1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "card.h" 44 #include "bus.h" 45 #include "host.h" 46 #include "sdio_bus.h" 47 #include "pwrseq.h" 48 49 #include "mmc_ops.h" 50 #include "sd_ops.h" 51 #include "sdio_ops.h" 52 53 /* If the device is not responding */ 54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 55 56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 58 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 static int mmc_schedule_delayed_work(struct delayed_work *work, 70 unsigned long delay) 71 { 72 /* 73 * We use the system_freezable_wq, because of two reasons. 74 * First, it allows several works (not the same work item) to be 75 * executed simultaneously. Second, the queue becomes frozen when 76 * userspace becomes frozen during system PM. 77 */ 78 return queue_delayed_work(system_freezable_wq, work, delay); 79 } 80 81 #ifdef CONFIG_FAIL_MMC_REQUEST 82 83 /* 84 * Internal function. Inject random data errors. 85 * If mmc_data is NULL no errors are injected. 86 */ 87 static void mmc_should_fail_request(struct mmc_host *host, 88 struct mmc_request *mrq) 89 { 90 struct mmc_command *cmd = mrq->cmd; 91 struct mmc_data *data = mrq->data; 92 static const int data_errors[] = { 93 -ETIMEDOUT, 94 -EILSEQ, 95 -EIO, 96 }; 97 98 if (!data) 99 return; 100 101 if (cmd->error || data->error || 102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 103 return; 104 105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 107 } 108 109 #else /* CONFIG_FAIL_MMC_REQUEST */ 110 111 static inline void mmc_should_fail_request(struct mmc_host *host, 112 struct mmc_request *mrq) 113 { 114 } 115 116 #endif /* CONFIG_FAIL_MMC_REQUEST */ 117 118 static inline void mmc_complete_cmd(struct mmc_request *mrq) 119 { 120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 121 complete_all(&mrq->cmd_completion); 122 } 123 124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 125 { 126 if (!mrq->cap_cmd_during_tfr) 127 return; 128 129 mmc_complete_cmd(mrq); 130 131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 132 mmc_hostname(host), mrq->cmd->opcode); 133 } 134 EXPORT_SYMBOL(mmc_command_done); 135 136 /** 137 * mmc_request_done - finish processing an MMC request 138 * @host: MMC host which completed request 139 * @mrq: MMC request which request 140 * 141 * MMC drivers should call this function when they have completed 142 * their processing of a request. 143 */ 144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 145 { 146 struct mmc_command *cmd = mrq->cmd; 147 int err = cmd->error; 148 149 /* Flag re-tuning needed on CRC errors */ 150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 153 (mrq->data && mrq->data->error == -EILSEQ) || 154 (mrq->stop && mrq->stop->error == -EILSEQ))) 155 mmc_retune_needed(host); 156 157 if (err && cmd->retries && mmc_host_is_spi(host)) { 158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 159 cmd->retries = 0; 160 } 161 162 if (host->ongoing_mrq == mrq) 163 host->ongoing_mrq = NULL; 164 165 mmc_complete_cmd(mrq); 166 167 trace_mmc_request_done(host, mrq); 168 169 /* 170 * We list various conditions for the command to be considered 171 * properly done: 172 * 173 * - There was no error, OK fine then 174 * - We are not doing some kind of retry 175 * - The card was removed (...so just complete everything no matter 176 * if there are errors or retries) 177 */ 178 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 179 mmc_should_fail_request(host, mrq); 180 181 if (!host->ongoing_mrq) 182 led_trigger_event(host->led, LED_OFF); 183 184 if (mrq->sbc) { 185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 186 mmc_hostname(host), mrq->sbc->opcode, 