comments for struct mmc_host_ops.
370  */
371 int mmc_host_enable(struct mmc_host *host)
372 {
373 	if (!(host->caps & MMC_CAP_DISABLE))
374 		return 0;
375 
376 	if (host->en_dis_recurs)
377 		return 0;
378 
379 	if (host->nesting_cnt++)
380 		return 0;
381 
382 	cancel_delayed_work_sync(&host->disable);
383 
384 	if (host->enabled)
385 		return 0;
386 
387 	if (host->ops->enable) {
388 		int err;
389 
390 		host->en_dis_recurs = 1;
391 		err = host->ops->enable(host);
392 		host->en_dis_recurs = 0;
393 
394 		if (err) {
395 			pr_debug("%s: enable error %d\n",
396 				 mmc_hostname(host), err);
397 			return err;
398 		}
399 	}
400 	host->enabled = 1;
401 	return 0;
402 }
403 EXPORT_SYMBOL(mmc_host_enable);
404 
405 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
406 {
407 	if (host->ops->disable) {
408 		int err;
409 
410 		host->en_dis_recurs = 1;
411 		err = host->ops->disable(host, lazy);
412 		host->en_dis_recurs = 0;
413 
414 		if (err < 0) {
415 			pr_debug("%s: disable error %d\n",
416 				 mmc_hostname(host), err);
417 			return err;
418 		}
419 		if (err > 0) {
420 			unsigned long delay = msecs_to_jiffies(err);
421 
422 			mmc_schedule_delayed_work(&host->disable, delay);
423 		}
424 	}
425 	host->enabled = 0;
426 	return 0;
427 }
428 
429 /**
430  *	mmc_host_disable - disable a host.
431  *	@host: mmc host to disable
432  *
433  *	Hosts that support power saving can use the 'enable' and 'disable'
434  *	methods to exit and enter power saving states. For more information
435  *	see comments for struct mmc_host_ops.
436  */
437 int mmc_host_disable(struct mmc_host *host)
438 {
439 	int err;
440 
441 	if (!(host->caps & MMC_CAP_DISABLE))
442 		return 0;
443 
444 	if (host->en_dis_recurs)
445 		return 0;
446 
447 	if (--host->nesting_cnt)
448 		return 0;
449 
450 	if (!host->enabled)
451 		return 0;
452 
453 	err = mmc_host_do_disable(host, 0);
454 	return err;
455 }
456 EXPORT_SYMBOL(mmc_host_disable);
457 
458 /**
459  *	__mmc_claim_host - exclusively claim a host
460  *	@host: mmc host to claim
461  *	@abort: whether or not the operation should be aborted
462  *
463  *	Claim a host for a set of operations.  If @abort is non null and
464  *	dereference a non-zero value then this will return prematurely with
465  *	that non-zero value without acquiring the lock.  Returns zero
466  *	with the lock held otherwise.
467  */
468 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
469 {
470 	DECLARE_WAITQUEUE(wait, current);
471 	unsigned long flags;
472 	int stop;
473 
474 	might_sleep();
475 
476 	add_wait_queue(&host->wq, &wait);
477 	spin_lock_irqsave(&host->lock, flags);
478 	while (1) {
479 		set_current_state(TASK_UNINTERRUPTIBLE);
480 		stop = abort ? atomic_read(abort) : 0;
481 		if (stop || !host->claimed || host->claimer == current)
482 			break;
483 		spin_unlock_irqrestore(&host->lock, flags);
484 		schedule();
485 		spin_lock_irqsave(&host->lock, flags);
486 	}
487 	set_current_state(TASK_RUNNING);
488 	if (!stop) {
489 		host->claimed = 1;
490 		host->claimer = current;
491 		host->claim_cnt += 1;
492 	} else
493 		wake_up(&host->wq);
494 	spin_unlock_irqrestore(&host->lock, flags);
495 	remove_wait_queue(&host->wq, &wait);
496 	if (!stop)
497 		mmc_host_enable(host);
498 	return stop;
499 }
500 
501 EXPORT_SYMBOL(__mmc_claim_host);
502 
503 /**
504  *	mmc_try_claim_host - try exclusively to claim a host
505  *	@host: mmc host to claim
506  *
507  *	Returns %1 if the host is claimed, %0 otherwise.
508  */
509 int mmc_try_claim_host(struct mmc_host *host)
510 {
511 	int claimed_host = 0;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&host->lock, flags);
515 	if (!host->claimed || host->claimer == current) {
516 		host->claimed = 1;
517 		host->claimer = current;
518 		host->claim_cnt += 1;
519 		claimed_host = 1;
520 	}
521 	spin_unlock_irqrestore(&host->lock, flags);
522 	return claimed_host;
523 }
524 EXPORT_SYMBOL(mmc_try_claim_host);
525 
526 static void mmc_do_release_host(struct mmc_host *host)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&host->lock, flags);
531 	if (--host->claim_cnt) {
532 		/* Release for nested claim */
533 		spin_unlock_irqrestore(&host->lock, flags);
534 	} else {
535 		host->claimed = 0;
536 		host->claimer = NULL;
537 		spin_unlock_irqrestore(&host->lock, flags);
538 		wake_up(&host->wq);
539 	}
540 }
541 
542 void mmc_host_deeper_disable(struct work_struct *work)
543 {
544 	struct mmc_host *host =
545 		container_of(work, struct mmc_host, disable.work);
546 
547 	/* If the host is claimed then we do not want to disable it anymore */
548 	if (!mmc_try_claim_host(host))
549 		return;
550 	mmc_host_do_disable(host, 1);
551 	mmc_do_release_host(host);
552 }
553 
554 /**
555  *	mmc_host_lazy_disable - lazily disable a host.
