1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 #include "pwrseq.h" 44 45 #include "mmc_ops.h" 46 #include "sd_ops.h" 47 #include "sdio_ops.h" 48 49 /* If the device is not responding */ 50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 51 52 /* 53 * Background operations can take a long time, depending on the housekeeping 54 * operations the card has to perform. 55 */ 56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 57 58 static struct workqueue_struct *workqueue; 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 /* 70 * Internal function. Schedule delayed work in the MMC work queue. 71 */ 72 static int mmc_schedule_delayed_work(struct delayed_work *work, 73 unsigned long delay) 74 { 75 return queue_delayed_work(workqueue, work, delay); 76 } 77 78 /* 79 * Internal function. Flush all scheduled work from the MMC work queue. 80 */ 81 static void mmc_flush_scheduled_work(void) 82 { 83 flush_workqueue(workqueue); 84 } 85 86 #ifdef CONFIG_FAIL_MMC_REQUEST 87 88 /* 89 * Internal function. Inject random data errors. 90 * If mmc_data is NULL no errors are injected. 91 */ 92 static void mmc_should_fail_request(struct mmc_host *host, 93 struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 struct mmc_data *data = mrq->data; 97 static const int data_errors[] = { 98 -ETIMEDOUT, 99 -EILSEQ, 100 -EIO, 101 }; 102 103 if (!data) 104 return; 105 106 if (cmd->error || data->error || 107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 108 return; 109 110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 112 } 113 114 #else /* CONFIG_FAIL_MMC_REQUEST */ 115 116 static inline void mmc_should_fail_request(struct mmc_host *host, 117 struct mmc_request *mrq) 118 { 119 } 120 121 #endif /* CONFIG_FAIL_MMC_REQUEST */ 122 123 /** 124 * mmc_request_done - finish processing an MMC request 125 * @host: MMC host which completed request 126 * @mrq: MMC request which request 127 * 128 * MMC drivers should call this function when they have completed 129 * their processing of a request. 130 */ 131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 132 { 133 struct mmc_command *cmd = mrq->cmd; 134 int err = cmd->error; 135 136 /* Flag re-tuning needed on CRC errors */ 137 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 138 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 139 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 140 (mrq->data && mrq->data->error == -EILSEQ) || 141 (mrq->stop && mrq->stop->error == -EILSEQ))) 142 mmc_retune_needed(host); 143 144 if (err && cmd->retries && mmc_host_is_spi(host)) { 145 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 146 cmd->retries = 0; 147 } 148 149 if (err && cmd->retries && !mmc_card_removed(host->card)) { 150 /* 151 * Request starter must handle retries - see 152 * mmc_wait_for_req_done(). 153 */ 154 if (mrq->done) 155 mrq->done(mrq); 156 } else { 157 mmc_should_fail_request(host, mrq); 158 159 led_trigger_event(host->led, LED_OFF); 160 161 if (mrq->sbc) { 162 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 163 mmc_hostname(host), mrq->sbc->opcode, 164 mrq->sbc->error, 165 mrq->sbc->resp[0], mrq->sbc->resp[1], 166 mrq->sbc->resp[2], mrq->sbc->resp[3]); 167 } 168 169 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 170 mmc_hostname(host), cmd->opcode, err, 171 cmd->resp[0], cmd->resp[1], 172 cmd->resp[2], cmd->resp[3]); 173 174 if (mrq->data) { 175 pr_debug("%s: %d bytes transferred: %d\n", 176 mmc_hostname(host), 177 mrq->data->bytes_xfered, mrq->data->error); 178 } 179 180 if (mrq->stop) { 181 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 182 mmc_hostname(host), mrq->stop->opcode, 183 mrq->stop->error, 184 mrq->stop->resp[0], mrq->stop->resp[1], 185 mrq->stop->resp[2], mrq->stop->resp[3]); 186 } 187 188 if (mrq->done) 189 mrq->done(mrq); 190 } 191 } 192 193 EXPORT_SYMBOL(mmc_request_done); 194 195 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 196 { 197 int err; 198 199 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 200 err = mmc_retune(host); 201 if (err) { 202 mrq->cmd->error = err; 203 mmc_request_done(host, mrq); 204 return; 205 } 206 207 /* 208 * For sdio rw commands we must wait for card busy otherwise some 209 * sdio devices won't work properly. 210 */ 211 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 212 int tries = 500; /* Wait aprox 500ms at maximum */ 213 214 while (host->ops->card_busy(host) && --tries) 215 mmc_delay(1); 216 217 if (tries == 0) { 218 mrq->cmd->error = -EBUSY; 219 mmc_request_done(host, mrq); 220 return; 221 } 222 } 223 224 host->ops->request(host, mrq); 225 } 226 227 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 228 { 229 #ifdef CONFIG_MMC_DEBUG 230 unsigned int i, sz; 231 struct scatterlist *sg; 232 #endif 233 mmc_retune_hold(host); 234 235 if (mmc_card_removed(host->card)) 236 return -ENOMEDIUM; 237 238 if (mrq->sbc) { 239 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 240 mmc_hostname(host), mrq->sbc->opcode, 241 mrq->sbc->arg, mrq->sbc->flags); 242 } 243 244 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 245 mmc_hostname(host), mrq->cmd->opcode, 246 mrq->cmd->arg, mrq->cmd->flags); 247 248 if (mrq->data) { 249 pr_debug("%s: blksz %d blocks %d flags %08x " 250 "tsac %d ms nsac %d\n", 251 mmc_hostname(host), mrq->data->blksz, 252 mrq->data->blocks, mrq->data->flags, 253 mrq->data->timeout_ns / 1000000, 254 mrq->data->timeout_clks); 255 } 256 257 if (mrq->stop) { 258 pr_debug("%s: CMD%u arg %08x flags %08x\n", 259 mmc_hostname(host), mrq->stop->opcode, 260 mrq->stop->arg, mrq->stop->flags); 261 } 262 263 WARN_ON(!host->claimed); 264 265 mrq->cmd->error = 0; 266 mrq->cmd->mrq = mrq; 267 if (mrq->sbc) { 268 mrq->sbc->error = 0; 269 mrq->sbc->mrq = mrq; 270 } 271 if (mrq->data) { 272 BUG_ON(mrq->data->blksz > host->max_blk_size); 273 BUG_ON(mrq->data->blocks > host->max_blk_count); 274 BUG_ON(mrq->data->blocks * mrq->data->blksz > 275 host->max_req_size); 276 277 #ifdef CONFIG_MMC_DEBUG 278 sz = 0; 279 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 280 sz += sg->length; 281 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 282 #endif 283 284 mrq->cmd->data = mrq->data; 285 mrq->data->error = 0; 286 mrq->data->mrq = mrq; 287 if (mrq->stop) { 288 mrq->data->stop = mrq->stop; 289 mrq->stop->error = 0; 290 mrq->stop->mrq = mrq; 291 } 292 } 293 led_trigger_event(host->led, LED_FULL); 294 __mmc_start_request(host, mrq); 295 296 return 0; 297 } 298 299 /** 300 * mmc_start_bkops - start BKOPS for supported cards 301 * @card: MMC card to start BKOPS 302 * @form_exception: A flag to indicate if this function was 303 * called due to an exception raised by the card 304 * 305 * Start background operations whenever requested. 306 * When the urgent BKOPS bit is set in a R1 command response 307 * then background operations should be started immediately. 308 */ 309 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 310 { 311 int err; 312 int timeout; 313 bool use_busy_signal; 314 315 BUG_ON(!card); 316 317 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 318 return; 319 320 err = mmc_read_bkops_status(card); 321 if (err) { 322 pr_err("%s: Failed to read bkops status: %d\n", 323 mmc_hostname(card->host), err); 324 return; 325 } 326 327 if (!card->ext_csd.raw_bkops_status) 328 return; 329 330 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 331 from_exception) 332 return; 333 334 mmc_claim_host(card->host); 335 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 336 timeout = MMC_BKOPS_MAX_TIMEOUT; 337 use_busy_signal = true; 338 } else { 339 timeout = 0; 340 use_busy_signal = false; 341 } 342 343 mmc_retune_hold(card->host); 344 345 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 346 EXT_CSD_BKOPS_START, 1, timeout, 347 use_busy_signal, true, false); 348 if (err) { 349 pr_warn("%s: Error %d starting bkops\n", 350 mmc_hostname(card->host), err); 351 mmc_retune_release(card->host); 352 goto out; 353 } 354 355 /* 356 * For urgent bkops status (LEVEL_2 and more) 357 * bkops executed synchronously, otherwise 358 * the operation is in progress 359 */ 360 if (!use_busy_signal) 361 mmc_card_set_doing_bkops(card); 362 else 363 mmc_retune_release(card->host); 364 out: 365 mmc_release_host(card->host); 366 } 367 EXPORT_SYMBOL(mmc_start_bkops); 368 369 /* 370 * mmc_wait_data_done() - done callback for data request 371 * @mrq: done data request 372 * 373 * Wakes up mmc context, passed as a callback to host controller driver 374 */ 375 static void mmc_wait_data_done(struct mmc_request *mrq) 376 { 377 struct mmc_context_info *context_info = &mrq->host->context_info; 378 379 context_info->is_done_rcv = true; 380 wake_up_interruptible(&context_info->wait); 381 } 382 383 static void mmc_wait_done(struct mmc_request *mrq) 384 { 385 complete(&mrq->completion); 386 } 387 388 /* 389 *__mmc_start_data_req() - starts data request 390 * @host: MMC host to start the request 391 * @mrq: data request to start 392 * 393 * Sets the done callback to be called when request is completed by the card. 394 * Starts data mmc request execution 395 */ 396 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 397 { 398 int err; 399 400 mrq->done = mmc_wait_data_done; 401 mrq->host = host; 402 403 err = mmc_start_request(host, mrq); 404 if (err) { 405 mrq->cmd->error = err; 406 mmc_wait_data_done(mrq); 407 } 408 409 return err; 410 } 411 412 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 413 { 414 int err; 415 416 init_completion(&mrq->completion); 417 mrq->done = mmc_wait_done; 418 419 err = mmc_start_request(host, mrq); 420 if (err) { 421 mrq->cmd->error = err; 422 complete(&mrq->completion); 423 } 424 425 return err; 426 } 427 428 /* 429 * mmc_wait_for_data_req_done() - wait for request completed 430 * @host: MMC host to prepare the command. 