187 mrq->sbc->error, 188 mrq->sbc->resp[0], mrq->sbc->resp[1], 189 mrq->sbc->resp[2], mrq->sbc->resp[3]); 190 } 191 192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 193 mmc_hostname(host), cmd->opcode, err, 194 cmd->resp[0], cmd->resp[1], 195 cmd->resp[2], cmd->resp[3]); 196 197 if (mrq->data) { 198 pr_debug("%s: %d bytes transferred: %d\n", 199 mmc_hostname(host), 200 mrq->data->bytes_xfered, mrq->data->error); 201 } 202 203 if (mrq->stop) { 204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 205 mmc_hostname(host), mrq->stop->opcode, 206 mrq->stop->error, 207 mrq->stop->resp[0], mrq->stop->resp[1], 208 mrq->stop->resp[2], mrq->stop->resp[3]); 209 } 210 } 211 /* 212 * Request starter must handle retries - see 213 * mmc_wait_for_req_done(). 214 */ 215 if (mrq->done) 216 mrq->done(mrq); 217 } 218 219 EXPORT_SYMBOL(mmc_request_done); 220 221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 222 { 223 int err; 224 225 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 226 err = mmc_retune(host); 227 if (err) { 228 mrq->cmd->error = err; 229 mmc_request_done(host, mrq); 230 return; 231 } 232 233 /* 234 * For sdio rw commands we must wait for card busy otherwise some 235 * sdio devices won't work properly. 236 * And bypass I/O abort, reset and bus suspend operations. 237 */ 238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 239 host->ops->card_busy) { 240 int tries = 500; /* Wait aprox 500ms at maximum */ 241 242 while (host->ops->card_busy(host) && --tries) 243 mmc_delay(1); 244 245 if (tries == 0) { 246 mrq->cmd->error = -EBUSY; 247 mmc_request_done(host, mrq); 248 return; 249 } 250 } 251 252 if (mrq->cap_cmd_during_tfr) { 253 host->ongoing_mrq = mrq; 254 /* 255 * Retry path could come through here without having waiting on 256 * cmd_completion, so ensure it is reinitialised. 257 */ 258 reinit_completion(&mrq->cmd_completion); 259 } 260 261 trace_mmc_request_start(host, mrq); 262 263 host->ops->request(host, mrq); 264 } 265 266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq) 267 { 268 if (mrq->sbc) { 269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 270 mmc_hostname(host), mrq->sbc->opcode, 271 mrq->sbc->arg, mrq->sbc->flags); 272 } 273 274 if (mrq->cmd) { 275 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 276 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg, 277 mrq->cmd->flags); 278 } 279 280 if (mrq->data) { 281 pr_debug("%s: blksz %d blocks %d flags %08x " 282 "tsac %d ms nsac %d\n", 283 mmc_hostname(host), mrq->data->blksz, 284 mrq->data->blocks, mrq->data->flags, 285 mrq->data->timeout_ns / 1000000, 286 mrq->data->timeout_clks); 287 } 288 289 if (mrq->stop) { 290 pr_debug("%s: CMD%u arg %08x flags %08x\n", 291 mmc_hostname(host), mrq->stop->opcode, 292 mrq->stop->arg, mrq->stop->flags); 293 } 294 } 295 296 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 297 { 298 #ifdef CONFIG_MMC_DEBUG 299 unsigned int i, sz; 300 struct scatterlist *sg; 301 #endif 302 303 if (mrq->cmd) { 304 mrq->cmd->error = 0; 305 mrq->cmd->mrq = mrq; 306 mrq->cmd->data = mrq->data; 307 } 308 if (mrq->sbc) { 309 mrq->sbc->error = 0; 310 mrq->sbc->mrq = mrq; 311 } 312 if (mrq->data) { 313 if (mrq->data->blksz > host->max_blk_size || 314 mrq->data->blocks > host->max_blk_count || 315 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 316 return -EINVAL; 317 #ifdef CONFIG_MMC_DEBUG 318 sz = 0; 319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 320 sz += sg->length; 321 if (sz != mrq->data->blocks * mrq->data->blksz) 322 return -EINVAL; 323 #endif 324 mrq->data->error = 0; 325 mrq->data->mrq = mrq; 326 if (mrq->stop) { 327 mrq->data->stop = mrq->stop; 328 