xref: /openbmc/linux/drivers/mmc/core/core.c (revision b34e08d5)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 
44 #include "mmc_ops.h"
45 #include "sd_ops.h"
46 #include "sdio_ops.h"
47 
48 /* If the device is not responding */
49 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
50 
51 /*
52  * Background operations can take a long time, depending on the housekeeping
53  * operations the card has to perform.
54  */
55 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
56 
57 static struct workqueue_struct *workqueue;
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 
60 /*
61  * Enabling software CRCs on the data blocks can be a significant (30%)
62  * performance cost, and for other reasons may not always be desired.
63  * So we allow it it to be disabled.
64  */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 #ifdef CONFIG_FAIL_MMC_REQUEST
86 
87 /*
88  * Internal function. Inject random data errors.
89  * If mmc_data is NULL no errors are injected.
90  */
91 static void mmc_should_fail_request(struct mmc_host *host,
92 				    struct mmc_request *mrq)
93 {
94 	struct mmc_command *cmd = mrq->cmd;
95 	struct mmc_data *data = mrq->data;
96 	static const int data_errors[] = {
97 		-ETIMEDOUT,
98 		-EILSEQ,
99 		-EIO,
100 	};
101 
102 	if (!data)
103 		return;
104 
105 	if (cmd->error || data->error ||
106 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 		return;
108 
109 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111 }
112 
113 #else /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_should_fail_request(struct mmc_host *host,
116 					   struct mmc_request *mrq)
117 {
118 }
119 
120 #endif /* CONFIG_FAIL_MMC_REQUEST */
121 
122 /**
123  *	mmc_request_done - finish processing an MMC request
124  *	@host: MMC host which completed request
125  *	@mrq: MMC request which request
126  *
127  *	MMC drivers should call this function when they have completed
128  *	their processing of a request.
129  */
130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 	struct mmc_command *cmd = mrq->cmd;
133 	int err = cmd->error;
134 
135 	if (err && cmd->retries && mmc_host_is_spi(host)) {
136 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 			cmd->retries = 0;
138 	}
139 
140 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 		/*
142 		 * Request starter must handle retries - see
143 		 * mmc_wait_for_req_done().
144 		 */
145 		if (mrq->done)
146 			mrq->done(mrq);
147 	} else {
148 		mmc_should_fail_request(host, mrq);
149 
150 		led_trigger_event(host->led, LED_OFF);
151 
152 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 			mmc_hostname(host), cmd->opcode, err,
154 			cmd->resp[0], cmd->resp[1],
155 			cmd->resp[2], cmd->resp[3]);
156 
157 		if (mrq->data) {
158 			pr_debug("%s:     %d bytes transferred: %d\n",
159 				mmc_hostname(host),
160 				mrq->data->bytes_xfered, mrq->data->error);
161 		}
162 
163 		if (mrq->stop) {
164 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
165 				mmc_hostname(host), mrq->stop->opcode,
166 				mrq->stop->error,
167 				mrq->stop->resp[0], mrq->stop->resp[1],
168 				mrq->stop->resp[2], mrq->stop->resp[3]);
169 		}
170 
171 		if (mrq->done)
172 			mrq->done(mrq);
173 
174 		mmc_host_clk_release(host);
175 	}
176 }
177 
178 EXPORT_SYMBOL(mmc_request_done);
179 
180 static void
181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182 {
183 #ifdef CONFIG_MMC_DEBUG
184 	unsigned int i, sz;
185 	struct scatterlist *sg;
186 #endif
187 
188 	if (mrq->sbc) {
189 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 			 mmc_hostname(host), mrq->sbc->opcode,
191 			 mrq->sbc->arg, mrq->sbc->flags);
192 	}
193 
194 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 		 mmc_hostname(host), mrq->cmd->opcode,
196 		 mrq->cmd->arg, mrq->cmd->flags);
197 
198 	if (mrq->data) {
199 		pr_debug("%s:     blksz %d blocks %d flags %08x "
200 			"tsac %d ms nsac %d\n",
201 			mmc_hostname(host), mrq->data->blksz,
202 			mrq->data->blocks, mrq->data->flags,
203 			mrq->data->timeout_ns / 1000000,
204 			mrq->data->timeout_clks);
205 	}
206 
207 	if (mrq->stop) {
208 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
209 			 mmc_hostname(host), mrq->stop->opcode,
210 			 mrq->stop->arg, mrq->stop->flags);
211 	}
212 
213 	WARN_ON(!host->claimed);
214 
215 	mrq->cmd->error = 0;
216 	mrq->cmd->mrq = mrq;
217 	if (mrq->data) {
218 		BUG_ON(mrq->data->blksz > host->max_blk_size);
219 		BUG_ON(mrq->data->blocks > host->max_blk_count);
220 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 			host->max_req_size);
222 
223 #ifdef CONFIG_MMC_DEBUG
224 		sz = 0;
225 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 			sz += sg->length;
227 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228 #endif
229 
230 		mrq->cmd->data = mrq->data;
231 		mrq->data->error = 0;
232 		mrq->data->mrq = mrq;
233 		if (mrq->stop) {
234 			mrq->data->stop = mrq->stop;
235 			mrq->stop->error = 0;
236 			mrq->stop->mrq = mrq;
237 		}
238 	}
239 	mmc_host_clk_hold(host);
240 	led_trigger_event(host->led, LED_FULL);
241 	host->ops->request(host, mrq);
242 }
243 
244 /**
245  *	mmc_start_bkops - start BKOPS for supported cards
246  *	@card: MMC card to start BKOPS
247  *	@form_exception: A flag to indicate if this function was
248  *			 called due to an exception raised by the card
249  *
250  *	Start background operations whenever requested.
251  *	When the urgent BKOPS bit is set in a R1 command response
252  *	then background operations should be started immediately.
253 */
254 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255 {
256 	int err;
257 	int timeout;
258 	bool use_busy_signal;
259 
260 	BUG_ON(!card);
261 
262 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 		return;
264 
265 	err = mmc_read_bkops_status(card);
266 	if (err) {
267 		pr_err("%s: Failed to read bkops status: %d\n",
268 		       mmc_hostname(card->host), err);
269 		return;
270 	}
271 
272 	if (!card->ext_csd.raw_bkops_status)
273 		return;
274 
275 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 	    from_exception)
277 		return;
278 
279 	mmc_claim_host(card->host);
280 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 		timeout = MMC_BKOPS_MAX_TIMEOUT;
282 		use_busy_signal = true;
283 	} else {
284 		timeout = 0;
285 		use_busy_signal = false;
286 	}
287 
288 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 			EXT_CSD_BKOPS_START, 1, timeout,
290 			use_busy_signal, true, false);
291 	if (err) {
292 		pr_warn("%s: Error %d starting bkops\n",
293 			mmc_hostname(card->host), err);
294 		goto out;
295 	}
296 
297 	/*
298 	 * For urgent bkops status (LEVEL_2 and more)
299 	 * bkops executed synchronously, otherwise
300 	 * the operation is in progress
301 	 */
302 	if (!use_busy_signal)
303 		mmc_card_set_doing_bkops(card);
304 out:
305 	mmc_release_host(card->host);
306 }
307 EXPORT_SYMBOL(mmc_start_bkops);
308 
309 /*
310  * mmc_wait_data_done() - done callback for data request
311  * @mrq: done data request
312  *
313  * Wakes up mmc context, passed as a callback to host controller driver
314  */
315 static void mmc_wait_data_done(struct mmc_request *mrq)
316 {
317 	mrq->host->context_info.is_done_rcv = true;
318 	wake_up_interruptible(&mrq->host->context_info.wait);
319 }
320 
321 static void mmc_wait_done(struct mmc_request *mrq)
322 {
323 	complete(&mrq->completion);
324 }
325 
326 /*
327  *__mmc_start_data_req() - starts data request
328  * @host: MMC host to start the request
329  * @mrq: data request to start
330  *
331  * Sets the done callback to be called when request is completed by the card.
332  * Starts data mmc request execution
333  */
334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	mrq->done = mmc_wait_data_done;
337 	mrq->host = host;
338 	if (mmc_card_removed(host->card)) {
339 		mrq->cmd->error = -ENOMEDIUM;
340 		mmc_wait_data_done(mrq);
341 		return -ENOMEDIUM;
342 	}
343 	mmc_start_request(host, mrq);
344 
345 	return 0;
346 }
347 
348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349 {
350 	init_completion(&mrq->completion);
351 	mrq->done = mmc_wait_done;
352 	if (mmc_card_removed(host->card)) {
353 		mrq->cmd->error = -ENOMEDIUM;
354 		complete(&mrq->completion);
355 		return -ENOMEDIUM;
356 	}
357 	mmc_start_request(host, mrq);
358 	return 0;
359 }
360 
361 /*
362  * mmc_wait_for_data_req_done() - wait for request completed
363  * @host: MMC host to prepare the command.
364  * @mrq: MMC request to wait for
365  *
366  * Blocks MMC context till host controller will ack end of data request
367  * execution or new request notification arrives from the block layer.
368  * Handles command retries.
369  *
370  * Returns enum mmc_blk_status after checking errors.
371  */
372 static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 				      struct mmc_request *mrq,
374 				      struct mmc_async_req *next_req)
375 {
376 	struct mmc_command *cmd;
377 	struct mmc_context_info *context_info = &host->context_info;
378 	int err;
379 	unsigned long flags;
380 
381 	while (1) {
382 		wait_event_interruptible(context_info->wait,
383 				(context_info->is_done_rcv ||
384 				 context_info->is_new_req));
385 		spin_lock_irqsave(&context_info->lock, flags);
386 		context_info->is_waiting_last_req = false;
387 		spin_unlock_irqrestore(&context_info->lock, flags);
388 		if (context_info->is_done_rcv) {
389 			context_info->is_done_rcv = false;
390 			context_info->is_new_req = false;
391 			cmd = mrq->cmd;
392 
393 			if (!cmd->error || !cmd->retries ||
394 			    mmc_card_removed(host->card)) {
395 				err = host->areq->err_check(host->card,
396 							    host->areq);
397 				break; /* return err */
398 			} else {
399 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 					mmc_hostname(host),
401 					cmd->opcode, cmd->error);
402 				cmd->retries--;
403 				cmd->error = 0;
404 				host->ops->request(host, mrq);
405 				continue; /* wait for done/new event again */
406 			}
407 		} else if (context_info->is_new_req) {
408 			context_info->is_new_req = false;
409 			if (!next_req) {
410 				err = MMC_BLK_NEW_REQUEST;
411 				break; /* return err */
412 			}
413 		}
414 	}
415 	return err;
416 }
417 
418 static void mmc_wait_for_req_done(struct mmc_host *host,
419 				  struct mmc_request *mrq)
420 {
421 	struct mmc_command *cmd;
422 
423 	while (1) {
424 		wait_for_completion(&mrq->completion);
425 
426 		cmd = mrq->cmd;
427 
428 		/*
429 		 * If host has timed out waiting for the sanitize
430 		 * to complete, card might be still in programming state
431 		 * so let's try to bring the card out of programming
432 		 * state.