431 * @mrq: MMC request to wait for 432 * 433 * Blocks MMC context till host controller will ack end of data request 434 * execution or new request notification arrives from the block layer. 435 * Handles command retries. 436 * 437 * Returns enum mmc_blk_status after checking errors. 438 */ 439 static int mmc_wait_for_data_req_done(struct mmc_host *host, 440 struct mmc_request *mrq, 441 struct mmc_async_req *next_req) 442 { 443 struct mmc_command *cmd; 444 struct mmc_context_info *context_info = &host->context_info; 445 int err; 446 unsigned long flags; 447 448 while (1) { 449 wait_event_interruptible(context_info->wait, 450 (context_info->is_done_rcv || 451 context_info->is_new_req)); 452 spin_lock_irqsave(&context_info->lock, flags); 453 context_info->is_waiting_last_req = false; 454 spin_unlock_irqrestore(&context_info->lock, flags); 455 if (context_info->is_done_rcv) { 456 context_info->is_done_rcv = false; 457 context_info->is_new_req = false; 458 cmd = mrq->cmd; 459 460 if (!cmd->error || !cmd->retries || 461 mmc_card_removed(host->card)) { 462 err = host->areq->err_check(host->card, 463 host->areq); 464 break; /* return err */ 465 } else { 466 mmc_retune_recheck(host); 467 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 468 mmc_hostname(host), 469 cmd->opcode, cmd->error); 470 cmd->retries--; 471 cmd->error = 0; 472 __mmc_start_request(host, mrq); 473 continue; /* wait for done/new event again */ 474 } 475 } else if (context_info->is_new_req) { 476 context_info->is_new_req = false; 477 if (!next_req) 478 return MMC_BLK_NEW_REQUEST; 479 } 480 } 481 mmc_retune_release(host); 482 return err; 483 } 484 485 static void mmc_wait_for_req_done(struct mmc_host *host, 486 struct mmc_request *mrq) 487 { 488 struct mmc_command *cmd; 489 490 while (1) { 491 wait_for_completion(&mrq->completion); 492 493 cmd = mrq->cmd; 494 495 /* 496 * If host has timed out waiting for the sanitize 497 * to complete, card might be still in programming state 498 * so let's try to bring the card out of programming 499 * state. 500 */ 501 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 502 if (!mmc_interrupt_hpi(host->card)) { 503 pr_warn("%s: %s: Interrupted sanitize\n", 504 mmc_hostname(host), __func__); 505 cmd->error = 0; 506 break; 507 } else { 508 pr_err("%s: %s: Failed to interrupt sanitize\n", 509 mmc_hostname(host), __func__); 510 } 511 } 512 if (!cmd->error || !cmd->retries || 513 mmc_card_removed(host->card)) 514 break; 515 516 mmc_retune_recheck(host); 517 518 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 519 mmc_hostname(host), cmd->opcode, cmd->error); 520 cmd->retries--; 521 cmd->error = 0; 522 __mmc_start_request(host, mrq); 523 } 524 525 mmc_retune_release(host); 526 } 527 528 /** 529 * mmc_pre_req - Prepare for a new request 530 * @host: MMC host to prepare command 531 * @mrq: MMC request to prepare for 532 * @is_first_req: true if there is no previous started request 533 * that may run in parellel to this call, otherwise false 534 * 535 * mmc_pre_req() is called in prior to mmc_start_req() to let 536 * host prepare for the new request. Preparation of a request may be 537 * performed while another request is running on the host. 538 */ 539 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 540 bool is_first_req) 541 { 542 if (host->ops->pre_req) 543 host->ops->pre_req(host, mrq, is_first_req); 544 } 545 546 /** 547 * mmc_post_req - Post process a completed request 548 * @host: MMC host to post process command 549 * @mrq: MMC request to post process for 550 * @err: Error, if non zero, clean up any resources made in pre_req 551 * 552 * Let the host post process a completed request. Post processing of 553 * a request may be performed while another reuqest is running. 554 */ 555 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 556 int err) 557 { 558 if (host->ops->post_req) 559 host->ops->post_req(host, mrq, err); 560 } 561 562 /** 563 * mmc_start_req - start a non-blocking request 564 * @host: MMC host to start command 565 * @areq: async request to start 566 * @error: out parameter returns 0 for success, otherwise non zero 567 * 568 * Start a new MMC custom command request for a host. 569 * If there is on ongoing async request wait for completion 570 * of that request and start the new one and return. 571 * Does not wait for the new request to complete. 572 * 573 * Returns the completed request, NULL in case of none completed. 574 * Wait for the an ongoing request (previoulsy started) to complete and 575 * return the completed request. If there is no ongoing request, NULL 576 * is returned without waiting. NULL is not an error condition. 577 */ 578 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 579 struct mmc_async_req *areq, int *error) 580 { 581 int err = 0; 582 int start_err = 0; 583 struct mmc_async_req *data = host->areq; 584 585 /* Prepare a new request */ 586 if (areq) 587 mmc_pre_req(host, areq->mrq, !host->areq); 588 589 if (host->areq) { 590 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 591 if (err == MMC_BLK_NEW_REQUEST) { 592 if (error) 593 *error = err; 594 /* 595 * The previous request was not completed, 596 * nothing to return 597 */ 598 return NULL; 599 } 600 /* 601 * Check BKOPS urgency for each R1 response 602 */ 603 if (host->card && mmc_card_mmc(host->card) && 604 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 605 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 606 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 607 608 /* Cancel the prepared request */ 609 if (areq) 610 mmc_post_req(host, areq->mrq, -EINVAL); 611 612 mmc_start_bkops(host->card, true); 613 614 /* prepare the request again */ 615 if (areq) 616 mmc_pre_req(host, areq->mrq, !host->areq); 617 } 618 } 619 620 if (!err && areq) 621 start_err = __mmc_start_data_req(host, areq->mrq); 622 623 if (host->areq) 624 mmc_post_req(host, host->areq->mrq, 0); 625 626 /* Cancel a prepared request if it was not started. */ 627 if ((err || start_err) && areq) 628 mmc_post_req(host, areq->mrq, -EINVAL); 629 630 if (err) 631 host->areq = NULL; 632 else 633 host->areq = areq; 634 635 if (error) 636 *error = err; 637 return data; 638 } 639 EXPORT_SYMBOL(mmc_start_req); 640 641 /** 642 * mmc_wait_for_req - start a request and wait for completion 643 * @host: MMC host to start command 644 * @mrq: MMC request to start 645 * 646 * Start a new MMC custom command request for a host, and wait 647 * for the command to complete. Does not attempt to parse the 648 * response. 649 */ 650 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 651 { 652 __mmc_start_req(host, mrq); 653 mmc_wait_for_req_done(host, mrq); 654 } 655 EXPORT_SYMBOL(mmc_wait_for_req); 656 657 /** 658 * mmc_interrupt_hpi - Issue for High priority Interrupt 659 * @card: the MMC card associated with the HPI transfer 660 * 661 * Issued High Priority Interrupt, and check for card status 662 * until out-of prg-state. 663 */ 664 int mmc_interrupt_hpi(struct mmc_card *card) 665 { 666 int err; 667 u32 status; 668 unsigned long prg_wait; 669 670 BUG_ON(!card); 671 672 if (!card->ext_csd.hpi_en) { 673 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 674 return 1; 675 } 676 677 mmc_claim_host(card->host); 678 err = mmc_send_status(card, &status); 679 if (err) { 680 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 681 goto out; 682 } 683 684 switch (R1_CURRENT_STATE(status)) { 685 case R1_STATE_IDLE: 686 case R1_STATE_READY: 687 case R1_STATE_STBY: 688 case R1_STATE_TRAN: 689 /* 690 * In idle and transfer states, HPI is not needed and the caller 691 * can issue the next intended command immediately 692 */ 693 goto out; 694 case R1_STATE_PRG: 695 break; 696 default: 697 /* In all other states, it's illegal to issue HPI */ 698 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 699 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 700 err = -EINVAL; 701 goto out; 702 } 703 704 err = mmc_send_hpi_cmd(card, &status); 705 if (err) 706 goto out; 707 708 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 709 do { 710 err = mmc_send_status(card, &status); 711 712 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 713 break; 714 if (time_after(jiffies, prg_wait)) 715 err = -ETIMEDOUT; 716 } while (!err); 717 718 out: 719 mmc_release_host(card->host); 720 return err; 721 } 722 EXPORT_SYMBOL(mmc_interrupt_hpi); 723 724 /** 725 * mmc_wait_for_cmd - start a command and wait for completion 726 * @host: MMC host to start command 727 * @cmd: MMC command to start 728 * @retries: maximum number of retries 729 * 730 * Start a new MMC command for a host, and wait for the command 731 * to complete. Return any error that occurred while the command 732 * was executing. Do not attempt to parse the response. 733 */ 734 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 735 { 736 struct mmc_request mrq = {NULL}; 737 738 WARN_ON(!host->claimed); 739 740 memset(cmd->resp, 0, sizeof(cmd->resp)); 741 cmd->retries = retries; 742 743 mrq.cmd = cmd; 744 cmd->data = NULL; 745 746 mmc_wait_for_req(host, &mrq); 747 748 return cmd->error; 749 } 750 751 EXPORT_SYMBOL(mmc_wait_for_cmd); 752 753 /** 754 * mmc_stop_bkops - stop ongoing BKOPS 755 * @card: MMC card to check BKOPS 756 * 757 * Send HPI command to stop ongoing background operations to 758 * allow rapid servicing of foreground operations, e.g. read/ 759 * writes. Wait until the card comes out of the programming state 760 * to avoid errors in servicing read/write requests. 761 */ 762 int mmc_stop_bkops(struct mmc_card *card) 763 { 764 int err = 0; 765 766 BUG_ON(!card); 767 err = mmc_interrupt_hpi(card); 768 769 /* 770 * If err is EINVAL, we can't issue an HPI. 771 * It should complete the BKOPS. 