mrq->stop->error = 0; 329 mrq->stop->mrq = mrq; 330 } 331 } 332 333 return 0; 334 } 335 336 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 337 { 338 int err; 339 340 mmc_retune_hold(host); 341 342 if (mmc_card_removed(host->card)) 343 return -ENOMEDIUM; 344 345 mmc_mrq_pr_debug(host, mrq); 346 347 WARN_ON(!host->claimed); 348 349 err = mmc_mrq_prep(host, mrq); 350 if (err) 351 return err; 352 353 led_trigger_event(host->led, LED_FULL); 354 __mmc_start_request(host, mrq); 355 356 return 0; 357 } 358 359 /* 360 * mmc_wait_data_done() - done callback for data request 361 * @mrq: done data request 362 * 363 * Wakes up mmc context, passed as a callback to host controller driver 364 */ 365 static void mmc_wait_data_done(struct mmc_request *mrq) 366 { 367 struct mmc_context_info *context_info = &mrq->host->context_info; 368 369 context_info->is_done_rcv = true; 370 wake_up_interruptible(&context_info->wait); 371 } 372 373 static void mmc_wait_done(struct mmc_request *mrq) 374 { 375 complete(&mrq->completion); 376 } 377 378 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 379 { 380 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 381 382 /* 383 * If there is an ongoing transfer, wait for the command line to become 384 * available. 385 */ 386 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 387 wait_for_completion(&ongoing_mrq->cmd_completion); 388 } 389 390 /* 391 *__mmc_start_data_req() - starts data request 392 * @host: MMC host to start the request 393 * @mrq: data request to start 394 * 395 * Sets the done callback to be called when request is completed by the card. 396 * Starts data mmc request execution 397 * If an ongoing transfer is already in progress, wait for the command line 398 * to become available before sending another command. 399 */ 400 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 401 { 402 int err; 403 404 mmc_wait_ongoing_tfr_cmd(host); 405 406 mrq->done = mmc_wait_data_done; 407 mrq->host = host; 408 409 init_completion(&mrq->cmd_completion); 410 411 err = mmc_start_request(host, mrq); 412 if (err) { 413 mrq->cmd->error = err; 414 mmc_complete_cmd(mrq); 415 mmc_wait_data_done(mrq); 416 } 417 418 return err; 419 } 420 421 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 422 { 423 int err; 424 425 mmc_wait_ongoing_tfr_cmd(host); 426 427 init_completion(&mrq->completion); 428 mrq->done = mmc_wait_done; 429 430 init_completion(&mrq->cmd_completion); 431 432 err = mmc_start_request(host, mrq); 433 if (err) { 434 mrq->cmd->error = err; 435 mmc_complete_cmd(mrq); 436 complete(&mrq->completion); 437 } 438 439 return err; 440 } 441 442 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 443 { 444 struct mmc_command *cmd; 445 446 while (1) { 447 wait_for_completion(&mrq->completion); 448 449 cmd = mrq->cmd; 450 451 /* 452 * If host has timed out waiting for the sanitize 453 * to complete, card might be still in programming state 454 * so let's try to bring the card out of programming 455 * state. 456 */ 457 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 458 if (!mmc_interrupt_hpi(host->card)) { 459 pr_warn("%s: %s: Interrupted sanitize\n", 460 mmc_hostname(host), __func__); 461 cmd->error = 0; 462 break; 463 } else { 464 pr_err("%s: %s: Failed to interrupt sanitize\n", 465 mmc_hostname(host), __func__); 466 } 467 } 468 if (!cmd->error || !cmd->retries || 469 mmc_card_removed(host->card)) 470 break; 471 472 mmc_retune_recheck(host); 473 474 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 475 mmc_hostname(host), cmd->opcode, cmd->error); 476 cmd->retries--; 477 cmd->error = 0; 478 __mmc_start_request(host, mrq); 479 } 480 481 mmc_retune_release(host); 482 } 483 EXPORT_SYMBOL(mmc_wait_for_req_done); 484 485 /** 486 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 487 * @host: MMC host 488 * @mrq: MMC request 489 * 490 * mmc_is_req_done() is used with requests that have 491 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 492 * starting a request and before waiting for it to complete. That is, 493 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 494 * and before mmc_wait_for_req_done(). If it is called at other times the 495 * result is not meaningful. 