433 		 */
434 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 			if (!mmc_interrupt_hpi(host->card)) {
436 				pr_warning("%s: %s: Interrupted sanitize\n",
437 					   mmc_hostname(host), __func__);
438 				cmd->error = 0;
439 				break;
440 			} else {
441 				pr_err("%s: %s: Failed to interrupt sanitize\n",
442 				       mmc_hostname(host), __func__);
443 			}
444 		}
445 		if (!cmd->error || !cmd->retries ||
446 		    mmc_card_removed(host->card))
447 			break;
448 
449 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 			 mmc_hostname(host), cmd->opcode, cmd->error);
451 		cmd->retries--;
452 		cmd->error = 0;
453 		host->ops->request(host, mrq);
454 	}
455 }
456 
457 /**
458  *	mmc_pre_req - Prepare for a new request
459  *	@host: MMC host to prepare command
460  *	@mrq: MMC request to prepare for
461  *	@is_first_req: true if there is no previous started request
462  *                     that may run in parellel to this call, otherwise false
463  *
464  *	mmc_pre_req() is called in prior to mmc_start_req() to let
465  *	host prepare for the new request. Preparation of a request may be
466  *	performed while another request is running on the host.
467  */
468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 		 bool is_first_req)
470 {
471 	if (host->ops->pre_req) {
472 		mmc_host_clk_hold(host);
473 		host->ops->pre_req(host, mrq, is_first_req);
474 		mmc_host_clk_release(host);
475 	}
476 }
477 
478 /**
479  *	mmc_post_req - Post process a completed request
480  *	@host: MMC host to post process command
481  *	@mrq: MMC request to post process for
482  *	@err: Error, if non zero, clean up any resources made in pre_req
483  *
484  *	Let the host post process a completed request. Post processing of
485  *	a request may be performed while another reuqest is running.
486  */
487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 			 int err)
489 {
490 	if (host->ops->post_req) {
491 		mmc_host_clk_hold(host);
492 		host->ops->post_req(host, mrq, err);
493 		mmc_host_clk_release(host);
494 	}
495 }
496 
497 /**
498  *	mmc_start_req - start a non-blocking request
499  *	@host: MMC host to start command
500  *	@areq: async request to start
501  *	@error: out parameter returns 0 for success, otherwise non zero
502  *
503  *	Start a new MMC custom command request for a host.
504  *	If there is on ongoing async request wait for completion
505  *	of that request and start the new one and return.
506  *	Does not wait for the new request to complete.
507  *
508  *      Returns the completed request, NULL in case of none completed.
509  *	Wait for the an ongoing request (previoulsy started) to complete and
510  *	return the completed request. If there is no ongoing request, NULL
511  *	is returned without waiting. NULL is not an error condition.
512  */
513 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 				    struct mmc_async_req *areq, int *error)
515 {
516 	int err = 0;
517 	int start_err = 0;
518 	struct mmc_async_req *data = host->areq;
519 
520 	/* Prepare a new request */
521 	if (areq)
522 		mmc_pre_req(host, areq->mrq, !host->areq);
523 
524 	if (host->areq) {
525 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
526 		if (err == MMC_BLK_NEW_REQUEST) {
527 			if (error)
528 				*error = err;
529 			/*
530 			 * The previous request was not completed,
531 			 * nothing to return
532 			 */
533 			return NULL;
534 		}
535 		/*
536 		 * Check BKOPS urgency for each R1 response
537 		 */
538 		if (host->card && mmc_card_mmc(host->card) &&
539 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 			mmc_start_bkops(host->card, true);
543 	}
544 
545 	if (!err && areq)
546 		start_err = __mmc_start_data_req(host, areq->mrq);
547 
548 	if (host->areq)
549 		mmc_post_req(host, host->areq->mrq, 0);
550 
551 	 /* Cancel a prepared request if it was not started. */
552 	if ((err || start_err) && areq)
553 		mmc_post_req(host, areq->mrq, -EINVAL);
554 
555 	if (err)
556 		host->areq = NULL;
557 	else
558 		host->areq = areq;
559 
560 	if (error)
561 		*error = err;
562 	return data;
563 }
564 EXPORT_SYMBOL(mmc_start_req);
565 
566 /**
567  *	mmc_wait_for_req - start a request and wait for completion
568  *	@host: MMC host to start command
569  *	@mrq: MMC request to start
570  *
571  *	Start a new MMC custom command request for a host, and wait
572  *	for the command to complete. Does not attempt to parse the
573  *	response.
574  */
575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576 {
577 	__mmc_start_req(host, mrq);
578 	mmc_wait_for_req_done(host, mrq);
579 }
580 EXPORT_SYMBOL(mmc_wait_for_req);
581 
582 /**
583  *	mmc_interrupt_hpi - Issue for High priority Interrupt
584  *	@card: the MMC card associated with the HPI transfer
585  *
586  *	Issued High Priority Interrupt, and check for card status
587  *	until out-of prg-state.
588  */
589 int mmc_interrupt_hpi(struct mmc_card *card)
590 {
591 	int err;
592 	u32 status;
593 	unsigned long prg_wait;
594 
595 	BUG_ON(!card);
596 
597 	if (!card->ext_csd.hpi_en) {
598 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 		return 1;
600 	}
601 
602 	mmc_claim_host(card->host);
603 	err = mmc_send_status(card, &status);
604 	if (err) {
605 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 		goto out;
607 	}
608 
609 	switch (R1_CURRENT_STATE(status)) {
610 	case R1_STATE_IDLE:
611 	case R1_STATE_READY:
612 	case R1_STATE_STBY:
613 	case R1_STATE_TRAN:
614 		/*
615 		 * In idle and transfer states, HPI is not needed and the caller
616 		 * can issue the next intended command immediately
617 		 */
618 		goto out;
619 	case R1_STATE_PRG:
620 		break;
621 	default:
622 		/* In all other states, it's illegal to issue HPI */
623 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 		err = -EINVAL;
626 		goto out;
627 	}
628 
629 	err = mmc_send_hpi_cmd(card, &status);
630 	if (err)
631 		goto out;
632 
633 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 	do {
635 		err = mmc_send_status(card, &status);
636 
637 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 			break;
639 		if (time_after(jiffies, prg_wait))
640 			err = -ETIMEDOUT;
641 	} while (!err);
642 
643 out:
644 	mmc_release_host(card->host);
645 	return err;
646 }
647 EXPORT_SYMBOL(mmc_interrupt_hpi);
648 
649 /**
650  *	mmc_wait_for_cmd - start a command and wait for completion
651  *	@host: MMC host to start command
652  *	@cmd: MMC command to start
653  *	@retries: maximum number of retries
654  *
655  *	Start a new MMC command for a host, and wait for the command
656  *	to complete.  Return any error that occurred while the command
657  *	was executing.  Do not attempt to parse the response.
658  */
659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660 {
661 	struct mmc_request mrq = {NULL};
662 
663 	WARN_ON(!host->claimed);
664 
665 	memset(cmd->resp, 0, sizeof(cmd->resp));
666 	cmd->retries = retries;
667 
668 	mrq.cmd = cmd;
669 	cmd->data = NULL;
670 
671 	mmc_wait_for_req(host, &mrq);
672 
673 	return cmd->error;
674 }
675 
676 EXPORT_SYMBOL(mmc_wait_for_cmd);
677 
678 /**
679  *	mmc_stop_bkops - stop ongoing BKOPS
680  *	@card: MMC card to check BKOPS
681  *
682  *	Send HPI command to stop ongoing background operations to
683  *	allow rapid servicing of foreground operations, e.g. read/
684  *	writes. Wait until the card comes out of the programming state
685  *	to avoid errors in servicing read/write requests.
686  */
687 int mmc_stop_bkops(struct mmc_card *card)
688 {
689 	int err = 0;
690 
691 	BUG_ON(!card);
692 	err = mmc_interrupt_hpi(card);
693 
694 	/*
695 	 * If err is EINVAL, we can't issue an HPI.
696 	 * It should complete the BKOPS.
697 	 */
698 	if (!err || (err == -EINVAL)) {
699 		mmc_card_clr_doing_bkops(card);
700 		err = 0;
701 	}
702 
703 	return err;
704 }
705 EXPORT_SYMBOL(mmc_stop_bkops);
706 
707 int mmc_read_bkops_status(struct mmc_card *card)
708 {
709 	int err;
710 	u8 *ext_csd;
711 
712 	/*
713 	 * In future work, we should consider storing the entire ext_csd.
714 	 */
715 	ext_csd = kmalloc(512, GFP_KERNEL);
716 	if (!ext_csd) {
717 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 		       mmc_hostname(card->host));
719 		return -ENOMEM;
720 	}
721 
722 	mmc_claim_host(card->host);
723 	err = mmc_send_ext_csd(card, ext_csd);
724 	mmc_release_host(card->host);
725 	if (err)
726 		goto out;
727 
728 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730 out:
731 	kfree(ext_csd);
732 	return err;
733 }
734 EXPORT_SYMBOL(mmc_read_bkops_status);
735 
736 /**
737  *	mmc_set_data_timeout - set the timeout for a data command
738  *	@data: data phase for command
739  *	@card: the MMC card associated with the data transfer
740  *
741  *	Computes the data timeout parameters according to the
742  *	correct algorithm given the card type.