772 */ 773 if (!err || (err == -EINVAL)) { 774 mmc_card_clr_doing_bkops(card); 775 mmc_retune_release(card->host); 776 err = 0; 777 } 778 779 return err; 780 } 781 EXPORT_SYMBOL(mmc_stop_bkops); 782 783 int mmc_read_bkops_status(struct mmc_card *card) 784 { 785 int err; 786 u8 *ext_csd; 787 788 mmc_claim_host(card->host); 789 err = mmc_get_ext_csd(card, &ext_csd); 790 mmc_release_host(card->host); 791 if (err) 792 return err; 793 794 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 795 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 796 kfree(ext_csd); 797 return 0; 798 } 799 EXPORT_SYMBOL(mmc_read_bkops_status); 800 801 /** 802 * mmc_set_data_timeout - set the timeout for a data command 803 * @data: data phase for command 804 * @card: the MMC card associated with the data transfer 805 * 806 * Computes the data timeout parameters according to the 807 * correct algorithm given the card type. 808 */ 809 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 810 { 811 unsigned int mult; 812 813 /* 814 * SDIO cards only define an upper 1 s limit on access. 815 */ 816 if (mmc_card_sdio(card)) { 817 data->timeout_ns = 1000000000; 818 data->timeout_clks = 0; 819 return; 820 } 821 822 /* 823 * SD cards use a 100 multiplier rather than 10 824 */ 825 mult = mmc_card_sd(card) ? 100 : 10; 826 827 /* 828 * Scale up the multiplier (and therefore the timeout) by 829 * the r2w factor for writes. 830 */ 831 if (data->flags & MMC_DATA_WRITE) 832 mult <<= card->csd.r2w_factor; 833 834 data->timeout_ns = card->csd.tacc_ns * mult; 835 data->timeout_clks = card->csd.tacc_clks * mult; 836 837 /* 838 * SD cards also have an upper limit on the timeout. 839 */ 840 if (mmc_card_sd(card)) { 841 unsigned int timeout_us, limit_us; 842 843 timeout_us = data->timeout_ns / 1000; 844 if (card->host->ios.clock) 845 timeout_us += data->timeout_clks * 1000 / 846 (card->host->ios.clock / 1000); 847 848 if (data->flags & MMC_DATA_WRITE) 849 /* 850 * The MMC spec "It is strongly recommended 851 * for hosts to implement more than 500ms 852 * timeout value even if the card indicates 853 * the 250ms maximum busy length." Even the 854 * previous value of 300ms is known to be 855 * insufficient for some cards. 856 */ 857 limit_us = 3000000; 858 else 859 limit_us = 100000; 860 861 /* 862 * SDHC cards always use these fixed values. 863 */ 864 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 865 data->timeout_ns = limit_us * 1000; 866 data->timeout_clks = 0; 867 } 868 869 /* assign limit value if invalid */ 870 if (timeout_us == 0) 871 data->timeout_ns = limit_us * 1000; 872 } 873 874 /* 875 * Some cards require longer data read timeout than indicated in CSD. 876 * Address this by setting the read timeout to a "reasonably high" 877 * value. For the cards tested, 300ms has proven enough. If necessary, 878 * this value can be increased if other problematic cards require this. 879 */ 880 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 881 data->timeout_ns = 300000000; 882 data->timeout_clks = 0; 883 } 884 885 /* 886 * Some cards need very high timeouts if driven in SPI mode. 887 * The worst observed timeout was 900ms after writing a 888 * continuous stream of data until the internal logic 889 * overflowed. 890 */ 891 if (mmc_host_is_spi(card->host)) { 892 if (data->flags & MMC_DATA_WRITE) { 893 if (data->timeout_ns < 1000000000) 894 data->timeout_ns = 1000000000; /* 1s */ 895 } else { 896 if (data->timeout_ns < 100000000) 897 data->timeout_ns = 100000000; /* 100ms */ 898 } 899 } 900 } 901 EXPORT_SYMBOL(mmc_set_data_timeout); 902 903 /** 904 * mmc_align_data_size - pads a transfer size to a more optimal value 905 * @card: the MMC card associated with the data transfer 906 * @sz: original transfer size 907 * 908 * Pads the original data size with a number of extra bytes in 909 * order to avoid controller bugs and/or performance hits 910 * (e.g. some controllers revert to PIO for certain sizes). 911 * 912 * Returns the improved size, which might be unmodified. 913 * 914 * Note that this function is only relevant when issuing a 915 * single scatter gather entry. 916 */ 917 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 918 { 919 /* 920 * FIXME: We don't have a system for the controller to tell 921 * the core about its problems yet, so for now we just 32-bit 922 * align the size. 923 */ 924 sz = ((sz + 3) / 4) * 4; 925 926 return sz; 927 } 928 EXPORT_SYMBOL(mmc_align_data_size); 929 930 /** 931 * __mmc_claim_host - exclusively claim a host 932 * @host: mmc host to claim 933 * @abort: whether or not the operation should be aborted 934 * 935 * Claim a host for a set of operations. If @abort is non null and 936 * dereference a non-zero value then this will return prematurely with 937 * that non-zero value without acquiring the lock. Returns zero 938 * with the lock held otherwise. 939 */ 940 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 941 { 942 DECLARE_WAITQUEUE(wait, current); 943 unsigned long flags; 944 int stop; 945 bool pm = false; 946 947 might_sleep(); 948 949 add_wait_queue(&host->wq, &wait); 950 spin_lock_irqsave(&host->lock, flags); 951 while (1) { 952 set_current_state(TASK_UNINTERRUPTIBLE); 953 stop = abort ? atomic_read(abort) : 0; 954 if (stop || !host->claimed || host->claimer == current) 955 break; 956 spin_unlock_irqrestore(&host->lock, flags); 957 schedule(); 958 spin_lock_irqsave(&host->lock, flags); 959 } 960 set_current_state(TASK_RUNNING); 961 if (!stop) { 962 host->claimed = 1; 963 host->claimer = current; 964 host->claim_cnt += 1; 965 if (host->claim_cnt == 1) 966 pm = true; 967 } else 968 wake_up(&host->wq); 969 spin_unlock_irqrestore(&host->lock, flags); 970 remove_wait_queue(&host->wq, &wait); 971 972 if (pm) 973 pm_runtime_get_sync(mmc_dev(host)); 974 975 return stop; 976 } 977 EXPORT_SYMBOL(__mmc_claim_host); 978 979 /** 980 * mmc_release_host - release a host 981 * @host: mmc host to release 982 * 983 * Release a MMC host, allowing others to claim the host 984 * for their operations. 985 */ 986 void mmc_release_host(struct mmc_host *host) 987 { 988 unsigned long flags; 989 990 WARN_ON(!host->claimed); 991 992 spin_lock_irqsave(&host->lock, flags); 993 if (--host->claim_cnt) { 994 /* Release for nested claim */ 995 spin_unlock_irqrestore(&host->lock, flags); 996 } else { 997 host->claimed = 0; 998 host->claimer = NULL; 999 spin_unlock_irqrestore(&host->lock, flags); 1000 wake_up(&host->wq); 1001 pm_runtime_mark_last_busy(mmc_dev(host)); 1002 pm_runtime_put_autosuspend(mmc_dev(host)); 1003 } 1004 } 1005 EXPORT_SYMBOL(mmc_release_host); 1006 1007 /* 1008 * This is a helper function, which fetches a runtime pm reference for the 1009 * card device and also claims the host. 1010 */ 1011 void mmc_get_card(struct mmc_card *card) 1012 { 1013 pm_runtime_get_sync(&card->dev); 1014 mmc_claim_host(card->host); 1015 } 1016 EXPORT_SYMBOL(mmc_get_card); 1017 1018 /* 1019 * This is a helper function, which releases the host and drops the runtime 1020 * pm reference for the card device. 1021 */ 1022 void mmc_put_card(struct mmc_card *card) 1023 { 1024 mmc_release_host(card->host); 1025 pm_runtime_mark_last_busy(&card->dev); 1026 pm_runtime_put_autosuspend(&card->dev); 1027 } 1028 EXPORT_SYMBOL(mmc_put_card); 1029 1030 /* 1031 * Internal function that does the actual ios call to the host driver, 1032 * optionally printing some debug output. 1033 */ 1034 static inline void mmc_set_ios(struct mmc_host *host) 1035 { 1036 struct mmc_ios *ios = &host->ios; 1037 1038 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1039 "width %u timing %u\n", 1040 mmc_hostname(host), ios->clock, ios->bus_mode, 1041 ios->power_mode, ios->chip_select, ios->vdd, 1042 ios->bus_width, ios->timing); 1043 1044 host->ops->set_ios(host, ios); 1045 } 1046 1047 /* 1048 * Control chip select pin on a host. 1049 */ 1050 void mmc_set_chip_select(struct mmc_host *host, int mode) 1051 { 1052 host->ios.chip_select = mode; 1053 mmc_set_ios(host); 1054 } 1055 1056 /* 1057 * Sets the host clock to the highest possible frequency that 1058 * is below "hz". 1059 */ 1060 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1061 { 1062 WARN_ON(hz && hz < host->f_min); 1063 1064 if (hz > host->f_max) 1065 hz = host->f_max; 1066 1067 host->ios.clock = hz; 1068 mmc_set_ios(host); 1069 } 1070 1071 int mmc_execute_tuning(struct mmc_card *card) 1072 { 1073 struct mmc_host *host = card->host; 1074 u32 opcode; 1075 int err; 1076 1077 if (!host->ops->execute_tuning) 1078 return 0; 1079 1080 if (mmc_card_mmc(card)) 1081 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1082 else 1083 opcode = MMC_SEND_TUNING_BLOCK; 1084 1085 err = host->ops->execute_tuning(host, opcode); 1086 1087 if (err) 1088 pr_err("%s: tuning execution failed\n", mmc_hostname(host)); 1089 else 1090 mmc_retune_enable(host); 1091 1092 return err; 1093 } 1094 1095 /* 1096 * Change the bus mode (open drain/push-pull) of a host. 1097 */ 1098 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1099 { 1100 host->ios.bus_mode = mode; 1101 mmc_set_ios(host); 1102 } 1103 1104 /* 1105 * Change data bus width of a host. 1106 */ 1107 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1108 { 1109 host->ios.bus_width = width; 1110 mmc_set_ios(host); 1111 } 1112 1113 /* 1114 * Set initial state after a power cycle or a hw_reset. 1115 */ 1116 void mmc_set_initial_state(struct mmc_host *host) 1117 { 1118 mmc_retune_disable(host); 1119 1120 if (mmc_host_is_spi(host)) 1121 host->ios.chip_select = MMC_CS_HIGH; 1122 else 1123 host->ios.chip_select = MMC_CS_DONTCARE; 1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1125 host->ios.bus_width = MMC_BUS_WIDTH_1; 1126 host->ios.timing = MMC_TIMING_LEGACY; 1127 host->ios.drv_type = 0; 1128 1129 mmc_set_ios(host); 1130 } 1131 1132 /** 1133 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1134 * @vdd: voltage (mV) 1135 * @low_bits: prefer low bits in boundary cases 1136 * 1137 * This function returns the OCR bit number according to the provided @vdd 1138 * value. If conversion is not possible a negative errno value returned. 