556  *	@host: mmc host to disable
557  *
558  *	Hosts that support power saving can use the 'enable' and 'disable'
559  *	methods to exit and enter power saving states. For more information
560  *	see comments for struct mmc_host_ops.
561  */
562 int mmc_host_lazy_disable(struct mmc_host *host)
563 {
564 	if (!(host->caps & MMC_CAP_DISABLE))
565 		return 0;
566 
567 	if (host->en_dis_recurs)
568 		return 0;
569 
570 	if (--host->nesting_cnt)
571 		return 0;
572 
573 	if (!host->enabled)
574 		return 0;
575 
576 	if (host->disable_delay) {
577 		mmc_schedule_delayed_work(&host->disable,
578 				msecs_to_jiffies(host->disable_delay));
579 		return 0;
580 	} else
581 		return mmc_host_do_disable(host, 1);
582 }
583 EXPORT_SYMBOL(mmc_host_lazy_disable);
584 
585 /**
586  *	mmc_release_host - release a host
587  *	@host: mmc host to release
588  *
589  *	Release a MMC host, allowing others to claim the host
590  *	for their operations.
591  */
592 void mmc_release_host(struct mmc_host *host)
593 {
594 	WARN_ON(!host->claimed);
595 
596 	mmc_host_lazy_disable(host);
597 
598 	mmc_do_release_host(host);
599 }
600 
601 EXPORT_SYMBOL(mmc_release_host);
602 
603 /*
604  * Internal function that does the actual ios call to the host driver,
605  * optionally printing some debug output.
606  */
607 static inline void mmc_set_ios(struct mmc_host *host)
608 {
609 	struct mmc_ios *ios = &host->ios;
610 
611 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
612 		"width %u timing %u\n",
613 		 mmc_hostname(host), ios->clock, ios->bus_mode,
614 		 ios->power_mode, ios->chip_select, ios->vdd,
615 		 ios->bus_width, ios->timing);
616 
617 	host->ops->set_ios(host, ios);
618 }
619 
620 /*
621  * Control chip select pin on a host.
622  */
623 void mmc_set_chip_select(struct mmc_host *host, int mode)
624 {
625 	host->ios.chip_select = mode;
626 	mmc_set_ios(host);
627 }
628 
629 /*
630  * Sets the host clock to the highest possible frequency that
631  * is below "hz".
632  */
633 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
634 {
635 	WARN_ON(hz < host->f_min);
636 
637 	if (hz > host->f_max)
638 		hz = host->f_max;
639 
640 	host->ios.clock = hz;
641 	mmc_set_ios(host);
642 }
643 
644 /*
645  * Change the bus mode (open drain/push-pull) of a host.
646  */
647 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
648 {
649 	host->ios.bus_mode = mode;
650 	mmc_set_ios(host);
651 }
652 
653 /*
654  * Change data bus width and DDR mode of a host.
655  */
656 void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
657 			   unsigned int ddr)
658 {
659 	host->ios.bus_width = width;
660 	host->ios.ddr = ddr;
661 	mmc_set_ios(host);
662 }
663 
664 /*
665  * Change data bus width of a host.
666  */
667 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
668 {
669 	mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
670 }
671 
672 /**
673  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
674  * @vdd:	voltage (mV)
675  * @low_bits:	prefer low bits in boundary cases
676  *
677  * This function returns the OCR bit number according to the provided @vdd
678  * value. If conversion is not possible a negative errno value returned.
679  *
680  * Depending on the @low_bits flag the function prefers low or high OCR bits
681  * on boundary voltages. For example,
682  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
683  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
684  *
685  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
686  */
687 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
688 {
689 	const int max_bit = ilog2(MMC_VDD_35_36);
690 	int bit;
691 
692 	if (vdd < 1650 || vdd > 3600)
693 		return -EINVAL;
694 
695 	if (vdd >= 1650 && vdd <= 1950)
696 		return ilog2(MMC_VDD_165_195);
697 
698 	if (low_bits)
699 		vdd -= 1;
700 
701 	/* Base 2000 mV, step 100 mV, bit's base 8. */
702 	bit = (vdd - 2000) / 100 + 8;
703 	if (bit > max_bit)
704 		return max_bit;
705 	return bit;
706 }
707 
708 /**
709  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
710  * @vdd_min:	minimum voltage value (mV)
711  * @vdd_max:	maximum voltage value (mV)
712  *
713  * This function returns the OCR mask bits according to the provided @vdd_min
714  * and @vdd_max values. If conversion is not possible the function returns 0.
715  *
716  * Notes wrt boundary cases:
717  * This function sets the OCR bits for all boundary voltages, for example
718  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
719  * MMC_VDD_34_35 mask.
720  */
721 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
722 {
723 	u32 mask = 0;
724 
725 	if (vdd_max < vdd_min)
726 		return 0;
727 
728 	/* Prefer high bits for the boundary vdd_max values. */
729 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
730 	if (vdd_max < 0)
731 		return 0;
732 
733 	/* Prefer low bits for the boundary vdd_min values. */
734 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
735 	if (vdd_min < 0)
736 		return 0;
737 
738 	/* Fill the mask, from max bit to min bit. */
739 	while (vdd_max >= vdd_min)
740 		mask |= 1 << vdd_max--;
741 
742 	return mask;
743 }
744 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
745 
746 #ifdef CONFIG_REGULATOR
747 
748 /**
749  * mmc_regulator_get_ocrmask - return mask of supported voltages
750  * @supply: regulator to use
751  *
752  * This returns either a negative errno, or a mask of voltages that
753  * can be provided to MMC/SD/SDIO devices using the specified voltage
754  * regulator.  This would normally be called before registering the
755  * MMC host adapter.