496 */ 497 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 498 { 499 if (host->areq) 500 return host->context_info.is_done_rcv; 501 else 502 return completion_done(&mrq->completion); 503 } 504 EXPORT_SYMBOL(mmc_is_req_done); 505 506 /** 507 * mmc_pre_req - Prepare for a new request 508 * @host: MMC host to prepare command 509 * @mrq: MMC request to prepare for 510 * 511 * mmc_pre_req() is called in prior to mmc_start_req() to let 512 * host prepare for the new request. Preparation of a request may be 513 * performed while another request is running on the host. 514 */ 515 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq) 516 { 517 if (host->ops->pre_req) 518 host->ops->pre_req(host, mrq); 519 } 520 521 /** 522 * mmc_post_req - Post process a completed request 523 * @host: MMC host to post process command 524 * @mrq: MMC request to post process for 525 * @err: Error, if non zero, clean up any resources made in pre_req 526 * 527 * Let the host post process a completed request. Post processing of 528 * a request may be performed while another reuqest is running. 529 */ 530 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 531 int err) 532 { 533 if (host->ops->post_req) 534 host->ops->post_req(host, mrq, err); 535 } 536 537 /** 538 * mmc_finalize_areq() - finalize an asynchronous request 539 * @host: MMC host to finalize any ongoing request on 540 * 541 * Returns the status of the ongoing asynchronous request, but 542 * MMC_BLK_SUCCESS if no request was going on. 543 */ 544 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host) 545 { 546 struct mmc_context_info *context_info = &host->context_info; 547 enum mmc_blk_status status; 548 549 if (!host->areq) 550 return MMC_BLK_SUCCESS; 551 552 while (1) { 553 wait_event_interruptible(context_info->wait, 554 (context_info->is_done_rcv || 555 context_info->is_new_req)); 556 557 if (context_info->is_done_rcv) { 558 struct mmc_command *cmd; 559 560 context_info->is_done_rcv = false; 561 cmd = host->areq->mrq->cmd; 562 563 if (!cmd->error || !cmd->retries || 564 mmc_card_removed(host->card)) { 565 status = host->areq->err_check(host->card, 566 host->areq); 567 break; /* return status */ 568 } else { 569 mmc_retune_recheck(host); 570 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 571 mmc_hostname(host), 572 cmd->opcode, cmd->error); 573 cmd->retries--; 574 cmd->error = 0; 575 __mmc_start_request(host, host->areq->mrq); 576 continue; /* wait for done/new event again */ 577 } 578 } 579 580 return MMC_BLK_NEW_REQUEST; 581 } 582 583 mmc_retune_release(host); 584 585 /* 586 * Check BKOPS urgency for each R1 response 587 */ 588 if (host->card && mmc_card_mmc(host->card) && 589 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 590 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 591 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 592 mmc_start_bkops(host->card, true); 593 } 594 595 return status; 596 } 597 598 /** 599 * mmc_start_areq - start an asynchronous request 600 * @host: MMC host to start command 601 * @areq: asynchronous request to start 602 * @ret_stat: out parameter for status 603 * 604 * Start a new MMC custom command request for a host. 605 * If there is on ongoing async request wait for completion 606 * of that request and start the new one and return. 