1139 * 1140 * Depending on the @low_bits flag the function prefers low or high OCR bits 1141 * on boundary voltages. For example, 1142 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1143 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1144 * 1145 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1146 */ 1147 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1148 { 1149 const int max_bit = ilog2(MMC_VDD_35_36); 1150 int bit; 1151 1152 if (vdd < 1650 || vdd > 3600) 1153 return -EINVAL; 1154 1155 if (vdd >= 1650 && vdd <= 1950) 1156 return ilog2(MMC_VDD_165_195); 1157 1158 if (low_bits) 1159 vdd -= 1; 1160 1161 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1162 bit = (vdd - 2000) / 100 + 8; 1163 if (bit > max_bit) 1164 return max_bit; 1165 return bit; 1166 } 1167 1168 /** 1169 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1170 * @vdd_min: minimum voltage value (mV) 1171 * @vdd_max: maximum voltage value (mV) 1172 * 1173 * This function returns the OCR mask bits according to the provided @vdd_min 1174 * and @vdd_max values. If conversion is not possible the function returns 0. 1175 * 1176 * Notes wrt boundary cases: 1177 * This function sets the OCR bits for all boundary voltages, for example 1178 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1179 * MMC_VDD_34_35 mask. 1180 */ 1181 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1182 { 1183 u32 mask = 0; 1184 1185 if (vdd_max < vdd_min) 1186 return 0; 1187 1188 /* Prefer high bits for the boundary vdd_max values. */ 1189 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1190 if (vdd_max < 0) 1191 return 0; 1192 1193 /* Prefer low bits for the boundary vdd_min values. */ 1194 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1195 if (vdd_min < 0) 1196 return 0; 1197 1198 /* Fill the mask, from max bit to min bit. */ 1199 while (vdd_max >= vdd_min) 1200 mask |= 1 << vdd_max--; 1201 1202 return mask; 1203 } 1204 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1205 1206 #ifdef CONFIG_OF 1207 1208 /** 1209 * mmc_of_parse_voltage - return mask of supported voltages 1210 * @np: The device node need to be parsed. 1211 * @mask: mask of voltages available for MMC/SD/SDIO 1212 * 1213 * 1. Return zero on success. 1214 * 2. Return negative errno: voltage-range is invalid. 1215 */ 1216 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1217 { 1218 const u32 *voltage_ranges; 1219 int num_ranges, i; 1220 1221 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1222 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1223 if (!voltage_ranges || !num_ranges) { 1224 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1225 return -EINVAL; 1226 } 1227 1228 for (i = 0; i < num_ranges; i++) { 1229 const int j = i * 2; 1230 u32 ocr_mask; 1231 1232 ocr_mask = mmc_vddrange_to_ocrmask( 1233 be32_to_cpu(voltage_ranges[j]), 1234 be32_to_cpu(voltage_ranges[j + 1])); 1235 if (!ocr_mask) { 1236 pr_err("%s: voltage-range #%d is invalid\n", 1237 np->full_name, i); 1238 return -EINVAL; 1239 } 1240 *mask |= ocr_mask; 1241 } 1242 1243 return 0; 1244 } 1245 EXPORT_SYMBOL(mmc_of_parse_voltage); 1246 1247 #endif /* CONFIG_OF */ 1248 1249 static int mmc_of_get_func_num(struct device_node *node) 1250 { 1251 u32 reg; 1252 int ret; 1253 1254 ret = of_property_read_u32(node, "reg", ®); 1255 if (ret < 0) 1256 return ret; 1257 1258 return reg; 1259 } 1260 1261 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1262 unsigned func_num) 1263 { 1264 struct device_node *node; 1265 1266 if (!host->parent || !host->parent->of_node) 1267 return NULL; 1268 1269 for_each_child_of_node(host->parent->of_node, node) { 1270 if (mmc_of_get_func_num(node) == func_num) 1271 return node; 1272 } 1273 1274 return NULL; 1275 } 1276 1277 #ifdef CONFIG_REGULATOR 1278 1279 /** 1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1281 * @vdd_bit: OCR bit number 1282 * @min_uV: minimum voltage value (mV) 1283 * @max_uV: maximum voltage value (mV) 1284 * 1285 * This function returns the voltage range according to the provided OCR 1286 * bit number. If conversion is not possible a negative errno value returned. 1287 */ 1288 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1289 { 1290 int tmp; 1291 1292 if (!vdd_bit) 1293 return -EINVAL; 1294 1295 /* 1296 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1297 * bits this regulator doesn't quite support ... don't 1298 * be too picky, most cards and regulators are OK with 1299 * a 0.1V range goof (it's a small error percentage). 1300 */ 1301 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1302 if (tmp == 0) { 1303 *min_uV = 1650 * 1000; 1304 *max_uV = 1950 * 1000; 1305 } else { 1306 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1307 *max_uV = *min_uV + 100 * 1000; 1308 } 1309 1310 return 0; 1311 } 1312 1313 /** 1314 * mmc_regulator_get_ocrmask - return mask of supported voltages 1315 * @supply: regulator to use 1316 * 1317 * This returns either a negative errno, or a mask of voltages that 1318 * can be provided to MMC/SD/SDIO devices using the specified voltage 1319 * regulator. This would normally be called before registering the 1320 * MMC host adapter. 1321 */ 1322 int mmc_regulator_get_ocrmask(struct regulator *supply) 1323 { 1324 int result = 0; 1325 int count; 1326 int i; 1327 int vdd_uV; 1328 int vdd_mV; 1329 1330 count = regulator_count_voltages(supply); 1331 if (count < 0) 1332 return count; 1333 1334 for (i = 0; i < count; i++) { 1335 vdd_uV = regulator_list_voltage(supply, i); 1336 if (vdd_uV <= 0) 1337 continue; 1338 1339 vdd_mV = vdd_uV / 1000; 1340 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1341 } 1342 1343 if (!result) { 1344 vdd_uV = regulator_get_voltage(supply); 1345 if (vdd_uV <= 0) 1346 return vdd_uV; 1347 1348 vdd_mV = vdd_uV / 1000; 1349 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1350 } 1351 1352 return result; 1353 } 1354 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1355 1356 /** 1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1358 * @mmc: the host to regulate 1359 * @supply: regulator to use 1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1361 * 1362 * Returns zero on success, else negative errno. 1363 * 1364 * MMC host drivers may use this to enable or disable a regulator using 1365 * a particular supply voltage. This would normally be called from the 1366 * set_ios() method. 1367 */ 1368 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1369 struct regulator *supply, 1370 unsigned short vdd_bit) 1371 { 1372 int result = 0; 1373 int min_uV, max_uV; 1374 1375 if (vdd_bit) { 1376 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1377 1378 result = regulator_set_voltage(supply, min_uV, max_uV); 1379 if (result == 0 && !mmc->regulator_enabled) { 1380 result = regulator_enable(supply); 1381 if (!result) 1382 mmc->regulator_enabled = true; 1383 } 1384 } else if (mmc->regulator_enabled) { 1385 result = regulator_disable(supply); 1386 if (result == 0) 1387 mmc->regulator_enabled = false; 1388 } 1389 1390 if (result) 1391 dev_err(mmc_dev(mmc), 1392 "could not set regulator OCR (%d)\n", result); 1393 return result; 1394 } 1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1396 1397 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1398 int min_uV, int target_uV, 1399 int max_uV) 1400 { 1401 /* 1402 * Check if supported first to avoid errors since we may try several 1403 * signal levels during power up and don't want to show errors. 1404 */ 1405 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1406 return -EINVAL; 1407 1408 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1409 max_uV); 1410 } 1411 1412 /** 1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1414 * 1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1417 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1418 * SD card spec also define VQMMC in terms of VMMC. 1419 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1420 * 1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1422 * requested voltage. This is definitely a good idea for UHS where there's a 1423 * separate regulator on the card that's trying to make 1.8V and it's best if 1424 * we match. 1425 * 1426 * This function is expected to be used by a controller's 1427 * start_signal_voltage_switch() function. 1428 */ 1429 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1430 { 1431 struct device *dev = mmc_dev(mmc); 1432 int ret, volt, min_uV, max_uV; 1433 1434 /* If no vqmmc supply then we can't change the voltage */ 1435 if (IS_ERR(mmc->supply.vqmmc)) 1436 return -EINVAL; 1437 1438 switch (ios->signal_voltage) { 1439 case MMC_SIGNAL_VOLTAGE_120: 1440 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1441 1100000, 1200000, 1300000); 1442 case MMC_SIGNAL_VOLTAGE_180: 1443 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1444 1700000, 1800000, 1950000); 1445 case MMC_SIGNAL_VOLTAGE_330: 1446 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1447 if (ret < 0) 1448 return ret; 1449 1450 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1451 __func__, volt, max_uV); 1452 1453 min_uV = max(volt - 300000, 2700000); 1454 max_uV = min(max_uV + 200000, 3600000); 1455 1456 /* 1457 * Due to a limitation in the current implementation of 1458 * regulator_set_voltage_triplet() which is taking the lowest 1459 * voltage possible if below the target, search for a suitable 1460 * voltage in two steps and try to stay close to vmmc 1461 * with a 0.3V tolerance at first. 