756  */
757 int mmc_regulator_get_ocrmask(struct regulator *supply)
758 {
759 	int			result = 0;
760 	int			count;
761 	int			i;
762 
763 	count = regulator_count_voltages(supply);
764 	if (count < 0)
765 		return count;
766 
767 	for (i = 0; i < count; i++) {
768 		int		vdd_uV;
769 		int		vdd_mV;
770 
771 		vdd_uV = regulator_list_voltage(supply, i);
772 		if (vdd_uV <= 0)
773 			continue;
774 
775 		vdd_mV = vdd_uV / 1000;
776 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
777 	}
778 
779 	return result;
780 }
781 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
782 
783 /**
784  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
785  * @mmc: the host to regulate
786  * @supply: regulator to use
787  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
788  *
789  * Returns zero on success, else negative errno.
790  *
791  * MMC host drivers may use this to enable or disable a regulator using
792  * a particular supply voltage.  This would normally be called from the
793  * set_ios() method.
794  */
795 int mmc_regulator_set_ocr(struct mmc_host *mmc,
796 			struct regulator *supply,
797 			unsigned short vdd_bit)
798 {
799 	int			result = 0;
800 	int			min_uV, max_uV;
801 
802 	if (vdd_bit) {
803 		int		tmp;
804 		int		voltage;
805 
806 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
807 		 * bits this regulator doesn't quite support ... don't
808 		 * be too picky, most cards and regulators are OK with
809 		 * a 0.1V range goof (it's a small error percentage).
810 		 */
811 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
812 		if (tmp == 0) {
813 			min_uV = 1650 * 1000;
814 			max_uV = 1950 * 1000;
815 		} else {
816 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
817 			max_uV = min_uV + 100 * 1000;
818 		}
819 
820 		/* avoid needless changes to this voltage; the regulator
821 		 * might not allow this operation
822 		 */
823 		voltage = regulator_get_voltage(supply);
824 		if (voltage < 0)
825 			result = voltage;
826 		else if (voltage < min_uV || voltage > max_uV)
827 			result = regulator_set_voltage(supply, min_uV, max_uV);
828 		else
829 			result = 0;
830 
831 		if (result == 0 && !mmc->regulator_enabled) {
832 			result = regulator_enable(supply);
833 			if (!result)
834 				mmc->regulator_enabled = true;
835 		}
836 	} else if (mmc->regulator_enabled) {
837 		result = regulator_disable(supply);
838 		if (result == 0)
839 			mmc->regulator_enabled = false;
840 	}
841 
842 	if (result)
843 		dev_err(mmc_dev(mmc),
844 			"could not set regulator OCR (%d)\n", result);
845 	return result;
846 }
847 EXPORT_SYMBOL(mmc_regulator_set_ocr);
848 
849 #endif /* CONFIG_REGULATOR */
850 
851 /*
852  * Mask off any voltages we don't support and select
853  * the lowest voltage
854  */
855 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
856 {
857 	int bit;
858 
859 	ocr &= host->ocr_avail;
860 
861 	bit = ffs(ocr);
862 	if (bit) {
863 		bit -= 1;
864 
865 		ocr &= 3 << bit;
866 
867 		host->ios.vdd = bit;
868 		mmc_set_ios(host);
869 	} else {
870 		pr_warning("%s: host doesn't support card's voltages\n",
871 				mmc_hostname(host));
872 		ocr = 0;
873 	}
874 
875 	return ocr;
876 }
877 
878 /*
879  * Select timing parameters for host.
880  */
881 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
882 {
883 	host->ios.timing = timing;
884 	mmc_set_ios(host);
885 }
886 
887 /*
888  * Apply power to the MMC stack.  This is a two-stage process.
889  * First, we enable power to the card without the clock running.
890  * We then wait a bit for the power to stabilise.  Finally,
891  * enable the bus drivers and clock to the card.
892  *
893  * We must _NOT_ enable the clock prior to power stablising.
894  *
895  * If a host does all the power sequencing itself, ignore the
896  * initial MMC_POWER_UP stage.
897  */
898 static void mmc_power_up(struct mmc_host *host)
899 {
900 	int bit;
901 
902 	/* If ocr is set, we use it */
903 	if (host->ocr)
904 		bit = ffs(host->ocr) - 1;
905 	else
906 		bit = fls(host->ocr_avail) - 1;
907 
908 	host->ios.vdd = bit;
909 	if (mmc_host_is_spi(host)) {
910 		host->ios.chip_select = MMC_CS_HIGH;
911 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
912 	} else {
913 		host->ios.chip_select = MMC_CS_DONTCARE;
914 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
915 	}
916 	host->ios.power_mode = MMC_POWER_UP;
917 	host->ios.bus_width = MMC_BUS_WIDTH_1;
918 	host->ios.timing = MMC_TIMING_LEGACY;
919 	mmc_set_ios(host);
920 
921 	/*
922 	 * This delay should be sufficient to allow the power supply
923 	 * to reach the minimum voltage.
924 	 */
925 	mmc_delay(10);
926 
927 	host->ios.clock = host->f_init;
928 
929 	host->ios.power_mode = MMC_POWER_ON;
930 	mmc_set_ios(host);
931 
932 	/*
933 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
934 	 * time required to reach a stable voltage.
935 	 */
936 	mmc_delay(10);
937 }
938 
939 static void mmc_power_off(struct mmc_host *host)
940 {
941 	host->ios.clock = 0;
942 	host->ios.vdd = 0;
943 	if (!mmc_host_is_spi(host)) {
944 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
945 		host->ios.chip_select = MMC_CS_DONTCARE;
946 	}
947 	host->ios.power_mode = MMC_POWER_OFF;
948 	host->ios.bus_width = MMC_BUS_WIDTH_1;
949 	host->ios.timing = MMC_TIMING_LEGACY;
950 	mmc_set_ios(host);
951 }
952 
953 /*
954  * Cleanup when the last reference to the bus operator is dropped.