607 * Does not wait for the new request to complete. 608 * 609 * Returns the completed request, NULL in case of none completed. 610 * Wait for the an ongoing request (previoulsy started) to complete and 611 * return the completed request. If there is no ongoing request, NULL 612 * is returned without waiting. NULL is not an error condition. 613 */ 614 struct mmc_async_req *mmc_start_areq(struct mmc_host *host, 615 struct mmc_async_req *areq, 616 enum mmc_blk_status *ret_stat) 617 { 618 enum mmc_blk_status status; 619 int start_err = 0; 620 struct mmc_async_req *previous = host->areq; 621 622 /* Prepare a new request */ 623 if (areq) 624 mmc_pre_req(host, areq->mrq); 625 626 /* Finalize previous request */ 627 status = mmc_finalize_areq(host); 628 if (ret_stat) 629 *ret_stat = status; 630 631 /* The previous request is still going on... */ 632 if (status == MMC_BLK_NEW_REQUEST) 633 return NULL; 634 635 /* Fine so far, start the new request! */ 636 if (status == MMC_BLK_SUCCESS && areq) 637 start_err = __mmc_start_data_req(host, areq->mrq); 638 639 /* Postprocess the old request at this point */ 640 if (host->areq) 641 mmc_post_req(host, host->areq->mrq, 0); 642 643 /* Cancel a prepared request if it was not started. */ 644 if ((status != MMC_BLK_SUCCESS || start_err) && areq) 645 mmc_post_req(host, areq->mrq, -EINVAL); 646 647 if (status != MMC_BLK_SUCCESS) 648 host->areq = NULL; 649 else 650 host->areq = areq; 651 652 return previous; 653 } 654 EXPORT_SYMBOL(mmc_start_areq); 655 656 /** 657 * mmc_wait_for_req - start a request and wait for completion 658 * @host: MMC host to start command 659 * @mrq: MMC request to start 660 * 661 * Start a new MMC custom command request for a host, and wait 662 * for the command to complete. In the case of 'cap_cmd_during_tfr' 663 * requests, the transfer is ongoing and the caller can issue further 664 * commands that do not use the data lines, and then wait by calling 665 * mmc_wait_for_req_done(). 666 * Does not attempt to parse the response. 667 */ 668 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 669 { 670 __mmc_start_req(host, mrq); 671 672 if (!mrq->cap_cmd_during_tfr) 673 mmc_wait_for_req_done(host, mrq); 674 } 675 EXPORT_SYMBOL(mmc_wait_for_req); 676 677 /** 678 * mmc_wait_for_cmd - start a command and wait for completion 679 * @host: MMC host to start command 680 * @cmd: MMC command to start 681 * @retries: maximum number of retries 682 * 683 * Start a new MMC command for a host, and wait for the command 684 * to complete. Return any error that occurred while the command 685 * was executing. Do not attempt to parse the response. 686 */ 687 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 688 { 689 struct mmc_request mrq = {}; 690 691 WARN_ON(!host->claimed); 692 693 memset(cmd->resp, 0, sizeof(cmd->resp)); 694 cmd->retries = retries; 695 696 mrq.cmd = cmd; 697 cmd->data = NULL; 698 699 mmc_wait_for_req(host, &mrq); 700 701 return cmd->error; 702 } 703 704 EXPORT_SYMBOL(mmc_wait_for_cmd); 705 706 /** 707 * mmc_set_data_timeout - set the timeout for a data command 708 * @data: data phase for command 709 * @card: the MMC card associated with the data transfer 710 * 711 * Computes the data timeout parameters according to the 712 * correct algorithm given the card type. 713 */ 714 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 715 { 716 unsigned int mult; 717 718 /* 719 * SDIO cards only define an upper 1 s limit on access. 