1462 */ 1463 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1464 min_uV, volt, max_uV)) 1465 return 0; 1466 1467 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1468 2700000, volt, 3600000); 1469 default: 1470 return -EINVAL; 1471 } 1472 } 1473 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1474 1475 #endif /* CONFIG_REGULATOR */ 1476 1477 int mmc_regulator_get_supply(struct mmc_host *mmc) 1478 { 1479 struct device *dev = mmc_dev(mmc); 1480 int ret; 1481 1482 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1483 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1484 1485 if (IS_ERR(mmc->supply.vmmc)) { 1486 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1487 return -EPROBE_DEFER; 1488 dev_info(dev, "No vmmc regulator found\n"); 1489 } else { 1490 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1491 if (ret > 0) 1492 mmc->ocr_avail = ret; 1493 else 1494 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1495 } 1496 1497 if (IS_ERR(mmc->supply.vqmmc)) { 1498 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1499 return -EPROBE_DEFER; 1500 dev_info(dev, "No vqmmc regulator found\n"); 1501 } 1502 1503 return 0; 1504 } 1505 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1506 1507 /* 1508 * Mask off any voltages we don't support and select 1509 * the lowest voltage 1510 */ 1511 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1512 { 1513 int bit; 1514 1515 /* 1516 * Sanity check the voltages that the card claims to 1517 * support. 1518 */ 1519 if (ocr & 0x7F) { 1520 dev_warn(mmc_dev(host), 1521 "card claims to support voltages below defined range\n"); 1522 ocr &= ~0x7F; 1523 } 1524 1525 ocr &= host->ocr_avail; 1526 if (!ocr) { 1527 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1528 return 0; 1529 } 1530 1531 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1532 bit = ffs(ocr) - 1; 1533 ocr &= 3 << bit; 1534 mmc_power_cycle(host, ocr); 1535 } else { 1536 bit = fls(ocr) - 1; 1537 ocr &= 3 << bit; 1538 if (bit != host->ios.vdd) 1539 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1540 } 1541 1542 return ocr; 1543 } 1544 1545 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1546 { 1547 int err = 0; 1548 int old_signal_voltage = host->ios.signal_voltage; 1549 1550 host->ios.signal_voltage = signal_voltage; 1551 if (host->ops->start_signal_voltage_switch) 1552 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1553 1554 if (err) 1555 host->ios.signal_voltage = old_signal_voltage; 1556 1557 return err; 1558 1559 } 1560 1561 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1562 { 1563 struct mmc_command cmd = {0}; 1564 int err = 0; 1565 u32 clock; 1566 1567 BUG_ON(!host); 1568 1569 /* 1570 * Send CMD11 only if the request is to switch the card to 1571 * 1.8V signalling. 1572 */ 1573 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1574 return __mmc_set_signal_voltage(host, signal_voltage); 1575 1576 /* 1577 * If we cannot switch voltages, return failure so the caller 1578 * can continue without UHS mode 1579 */ 1580 if (!host->ops->start_signal_voltage_switch) 1581 return -EPERM; 1582 if (!host->ops->card_busy) 1583 pr_warn("%s: cannot verify signal voltage switch\n", 1584 mmc_hostname(host)); 1585 1586 cmd.opcode = SD_SWITCH_VOLTAGE; 1587 cmd.arg = 0; 1588 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1589 1590 err = mmc_wait_for_cmd(host, &cmd, 0); 1591 if (err) 1592 return err; 1593 1594 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1595 return -EIO; 1596 1597 /* 1598 * The card should drive cmd and dat[0:3] low immediately 1599 * after the response of cmd11, but wait 1 ms to be sure 1600 */ 1601 mmc_delay(1); 1602 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1603 err = -EAGAIN; 1604 goto power_cycle; 1605 } 1606 /* 1607 * During a signal voltage level switch, the clock must be gated 1608 * for 5 ms according to the SD spec 1609 */ 1610 clock = host->ios.clock; 1611 host->ios.clock = 0; 1612 mmc_set_ios(host); 1613 1614 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1615 /* 1616 * Voltages may not have been switched, but we've already 1617 * sent CMD11, so a power cycle is required anyway 1618 */ 1619 err = -EAGAIN; 1620 goto power_cycle; 1621 } 1622 1623 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1624 mmc_delay(10); 1625 host->ios.clock = clock; 1626 mmc_set_ios(host); 1627 1628 /* Wait for at least 1 ms according to spec */ 1629 mmc_delay(1); 1630 1631 /* 1632 * Failure to switch is indicated by the card holding 1633 * dat[0:3] low 1634 */ 1635 if (host->ops->card_busy && host->ops->card_busy(host)) 1636 err = -EAGAIN; 1637 1638 power_cycle: 1639 if (err) { 1640 pr_debug("%s: Signal voltage switch failed, " 1641 "power cycling card\n", mmc_hostname(host)); 1642 mmc_power_cycle(host, ocr); 1643 } 1644 1645 return err; 1646 } 1647 1648 /* 1649 * Select timing parameters for host. 1650 */ 1651 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1652 { 1653 host->ios.timing = timing; 1654 mmc_set_ios(host); 1655 } 1656 1657 /* 1658 * Select appropriate driver type for host. 1659 */ 1660 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1661 { 1662 host->ios.drv_type = drv_type; 1663 mmc_set_ios(host); 1664 } 1665 1666 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1667 int card_drv_type, int *drv_type) 1668 { 1669 struct mmc_host *host = card->host; 1670 int host_drv_type = SD_DRIVER_TYPE_B; 1671 1672 *drv_type = 0; 1673 1674 if (!host->ops->select_drive_strength) 1675 return 0; 1676 1677 /* Use SD definition of driver strength for hosts */ 1678 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1679 host_drv_type |= SD_DRIVER_TYPE_A; 1680 1681 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1682 host_drv_type |= SD_DRIVER_TYPE_C; 1683 1684 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1685 host_drv_type |= SD_DRIVER_TYPE_D; 1686 1687 /* 1688 * The drive strength that the hardware can support 1689 * depends on the board design. Pass the appropriate 1690 * information and let the hardware specific code 1691 * return what is possible given the options 1692 */ 1693 return host->ops->select_drive_strength(card, max_dtr, 1694 host_drv_type, 1695 card_drv_type, 1696 drv_type); 1697 } 1698 1699 /* 1700 * Apply power to the MMC stack. This is a two-stage process. 1701 * First, we enable power to the card without the clock running. 1702 * We then wait a bit for the power to stabilise. Finally, 1703 * enable the bus drivers and clock to the card. 1704 * 1705 * We must _NOT_ enable the clock prior to power stablising. 1706 * 1707 * If a host does all the power sequencing itself, ignore the 1708 * initial MMC_POWER_UP stage. 1709 */ 1710 void mmc_power_up(struct mmc_host *host, u32 ocr) 1711 { 1712 if (host->ios.power_mode == MMC_POWER_ON) 1713 return; 1714 1715 mmc_pwrseq_pre_power_on(host); 1716 1717 host->ios.vdd = fls(ocr) - 1; 1718 host->ios.power_mode = MMC_POWER_UP; 1719 /* Set initial state and call mmc_set_ios */ 1720 mmc_set_initial_state(host); 1721 1722 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1723 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1724 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1725 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1726 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1727 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1728 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1729 1730 /* 1731 * This delay should be sufficient to allow the power supply 1732 * to reach the minimum voltage. 1733 */ 1734 mmc_delay(10); 1735 1736 mmc_pwrseq_post_power_on(host); 1737 1738 host->ios.clock = host->f_init; 1739 1740 host->ios.power_mode = MMC_POWER_ON; 1741 mmc_set_ios(host); 1742 1743 /* 1744 * This delay must be at least 74 clock sizes, or 1 ms, or the 1745 * time required to reach a stable voltage. 1746 */ 1747 mmc_delay(10); 1748 } 1749 1750 void mmc_power_off(struct mmc_host *host) 1751 { 1752 if (host->ios.power_mode == MMC_POWER_OFF) 1753 return; 1754 1755 mmc_pwrseq_power_off(host); 1756 1757 host->ios.clock = 0; 1758 host->ios.vdd = 0; 1759 1760 host->ios.power_mode = MMC_POWER_OFF; 1761 /* Set initial state and call mmc_set_ios */ 1762 mmc_set_initial_state(host); 1763 1764 /* 1765 * Some configurations, such as the 802.11 SDIO card in the OLPC 1766 * XO-1.5, require a short delay after poweroff before the card 1767 * can be successfully turned on again. 1768 */ 1769 mmc_delay(1); 1770 } 1771 1772 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1773 { 1774 mmc_power_off(host); 1775 /* Wait at least 1 ms according to SD spec */ 1776 mmc_delay(1); 1777 mmc_power_up(host, ocr); 1778 } 1779 1780 /* 1781 * Cleanup when the last reference to the bus operator is dropped. 1782 */ 1783 static void __mmc_release_bus(struct mmc_host *host) 1784 { 1785 BUG_ON(!host); 1786 BUG_ON(host->bus_refs); 1787 BUG_ON(!host->bus_dead); 1788 1789 host->bus_ops = NULL; 1790 } 1791 1792 /* 1793 * Increase reference count of bus operator 1794 */ 1795 static inline void mmc_bus_get(struct mmc_host *host) 1796 { 1797 unsigned long flags; 1798 1799 spin_lock_irqsave(&host->lock, flags); 1800 host->bus_refs++; 1801 spin_unlock_irqrestore(&host->lock, flags); 1802 } 1803 1804 /* 1805 * Decrease reference count of bus operator and free it if 1806 * it is the last reference. 