955  */
956 static void __mmc_release_bus(struct mmc_host *host)
957 {
958 	BUG_ON(!host);
959 	BUG_ON(host->bus_refs);
960 	BUG_ON(!host->bus_dead);
961 
962 	host->bus_ops = NULL;
963 }
964 
965 /*
966  * Increase reference count of bus operator
967  */
968 static inline void mmc_bus_get(struct mmc_host *host)
969 {
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&host->lock, flags);
973 	host->bus_refs++;
974 	spin_unlock_irqrestore(&host->lock, flags);
975 }
976 
977 /*
978  * Decrease reference count of bus operator and free it if
979  * it is the last reference.
980  */
981 static inline void mmc_bus_put(struct mmc_host *host)
982 {
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&host->lock, flags);
986 	host->bus_refs--;
987 	if ((host->bus_refs == 0) && host->bus_ops)
988 		__mmc_release_bus(host);
989 	spin_unlock_irqrestore(&host->lock, flags);
990 }
991 
992 /*
993  * Assign a mmc bus handler to a host. Only one bus handler may control a
994  * host at any given time.
995  */
996 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
997 {
998 	unsigned long flags;
999 
1000 	BUG_ON(!host);
1001 	BUG_ON(!ops);
1002 
1003 	WARN_ON(!host->claimed);
1004 
1005 	spin_lock_irqsave(&host->lock, flags);
1006 
1007 	BUG_ON(host->bus_ops);
1008 	BUG_ON(host->bus_refs);
1009 
1010 	host->bus_ops = ops;
1011 	host->bus_refs = 1;
1012 	host->bus_dead = 0;
1013 
1014 	spin_unlock_irqrestore(&host->lock, flags);
1015 }
1016 
1017 /*
1018  * Remove the current bus handler from a host. Assumes that there are
1019  * no interesting cards left, so the bus is powered down.
1020  */
1021 void mmc_detach_bus(struct mmc_host *host)
1022 {
1023 	unsigned long flags;
1024 
1025 	BUG_ON(!host);
1026 
1027 	WARN_ON(!host->claimed);
1028 	WARN_ON(!host->bus_ops);
1029 
1030 	spin_lock_irqsave(&host->lock, flags);
1031 
1032 	host->bus_dead = 1;
1033 
1034 	spin_unlock_irqrestore(&host->lock, flags);
1035 
1036 	mmc_power_off(host);
1037 
1038 	mmc_bus_put(host);
1039 }
1040 
1041 /**
1042  *	mmc_detect_change - process change of state on a MMC socket
1043  *	@host: host which changed state.
1044  *	@delay: optional delay to wait before detection (jiffies)
1045  *
1046  *	MMC drivers should call this when they detect a card has been
1047  *	inserted or removed. The MMC layer will confirm that any
1048  *	present card is still functional, and initialize any newly
1049  *	inserted.
1050  */
1051 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1052 {
1053 #ifdef CONFIG_MMC_DEBUG
1054 	unsigned long flags;
1055 	spin_lock_irqsave(&host->lock, flags);
1056 	WARN_ON(host->removed);
1057 	spin_unlock_irqrestore(&host->lock, flags);
1058 #endif
1059 
1060 	mmc_schedule_delayed_work(&host->detect, delay);
1061 }
1062 
1063 EXPORT_SYMBOL(mmc_detect_change);
1064 
1065 void mmc_init_erase(struct mmc_card *card)
1066 {
1067 	unsigned int sz;
1068 
1069 	if (is_power_of_2(card->erase_size))
1070 		card->erase_shift = ffs(card->erase_size) - 1;
1071 	else
1072 		card->erase_shift = 0;
1073 
1074 	/*
1075 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1076 	 * card.  That is not desirable because it can take a long time
1077 	 * (minutes) potentially delaying more important I/O, and also the
1078 	 * timeout calculations become increasingly hugely over-estimated.
1079 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1080 	 * to that size and alignment.
1081 	 *
1082 	 * For SD cards that define Allocation Unit size, limit erases to one
1083 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1084 	 * Erase Size, whether it is switched on or not, limit to that size.
1085 	 * Otherwise just have a stab at a good value.  For modern cards it
1086 	 * will end up being 4MiB.  Note that if the value is too small, it
1087 	 * can end up taking longer to erase.
1088 	 */
1089 	if (mmc_card_sd(card) && card->ssr.au) {
1090 		card->pref_erase = card->ssr.au;
1091 		card->erase_shift = ffs(card->ssr.au) - 1;
1092 	} else if (card->ext_csd.hc_erase_size) {
1093 		card->pref_erase = card->ext_csd.hc_erase_size;
1094 	} else {
1095 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1096 		if (sz < 128)
1097 			card->pref_erase = 512 * 1024 / 512;
1098 		else if (sz < 512)
1099 			card->pref_erase = 1024 * 1024 / 512;
1100 		else if (sz < 1024)
1101 			card->pref_erase = 2 * 1024 * 1024 / 512;
1102 		else
1103 			card->pref_erase = 4 * 1024 * 1024 / 512;
1104 		if (card->pref_erase < card->erase_size)
1105 			card->pref_erase = card->erase_size;
1106 		else {
1107 			sz = card->pref_erase % card->erase_size;
1108 			if (sz)
1109 				card->pref_erase += card->erase_size - sz;
1110 		}
1111 	}
1112 }
1113 
1114 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1115 				      struct mmc_command *cmd,
1116 				      unsigned int arg, unsigned int qty)
1117 {
1118 	unsigned int erase_timeout;
1119 
1120 	if (card->ext_csd.erase_group_def & 1) {
1121 		/* High Capacity Erase Group Size uses HC timeouts */
1122 		if (arg == MMC_TRIM_ARG)
1123 			erase_timeout = card->ext_csd.trim_timeout;
1124 		else
1125 			erase_timeout = card->ext_csd.hc_erase_timeout;
1126 	} else {
1127 		/* CSD Erase Group Size uses write timeout */
1128 		unsigned int mult = (10 << card->csd.r2w_factor);
1129 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1130 		unsigned int timeout_us;
1131 
1132 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1133 		if (card->csd.tacc_ns < 1000000)
1134 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1135 		else
1136 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1137 
1138 		/*
1139 		 * ios.clock is only a target.  The real clock rate might be
1140 		 * less but not that much less, so fudge it by multiplying by 2.