743  */
744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745 {
746 	unsigned int mult;
747 
748 	/*
749 	 * SDIO cards only define an upper 1 s limit on access.
750 	 */
751 	if (mmc_card_sdio(card)) {
752 		data->timeout_ns = 1000000000;
753 		data->timeout_clks = 0;
754 		return;
755 	}
756 
757 	/*
758 	 * SD cards use a 100 multiplier rather than 10
759 	 */
760 	mult = mmc_card_sd(card) ? 100 : 10;
761 
762 	/*
763 	 * Scale up the multiplier (and therefore the timeout) by
764 	 * the r2w factor for writes.
765 	 */
766 	if (data->flags & MMC_DATA_WRITE)
767 		mult <<= card->csd.r2w_factor;
768 
769 	data->timeout_ns = card->csd.tacc_ns * mult;
770 	data->timeout_clks = card->csd.tacc_clks * mult;
771 
772 	/*
773 	 * SD cards also have an upper limit on the timeout.
774 	 */
775 	if (mmc_card_sd(card)) {
776 		unsigned int timeout_us, limit_us;
777 
778 		timeout_us = data->timeout_ns / 1000;
779 		if (mmc_host_clk_rate(card->host))
780 			timeout_us += data->timeout_clks * 1000 /
781 				(mmc_host_clk_rate(card->host) / 1000);
782 
783 		if (data->flags & MMC_DATA_WRITE)
784 			/*
785 			 * The MMC spec "It is strongly recommended
786 			 * for hosts to implement more than 500ms
787 			 * timeout value even if the card indicates
788 			 * the 250ms maximum busy length."  Even the
789 			 * previous value of 300ms is known to be
790 			 * insufficient for some cards.
791 			 */
792 			limit_us = 3000000;
793 		else
794 			limit_us = 100000;
795 
796 		/*
797 		 * SDHC cards always use these fixed values.
798 		 */
799 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 			data->timeout_ns = limit_us * 1000;
801 			data->timeout_clks = 0;
802 		}
803 	}
804 
805 	/*
806 	 * Some cards require longer data read timeout than indicated in CSD.
807 	 * Address this by setting the read timeout to a "reasonably high"
808 	 * value. For the cards tested, 300ms has proven enough. If necessary,
809 	 * this value can be increased if other problematic cards require this.
810 	 */
811 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
812 		data->timeout_ns = 300000000;
813 		data->timeout_clks = 0;
814 	}
815 
816 	/*
817 	 * Some cards need very high timeouts if driven in SPI mode.
818 	 * The worst observed timeout was 900ms after writing a
819 	 * continuous stream of data until the internal logic
820 	 * overflowed.
821 	 */
822 	if (mmc_host_is_spi(card->host)) {
823 		if (data->flags & MMC_DATA_WRITE) {
824 			if (data->timeout_ns < 1000000000)
825 				data->timeout_ns = 1000000000;	/* 1s */
826 		} else {
827 			if (data->timeout_ns < 100000000)
828 				data->timeout_ns =  100000000;	/* 100ms */
829 		}
830 	}
831 }
832 EXPORT_SYMBOL(mmc_set_data_timeout);
833 
834 /**
835  *	mmc_align_data_size - pads a transfer size to a more optimal value
836  *	@card: the MMC card associated with the data transfer
837  *	@sz: original transfer size
838  *
839  *	Pads the original data size with a number of extra bytes in
840  *	order to avoid controller bugs and/or performance hits
841  *	(e.g. some controllers revert to PIO for certain sizes).
842  *
843  *	Returns the improved size, which might be unmodified.
844  *
845  *	Note that this function is only relevant when issuing a
846  *	single scatter gather entry.
847  */
848 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
849 {
850 	/*
851 	 * FIXME: We don't have a system for the controller to tell
852 	 * the core about its problems yet, so for now we just 32-bit
853 	 * align the size.
854 	 */
855 	sz = ((sz + 3) / 4) * 4;
856 
857 	return sz;
858 }
859 EXPORT_SYMBOL(mmc_align_data_size);
860 
861 /**
862  *	__mmc_claim_host - exclusively claim a host
863  *	@host: mmc host to claim
864  *	@abort: whether or not the operation should be aborted
865  *
866  *	Claim a host for a set of operations.  If @abort is non null and
867  *	dereference a non-zero value then this will return prematurely with
868  *	that non-zero value without acquiring the lock.  Returns zero
869  *	with the lock held otherwise.
870  */
871 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
872 {
873 	DECLARE_WAITQUEUE(wait, current);
874 	unsigned long flags;
875 	int stop;
876 
877 	might_sleep();
878 
879 	add_wait_queue(&host->wq, &wait);
880 	spin_lock_irqsave(&host->lock, flags);
881 	while (1) {
882 		set_current_state(TASK_UNINTERRUPTIBLE);
883 		stop = abort ? atomic_read(abort) : 0;
884 		if (stop || !host->claimed || host->claimer == current)
885 			break;
886 		spin_unlock_irqrestore(&host->lock, flags);
887 		schedule();
888 		spin_lock_irqsave(&host->lock, flags);
889 	}
890 	set_current_state(TASK_RUNNING);
891 	if (!stop) {
892 		host->claimed = 1;
893 		host->claimer = current;
894 		host->claim_cnt += 1;
895 	} else
896 		wake_up(&host->wq);
897 	spin_unlock_irqrestore(&host->lock, flags);
898 	remove_wait_queue(&host->wq, &wait);
899 	if (host->ops->enable && !stop && host->claim_cnt == 1)
900 		host->ops->enable(host);
901 	return stop;
902 }
903 
904 EXPORT_SYMBOL(__mmc_claim_host);
905 
906 /**
907  *	mmc_release_host - release a host
908  *	@host: mmc host to release
909  *
910  *	Release a MMC host, allowing others to claim the host
911  *	for their operations.
912  */
913 void mmc_release_host(struct mmc_host *host)
914 {
915 	unsigned long flags;
916 
917 	WARN_ON(!host->claimed);
918 
919 	if (host->ops->disable && host->claim_cnt == 1)
920 		host->ops->disable(host);
921 
922 	spin_lock_irqsave(&host->lock, flags);
923 	if (--host->claim_cnt) {
924 		/* Release for nested claim */
925 		spin_unlock_irqrestore(&host->lock, flags);
926 	} else {
927 		host->claimed = 0;
928 		host->claimer = NULL;
929 		spin_unlock_irqrestore(&host->lock, flags);
930 		wake_up(&host->wq);
931 	}
932 }
933 EXPORT_SYMBOL(mmc_release_host);
934 
935 /*
936  * This is a helper function, which fetches a runtime pm reference for the
937  * card device and also claims the host.
938  */
939 void mmc_get_card(struct mmc_card *card)
940 {
941 	pm_runtime_get_sync(&card->dev);
942 	mmc_claim_host(card->host);
943 }
944 EXPORT_SYMBOL(mmc_get_card);
945 
946 /*
947  * This is a helper function, which releases the host and drops the runtime
948  * pm reference for the card device.
949  */
950 void mmc_put_card(struct mmc_card *card)
951 {
952 	mmc_release_host(card->host);
953 	pm_runtime_mark_last_busy(&card->dev);
954 	pm_runtime_put_autosuspend(&card->dev);
955 }
956 EXPORT_SYMBOL(mmc_put_card);
957 
958 /*
959  * Internal function that does the actual ios call to the host driver,
960  * optionally printing some debug output.
961  */
962 static inline void mmc_set_ios(struct mmc_host *host)
963 {
964 	struct mmc_ios *ios = &host->ios;
965 
966 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
967 		"width %u timing %u\n",
968 		 mmc_hostname(host), ios->clock, ios->bus_mode,
969 		 ios->power_mode, ios->chip_select, ios->vdd,
970 		 ios->bus_width, ios->timing);
971 
972 	if (ios->clock > 0)
973 		mmc_set_ungated(host);
974 	host->ops->set_ios(host, ios);
975 }
976 
977 /*
978  * Control chip select pin on a host.
979  */
980 void mmc_set_chip_select(struct mmc_host *host, int mode)
981 {
982 	mmc_host_clk_hold(host);
983 	host->ios.chip_select = mode;
984 	mmc_set_ios(host);
985 	mmc_host_clk_release(host);
986 }
987 
988 /*
989  * Sets the host clock to the highest possible frequency that
990  * is below "hz".
991  */
992 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
993 {
994 	WARN_ON(hz < host->f_min);
995 
996 	if (hz > host->f_max)
997 		hz = host->f_max;
998 
999 	host->ios.clock = hz;
1000 	mmc_set_ios(host);
1001 }
1002 
1003 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004 {
1005 	mmc_host_clk_hold(host);
1006 	__mmc_set_clock(host, hz);
1007 	mmc_host_clk_release(host);
1008 }
1009 
1010 #ifdef CONFIG_MMC_CLKGATE
1011 /*
1012  * This gates the clock by setting it to 0 Hz.
1013  */
1014 void mmc_gate_clock(struct mmc_host *host)
1015 {
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&host->clk_lock, flags);
1019 	host->clk_old = host->ios.clock;
1020 	host->ios.clock = 0;
1021 	host->clk_gated = true;
1022 	spin_unlock_irqrestore(&host->clk_lock, flags);
1023 	mmc_set_ios(host);
1024 }
1025 
1026 /*
1027  * This restores the clock from gating by using the cached
1028  * clock value.
1029  */
1030 void mmc_ungate_clock(struct mmc_host *host)
1031 {
1032 	/*
1033 	 * We should previously have gated the clock, so the clock shall
1034 	 * be 0 here! The clock may however be 0 during initialization,
1035 	 * when some request operations are performed before setting
1036 	 * the frequency. When ungate is requested in that situation
1037 	 * we just ignore the call.
1038 	 */
1039 	if (host->clk_old) {
1040 		BUG_ON(host->ios.clock);
1041 		/* This call will also set host->clk_gated to false */
1042 		__mmc_set_clock(host, host->clk_old);
1043 	}
1044 }
1045 
1046 void mmc_set_ungated(struct mmc_host *host)
1047 {
1048 	unsigned long flags;
1049 
1050 	/*
1051 	 * We've been given a new frequency while the clock is gated,
1052 	 * so make sure we regard this as ungating it.