1807 */ 1808 static inline void mmc_bus_put(struct mmc_host *host) 1809 { 1810 unsigned long flags; 1811 1812 spin_lock_irqsave(&host->lock, flags); 1813 host->bus_refs--; 1814 if ((host->bus_refs == 0) && host->bus_ops) 1815 __mmc_release_bus(host); 1816 spin_unlock_irqrestore(&host->lock, flags); 1817 } 1818 1819 /* 1820 * Assign a mmc bus handler to a host. Only one bus handler may control a 1821 * host at any given time. 1822 */ 1823 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1824 { 1825 unsigned long flags; 1826 1827 BUG_ON(!host); 1828 BUG_ON(!ops); 1829 1830 WARN_ON(!host->claimed); 1831 1832 spin_lock_irqsave(&host->lock, flags); 1833 1834 BUG_ON(host->bus_ops); 1835 BUG_ON(host->bus_refs); 1836 1837 host->bus_ops = ops; 1838 host->bus_refs = 1; 1839 host->bus_dead = 0; 1840 1841 spin_unlock_irqrestore(&host->lock, flags); 1842 } 1843 1844 /* 1845 * Remove the current bus handler from a host. 1846 */ 1847 void mmc_detach_bus(struct mmc_host *host) 1848 { 1849 unsigned long flags; 1850 1851 BUG_ON(!host); 1852 1853 WARN_ON(!host->claimed); 1854 WARN_ON(!host->bus_ops); 1855 1856 spin_lock_irqsave(&host->lock, flags); 1857 1858 host->bus_dead = 1; 1859 1860 spin_unlock_irqrestore(&host->lock, flags); 1861 1862 mmc_bus_put(host); 1863 } 1864 1865 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1866 bool cd_irq) 1867 { 1868 #ifdef CONFIG_MMC_DEBUG 1869 unsigned long flags; 1870 spin_lock_irqsave(&host->lock, flags); 1871 WARN_ON(host->removed); 1872 spin_unlock_irqrestore(&host->lock, flags); 1873 #endif 1874 1875 /* 1876 * If the device is configured as wakeup, we prevent a new sleep for 1877 * 5 s to give provision for user space to consume the event. 1878 */ 1879 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1880 device_can_wakeup(mmc_dev(host))) 1881 pm_wakeup_event(mmc_dev(host), 5000); 1882 1883 host->detect_change = 1; 1884 mmc_schedule_delayed_work(&host->detect, delay); 1885 } 1886 1887 /** 1888 * mmc_detect_change - process change of state on a MMC socket 1889 * @host: host which changed state. 1890 * @delay: optional delay to wait before detection (jiffies) 1891 * 1892 * MMC drivers should call this when they detect a card has been 1893 * inserted or removed. The MMC layer will confirm that any 1894 * present card is still functional, and initialize any newly 1895 * inserted. 1896 */ 1897 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1898 { 1899 _mmc_detect_change(host, delay, true); 1900 } 1901 EXPORT_SYMBOL(mmc_detect_change); 1902 1903 void mmc_init_erase(struct mmc_card *card) 1904 { 1905 unsigned int sz; 1906 1907 if (is_power_of_2(card->erase_size)) 1908 card->erase_shift = ffs(card->erase_size) - 1; 1909 else 1910 card->erase_shift = 0; 1911 1912 /* 1913 * It is possible to erase an arbitrarily large area of an SD or MMC 1914 * card. That is not desirable because it can take a long time 1915 * (minutes) potentially delaying more important I/O, and also the 1916 * timeout calculations become increasingly hugely over-estimated. 1917 * Consequently, 'pref_erase' is defined as a guide to limit erases 1918 * to that size and alignment. 1919 * 1920 * For SD cards that define Allocation Unit size, limit erases to one 1921 * Allocation Unit at a time. For MMC cards that define High Capacity 1922 * Erase Size, whether it is switched on or not, limit to that size. 1923 * Otherwise just have a stab at a good value. For modern cards it 1924 * will end up being 4MiB. Note that if the value is too small, it 1925 * can end up taking longer to erase. 1926 */ 1927 if (mmc_card_sd(card) && card->ssr.au) { 1928 card->pref_erase = card->ssr.au; 1929 card->erase_shift = ffs(card->ssr.au) - 1; 1930 } else if (card->ext_csd.hc_erase_size) { 1931 card->pref_erase = card->ext_csd.hc_erase_size; 1932 } else if (card->erase_size) { 1933 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1934 if (sz < 128) 1935 card->pref_erase = 512 * 1024 / 512; 1936 else if (sz < 512) 1937 card->pref_erase = 1024 * 1024 / 512; 1938 else if (sz < 1024) 1939 card->pref_erase = 2 * 1024 * 1024 / 512; 1940 else 1941 card->pref_erase = 4 * 1024 * 1024 / 512; 1942 if (card->pref_erase < card->erase_size) 1943 card->pref_erase = card->erase_size; 1944 else { 1945 sz = card->pref_erase % card->erase_size; 1946 if (sz) 1947 card->pref_erase += card->erase_size - sz; 1948 } 1949 } else 1950 card->pref_erase = 0; 1951 } 1952 1953 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1954 unsigned int arg, unsigned int qty) 1955 { 1956 unsigned int erase_timeout; 1957 1958 if (arg == MMC_DISCARD_ARG || 1959 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1960 erase_timeout = card->ext_csd.trim_timeout; 1961 } else if (card->ext_csd.erase_group_def & 1) { 1962 /* High Capacity Erase Group Size uses HC timeouts */ 1963 if (arg == MMC_TRIM_ARG) 1964 erase_timeout = card->ext_csd.trim_timeout; 1965 else 1966 erase_timeout = card->ext_csd.hc_erase_timeout; 1967 } else { 1968 /* CSD Erase Group Size uses write timeout */ 1969 unsigned int mult = (10 << card->csd.r2w_factor); 1970 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1971 unsigned int timeout_us; 1972 1973 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1974 if (card->csd.tacc_ns < 1000000) 1975 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1976 else 1977 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1978 1979 /* 1980 * ios.clock is only a target. The real clock rate might be 1981 * less but not that much less, so fudge it by multiplying by 2. 1982 */ 1983 timeout_clks <<= 1; 1984 timeout_us += (timeout_clks * 1000) / 1985 (card->host->ios.clock / 1000); 1986 1987 erase_timeout = timeout_us / 1000; 1988 1989 /* 1990 * Theoretically, the calculation could underflow so round up 1991 * to 1ms in that case. 1992 */ 1993 if (!erase_timeout) 1994 erase_timeout = 1; 1995 } 1996 1997 /* Multiplier for secure operations */ 1998 if (arg & MMC_SECURE_ARGS) { 1999 if (arg == MMC_SECURE_ERASE_ARG) 2000 erase_timeout *= card->ext_csd.sec_erase_mult; 2001 else 2002 erase_timeout *= card->ext_csd.sec_trim_mult; 2003 } 2004 2005 erase_timeout *= qty; 2006 2007 /* 2008 * Ensure at least a 1 second timeout for SPI as per 2009 * 'mmc_set_data_timeout()' 2010 */ 2011 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2012 erase_timeout = 1000; 2013 2014 return erase_timeout; 2015 } 2016 2017 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2018 unsigned int arg, 2019 unsigned int qty) 2020 { 2021 unsigned int erase_timeout; 2022 2023 if (card->ssr.erase_timeout) { 2024 /* Erase timeout specified in SD Status Register (SSR) */ 2025 erase_timeout = card->ssr.erase_timeout * qty + 2026 card->ssr.erase_offset; 2027 } else { 2028 /* 2029 * Erase timeout not specified in SD Status Register (SSR) so 2030 * use 250ms per write block. 2031 */ 2032 erase_timeout = 250 * qty; 2033 } 2034 2035 /* Must not be less than 1 second */ 2036 if (erase_timeout < 1000) 2037 erase_timeout = 1000; 2038 2039 return erase_timeout; 2040 } 2041 2042 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2043 unsigned int arg, 2044 unsigned int qty) 2045 { 2046 if (mmc_card_sd(card)) 2047 return mmc_sd_erase_timeout(card, arg, qty); 2048 else 2049 return mmc_mmc_erase_timeout(card, arg, qty); 2050 } 2051 2052 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2053 unsigned int to, unsigned int arg) 2054 { 2055 struct mmc_command cmd = {0}; 2056 unsigned int qty = 0; 2057 unsigned long timeout; 2058 int err; 2059 2060 mmc_retune_hold(card->host); 2061 2062 /* 2063 * qty is used to calculate the erase timeout which depends on how many 2064 * erase groups (or allocation units in SD terminology) are affected. 2065 * We count erasing part of an erase group as one erase group. 2066 * For SD, the allocation units are always a power of 2. For MMC, the 2067 * erase group size is almost certainly also power of 2, but it does not 2068 * seem to insist on that in the JEDEC standard, so we fall back to 2069 * division in that case. SD may not specify an allocation unit size, 2070 * in which case the timeout is based on the number of write blocks. 2071 * 2072 * Note that the timeout for secure trim 2 will only be correct if the 2073 * number of erase groups specified is the same as the total of all 2074 * preceding secure trim 1 commands. Since the power may have been 2075 * lost since the secure trim 1 commands occurred, it is generally 2076 * impossible to calculate the secure trim 2 timeout correctly. 2077 */ 2078 if (card->erase_shift) 2079 qty += ((to >> card->erase_shift) - 2080 (from >> card->erase_shift)) + 1; 2081 else if (mmc_card_sd(card)) 2082 qty += to - from + 1; 2083 else 2084 qty += ((to / card->erase_size) - 2085 (from / card->erase_size)) + 1; 2086 2087 if (!mmc_card_blockaddr(card)) { 2088 from <<= 9; 2089 to <<= 9; 2090 } 2091 2092 if (mmc_card_sd(card)) 2093 cmd.opcode = SD_ERASE_WR_BLK_START; 2094 else 2095 cmd.opcode = MMC_ERASE_GROUP_START; 2096 cmd.arg = from; 2097 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2098 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2099 if (err) { 2100 pr_err("mmc_erase: group start error %d, " 2101 "status %#x\n", err, cmd.resp[0]); 2102 err = -EIO; 2103 goto out; 2104 } 2105 2106 memset(&cmd, 0, sizeof(struct mmc_command)); 2107 if (mmc_card_sd(card)) 2108 cmd.opcode = SD_ERASE_WR_BLK_END; 2109 else 2110 cmd.opcode = MMC_ERASE_GROUP_END; 2111 cmd.arg = to; 2112 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2113 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2114 if (err) { 2115 pr_err("mmc_erase: group end error %d, status %#x\n", 2116 err, cmd.resp[0]); 2117 err = -EIO; 2118 goto out; 2119 } 2120 2121 memset(&cmd, 0, sizeof(struct mmc_command)); 2122 cmd.opcode = MMC_ERASE; 2123 cmd.arg = arg; 2124 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2125 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 2126 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2127 if (err) { 2128 pr_err("mmc_erase: erase error %d, status %#x\n", 2129 err, cmd.resp[0]); 2130 err = -EIO; 2131 goto out; 2132 } 2133 2134 if (mmc_host_is_spi(card->host)) 2135 goto out; 2136 2137 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 2138 do { 2139 memset(&cmd, 0, sizeof(struct mmc_command)); 2140 cmd.opcode = MMC_SEND_STATUS; 2141 cmd.arg = card->rca << 16; 2142 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2143 /* Do not retry else we can't see errors */ 2144 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2145 if (err || (cmd.resp[0] & 0xFDF92000)) { 2146 pr_err("error %d requesting status %#x\n", 2147 err, cmd.resp[0]); 2148 err = -EIO; 2149 goto out; 2150 } 2151 2152 /* Timeout if the device never becomes ready for data and 2153 * never leaves the program state. 