1141 		 */
1142 		timeout_clks <<= 1;
1143 		timeout_us += (timeout_clks * 1000) /
1144 			      (card->host->ios.clock / 1000);
1145 
1146 		erase_timeout = timeout_us / 1000;
1147 
1148 		/*
1149 		 * Theoretically, the calculation could underflow so round up
1150 		 * to 1ms in that case.
1151 		 */
1152 		if (!erase_timeout)
1153 			erase_timeout = 1;
1154 	}
1155 
1156 	/* Multiplier for secure operations */
1157 	if (arg & MMC_SECURE_ARGS) {
1158 		if (arg == MMC_SECURE_ERASE_ARG)
1159 			erase_timeout *= card->ext_csd.sec_erase_mult;
1160 		else
1161 			erase_timeout *= card->ext_csd.sec_trim_mult;
1162 	}
1163 
1164 	erase_timeout *= qty;
1165 
1166 	/*
1167 	 * Ensure at least a 1 second timeout for SPI as per
1168 	 * 'mmc_set_data_timeout()'
1169 	 */
1170 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1171 		erase_timeout = 1000;
1172 
1173 	cmd->erase_timeout = erase_timeout;
1174 }
1175 
1176 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1177 				     struct mmc_command *cmd, unsigned int arg,
1178 				     unsigned int qty)
1179 {
1180 	if (card->ssr.erase_timeout) {
1181 		/* Erase timeout specified in SD Status Register (SSR) */
1182 		cmd->erase_timeout = card->ssr.erase_timeout * qty +
1183 				     card->ssr.erase_offset;
1184 	} else {
1185 		/*
1186 		 * Erase timeout not specified in SD Status Register (SSR) so
1187 		 * use 250ms per write block.
1188 		 */
1189 		cmd->erase_timeout = 250 * qty;
1190 	}
1191 
1192 	/* Must not be less than 1 second */
1193 	if (cmd->erase_timeout < 1000)
1194 		cmd->erase_timeout = 1000;
1195 }
1196 
1197 static void mmc_set_erase_timeout(struct mmc_card *card,
1198 				  struct mmc_command *cmd, unsigned int arg,
1199 				  unsigned int qty)
1200 {
1201 	if (mmc_card_sd(card))
1202 		mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1203 	else
1204 		mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1205 }
1206 
1207 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1208 			unsigned int to, unsigned int arg)
1209 {
1210 	struct mmc_command cmd;
1211 	unsigned int qty = 0;
1212 	int err;
1213 
1214 	/*
1215 	 * qty is used to calculate the erase timeout which depends on how many
1216 	 * erase groups (or allocation units in SD terminology) are affected.
1217 	 * We count erasing part of an erase group as one erase group.
1218 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1219 	 * erase group size is almost certainly also power of 2, but it does not
1220 	 * seem to insist on that in the JEDEC standard, so we fall back to
1221 	 * division in that case.  SD may not specify an allocation unit size,
1222 	 * in which case the timeout is based on the number of write blocks.
1223 	 *
1224 	 * Note that the timeout for secure trim 2 will only be correct if the
1225 	 * number of erase groups specified is the same as the total of all
1226 	 * preceding secure trim 1 commands.  Since the power may have been
1227 	 * lost since the secure trim 1 commands occurred, it is generally
1228 	 * impossible to calculate the secure trim 2 timeout correctly.
1229 	 */
1230 	if (card->erase_shift)
1231 		qty += ((to >> card->erase_shift) -
1232 			(from >> card->erase_shift)) + 1;
1233 	else if (mmc_card_sd(card))
1234 		qty += to - from + 1;
1235 	else
1236 		qty += ((to / card->erase_size) -
1237 			(from / card->erase_size)) + 1;
1238 
1239 	if (!mmc_card_blockaddr(card)) {
1240 		from <<= 9;
1241 		to <<= 9;
1242 	}
1243 
1244 	memset(&cmd, 0, sizeof(struct mmc_command));
1245 	if (mmc_card_sd(card))
1246 		cmd.opcode = SD_ERASE_WR_BLK_START;
1247 	else
1248 		cmd.opcode = MMC_ERASE_GROUP_START;
1249 	cmd.arg = from;
1250 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1251 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1252 	if (err) {
1253 		printk(KERN_ERR "mmc_erase: group start error %d, "
1254 		       "status %#x\n", err, cmd.resp[0]);
1255 		err = -EINVAL;
1256 		goto out;
1257 	}
1258 
1259 	memset(&cmd, 0, sizeof(struct mmc_command));
1260 	if (mmc_card_sd(card))
1261 		cmd.opcode = SD_ERASE_WR_BLK_END;
1262 	else
1263 		cmd.opcode = MMC_ERASE_GROUP_END;
1264 	cmd.arg = to;
1265 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1266 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1267 	if (err) {
1268 		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1269 		       err, cmd.resp[0]);
1270 		err = -EINVAL;
1271 		goto out;
1272 	}
1273 
1274 	memset(&cmd, 0, sizeof(struct mmc_command));
1275 	cmd.opcode = MMC_ERASE;
1276 	cmd.arg = arg;
1277 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1278 	mmc_set_erase_timeout(card, &cmd, arg, qty);
1279 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1280 	if (err) {
1281 		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1282 		       err, cmd.resp[0]);
1283 		err = -EIO;
1284 		goto out;
1285 	}
1286 
1287 	if (mmc_host_is_spi(card->host))
1288 		goto out;
1289 
1290 	do {
1291 		memset(&cmd, 0, sizeof(struct mmc_command));
1292 		cmd.opcode = MMC_SEND_STATUS;
1293 		cmd.arg = card->rca << 16;
1294 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1295 		/* Do not retry else we can't see errors */
1296 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1297 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1298 			printk(KERN_ERR "error %d requesting status %#x\n",
1299 				err, cmd.resp[0]);
1300 			err = -EIO;
1301 			goto out;
1302 		}
1303 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1304 		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1305 out:
1306 	return err;
1307 }
1308 
1309 /**
1310  * mmc_erase - erase sectors.