1053 	 */
1054 	spin_lock_irqsave(&host->clk_lock, flags);
1055 	host->clk_gated = false;
1056 	spin_unlock_irqrestore(&host->clk_lock, flags);
1057 }
1058 
1059 #else
1060 void mmc_set_ungated(struct mmc_host *host)
1061 {
1062 }
1063 #endif
1064 
1065 /*
1066  * Change the bus mode (open drain/push-pull) of a host.
1067  */
1068 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069 {
1070 	mmc_host_clk_hold(host);
1071 	host->ios.bus_mode = mode;
1072 	mmc_set_ios(host);
1073 	mmc_host_clk_release(host);
1074 }
1075 
1076 /*
1077  * Change data bus width of a host.
1078  */
1079 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080 {
1081 	mmc_host_clk_hold(host);
1082 	host->ios.bus_width = width;
1083 	mmc_set_ios(host);
1084 	mmc_host_clk_release(host);
1085 }
1086 
1087 /**
1088  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089  * @vdd:	voltage (mV)
1090  * @low_bits:	prefer low bits in boundary cases
1091  *
1092  * This function returns the OCR bit number according to the provided @vdd
1093  * value. If conversion is not possible a negative errno value returned.
1094  *
1095  * Depending on the @low_bits flag the function prefers low or high OCR bits
1096  * on boundary voltages. For example,
1097  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099  *
1100  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101  */
1102 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103 {
1104 	const int max_bit = ilog2(MMC_VDD_35_36);
1105 	int bit;
1106 
1107 	if (vdd < 1650 || vdd > 3600)
1108 		return -EINVAL;
1109 
1110 	if (vdd >= 1650 && vdd <= 1950)
1111 		return ilog2(MMC_VDD_165_195);
1112 
1113 	if (low_bits)
1114 		vdd -= 1;
1115 
1116 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117 	bit = (vdd - 2000) / 100 + 8;
1118 	if (bit > max_bit)
1119 		return max_bit;
1120 	return bit;
1121 }
1122 
1123 /**
1124  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125  * @vdd_min:	minimum voltage value (mV)
1126  * @vdd_max:	maximum voltage value (mV)
1127  *
1128  * This function returns the OCR mask bits according to the provided @vdd_min
1129  * and @vdd_max values. If conversion is not possible the function returns 0.
1130  *
1131  * Notes wrt boundary cases:
1132  * This function sets the OCR bits for all boundary voltages, for example
1133  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134  * MMC_VDD_34_35 mask.
1135  */
1136 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137 {
1138 	u32 mask = 0;
1139 
1140 	if (vdd_max < vdd_min)
1141 		return 0;
1142 
1143 	/* Prefer high bits for the boundary vdd_max values. */
1144 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145 	if (vdd_max < 0)
1146 		return 0;
1147 
1148 	/* Prefer low bits for the boundary vdd_min values. */
1149 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150 	if (vdd_min < 0)
1151 		return 0;
1152 
1153 	/* Fill the mask, from max bit to min bit. */
1154 	while (vdd_max >= vdd_min)
1155 		mask |= 1 << vdd_max--;
1156 
1157 	return mask;
1158 }
1159 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160 
1161 #ifdef CONFIG_OF
1162 
1163 /**
1164  * mmc_of_parse_voltage - return mask of supported voltages
1165  * @np: The device node need to be parsed.
1166  * @mask: mask of voltages available for MMC/SD/SDIO
1167  *
1168  * 1. Return zero on success.
1169  * 2. Return negative errno: voltage-range is invalid.
1170  */
1171 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172 {
1173 	const u32 *voltage_ranges;
1174 	int num_ranges, i;
1175 
1176 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178 	if (!voltage_ranges || !num_ranges) {
1179 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180 		return -EINVAL;
1181 	}
1182 
1183 	for (i = 0; i < num_ranges; i++) {
1184 		const int j = i * 2;
1185 		u32 ocr_mask;
1186 
1187 		ocr_mask = mmc_vddrange_to_ocrmask(
1188 				be32_to_cpu(voltage_ranges[j]),
1189 				be32_to_cpu(voltage_ranges[j + 1]));
1190 		if (!ocr_mask) {
1191 			pr_err("%s: voltage-range #%d is invalid\n",
1192 				np->full_name, i);
1193 			return -EINVAL;
1194 		}
1195 		*mask |= ocr_mask;
1196 	}
1197 
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL(mmc_of_parse_voltage);
1201 
1202 #endif /* CONFIG_OF */
1203 
1204 #ifdef CONFIG_REGULATOR
1205 
1206 /**
1207  * mmc_regulator_get_ocrmask - return mask of supported voltages
1208  * @supply: regulator to use
1209  *
1210  * This returns either a negative errno, or a mask of voltages that
1211  * can be provided to MMC/SD/SDIO devices using the specified voltage
1212  * regulator.  This would normally be called before registering the
1213  * MMC host adapter.
1214  */
1215 int mmc_regulator_get_ocrmask(struct regulator *supply)
1216 {
1217 	int			result = 0;
1218 	int			count;
1219 	int			i;
1220 
1221 	count = regulator_count_voltages(supply);
1222 	if (count < 0)
1223 		return count;
1224 
1225 	for (i = 0; i < count; i++) {
1226 		int		vdd_uV;
1227 		int		vdd_mV;
1228 
1229 		vdd_uV = regulator_list_voltage(supply, i);
1230 		if (vdd_uV <= 0)
1231 			continue;
1232 
1233 		vdd_mV = vdd_uV / 1000;
1234 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235 	}
1236 
1237 	return result;
1238 }
1239 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240 
1241 /**
1242  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243  * @mmc: the host to regulate
1244  * @supply: regulator to use
1245  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246  *
1247  * Returns zero on success, else negative errno.
1248  *
1249  * MMC host drivers may use this to enable or disable a regulator using
1250  * a particular supply voltage.  This would normally be called from the
1251  * set_ios() method.
1252  */
1253 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254 			struct regulator *supply,
1255 			unsigned short vdd_bit)
1256 {
1257 	int			result = 0;
1258 	int			min_uV, max_uV;
1259 
1260 	if (vdd_bit) {
1261 		int		tmp;
1262 		int		voltage;
1263 
1264 		/*
1265 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266 		 * bits this regulator doesn't quite support ... don't
1267 		 * be too picky, most cards and regulators are OK with
1268 		 * a 0.1V range goof (it's a small error percentage).
1269 		 */
1270 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271 		if (tmp == 0) {
1272 			min_uV = 1650 * 1000;
1273 			max_uV = 1950 * 1000;
1274 		} else {
1275 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276 			max_uV = min_uV + 100 * 1000;
1277 		}
1278 
1279 		/*
1280 		 * If we're using a fixed/static regulator, don't call
1281 		 * regulator_set_voltage; it would fail.
1282 		 */
1283 		voltage = regulator_get_voltage(supply);
1284 
1285 		if (!regulator_can_change_voltage(supply))
1286 			min_uV = max_uV = voltage;
1287 
1288 		if (voltage < 0)
1289 			result = voltage;
1290 		else if (voltage < min_uV || voltage > max_uV)
1291 			result = regulator_set_voltage(supply, min_uV, max_uV);
1292 		else
1293 			result = 0;
1294 
1295 		if (result == 0 && !mmc->regulator_enabled) {
1296 			result = regulator_enable(supply);
1297 			if (!result)
1298 				mmc->regulator_enabled = true;
1299 		}
1300 	} else if (mmc->regulator_enabled) {
1301 		result = regulator_disable(supply);
1302 		if (result == 0)
1303 			mmc->regulator_enabled = false;
1304 	}
1305 
1306 	if (result)
1307 		dev_err(mmc_dev(mmc),
1308 			"could not set regulator OCR (%d)\n", result);
1309 	return result;
1310 }
1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312 
1313 int mmc_regulator_get_supply(struct mmc_host *mmc)
1314 {
1315 	struct device *dev = mmc_dev(mmc);
1316 	struct regulator *supply;
1317 	int ret;
1318 
1319 	supply = devm_regulator_get(dev, "vmmc");
1320 	mmc->supply.vmmc = supply;
1321 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322 
1323 	if (IS_ERR(supply))
1324 		return PTR_ERR(supply);
1325 
1326 	ret = mmc_regulator_get_ocrmask(supply);
1327 	if (ret > 0)
1328 		mmc->ocr_avail = ret;
1329 	else
1330 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335 
1336 #endif /* CONFIG_REGULATOR */
1337 
1338 /*
1339  * Mask off any voltages we don't support and select
1340  * the lowest voltage
1341  */
1342 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343 {
1344 	int bit;
1345 
1346 	/*
1347 	 * Sanity check the voltages that the card claims to
1348 	 * support.
1349 	 */
1350 	if (ocr & 0x7F) {
1351 		dev_warn(mmc_dev(host),
1352 		"card claims to support voltages below defined range\n");
1353 		ocr &= ~0x7F;
1354 	}
1355 
1356 	ocr &= host->ocr_avail;
1357 	if (!ocr) {
1358 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359 		return 0;
1360 	}
1361 
1362 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363 		bit = ffs(ocr) - 1;
1364 		ocr &= 3 << bit;
1365 		mmc_power_cycle(host, ocr);
1366 	} else {
1367 		bit = fls(ocr) - 1;
1368 		ocr &= 3 << bit;
1369 		if (bit != host->ios.vdd)
1370 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371 	}
1372 
1373 	return ocr;
1374 }
1375 
1376 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377 {
1378 	int err = 0;
1379 	int old_signal_voltage = host->ios.signal_voltage;
1380 
1381 	host->ios.signal_voltage = signal_voltage;
1382 	if (host->ops->start_signal_voltage_switch) {
1383 		mmc_host_clk_hold(host);
1384 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385 		mmc_host_clk_release(host);
1386 	}
1387 
1388 	if (err)
1389 		host->ios.signal_voltage = old_signal_voltage;
1390 
1391 	return err;
1392 
1393 }
1394 
1395 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396 {
1397 	struct mmc_command cmd = {0};
1398 	int err = 0;
1399 	u32 clock;
1400 
1401 	BUG_ON(!host);
1402 
1403 	/*
1404 	 * Send CMD11 only if the request is to switch the card to
1405 	 * 1.8V signalling.