720 */ 721 if (mmc_card_sdio(card)) { 722 data->timeout_ns = 1000000000; 723 data->timeout_clks = 0; 724 return; 725 } 726 727 /* 728 * SD cards use a 100 multiplier rather than 10 729 */ 730 mult = mmc_card_sd(card) ? 100 : 10; 731 732 /* 733 * Scale up the multiplier (and therefore the timeout) by 734 * the r2w factor for writes. 735 */ 736 if (data->flags & MMC_DATA_WRITE) 737 mult <<= card->csd.r2w_factor; 738 739 data->timeout_ns = card->csd.tacc_ns * mult; 740 data->timeout_clks = card->csd.tacc_clks * mult; 741 742 /* 743 * SD cards also have an upper limit on the timeout. 744 */ 745 if (mmc_card_sd(card)) { 746 unsigned int timeout_us, limit_us; 747 748 timeout_us = data->timeout_ns / 1000; 749 if (card->host->ios.clock) 750 timeout_us += data->timeout_clks * 1000 / 751 (card->host->ios.clock / 1000); 752 753 if (data->flags & MMC_DATA_WRITE) 754 /* 755 * The MMC spec "It is strongly recommended 756 * for hosts to implement more than 500ms 757 * timeout value even if the card indicates 758 * the 250ms maximum busy length." Even the 759 * previous value of 300ms is known to be 760 * insufficient for some cards. 761 */ 762 limit_us = 3000000; 763 else 764 limit_us = 100000; 765 766 /* 767 * SDHC cards always use these fixed values. 768 */ 769 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 770 data->timeout_ns = limit_us * 1000; 771 data->timeout_clks = 0; 772 } 773 774 /* assign limit value if invalid */ 775 if (timeout_us == 0) 776 data->timeout_ns = limit_us * 1000; 777 } 778 779 /* 780 * Some cards require longer data read timeout than indicated in CSD. 781 * Address this by setting the read timeout to a "reasonably high" 782 * value. For the cards tested, 600ms has proven enough. If necessary, 783 * this value can be increased if other problematic cards require this. 784 */ 785 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 786 data->timeout_ns = 600000000; 787 data->timeout_clks = 0; 788 } 789 790 /* 791 * Some cards need very high timeouts if driven in SPI mode. 792 * The worst observed timeout was 900ms after writing a 793 * continuous stream of data until the internal logic 794 * overflowed. 795 */ 796 if (mmc_host_is_spi(card->host)) { 797 if (data->flags & MMC_DATA_WRITE) { 798 if (data->timeout_ns < 1000000000) 799 data->timeout_ns = 1000000000; /* 1s */ 800 } else { 801 if (data->timeout_ns < 100000000) 802 data->timeout_ns = 100000000; /* 100ms */ 803 } 804 } 805 } 806 EXPORT_SYMBOL(mmc_set_data_timeout); 807 808 /** 809 * mmc_align_data_size - pads a transfer size to a more optimal value 810 * @card: the MMC card associated with the data transfer 811 * @sz: original transfer size 812 * 813 * Pads the original data size with a number of extra bytes in 814 * order to avoid controller bugs and/or performance hits 815 * (e.g. some controllers revert to PIO for certain sizes). 816 * 817 * Returns the improved size, which might be unmodified. 818 * 819 * Note that this function is only relevant when issuing a 820 * single scatter gather entry. 821 */ 822 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 823 { 824 /* 825 * FIXME: We don't have a system for the controller to tell 826 * the core about its problems yet, so for now we just 32-bit 827 * align the size. 828 */ 829 sz = ((sz + 3) / 4) * 4; 830 831 return sz; 832 } 833 EXPORT_SYMBOL(mmc_align_data_size); 834 835 /** 836 * __mmc_claim_host - exclusively claim a host 837 * @host: mmc host to claim 838 * @abort: whether or not the operation should be aborted 839 * 840 * Claim a host for a set of operations. If @abort is non null and 841 * dereference a non-zero value then this will return prematurely with 842 * that non-zero value without acquiring the lock. Returns zero 843 * with the lock held otherwise. 