1311  * @card: card to erase
1312  * @from: first sector to erase
1313  * @nr: number of sectors to erase
1314  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1315  *
1316  * Caller must claim host before calling this function.
1317  */
1318 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1319 	      unsigned int arg)
1320 {
1321 	unsigned int rem, to = from + nr;
1322 
1323 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1324 	    !(card->csd.cmdclass & CCC_ERASE))
1325 		return -EOPNOTSUPP;
1326 
1327 	if (!card->erase_size)
1328 		return -EOPNOTSUPP;
1329 
1330 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1331 		return -EOPNOTSUPP;
1332 
1333 	if ((arg & MMC_SECURE_ARGS) &&
1334 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1335 		return -EOPNOTSUPP;
1336 
1337 	if ((arg & MMC_TRIM_ARGS) &&
1338 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1339 		return -EOPNOTSUPP;
1340 
1341 	if (arg == MMC_SECURE_ERASE_ARG) {
1342 		if (from % card->erase_size || nr % card->erase_size)
1343 			return -EINVAL;
1344 	}
1345 
1346 	if (arg == MMC_ERASE_ARG) {
1347 		rem = from % card->erase_size;
1348 		if (rem) {
1349 			rem = card->erase_size - rem;
1350 			from += rem;
1351 			if (nr > rem)
1352 				nr -= rem;
1353 			else
1354 				return 0;
1355 		}
1356 		rem = nr % card->erase_size;
1357 		if (rem)
1358 			nr -= rem;
1359 	}
1360 
1361 	if (nr == 0)
1362 		return 0;
1363 
1364 	to = from + nr;
1365 
1366 	if (to <= from)
1367 		return -EINVAL;
1368 
1369 	/* 'from' and 'to' are inclusive */
1370 	to -= 1;
1371 
1372 	return mmc_do_erase(card, from, to, arg);
1373 }
1374 EXPORT_SYMBOL(mmc_erase);
1375 
1376 int mmc_can_erase(struct mmc_card *card)
1377 {
1378 	if ((card->host->caps & MMC_CAP_ERASE) &&
1379 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1380 		return 1;
1381 	return 0;
1382 }
1383 EXPORT_SYMBOL(mmc_can_erase);
1384 
1385 int mmc_can_trim(struct mmc_card *card)
1386 {
1387 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1388 		return 1;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL(mmc_can_trim);
1392 
1393 int mmc_can_secure_erase_trim(struct mmc_card *card)
1394 {
1395 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1396 		return 1;
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1400 
1401 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1402 			    unsigned int nr)
1403 {
1404 	if (!card->erase_size)
1405 		return 0;
1406 	if (from % card->erase_size || nr % card->erase_size)
1407 		return 0;
1408 	return 1;
1409 }
1410 EXPORT_SYMBOL(mmc_erase_group_aligned);
1411 
1412 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1413 {
1414 	struct mmc_command cmd;
1415 
1416 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1417 		return 0;
1418 
1419 	memset(&cmd, 0, sizeof(struct mmc_command));
1420 	cmd.opcode = MMC_SET_BLOCKLEN;
1421 	cmd.arg = blocklen;
1422 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1423 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1424 }
1425 EXPORT_SYMBOL(mmc_set_blocklen);
1426 
1427 void mmc_rescan(struct work_struct *work)
1428 {
1429 	struct mmc_host *host =
1430 		container_of(work, struct mmc_host, detect.work);
1431 	u32 ocr;
1432 	int err;
1433 	unsigned long flags;
1434 	int i;
1435 	const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1436 
1437 	spin_lock_irqsave(&host->lock, flags);
1438 
1439 	if (host->rescan_disable) {
1440 		spin_unlock_irqrestore(&host->lock, flags);
1441 		return;
1442 	}
1443 
1444 	spin_unlock_irqrestore(&host->lock, flags);
1445 
1446 
1447 	mmc_bus_get(host);
1448 
1449 	/* if there is a card registered, check whether it is still present */
1450 	if ((host->bus_ops != NULL) && host->bus_ops->detect && !host->bus_dead)
1451 		host->bus_ops->detect(host);
1452 
1453 	mmc_bus_put(host);
1454 
1455 
1456 	mmc_bus_get(host);
1457 
1458 	/* if there still is a card present, stop here */
1459 	if (host->bus_ops != NULL) {
1460 		mmc_bus_put(host);
1461 		goto out;
1462 	}
1463 
1464 	/* detect a newly inserted card */
1465 
1466 	/*
1467 	 * Only we can add a new handler, so it's safe to
1468 	 * release the lock here.