2154 */ 2155 if (time_after(jiffies, timeout)) { 2156 pr_err("%s: Card stuck in programming state! %s\n", 2157 mmc_hostname(card->host), __func__); 2158 err = -EIO; 2159 goto out; 2160 } 2161 2162 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2163 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2164 out: 2165 mmc_retune_release(card->host); 2166 return err; 2167 } 2168 2169 /** 2170 * mmc_erase - erase sectors. 2171 * @card: card to erase 2172 * @from: first sector to erase 2173 * @nr: number of sectors to erase 2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2175 * 2176 * Caller must claim host before calling this function. 2177 */ 2178 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2179 unsigned int arg) 2180 { 2181 unsigned int rem, to = from + nr; 2182 int err; 2183 2184 if (!(card->host->caps & MMC_CAP_ERASE) || 2185 !(card->csd.cmdclass & CCC_ERASE)) 2186 return -EOPNOTSUPP; 2187 2188 if (!card->erase_size) 2189 return -EOPNOTSUPP; 2190 2191 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2192 return -EOPNOTSUPP; 2193 2194 if ((arg & MMC_SECURE_ARGS) && 2195 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2196 return -EOPNOTSUPP; 2197 2198 if ((arg & MMC_TRIM_ARGS) && 2199 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2200 return -EOPNOTSUPP; 2201 2202 if (arg == MMC_SECURE_ERASE_ARG) { 2203 if (from % card->erase_size || nr % card->erase_size) 2204 return -EINVAL; 2205 } 2206 2207 if (arg == MMC_ERASE_ARG) { 2208 rem = from % card->erase_size; 2209 if (rem) { 2210 rem = card->erase_size - rem; 2211 from += rem; 2212 if (nr > rem) 2213 nr -= rem; 2214 else 2215 return 0; 2216 } 2217 rem = nr % card->erase_size; 2218 if (rem) 2219 nr -= rem; 2220 } 2221 2222 if (nr == 0) 2223 return 0; 2224 2225 to = from + nr; 2226 2227 if (to <= from) 2228 return -EINVAL; 2229 2230 /* 'from' and 'to' are inclusive */ 2231 to -= 1; 2232 2233 /* 2234 * Special case where only one erase-group fits in the timeout budget: 2235 * If the region crosses an erase-group boundary on this particular 2236 * case, we will be trimming more than one erase-group which, does not 2237 * fit in the timeout budget of the controller, so we need to split it 2238 * and call mmc_do_erase() twice if necessary. This special case is 2239 * identified by the card->eg_boundary flag. 2240 */ 2241 rem = card->erase_size - (from % card->erase_size); 2242 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2243 err = mmc_do_erase(card, from, from + rem - 1, arg); 2244 from += rem; 2245 if ((err) || (to <= from)) 2246 return err; 2247 } 2248 2249 return mmc_do_erase(card, from, to, arg); 2250 } 2251 EXPORT_SYMBOL(mmc_erase); 2252 2253 int mmc_can_erase(struct mmc_card *card) 2254 { 2255 if ((card->host->caps & MMC_CAP_ERASE) && 2256 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2257 return 1; 2258 return 0; 2259 } 2260 EXPORT_SYMBOL(mmc_can_erase); 2261 2262 int mmc_can_trim(struct mmc_card *card) 2263 { 2264 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2265 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2266 return 1; 2267 return 0; 2268 } 2269 EXPORT_SYMBOL(mmc_can_trim); 2270 2271 int mmc_can_discard(struct mmc_card *card) 2272 { 2273 /* 2274 * As there's no way to detect the discard support bit at v4.5 2275 * use the s/w feature support filed. 2276 */ 2277 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2278 return 1; 2279 return 0; 2280 } 2281 EXPORT_SYMBOL(mmc_can_discard); 2282 2283 int mmc_can_sanitize(struct mmc_card *card) 2284 { 2285 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2286 return 0; 2287 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2288 return 1; 2289 return 0; 2290 } 2291 EXPORT_SYMBOL(mmc_can_sanitize); 2292 2293 int mmc_can_secure_erase_trim(struct mmc_card *card) 2294 { 2295 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2296 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2297 return 1; 2298 return 0; 2299 } 2300 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2301 2302 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2303 unsigned int nr) 2304 { 2305 if (!card->erase_size) 2306 return 0; 2307 if (from % card->erase_size || nr % card->erase_size) 2308 return 0; 2309 return 1; 2310 } 2311 EXPORT_SYMBOL(mmc_erase_group_aligned); 2312 2313 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2314 unsigned int arg) 2315 { 2316 struct mmc_host *host = card->host; 2317 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2318 unsigned int last_timeout = 0; 2319 2320 if (card->erase_shift) 2321 max_qty = UINT_MAX >> card->erase_shift; 2322 else if (mmc_card_sd(card)) 2323 max_qty = UINT_MAX; 2324 else 2325 max_qty = UINT_MAX / card->erase_size; 2326 2327 /* Find the largest qty with an OK timeout */ 2328 do { 2329 y = 0; 2330 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2331 timeout = mmc_erase_timeout(card, arg, qty + x); 2332 if (timeout > host->max_busy_timeout) 2333 break; 2334 if (timeout < last_timeout) 2335 break; 2336 last_timeout = timeout; 2337 y = x; 2338 } 2339 qty += y; 2340 } while (y); 2341 2342 if (!qty) 2343 return 0; 2344 2345 /* 2346 * When specifying a sector range to trim, chances are we might cross 2347 * an erase-group boundary even if the amount of sectors is less than 2348 * one erase-group. 2349 * If we can only fit one erase-group in the controller timeout budget, 2350 * we have to care that erase-group boundaries are not crossed by a 2351 * single trim operation. We flag that special case with "eg_boundary". 2352 * In all other cases we can just decrement qty and pretend that we 2353 * always touch (qty + 1) erase-groups as a simple optimization. 2354 */ 2355 if (qty == 1) 2356 card->eg_boundary = 1; 2357 else 2358 qty--; 2359 2360 /* Convert qty to sectors */ 2361 if (card->erase_shift) 2362 max_discard = qty << card->erase_shift; 2363 else if (mmc_card_sd(card)) 2364 max_discard = qty + 1; 2365 else 2366 max_discard = qty * card->erase_size; 2367 2368 return max_discard; 2369 } 2370 2371 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2372 { 2373 struct mmc_host *host = card->host; 2374 unsigned int max_discard, max_trim; 2375 2376 if (!host->max_busy_timeout) 2377 return UINT_MAX; 2378 2379 /* 2380 * Without erase_group_def set, MMC erase timeout depends on clock 2381 * frequence which can change. In that case, the best choice is 2382 * just the preferred erase size. 2383 */ 2384 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2385 return card->pref_erase; 2386 2387 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2388 if (mmc_can_trim(card)) { 2389 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2390 if (max_trim < max_discard) 2391 max_discard = max_trim; 2392 } else if (max_discard < card->erase_size) { 2393 max_discard = 0; 2394 } 2395 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2396 mmc_hostname(host), max_discard, host->max_busy_timeout); 2397 return max_discard; 2398 } 2399 EXPORT_SYMBOL(mmc_calc_max_discard); 2400 2401 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2402 { 2403 struct mmc_command cmd = {0}; 2404 2405 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2406 return 0; 2407 2408 cmd.opcode = MMC_SET_BLOCKLEN; 2409 cmd.arg = blocklen; 2410 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2411 return mmc_wait_for_cmd(card->host, &cmd, 5); 2412 } 2413 EXPORT_SYMBOL(mmc_set_blocklen); 2414 2415 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2416 bool is_rel_write) 2417 { 2418 struct mmc_command cmd = {0}; 2419 2420 cmd.opcode = MMC_SET_BLOCK_COUNT; 2421 cmd.arg = blockcount & 0x0000FFFF; 2422 if (is_rel_write) 2423 cmd.arg |= 1 << 31; 2424 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2425 return mmc_wait_for_cmd(card->host, &cmd, 5); 2426 } 2427 EXPORT_SYMBOL(mmc_set_blockcount); 2428 2429 static void mmc_hw_reset_for_init(struct mmc_host *host) 2430 { 2431 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2432 return; 2433 host->ops->hw_reset(host); 2434 } 2435 2436 int mmc_hw_reset(struct mmc_host *host) 2437 { 2438 int ret; 2439 2440 if (!host->card) 2441 return -EINVAL; 2442 2443 mmc_bus_get(host); 2444 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2445 mmc_bus_put(host); 2446 return -EOPNOTSUPP; 2447 } 2448 2449 ret = host->bus_ops->reset(host); 2450 mmc_bus_put(host); 2451 2452 if (ret != -EOPNOTSUPP) 2453 pr_warn("%s: tried to reset card\n", mmc_hostname(host)); 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL(mmc_hw_reset); 2458 2459 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2460 { 2461 host->f_init = freq; 2462 2463 #ifdef CONFIG_MMC_DEBUG 2464 pr_info("%s: %s: trying to init card at %u Hz\n", 2465 mmc_hostname(host), __func__, host->f_init); 2466 #endif 2467 mmc_power_up(host, host->ocr_avail); 2468 2469 /* 2470 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2471 * do a hardware reset if possible. 2472 */ 2473 mmc_hw_reset_for_init(host); 2474 2475 /* 2476 * sdio_reset sends CMD52 to reset card. Since we do not know 2477 * if the card is being re-initialized, just send it. CMD52 2478 * should be ignored by SD/eMMC cards. 