1406 	 */
1407 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 		return __mmc_set_signal_voltage(host, signal_voltage);
1409 
1410 	/*
1411 	 * If we cannot switch voltages, return failure so the caller
1412 	 * can continue without UHS mode
1413 	 */
1414 	if (!host->ops->start_signal_voltage_switch)
1415 		return -EPERM;
1416 	if (!host->ops->card_busy)
1417 		pr_warning("%s: cannot verify signal voltage switch\n",
1418 				mmc_hostname(host));
1419 
1420 	cmd.opcode = SD_SWITCH_VOLTAGE;
1421 	cmd.arg = 0;
1422 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423 
1424 	err = mmc_wait_for_cmd(host, &cmd, 0);
1425 	if (err)
1426 		return err;
1427 
1428 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429 		return -EIO;
1430 
1431 	mmc_host_clk_hold(host);
1432 	/*
1433 	 * The card should drive cmd and dat[0:3] low immediately
1434 	 * after the response of cmd11, but wait 1 ms to be sure
1435 	 */
1436 	mmc_delay(1);
1437 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438 		err = -EAGAIN;
1439 		goto power_cycle;
1440 	}
1441 	/*
1442 	 * During a signal voltage level switch, the clock must be gated
1443 	 * for 5 ms according to the SD spec
1444 	 */
1445 	clock = host->ios.clock;
1446 	host->ios.clock = 0;
1447 	mmc_set_ios(host);
1448 
1449 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450 		/*
1451 		 * Voltages may not have been switched, but we've already
1452 		 * sent CMD11, so a power cycle is required anyway
1453 		 */
1454 		err = -EAGAIN;
1455 		goto power_cycle;
1456 	}
1457 
1458 	/* Keep clock gated for at least 5 ms */
1459 	mmc_delay(5);
1460 	host->ios.clock = clock;
1461 	mmc_set_ios(host);
1462 
1463 	/* Wait for at least 1 ms according to spec */
1464 	mmc_delay(1);
1465 
1466 	/*
1467 	 * Failure to switch is indicated by the card holding
1468 	 * dat[0:3] low
1469 	 */
1470 	if (host->ops->card_busy && host->ops->card_busy(host))
1471 		err = -EAGAIN;
1472 
1473 power_cycle:
1474 	if (err) {
1475 		pr_debug("%s: Signal voltage switch failed, "
1476 			"power cycling card\n", mmc_hostname(host));
1477 		mmc_power_cycle(host, ocr);
1478 	}
1479 
1480 	mmc_host_clk_release(host);
1481 
1482 	return err;
1483 }
1484 
1485 /*
1486  * Select timing parameters for host.
1487  */
1488 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489 {
1490 	mmc_host_clk_hold(host);
1491 	host->ios.timing = timing;
1492 	mmc_set_ios(host);
1493 	mmc_host_clk_release(host);
1494 }
1495 
1496 /*
1497  * Select appropriate driver type for host.
1498  */
1499 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500 {
1501 	mmc_host_clk_hold(host);
1502 	host->ios.drv_type = drv_type;
1503 	mmc_set_ios(host);
1504 	mmc_host_clk_release(host);
1505 }
1506 
1507 /*
1508  * Apply power to the MMC stack.  This is a two-stage process.
1509  * First, we enable power to the card without the clock running.
1510  * We then wait a bit for the power to stabilise.  Finally,
1511  * enable the bus drivers and clock to the card.
1512  *
1513  * We must _NOT_ enable the clock prior to power stablising.
1514  *
1515  * If a host does all the power sequencing itself, ignore the
1516  * initial MMC_POWER_UP stage.
1517  */
1518 void mmc_power_up(struct mmc_host *host, u32 ocr)
1519 {
1520 	if (host->ios.power_mode == MMC_POWER_ON)
1521 		return;
1522 
1523 	mmc_host_clk_hold(host);
1524 
1525 	host->ios.vdd = fls(ocr) - 1;
1526 	if (mmc_host_is_spi(host))
1527 		host->ios.chip_select = MMC_CS_HIGH;
1528 	else
1529 		host->ios.chip_select = MMC_CS_DONTCARE;
1530 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531 	host->ios.power_mode = MMC_POWER_UP;
1532 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533 	host->ios.timing = MMC_TIMING_LEGACY;
1534 	mmc_set_ios(host);
1535 
1536 	/* Set signal voltage to 3.3V */
1537 	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538 
1539 	/*
1540 	 * This delay should be sufficient to allow the power supply
1541 	 * to reach the minimum voltage.
1542 	 */
1543 	mmc_delay(10);
1544 
1545 	host->ios.clock = host->f_init;
1546 
1547 	host->ios.power_mode = MMC_POWER_ON;
1548 	mmc_set_ios(host);
1549 
1550 	/*
1551 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552 	 * time required to reach a stable voltage.
1553 	 */
1554 	mmc_delay(10);
1555 
1556 	mmc_host_clk_release(host);
1557 }
1558 
1559 void mmc_power_off(struct mmc_host *host)
1560 {
1561 	if (host->ios.power_mode == MMC_POWER_OFF)
1562 		return;
1563 
1564 	mmc_host_clk_hold(host);
1565 
1566 	host->ios.clock = 0;
1567 	host->ios.vdd = 0;
1568 
1569 	if (!mmc_host_is_spi(host)) {
1570 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571 		host->ios.chip_select = MMC_CS_DONTCARE;
1572 	}
1573 	host->ios.power_mode = MMC_POWER_OFF;
1574 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575 	host->ios.timing = MMC_TIMING_LEGACY;
1576 	mmc_set_ios(host);
1577 
1578 	/*
1579 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580 	 * XO-1.5, require a short delay after poweroff before the card
1581 	 * can be successfully turned on again.
1582 	 */
1583 	mmc_delay(1);
1584 
1585 	mmc_host_clk_release(host);
1586 }
1587 
1588 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589 {
1590 	mmc_power_off(host);
1591 	/* Wait at least 1 ms according to SD spec */
1592 	mmc_delay(1);
1593 	mmc_power_up(host, ocr);
1594 }
1595 
1596 /*
1597  * Cleanup when the last reference to the bus operator is dropped.
1598  */
1599 static void __mmc_release_bus(struct mmc_host *host)
1600 {
1601 	BUG_ON(!host);
1602 	BUG_ON(host->bus_refs);
1603 	BUG_ON(!host->bus_dead);
1604 
1605 	host->bus_ops = NULL;
1606 }
1607 
1608 /*
1609  * Increase reference count of bus operator
1610  */
1611 static inline void mmc_bus_get(struct mmc_host *host)
1612 {
1613 	unsigned long flags;
1614 
1615 	spin_lock_irqsave(&host->lock, flags);
1616 	host->bus_refs++;
1617 	spin_unlock_irqrestore(&host->lock, flags);
1618 }
1619 
1620 /*
1621  * Decrease reference count of bus operator and free it if
1622  * it is the last reference.
1623  */
1624 static inline void mmc_bus_put(struct mmc_host *host)
1625 {
1626 	unsigned long flags;
1627 
1628 	spin_lock_irqsave(&host->lock, flags);
1629 	host->bus_refs--;
1630 	if ((host->bus_refs == 0) && host->bus_ops)
1631 		__mmc_release_bus(host);
1632 	spin_unlock_irqrestore(&host->lock, flags);
1633 }
1634 
1635 /*
1636  * Assign a mmc bus handler to a host. Only one bus handler may control a
1637  * host at any given time.
1638  */
1639 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640 {
1641 	unsigned long flags;
1642 
1643 	BUG_ON(!host);
1644 	BUG_ON(!ops);
1645 
1646 	WARN_ON(!host->claimed);
1647 
1648 	spin_lock_irqsave(&host->lock, flags);
1649 
1650 	BUG_ON(host->bus_ops);
1651 	BUG_ON(host->bus_refs);
1652 
1653 	host->bus_ops = ops;
1654 	host->bus_refs = 1;
1655 	host->bus_dead = 0;
1656 
1657 	spin_unlock_irqrestore(&host->lock, flags);
1658 }
1659 
1660 /*
1661  * Remove the current bus handler from a host.
1662  */
1663 void mmc_detach_bus(struct mmc_host *host)
1664 {
1665 	unsigned long flags;
1666 
1667 	BUG_ON(!host);
1668 
1669 	WARN_ON(!host->claimed);
1670 	WARN_ON(!host->bus_ops);
1671 
1672 	spin_lock_irqsave(&host->lock, flags);
1673 
1674 	host->bus_dead = 1;
1675 
1676 	spin_unlock_irqrestore(&host->lock, flags);
1677 
1678 	mmc_bus_put(host);
1679 }
1680 
1681 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682 				bool cd_irq)
1683 {
1684 #ifdef CONFIG_MMC_DEBUG
1685 	unsigned long flags;
1686 	spin_lock_irqsave(&host->lock, flags);
1687 	WARN_ON(host->removed);
1688 	spin_unlock_irqrestore(&host->lock, flags);
1689 #endif
1690 
1691 	/*
1692 	 * If the device is configured as wakeup, we prevent a new sleep for
1693 	 * 5 s to give provision for user space to consume the event.
1694 	 */
1695 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696 		device_can_wakeup(mmc_dev(host)))
1697 		pm_wakeup_event(mmc_dev(host), 5000);
1698 
1699 	host->detect_change = 1;
1700 	mmc_schedule_delayed_work(&host->detect, delay);
1701 }
1702 
1703 /**
1704  *	mmc_detect_change - process change of state on a MMC socket
1705  *	@host: host which changed state.
1706  *	@delay: optional delay to wait before detection (jiffies)
1707  *
1708  *	MMC drivers should call this when they detect a card has been
1709  *	inserted or removed. The MMC layer will confirm that any
1710  *	present card is still functional, and initialize any newly
1711  *	inserted.