1469 	 */
1470 	mmc_bus_put(host);
1471 
1472 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1473 		goto out;
1474 
1475 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1476 		mmc_claim_host(host);
1477 
1478 		if (freqs[i] >= host->f_min)
1479 			host->f_init = freqs[i];
1480 		else if (!i || freqs[i-1] > host->f_min)
1481 			host->f_init = host->f_min;
1482 		else {
1483 			mmc_release_host(host);
1484 			goto out;
1485 		}
1486 #ifdef CONFIG_MMC_DEBUG
1487 		pr_info("%s: %s: trying to init card at %u Hz\n",
1488 			mmc_hostname(host), __func__, host->f_init);
1489 #endif
1490 		mmc_power_up(host);
1491 		sdio_reset(host);
1492 		mmc_go_idle(host);
1493 
1494 		mmc_send_if_cond(host, host->ocr_avail);
1495 
1496 		/*
1497 		 * First we search for SDIO...
1498 		 */
1499 		err = mmc_send_io_op_cond(host, 0, &ocr);
1500 		if (!err) {
1501 			if (mmc_attach_sdio(host, ocr)) {
1502 				mmc_claim_host(host);
1503 				/*
1504 				 * Try SDMEM (but not MMC) even if SDIO
1505 				 * is broken.
1506 				 */
1507 				if (mmc_send_app_op_cond(host, 0, &ocr))
1508 					goto out_fail;
1509 
1510 				if (mmc_attach_sd(host, ocr))
1511 					mmc_power_off(host);
1512 			}
1513 			goto out;
1514 		}
1515 
1516 		/*
1517 		 * ...then normal SD...
1518 		 */
1519 		err = mmc_send_app_op_cond(host, 0, &ocr);
1520 		if (!err) {
1521 			if (mmc_attach_sd(host, ocr))
1522 				mmc_power_off(host);
1523 			goto out;
1524 		}
1525 
1526 		/*
1527 		 * ...and finally MMC.
1528 		 */
1529 		err = mmc_send_op_cond(host, 0, &ocr);
1530 		if (!err) {
1531 			if (mmc_attach_mmc(host, ocr))
1532 				mmc_power_off(host);
1533 			goto out;
1534 		}
1535 
1536 out_fail:
1537 		mmc_release_host(host);
1538 		mmc_power_off(host);
1539 	}
1540 out:
1541 	if (host->caps & MMC_CAP_NEEDS_POLL)
1542 		mmc_schedule_delayed_work(&host->detect, HZ);
1543 }
1544 
1545 void mmc_start_host(struct mmc_host *host)
1546 {
1547 	mmc_power_off(host);
1548 	mmc_detect_change(host, 0);
1549 }
1550 
1551 void mmc_stop_host(struct mmc_host *host)
1552 {
1553 #ifdef CONFIG_MMC_DEBUG
1554 	unsigned long flags;
1555 	spin_lock_irqsave(&host->lock, flags);
1556 	host->removed = 1;
1557 	spin_unlock_irqrestore(&host->lock, flags);
1558 #endif
1559 
1560 	if (host->caps & MMC_CAP_DISABLE)
1561 		cancel_delayed_work(&host->disable);
1562 	cancel_delayed_work_sync(&host->detect);
1563 	mmc_flush_scheduled_work();
1564 
1565 	/* clear pm flags now and let card drivers set them as needed */
1566 	host->pm_flags = 0;
1567 
1568 	mmc_bus_get(host);
1569 	if (host->bus_ops && !host->bus_dead) {
1570 		if (host->bus_ops->remove)
1571 			host->bus_ops->remove(host);
1572 
1573 		mmc_claim_host(host);
1574 		mmc_detach_bus(host);
1575 		mmc_release_host(host);
1576 		mmc_bus_put(host);
1577 		return;
1578 	}
1579 	mmc_bus_put(host);
1580 
1581 	BUG_ON(host->card);
1582 
1583 	mmc_power_off(host);
1584 }
1585 
1586 int mmc_power_save_host(struct mmc_host *host)
1587 {
1588 	int ret = 0;
1589 
1590 	mmc_bus_get(host);
1591 
1592 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1593 		mmc_bus_put(host);
1594 		return -EINVAL;
1595 	}
1596 
1597 	if (host->bus_ops->power_save)
1598 		ret = host->bus_ops->power_save(host);
1599 
1600 	mmc_bus_put(host);
1601 
1602 	mmc_power_off(host);
1603 
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL(mmc_power_save_host);
1607 
1608 int mmc_power_restore_host(struct mmc_host *host)
1609 {
1610 	int ret;
1611 
1612 	mmc_bus_get(host);
1613 
1614 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1615 		mmc_bus_put(host);
1616 		return -EINVAL;
1617 	}
1618 
1619 	mmc_power_up(host);
1620 	ret = host->bus_ops->power_restore(host);
1621 
1622 	mmc_bus_put(host);
1623 
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL(mmc_power_restore_host);
1627 
1628 int mmc_card_awake(struct mmc_host *host)
1629 {
1630 	int err = -ENOSYS;
1631 
1632 	mmc_bus_get(host);
1633 
1634 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1635 		err = host->bus_ops->awake(host);
1636 
1637 	mmc_bus_put(host);
1638 
1639 	return err;
1640 }
1641 EXPORT_SYMBOL(mmc_card_awake);
1642 
1643 int mmc_card_sleep(struct mmc_host *host)
1644 {
1645 	int err = -ENOSYS;
1646 
1647 	mmc_bus_get(host);
1648 
1649 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1650 		err = host->bus_ops->sleep(host);
1651 
1652 	mmc_bus_put(host);
1653 
1654 	return err;
1655 }
1656 EXPORT_SYMBOL(mmc_card_sleep);
1657 
1658 int mmc_card_can_sleep(struct mmc_host *host)
1659 {
1660 	struct mmc_card *card = host->card;
1661 
1662 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1663 		return 1;
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL(mmc_card_can_sleep);
1667 
1668 #ifdef CONFIG_PM
1669 
1670 /**
1671  *	mmc_suspend_host - suspend a host
1672  *	@host: mmc host
1673  */
1674 int mmc_suspend_host(struct mmc_host *host)
1675 {
1676 	int err = 0;
1677 
1678 	if (host->caps & MMC_CAP_DISABLE)
1679 		cancel_delayed_work(&host->disable);
1680 	cancel_delayed_work(&host->detect);
1681 	mmc_flush_scheduled_work();
1682 
1683 	mmc_bus_get(host);
1684 	if (host->bus_ops && !host->bus_dead) {
1685 		if (host->bus_ops->suspend)
1686 			err = host->bus_ops->suspend(host);
1687 		if (err == -ENOSYS || !host->bus_ops->resume) {
1688 			/*
1689 			 * We simply "remove" the card in this case.