2479 */ 2480 sdio_reset(host); 2481 mmc_go_idle(host); 2482 2483 mmc_send_if_cond(host, host->ocr_avail); 2484 2485 /* Order's important: probe SDIO, then SD, then MMC */ 2486 if (!mmc_attach_sdio(host)) 2487 return 0; 2488 if (!mmc_attach_sd(host)) 2489 return 0; 2490 if (!mmc_attach_mmc(host)) 2491 return 0; 2492 2493 mmc_power_off(host); 2494 return -EIO; 2495 } 2496 2497 int _mmc_detect_card_removed(struct mmc_host *host) 2498 { 2499 int ret; 2500 2501 if (host->caps & MMC_CAP_NONREMOVABLE) 2502 return 0; 2503 2504 if (!host->card || mmc_card_removed(host->card)) 2505 return 1; 2506 2507 ret = host->bus_ops->alive(host); 2508 2509 /* 2510 * Card detect status and alive check may be out of sync if card is 2511 * removed slowly, when card detect switch changes while card/slot 2512 * pads are still contacted in hardware (refer to "SD Card Mechanical 2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2514 * detect work 200ms later for this case. 2515 */ 2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2517 mmc_detect_change(host, msecs_to_jiffies(200)); 2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2519 } 2520 2521 if (ret) { 2522 mmc_card_set_removed(host->card); 2523 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2524 } 2525 2526 return ret; 2527 } 2528 2529 int mmc_detect_card_removed(struct mmc_host *host) 2530 { 2531 struct mmc_card *card = host->card; 2532 int ret; 2533 2534 WARN_ON(!host->claimed); 2535 2536 if (!card) 2537 return 1; 2538 2539 ret = mmc_card_removed(card); 2540 /* 2541 * The card will be considered unchanged unless we have been asked to 2542 * detect a change or host requires polling to provide card detection. 2543 */ 2544 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2545 return ret; 2546 2547 host->detect_change = 0; 2548 if (!ret) { 2549 ret = _mmc_detect_card_removed(host); 2550 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2551 /* 2552 * Schedule a detect work as soon as possible to let a 2553 * rescan handle the card removal. 2554 */ 2555 cancel_delayed_work(&host->detect); 2556 _mmc_detect_change(host, 0, false); 2557 } 2558 } 2559 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(mmc_detect_card_removed); 2563 2564 void mmc_rescan(struct work_struct *work) 2565 { 2566 struct mmc_host *host = 2567 container_of(work, struct mmc_host, detect.work); 2568 int i; 2569 2570 if (host->trigger_card_event && host->ops->card_event) { 2571 host->ops->card_event(host); 2572 host->trigger_card_event = false; 2573 } 2574 2575 if (host->rescan_disable) 2576 return; 2577 2578 /* If there is a non-removable card registered, only scan once */ 2579 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2580 return; 2581 host->rescan_entered = 1; 2582 2583 mmc_bus_get(host); 2584 2585 /* 2586 * if there is a _removable_ card registered, check whether it is 2587 * still present 2588 */ 2589 if (host->bus_ops && !host->bus_dead 2590 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2591 host->bus_ops->detect(host); 2592 2593 host->detect_change = 0; 2594 2595 /* 2596 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2597 * the card is no longer present. 2598 */ 2599 mmc_bus_put(host); 2600 mmc_bus_get(host); 2601 2602 /* if there still is a card present, stop here */ 2603 if (host->bus_ops != NULL) { 2604 mmc_bus_put(host); 2605 goto out; 2606 } 2607 2608 /* 2609 * Only we can add a new handler, so it's safe to 2610 * release the lock here. 2611 */ 2612 mmc_bus_put(host); 2613 2614 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2615 host->ops->get_cd(host) == 0) { 2616 mmc_claim_host(host); 2617 mmc_power_off(host); 2618 mmc_release_host(host); 2619 goto out; 2620 } 2621 2622 mmc_claim_host(host); 2623 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2624 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2625 break; 2626 if (freqs[i] <= host->f_min) 2627 break; 2628 } 2629 mmc_release_host(host); 2630 2631 out: 2632 if (host->caps & MMC_CAP_NEEDS_POLL) 2633 mmc_schedule_delayed_work(&host->detect, HZ); 2634 } 2635 2636 void mmc_start_host(struct mmc_host *host) 2637 { 2638 host->f_init = max(freqs[0], host->f_min); 2639 host->rescan_disable = 0; 2640 host->ios.power_mode = MMC_POWER_UNDEFINED; 2641 2642 mmc_claim_host(host); 2643 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2644 mmc_power_off(host); 2645 else 2646 mmc_power_up(host, host->ocr_avail); 2647 mmc_release_host(host); 2648 2649 mmc_gpiod_request_cd_irq(host); 2650 _mmc_detect_change(host, 0, false); 2651 } 2652 2653 void mmc_stop_host(struct mmc_host *host) 2654 { 2655 #ifdef CONFIG_MMC_DEBUG 2656 unsigned long flags; 2657 spin_lock_irqsave(&host->lock, flags); 2658 host->removed = 1; 2659 spin_unlock_irqrestore(&host->lock, flags); 2660 #endif 2661 if (host->slot.cd_irq >= 0) 2662 disable_irq(host->slot.cd_irq); 2663 2664 host->rescan_disable = 1; 2665 cancel_delayed_work_sync(&host->detect); 2666 mmc_flush_scheduled_work(); 2667 2668 /* clear pm flags now and let card drivers set them as needed */ 2669 host->pm_flags = 0; 2670 2671 mmc_bus_get(host); 2672 if (host->bus_ops && !host->bus_dead) { 2673 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2674 host->bus_ops->remove(host); 2675 mmc_claim_host(host); 2676 mmc_detach_bus(host); 2677 mmc_power_off(host); 2678 mmc_release_host(host); 2679 mmc_bus_put(host); 2680 return; 2681 } 2682 mmc_bus_put(host); 2683 2684 BUG_ON(host->card); 2685 2686 mmc_claim_host(host); 2687 mmc_power_off(host); 2688 mmc_release_host(host); 2689 } 2690 2691 int mmc_power_save_host(struct mmc_host *host) 2692 { 2693 int ret = 0; 2694 2695 #ifdef CONFIG_MMC_DEBUG 2696 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2697 #endif 2698 2699 mmc_bus_get(host); 2700 2701 if (!host->bus_ops || host->bus_dead) { 2702 mmc_bus_put(host); 2703 return -EINVAL; 2704 } 2705 2706 if (host->bus_ops->power_save) 2707 ret = host->bus_ops->power_save(host); 2708 2709 mmc_bus_put(host); 2710 2711 mmc_power_off(host); 2712 2713 return ret; 2714 } 2715 EXPORT_SYMBOL(mmc_power_save_host); 2716 2717 int mmc_power_restore_host(struct mmc_host *host) 2718 { 2719 int ret; 2720 2721 #ifdef CONFIG_MMC_DEBUG 2722 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2723 #endif 2724 2725 mmc_bus_get(host); 2726 2727 if (!host->bus_ops || host->bus_dead) { 2728 mmc_bus_put(host); 2729 return -EINVAL; 2730 } 2731 2732 mmc_power_up(host, host->card->ocr); 2733 ret = host->bus_ops->power_restore(host); 2734 2735 mmc_bus_put(host); 2736 2737 return ret; 2738 } 2739 EXPORT_SYMBOL(mmc_power_restore_host); 2740 2741 /* 2742 * Flush the cache to the non-volatile storage. 2743 */ 2744 int mmc_flush_cache(struct mmc_card *card) 2745 { 2746 int err = 0; 2747 2748 if (mmc_card_mmc(card) && 2749 (card->ext_csd.cache_size > 0) && 2750 (card->ext_csd.cache_ctrl & 1)) { 2751 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2752 EXT_CSD_FLUSH_CACHE, 1, 0); 2753 if (err) 2754 pr_err("%s: cache flush error %d\n", 2755 mmc_hostname(card->host), err); 2756 } 2757 2758 return err; 2759 } 2760 EXPORT_SYMBOL(mmc_flush_cache); 2761 2762 #ifdef CONFIG_PM 2763 2764 /* Do the card removal on suspend if card is assumed removeable 2765 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2766 to sync the card. 2767 */ 2768 int mmc_pm_notify(struct notifier_block *notify_block, 2769 unsigned long mode, void *unused) 2770 { 2771 struct mmc_host *host = container_of( 2772 notify_block, struct mmc_host, pm_notify); 2773 unsigned long flags; 2774 int err = 0; 2775 2776 switch (mode) { 2777 case PM_HIBERNATION_PREPARE: 2778 case PM_SUSPEND_PREPARE: 2779 case PM_RESTORE_PREPARE: 2780 spin_lock_irqsave(&host->lock, flags); 2781 host->rescan_disable = 1; 2782 spin_unlock_irqrestore(&host->lock, flags); 2783 cancel_delayed_work_sync(&host->detect); 2784 2785 if (!host->bus_ops) 2786 break; 2787 2788 /* Validate prerequisites for suspend */ 2789 if (host->bus_ops->pre_suspend) 2790 err = host->bus_ops->pre_suspend(host); 2791 if (!err) 2792 break; 2793 2794 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2795 host->bus_ops->remove(host); 2796 mmc_claim_host(host); 2797 mmc_detach_bus(host); 2798 mmc_power_off(host); 2799 mmc_release_host(host); 2800 host->pm_flags = 0; 2801 break; 2802 2803 case PM_POST_SUSPEND: 2804 case PM_POST_HIBERNATION: 2805 case PM_POST_RESTORE: 2806 2807 spin_lock_irqsave(&host->lock, flags); 2808 host->rescan_disable = 0; 2809 spin_unlock_irqrestore(&host->lock, flags); 2810 _mmc_detect_change(host, 0, false); 2811 2812 } 2813 2814 return 0; 2815 } 2816 #endif 2817 2818 /** 2819 * mmc_init_context_info() - init synchronization context 2820 * @host: mmc host 2821 * 2822 * Init struct context_info needed to implement asynchronous 2823 * request mechanism, used by mmc core, host driver and mmc requests 2824 * supplier. 2825 */ 2826 void mmc_init_context_info(struct mmc_host *host) 2827 { 2828 spin_lock_init(&host->context_info.lock); 2829 host->context_info.is_new_req = false; 2830 host->context_info.is_done_rcv = false; 2831 host->context_info.is_waiting_last_req = false; 2832 init_waitqueue_head(&host->context_info.wait); 2833 } 2834 2835 static int __init mmc_init(void) 2836 { 2837 int ret; 2838 2839 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2840 if (!workqueue) 2841 return -ENOMEM; 2842 2843 ret = mmc_register_bus(); 2844 if (ret) 2845 goto destroy_workqueue; 2846 2847 ret = mmc_register_host_class(); 2848 if (ret) 2849 goto unregister_bus; 2850 2851 ret = sdio_register_bus(); 2852 if (ret) 2853 goto unregister_host_class; 2854 2855 return 0; 2856 2857 unregister_host_class: 2858 mmc_unregister_host_class(); 2859 unregister_bus: 2860 mmc_unregister_bus(); 2861 destroy_workqueue: 2862 destroy_workqueue(workqueue); 2863 2864 return ret; 2865 } 2866 2867 static void __exit mmc_exit(void) 2868 { 2869 sdio_unregister_bus(); 2870 mmc_unregister_host_class(); 2871 mmc_unregister_bus(); 2872 destroy_workqueue(workqueue); 2873 } 2874 2875 subsys_initcall(mmc_init); 2876 module_exit(mmc_exit); 2877 2878 MODULE_LICENSE("GPL"); 2879