1712  */
1713 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714 {
1715 	_mmc_detect_change(host, delay, true);
1716 }
1717 EXPORT_SYMBOL(mmc_detect_change);
1718 
1719 void mmc_init_erase(struct mmc_card *card)
1720 {
1721 	unsigned int sz;
1722 
1723 	if (is_power_of_2(card->erase_size))
1724 		card->erase_shift = ffs(card->erase_size) - 1;
1725 	else
1726 		card->erase_shift = 0;
1727 
1728 	/*
1729 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730 	 * card.  That is not desirable because it can take a long time
1731 	 * (minutes) potentially delaying more important I/O, and also the
1732 	 * timeout calculations become increasingly hugely over-estimated.
1733 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734 	 * to that size and alignment.
1735 	 *
1736 	 * For SD cards that define Allocation Unit size, limit erases to one
1737 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738 	 * Erase Size, whether it is switched on or not, limit to that size.
1739 	 * Otherwise just have a stab at a good value.  For modern cards it
1740 	 * will end up being 4MiB.  Note that if the value is too small, it
1741 	 * can end up taking longer to erase.
1742 	 */
1743 	if (mmc_card_sd(card) && card->ssr.au) {
1744 		card->pref_erase = card->ssr.au;
1745 		card->erase_shift = ffs(card->ssr.au) - 1;
1746 	} else if (card->ext_csd.hc_erase_size) {
1747 		card->pref_erase = card->ext_csd.hc_erase_size;
1748 	} else {
1749 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750 		if (sz < 128)
1751 			card->pref_erase = 512 * 1024 / 512;
1752 		else if (sz < 512)
1753 			card->pref_erase = 1024 * 1024 / 512;
1754 		else if (sz < 1024)
1755 			card->pref_erase = 2 * 1024 * 1024 / 512;
1756 		else
1757 			card->pref_erase = 4 * 1024 * 1024 / 512;
1758 		if (card->pref_erase < card->erase_size)
1759 			card->pref_erase = card->erase_size;
1760 		else {
1761 			sz = card->pref_erase % card->erase_size;
1762 			if (sz)
1763 				card->pref_erase += card->erase_size - sz;
1764 		}
1765 	}
1766 }
1767 
1768 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769 				          unsigned int arg, unsigned int qty)
1770 {
1771 	unsigned int erase_timeout;
1772 
1773 	if (arg == MMC_DISCARD_ARG ||
1774 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775 		erase_timeout = card->ext_csd.trim_timeout;
1776 	} else if (card->ext_csd.erase_group_def & 1) {
1777 		/* High Capacity Erase Group Size uses HC timeouts */
1778 		if (arg == MMC_TRIM_ARG)
1779 			erase_timeout = card->ext_csd.trim_timeout;
1780 		else
1781 			erase_timeout = card->ext_csd.hc_erase_timeout;
1782 	} else {
1783 		/* CSD Erase Group Size uses write timeout */
1784 		unsigned int mult = (10 << card->csd.r2w_factor);
1785 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786 		unsigned int timeout_us;
1787 
1788 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789 		if (card->csd.tacc_ns < 1000000)
1790 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791 		else
1792 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793 
1794 		/*
1795 		 * ios.clock is only a target.  The real clock rate might be
1796 		 * less but not that much less, so fudge it by multiplying by 2.
1797 		 */
1798 		timeout_clks <<= 1;
1799 		timeout_us += (timeout_clks * 1000) /
1800 			      (mmc_host_clk_rate(card->host) / 1000);
1801 
1802 		erase_timeout = timeout_us / 1000;
1803 
1804 		/*
1805 		 * Theoretically, the calculation could underflow so round up
1806 		 * to 1ms in that case.
1807 		 */
1808 		if (!erase_timeout)
1809 			erase_timeout = 1;
1810 	}
1811 
1812 	/* Multiplier for secure operations */
1813 	if (arg & MMC_SECURE_ARGS) {
1814 		if (arg == MMC_SECURE_ERASE_ARG)
1815 			erase_timeout *= card->ext_csd.sec_erase_mult;
1816 		else
1817 			erase_timeout *= card->ext_csd.sec_trim_mult;
1818 	}
1819 
1820 	erase_timeout *= qty;
1821 
1822 	/*
1823 	 * Ensure at least a 1 second timeout for SPI as per
1824 	 * 'mmc_set_data_timeout()'
1825 	 */
1826 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827 		erase_timeout = 1000;
1828 
1829 	return erase_timeout;
1830 }
1831 
1832 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833 					 unsigned int arg,
1834 					 unsigned int qty)
1835 {
1836 	unsigned int erase_timeout;
1837 
1838 	if (card->ssr.erase_timeout) {
1839 		/* Erase timeout specified in SD Status Register (SSR) */
1840 		erase_timeout = card->ssr.erase_timeout * qty +
1841 				card->ssr.erase_offset;
1842 	} else {
1843 		/*
1844 		 * Erase timeout not specified in SD Status Register (SSR) so
1845 		 * use 250ms per write block.
1846 		 */
1847 		erase_timeout = 250 * qty;
1848 	}
1849 
1850 	/* Must not be less than 1 second */
1851 	if (erase_timeout < 1000)
1852 		erase_timeout = 1000;
1853 
1854 	return erase_timeout;
1855 }
1856 
1857 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858 				      unsigned int arg,
1859 				      unsigned int qty)
1860 {
1861 	if (mmc_card_sd(card))
1862 		return mmc_sd_erase_timeout(card, arg, qty);
1863 	else
1864 		return mmc_mmc_erase_timeout(card, arg, qty);
1865 }
1866 
1867 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868 			unsigned int to, unsigned int arg)
1869 {
1870 	struct mmc_command cmd = {0};
1871 	unsigned int qty = 0;
1872 	unsigned long timeout;
1873 	int err;
1874 
1875 	/*
1876 	 * qty is used to calculate the erase timeout which depends on how many
1877 	 * erase groups (or allocation units in SD terminology) are affected.
1878 	 * We count erasing part of an erase group as one erase group.
1879 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880 	 * erase group size is almost certainly also power of 2, but it does not
1881 	 * seem to insist on that in the JEDEC standard, so we fall back to
1882 	 * division in that case.  SD may not specify an allocation unit size,
1883 	 * in which case the timeout is based on the number of write blocks.
1884 	 *
1885 	 * Note that the timeout for secure trim 2 will only be correct if the
1886 	 * number of erase groups specified is the same as the total of all
1887 	 * preceding secure trim 1 commands.  Since the power may have been
1888 	 * lost since the secure trim 1 commands occurred, it is generally
1889 	 * impossible to calculate the secure trim 2 timeout correctly.
1890 	 */
1891 	if (card->erase_shift)
1892 		qty += ((to >> card->erase_shift) -
1893 			(from >> card->erase_shift)) + 1;
1894 	else if (mmc_card_sd(card))
1895 		qty += to - from + 1;
1896 	else
1897 		qty += ((to / card->erase_size) -
1898 			(from / card->erase_size)) + 1;
1899 
1900 	if (!mmc_card_blockaddr(card)) {
1901 		from <<= 9;
1902 		to <<= 9;
1903 	}
1904 
1905 	if (mmc_card_sd(card))
1906 		cmd.opcode = SD_ERASE_WR_BLK_START;
1907 	else
1908 		cmd.opcode = MMC_ERASE_GROUP_START;
1909 	cmd.arg = from;
1910 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912 	if (err) {
1913 		pr_err("mmc_erase: group start error %d, "
1914 		       "status %#x\n", err, cmd.resp[0]);
1915 		err = -EIO;
1916 		goto out;
1917 	}
1918 
1919 	memset(&cmd, 0, sizeof(struct mmc_command));
1920 	if (mmc_card_sd(card))
1921 		cmd.opcode = SD_ERASE_WR_BLK_END;
1922 	else
1923 		cmd.opcode = MMC_ERASE_GROUP_END;
1924 	cmd.arg = to;
1925 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 	if (err) {
1928 		pr_err("mmc_erase: group end error %d, status %#x\n",
1929 		       err, cmd.resp[0]);
1930 		err = -EIO;
1931 		goto out;
1932 	}
1933 
1934 	memset(&cmd, 0, sizeof(struct mmc_command));
1935 	cmd.opcode = MMC_ERASE;
1936 	cmd.arg = arg;
1937 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 	if (err) {
1941 		pr_err("mmc_erase: erase error %d, status %#x\n",
1942 		       err, cmd.resp[0]);
1943 		err = -EIO;
1944 		goto out;
1945 	}
1946 
1947 	if (mmc_host_is_spi(card->host))
1948 		goto out;
1949 
1950 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951 	do {
1952 		memset(&cmd, 0, sizeof(struct mmc_command));
1953 		cmd.opcode = MMC_SEND_STATUS;
1954 		cmd.arg = card->rca << 16;
1955 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956 		/* Do not retry else we can't see errors */
1957 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959 			pr_err("error %d requesting status %#x\n",
1960 				err, cmd.resp[0]);
1961 			err = -EIO;
1962 			goto out;
1963 		}
1964 
1965 		/* Timeout if the device never becomes ready for data and
1966 		 * never leaves the program state.
1967 		 */
1968 		if (time_after(jiffies, timeout)) {
1969 			pr_err("%s: Card stuck in programming state! %s\n",
1970 				mmc_hostname(card->host), __func__);
1971 			err =  -EIO;
1972 			goto out;
1973 		}
1974 
1975 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977 out:
1978 	return err;
1979 }
1980 
1981 /**
1982  * mmc_erase - erase sectors.
1983  * @card: card to erase
1984  * @from: first sector to erase
1985  * @nr: number of sectors to erase
1986  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987  *
1988  * Caller must claim host before calling this function.