1690 			 * It will be redetected on resume.
1691 			 */
1692 			if (host->bus_ops->remove)
1693 				host->bus_ops->remove(host);
1694 			mmc_claim_host(host);
1695 			mmc_detach_bus(host);
1696 			mmc_release_host(host);
1697 			host->pm_flags = 0;
1698 			err = 0;
1699 		}
1700 	}
1701 	mmc_bus_put(host);
1702 
1703 	if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1704 		mmc_power_off(host);
1705 
1706 	return err;
1707 }
1708 
1709 EXPORT_SYMBOL(mmc_suspend_host);
1710 
1711 /**
1712  *	mmc_resume_host - resume a previously suspended host
1713  *	@host: mmc host
1714  */
1715 int mmc_resume_host(struct mmc_host *host)
1716 {
1717 	int err = 0;
1718 
1719 	mmc_bus_get(host);
1720 	if (host->bus_ops && !host->bus_dead) {
1721 		if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1722 			mmc_power_up(host);
1723 			mmc_select_voltage(host, host->ocr);
1724 		}
1725 		BUG_ON(!host->bus_ops->resume);
1726 		err = host->bus_ops->resume(host);
1727 		if (err) {
1728 			printk(KERN_WARNING "%s: error %d during resume "
1729 					    "(card was removed?)\n",
1730 					    mmc_hostname(host), err);
1731 			err = 0;
1732 		}
1733 	}
1734 	mmc_bus_put(host);
1735 
1736 	return err;
1737 }
1738 EXPORT_SYMBOL(mmc_resume_host);
1739 
1740 /* Do the card removal on suspend if card is assumed removeable
1741  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1742    to sync the card.
1743 */
1744 int mmc_pm_notify(struct notifier_block *notify_block,
1745 					unsigned long mode, void *unused)
1746 {
1747 	struct mmc_host *host = container_of(
1748 		notify_block, struct mmc_host, pm_notify);
1749 	unsigned long flags;
1750 
1751 
1752 	switch (mode) {
1753 	case PM_HIBERNATION_PREPARE:
1754 	case PM_SUSPEND_PREPARE:
1755 
1756 		spin_lock_irqsave(&host->lock, flags);
1757 		host->rescan_disable = 1;
1758 		spin_unlock_irqrestore(&host->lock, flags);
1759 		cancel_delayed_work_sync(&host->detect);
1760 
1761 		if (!host->bus_ops || host->bus_ops->suspend)
1762 			break;
1763 
1764 		mmc_claim_host(host);
1765 
1766 		if (host->bus_ops->remove)
1767 			host->bus_ops->remove(host);
1768 
1769 		mmc_detach_bus(host);
1770 		mmc_release_host(host);
1771 		host->pm_flags = 0;
1772 		break;
1773 
1774 	case PM_POST_SUSPEND:
1775 	case PM_POST_HIBERNATION:
1776 	case PM_POST_RESTORE:
1777 
1778 		spin_lock_irqsave(&host->lock, flags);
1779 		host->rescan_disable = 0;
1780 		spin_unlock_irqrestore(&host->lock, flags);
1781 		mmc_detect_change(host, 0);
1782 
1783 	}
1784 
1785 	return 0;
1786 }
1787 #endif
1788 
1789 static int __init mmc_init(void)
1790 {
1791 	int ret;
1792 
1793 	workqueue = create_singlethread_workqueue("kmmcd");
1794 	if (!workqueue)
1795 		return -ENOMEM;
1796 
1797 	ret = mmc_register_bus();
1798 	if (ret)
1799 		goto destroy_workqueue;
1800 
1801 	ret = mmc_register_host_class();
1802 	if (ret)
1803 		goto unregister_bus;
1804 
1805 	ret = sdio_register_bus();
1806 	if (ret)
1807 		goto unregister_host_class;
1808 
1809 	return 0;
1810 
1811 unregister_host_class:
1812 	mmc_unregister_host_class();
1813 unregister_bus:
1814 	mmc_unregister_bus();
1815 destroy_workqueue:
1816 	destroy_workqueue(workqueue);
1817 
1818 	return ret;
1819 }
1820 
1821 static void __exit mmc_exit(void)
1822 {
1823 	sdio_unregister_bus();
1824 	mmc_unregister_host_class();
1825 	mmc_unregister_bus();
1826 	destroy_workqueue(workqueue);
1827 }
1828 
1829 subsys_initcall(mmc_init);
1830 module_exit(mmc_exit);
1831 
1832 MODULE_LICENSE("GPL");
1833