1989  */
1990 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991 	      unsigned int arg)
1992 {
1993 	unsigned int rem, to = from + nr;
1994 
1995 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996 	    !(card->csd.cmdclass & CCC_ERASE))
1997 		return -EOPNOTSUPP;
1998 
1999 	if (!card->erase_size)
2000 		return -EOPNOTSUPP;
2001 
2002 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003 		return -EOPNOTSUPP;
2004 
2005 	if ((arg & MMC_SECURE_ARGS) &&
2006 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007 		return -EOPNOTSUPP;
2008 
2009 	if ((arg & MMC_TRIM_ARGS) &&
2010 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011 		return -EOPNOTSUPP;
2012 
2013 	if (arg == MMC_SECURE_ERASE_ARG) {
2014 		if (from % card->erase_size || nr % card->erase_size)
2015 			return -EINVAL;
2016 	}
2017 
2018 	if (arg == MMC_ERASE_ARG) {
2019 		rem = from % card->erase_size;
2020 		if (rem) {
2021 			rem = card->erase_size - rem;
2022 			from += rem;
2023 			if (nr > rem)
2024 				nr -= rem;
2025 			else
2026 				return 0;
2027 		}
2028 		rem = nr % card->erase_size;
2029 		if (rem)
2030 			nr -= rem;
2031 	}
2032 
2033 	if (nr == 0)
2034 		return 0;
2035 
2036 	to = from + nr;
2037 
2038 	if (to <= from)
2039 		return -EINVAL;
2040 
2041 	/* 'from' and 'to' are inclusive */
2042 	to -= 1;
2043 
2044 	return mmc_do_erase(card, from, to, arg);
2045 }
2046 EXPORT_SYMBOL(mmc_erase);
2047 
2048 int mmc_can_erase(struct mmc_card *card)
2049 {
2050 	if ((card->host->caps & MMC_CAP_ERASE) &&
2051 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052 		return 1;
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(mmc_can_erase);
2056 
2057 int mmc_can_trim(struct mmc_card *card)
2058 {
2059 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060 		return 1;
2061 	return 0;
2062 }
2063 EXPORT_SYMBOL(mmc_can_trim);
2064 
2065 int mmc_can_discard(struct mmc_card *card)
2066 {
2067 	/*
2068 	 * As there's no way to detect the discard support bit at v4.5
2069 	 * use the s/w feature support filed.
2070 	 */
2071 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072 		return 1;
2073 	return 0;
2074 }
2075 EXPORT_SYMBOL(mmc_can_discard);
2076 
2077 int mmc_can_sanitize(struct mmc_card *card)
2078 {
2079 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080 		return 0;
2081 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082 		return 1;
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL(mmc_can_sanitize);
2086 
2087 int mmc_can_secure_erase_trim(struct mmc_card *card)
2088 {
2089 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090 		return 1;
2091 	return 0;
2092 }
2093 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094 
2095 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096 			    unsigned int nr)
2097 {
2098 	if (!card->erase_size)
2099 		return 0;
2100 	if (from % card->erase_size || nr % card->erase_size)
2101 		return 0;
2102 	return 1;
2103 }
2104 EXPORT_SYMBOL(mmc_erase_group_aligned);
2105 
2106 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107 					    unsigned int arg)
2108 {
2109 	struct mmc_host *host = card->host;
2110 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111 	unsigned int last_timeout = 0;
2112 
2113 	if (card->erase_shift)
2114 		max_qty = UINT_MAX >> card->erase_shift;
2115 	else if (mmc_card_sd(card))
2116 		max_qty = UINT_MAX;
2117 	else
2118 		max_qty = UINT_MAX / card->erase_size;
2119 
2120 	/* Find the largest qty with an OK timeout */
2121 	do {
2122 		y = 0;
2123 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124 			timeout = mmc_erase_timeout(card, arg, qty + x);
2125 			if (timeout > host->max_busy_timeout)
2126 				break;
2127 			if (timeout < last_timeout)
2128 				break;
2129 			last_timeout = timeout;
2130 			y = x;
2131 		}
2132 		qty += y;
2133 	} while (y);
2134 
2135 	if (!qty)
2136 		return 0;
2137 
2138 	if (qty == 1)
2139 		return 1;
2140 
2141 	/* Convert qty to sectors */
2142 	if (card->erase_shift)
2143 		max_discard = --qty << card->erase_shift;
2144 	else if (mmc_card_sd(card))
2145 		max_discard = qty;
2146 	else
2147 		max_discard = --qty * card->erase_size;
2148 
2149 	return max_discard;
2150 }
2151 
2152 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153 {
2154 	struct mmc_host *host = card->host;
2155 	unsigned int max_discard, max_trim;
2156 
2157 	if (!host->max_busy_timeout)
2158 		return UINT_MAX;
2159 
2160 	/*
2161 	 * Without erase_group_def set, MMC erase timeout depends on clock
2162 	 * frequence which can change.  In that case, the best choice is
2163 	 * just the preferred erase size.
2164 	 */
2165 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166 		return card->pref_erase;
2167 
2168 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169 	if (mmc_can_trim(card)) {
2170 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171 		if (max_trim < max_discard)
2172 			max_discard = max_trim;
2173 	} else if (max_discard < card->erase_size) {
2174 		max_discard = 0;
2175 	}
2176 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178 	return max_discard;
2179 }
2180 EXPORT_SYMBOL(mmc_calc_max_discard);
2181 
2182 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183 {
2184 	struct mmc_command cmd = {0};
2185 
2186 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187 		return 0;
2188 
2189 	cmd.opcode = MMC_SET_BLOCKLEN;
2190 	cmd.arg = blocklen;
2191 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193 }
2194 EXPORT_SYMBOL(mmc_set_blocklen);
2195 
2196 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197 			bool is_rel_write)
2198 {
2199 	struct mmc_command cmd = {0};
2200 
2201 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202 	cmd.arg = blockcount & 0x0000FFFF;
2203 	if (is_rel_write)
2204 		cmd.arg |= 1 << 31;
2205 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207 }
2208 EXPORT_SYMBOL(mmc_set_blockcount);
2209 
2210 static void mmc_hw_reset_for_init(struct mmc_host *host)
2211 {
2212 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213 		return;
2214 	mmc_host_clk_hold(host);
2215 	host->ops->hw_reset(host);
2216 	mmc_host_clk_release(host);
2217 }
2218 
2219 int mmc_can_reset(struct mmc_card *card)
2220 {
2221 	u8 rst_n_function;
2222 
2223 	if (!mmc_card_mmc(card))
2224 		return 0;
2225 	rst_n_function = card->ext_csd.rst_n_function;
2226 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227 		return 0;
2228 	return 1;
2229 }
2230 EXPORT_SYMBOL(mmc_can_reset);
2231 
2232 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233 {
2234 	struct mmc_card *card = host->card;
2235 
2236 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237 		return -EOPNOTSUPP;
2238 
2239 	if (!card)
2240 		return -EINVAL;
2241 
2242 	if (!mmc_can_reset(card))
2243 		return -EOPNOTSUPP;
2244 
2245 	mmc_host_clk_hold(host);
2246 	mmc_set_clock(host, host->f_init);
2247 
2248 	host->ops->hw_reset(host);
2249 
2250 	/* If the reset has happened, then a status command will fail */
2251 	if (check) {
2252 		struct mmc_command cmd = {0};
2253 		int err;
2254 
2255 		cmd.opcode = MMC_SEND_STATUS;
2256 		if (!mmc_host_is_spi(card->host))
2257 			cmd.arg = card->rca << 16;
2258 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260 		if (!err) {
2261 			mmc_host_clk_release(host);
2262 			return -ENOSYS;
2263 		}
2264 	}
2265 
2266 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267 	if (mmc_host_is_spi(host)) {
2268 		host->ios.chip_select = MMC_CS_HIGH;
2269 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270 	} else {
2271 		host->ios.chip_select = MMC_CS_DONTCARE;
2272 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273 	}
2274 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275 	host->ios.timing = MMC_TIMING_LEGACY;
2276 	mmc_set_ios(host);
2277 
2278 	mmc_host_clk_release(host);
2279 
2280 	return host->bus_ops->power_restore(host);
2281 }
2282 
2283 int mmc_hw_reset(struct mmc_host *host)
2284 {
2285 	return mmc_do_hw_reset(host, 0);
2286 }
2287 EXPORT_SYMBOL(mmc_hw_reset);
2288 
2289 int mmc_hw_reset_check(struct mmc_host *host)
2290 {
2291 	return mmc_do_hw_reset(host, 1);
2292 }
2293 EXPORT_SYMBOL(mmc_hw_reset_check);
2294 
2295 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296 {
2297 	host->f_init = freq;
2298 
2299 #ifdef CONFIG_MMC_DEBUG
2300 	pr_info("%s: %s: trying to init card at %u Hz\n",
2301 		mmc_hostname(host), __func__, host->f_init);
2302 #endif
2303 	mmc_power_up(host, host->ocr_avail);
2304 
2305 	/*
2306 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307 	 * do a hardware reset if possible.
2308 	 */
2309 	mmc_hw_reset_for_init(host);
2310 
2311 	/*
2312 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313 	 * if the card is being re-initialized, just send it.  CMD52
2314 	 * should be ignored by SD/eMMC cards.
2315 	 */
2316 	sdio_reset(host);
2317 	mmc_go_idle(host);
2318 
2319 	mmc_send_if_cond(host, host->ocr_avail);
2320 
2321 	/* Order's important: probe SDIO, then SD, then MMC */
2322 	if (!mmc_attach_sdio(host))
2323 		return 0;
2324 	if (!mmc_attach_sd(host))
2325 		return 0;
2326 	if (!mmc_attach_mmc(host))
2327 		return 0;
2328 
2329 	mmc_power_off(host);
2330 	return -EIO;
2331 }
2332 
2333 int _mmc_detect_card_removed(struct mmc_host *host)
2334 {
2335 	int ret;
2336 
2337 	if (host->caps & MMC_CAP_NONREMOVABLE)
2338 		return 0;
2339 
2340 	if (!host->card || mmc_card_removed(host->card))
2341 		return 1;
2342 
2343 	ret = host->bus_ops->alive(host);
2344 
2345 	/*
2346 	 * Card detect status and alive check may be out of sync if card is
2347 	 * removed slowly, when card detect switch changes while card/slot
2348 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350 	 * detect work 200ms later for this case.
2351 	 */
2352 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353 		mmc_detect_change(host, msecs_to_jiffies(200));
2354 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355 	}
2356 
2357 	if (ret) {
2358 		mmc_card_set_removed(host->card);
2359 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360 	}
2361 
2362 	return ret;
2363 }
2364 
2365 int mmc_detect_card_removed(struct mmc_host *host)
2366 {
2367 	struct mmc_card *card = host->card;
2368 	int ret;
2369 
2370 	WARN_ON(!host->claimed);
2371 
2372 	if (!card)
2373 		return 1;
2374 
2375 	ret = mmc_card_removed(card);
2376 	/*
2377 	 * The card will be considered unchanged unless we have been asked to
2378 	 * detect a change or host requires polling to provide card detection.
2379 	 */
2380 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381 		return ret;
2382 
2383 	host->detect_change = 0;
2384 	if (!ret) {
2385 		ret = _mmc_detect_card_removed(host);
2386 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387 			/*
2388 			 * Schedule a detect work as soon as possible to let a
2389 			 * rescan handle the card removal.
2390 			 */
2391 			cancel_delayed_work(&host->detect);
2392 			_mmc_detect_change(host, 0, false);
2393 		}
2394 	}
2395 
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL(mmc_detect_card_removed);
2399 
2400 void mmc_rescan(struct work_struct *work)
2401 {
2402 	struct mmc_host *host =
2403 		container_of(work, struct mmc_host, detect.work);
2404 	int i;
2405 
2406 	if (host->rescan_disable)
2407 		return;
2408 
2409 	/* If there is a non-removable card registered, only scan once */
2410 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411 		return;
2412 	host->rescan_entered = 1;
2413 
2414 	mmc_bus_get(host);
2415 
2416 	/*
2417 	 * if there is a _removable_ card registered, check whether it is
2418 	 * still present
2419 	 */
2420 	if (host->bus_ops && !host->bus_dead
2421 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422 		host->bus_ops->detect(host);
2423 
2424 	host->detect_change = 0;
2425 
2426 	/*
2427 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428 	 * the card is no longer present.
2429 	 */
2430 	mmc_bus_put(host);
2431 	mmc_bus_get(host);
2432 
2433 	/* if there still is a card present, stop here */
2434 	if (host->bus_ops != NULL) {
2435 		mmc_bus_put(host);
2436 		goto out;
2437 	}
2438 
2439 	/*
2440 	 * Only we can add a new handler, so it's safe to
2441 	 * release the lock here.
2442 	 */
2443 	mmc_bus_put(host);
2444 
2445 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446 			host->ops->get_cd(host) == 0) {
2447 		mmc_claim_host(host);
2448 		mmc_power_off(host);
2449 		mmc_release_host(host);
2450 		goto out;
2451 	}
2452 
2453 	mmc_claim_host(host);
2454 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456 			break;
2457 		if (freqs[i] <= host->f_min)
2458 			break;
2459 	}
2460 	mmc_release_host(host);
2461 
2462  out:
2463 	if (host->caps & MMC_CAP_NEEDS_POLL)
2464 		mmc_schedule_delayed_work(&host->detect, HZ);
2465 }
2466 
2467 void mmc_start_host(struct mmc_host *host)
2468 {
2469 	host->f_init = max(freqs[0], host->f_min);
2470 	host->rescan_disable = 0;
2471 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472 		mmc_power_off(host);
2473 	else
2474 		mmc_power_up(host, host->ocr_avail);
2475 	mmc_gpiod_request_cd_irq(host);
2476 	_mmc_detect_change(host, 0, false);
2477 }
2478 
2479 void mmc_stop_host(struct mmc_host *host)
2480 {
2481 #ifdef CONFIG_MMC_DEBUG
2482 	unsigned long flags;
2483 	spin_lock_irqsave(&host->lock, flags);
2484 	host->removed = 1;
2485 	spin_unlock_irqrestore(&host->lock, flags);
2486 #endif
2487 	if (host->slot.cd_irq >= 0)
2488 		disable_irq(host->slot.cd_irq);
2489 
2490 	host->rescan_disable = 1;
2491 	cancel_delayed_work_sync(&host->detect);
2492 	mmc_flush_scheduled_work();
2493 
2494 	/* clear pm flags now and let card drivers set them as needed */
2495 	host->pm_flags = 0;
2496 
2497 	mmc_bus_get(host);
2498 	if (host->bus_ops && !host->bus_dead) {
2499 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500 		host->bus_ops->remove(host);
2501 		mmc_claim_host(host);
2502 		mmc_detach_bus(host);
2503 		mmc_power_off(host);
2504 		mmc_release_host(host);
2505 		mmc_bus_put(host);
2506 		return;
2507 	}
2508 	mmc_bus_put(host);
2509 
2510 	BUG_ON(host->card);
2511 
2512 	mmc_power_off(host);
2513 }
2514 
2515 int mmc_power_save_host(struct mmc_host *host)
2516 {
2517 	int ret = 0;
2518 
2519 #ifdef CONFIG_MMC_DEBUG
2520 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521 #endif
2522 
2523 	mmc_bus_get(host);
2524 
2525 	if (!host->bus_ops || host->bus_dead) {
2526 		mmc_bus_put(host);
2527 		return -EINVAL;
2528 	}
2529 
2530 	if (host->bus_ops->power_save)
2531 		ret = host->bus_ops->power_save(host);
2532 
2533 	mmc_bus_put(host);
2534 
2535 	mmc_power_off(host);
2536 
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL(mmc_power_save_host);
2540 
2541 int mmc_power_restore_host(struct mmc_host *host)
2542 {
2543 	int ret;
2544 
2545 #ifdef CONFIG_MMC_DEBUG
2546 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547 #endif
2548 
2549 	mmc_bus_get(host);
2550 
2551 	if (!host->bus_ops || host->bus_dead) {
2552 		mmc_bus_put(host);
2553 		return -EINVAL;
2554 	}
2555 
2556 	mmc_power_up(host, host->card->ocr);
2557 	ret = host->bus_ops->power_restore(host);
2558 
2559 	mmc_bus_put(host);
2560 
2561 	return ret;
2562 }
2563 EXPORT_SYMBOL(mmc_power_restore_host);
2564 
2565 /*
2566  * Flush the cache to the non-volatile storage.
2567  */
2568 int mmc_flush_cache(struct mmc_card *card)
2569 {
2570 	int err = 0;
2571 
2572 	if (mmc_card_mmc(card) &&
2573 			(card->ext_csd.cache_size > 0) &&
2574 			(card->ext_csd.cache_ctrl & 1)) {
2575 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576 				EXT_CSD_FLUSH_CACHE, 1, 0);
2577 		if (err)
2578 			pr_err("%s: cache flush error %d\n",
2579 					mmc_hostname(card->host), err);
2580 	}
2581 
2582 	return err;
2583 }
2584 EXPORT_SYMBOL(mmc_flush_cache);
2585 
2586 #ifdef CONFIG_PM
2587 
2588 /* Do the card removal on suspend if card is assumed removeable
2589  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590    to sync the card.
2591 */
2592 int mmc_pm_notify(struct notifier_block *notify_block,
2593 					unsigned long mode, void *unused)
2594 {
2595 	struct mmc_host *host = container_of(
2596 		notify_block, struct mmc_host, pm_notify);
2597 	unsigned long flags;
2598 	int err = 0;
2599 
2600 	switch (mode) {
2601 	case PM_HIBERNATION_PREPARE:
2602 	case PM_SUSPEND_PREPARE:
2603 		spin_lock_irqsave(&host->lock, flags);
2604 		host->rescan_disable = 1;
2605 		spin_unlock_irqrestore(&host->lock, flags);
2606 		cancel_delayed_work_sync(&host->detect);
2607 
2608 		if (!host->bus_ops)
2609 			break;
2610 
2611 		/* Validate prerequisites for suspend */
2612 		if (host->bus_ops->pre_suspend)
2613 			err = host->bus_ops->pre_suspend(host);
2614 		if (!err)
2615 			break;
2616 
2617 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618 		host->bus_ops->remove(host);
2619 		mmc_claim_host(host);
2620 		mmc_detach_bus(host);
2621 		mmc_power_off(host);
2622 		mmc_release_host(host);
2623 		host->pm_flags = 0;
2624 		break;
2625 
2626 	case PM_POST_SUSPEND:
2627 	case PM_POST_HIBERNATION:
2628 	case PM_POST_RESTORE:
2629 
2630 		spin_lock_irqsave(&host->lock, flags);
2631 		host->rescan_disable = 0;
2632 		spin_unlock_irqrestore(&host->lock, flags);
2633 		_mmc_detect_change(host, 0, false);
2634 
2635 	}
2636 
2637 	return 0;
2638 }
2639 #endif
2640 
2641 /**
2642  * mmc_init_context_info() - init synchronization context
2643  * @host: mmc host
2644  *
2645  * Init struct context_info needed to implement asynchronous
2646  * request mechanism, used by mmc core, host driver and mmc requests
2647  * supplier.
2648  */
2649 void mmc_init_context_info(struct mmc_host *host)
2650 {
2651 	spin_lock_init(&host->context_info.lock);
2652 	host->context_info.is_new_req = false;
2653 	host->context_info.is_done_rcv = false;
2654 	host->context_info.is_waiting_last_req = false;
2655 	init_waitqueue_head(&host->context_info.wait);
2656 }
2657 
2658 static int __init mmc_init(void)
2659 {
2660 	int ret;
2661 
2662 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663 	if (!workqueue)
2664 		return -ENOMEM;
2665 
2666 	ret = mmc_register_bus();
2667 	if (ret)
2668 		goto destroy_workqueue;
2669 
2670 	ret = mmc_register_host_class();
2671 	if (ret)
2672 		goto unregister_bus;
2673 
2674 	ret = sdio_register_bus();
2675 	if (ret)
2676 		goto unregister_host_class;
2677 
2678 	return 0;
2679 
2680 unregister_host_class:
2681 	mmc_unregister_host_class();
2682 unregister_bus:
2683 	mmc_unregister_bus();
2684 destroy_workqueue:
2685 	destroy_workqueue(workqueue);
2686 
2687 	return ret;
2688 }
2689 
2690 static void __exit mmc_exit(void)
2691 {
2692 	sdio_unregister_bus();
2693 	mmc_unregister_host_class();
2694 	mmc_unregister_bus();
2695 	destroy_workqueue(workqueue);
2696 }
2697 
2698 subsys_initcall(mmc_init);
2699 module_exit(mmc_exit);
2700 
2701 MODULE_LICENSE("GPL");
2702