844 */ 845 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 846 { 847 DECLARE_WAITQUEUE(wait, current); 848 unsigned long flags; 849 int stop; 850 bool pm = false; 851 852 might_sleep(); 853 854 add_wait_queue(&host->wq, &wait); 855 spin_lock_irqsave(&host->lock, flags); 856 while (1) { 857 set_current_state(TASK_UNINTERRUPTIBLE); 858 stop = abort ? atomic_read(abort) : 0; 859 if (stop || !host->claimed || host->claimer == current) 860 break; 861 spin_unlock_irqrestore(&host->lock, flags); 862 schedule(); 863 spin_lock_irqsave(&host->lock, flags); 864 } 865 set_current_state(TASK_RUNNING); 866 if (!stop) { 867 host->claimed = 1; 868 host->claimer = current; 869 host->claim_cnt += 1; 870 if (host->claim_cnt == 1) 871 pm = true; 872 } else 873 wake_up(&host->wq); 874 spin_unlock_irqrestore(&host->lock, flags); 875 remove_wait_queue(&host->wq, &wait); 876 877 if (pm) 878 pm_runtime_get_sync(mmc_dev(host)); 879 880 return stop; 881 } 882 EXPORT_SYMBOL(__mmc_claim_host); 883 884 /** 885 * mmc_release_host - release a host 886 * @host: mmc host to release 887 * 888 * Release a MMC host, allowing others to claim the host 889 * for their operations. 890 */ 891 void mmc_release_host(struct mmc_host *host) 892 { 893 unsigned long flags; 894 895 WARN_ON(!host->claimed); 896 897 spin_lock_irqsave(&host->lock, flags); 898 if (--host->claim_cnt) { 899 /* Release for nested claim */ 900 spin_unlock_irqrestore(&host->lock, flags); 901 } else { 902 host->claimed = 0; 903 host->claimer = NULL; 904 spin_unlock_irqrestore(&host->lock, flags); 905 wake_up(&host->wq); 906 pm_runtime_mark_last_busy(mmc_dev(host)); 907 pm_runtime_put_autosuspend(mmc_dev(host)); 908 } 909 } 910 EXPORT_SYMBOL(mmc_release_host); 911 912 /* 913 * This is a helper function, which fetches a runtime pm reference for the 914 * card device and also claims the host. 915 */ 916 void mmc_get_card(struct mmc_card *card) 917 { 918 pm_runtime_get_sync(&card->dev); 919 mmc_claim_host(card->host); 920 } 921 EXPORT_SYMBOL(mmc_get_card); 922 923 /* 924 * This is a helper function, which releases the host and drops the runtime 925 * pm reference for the card device. 926 */ 927 void mmc_put_card(struct mmc_card *card) 928 { 929 mmc_release_host(card->host); 930 pm_runtime_mark_last_busy(&card->dev); 931 pm_runtime_put_autosuspend(&card->dev); 932 } 933 EXPORT_SYMBOL(mmc_put_card); 934 935 /* 936 * Internal function that does the actual ios call to the host driver, 937 * optionally printing some debug output. 938 */ 939 static inline void mmc_set_ios(struct mmc_host *host) 940 { 941 struct mmc_ios *ios = &host->ios; 942 943 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 944 "width %u timing %u\n", 945 mmc_hostname(host), ios->clock, ios->bus_mode, 946 ios->power_mode, ios->chip_select, ios->vdd, 947 1 << ios->bus_width, ios->timing); 948 949 host->ops->set_ios(host, ios); 950 } 951 952 /* 953 * Control chip select pin on a host. 954 */ 955 void mmc_set_chip_select(struct mmc_host *host, int mode) 956 { 957 host->ios.chip_select = mode; 958 mmc_set_ios(host); 959 } 960 961 /* 962 * Sets the host clock to the highest possible frequency that 963 * is below "hz". 964 */ 965 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 966 { 967 WARN_ON(hz && hz < host->f_min); 968 969 if (hz > host->f_max) 970 hz = host->f_max; 971 972 host->ios.clock = hz; 973 mmc_set_ios(host); 974 } 975 976 int mmc_execute_tuning(struct mmc_card *card) 977 { 978 struct mmc_host *host = card->host; 979 u32 opcode; 980 int err; 981 982 if (!host->ops->execute_tuning) 983 return 0; 984 985 if (mmc_card_mmc(card)) 986 opcode = MMC_SEND_TUNING_BLOCK_HS200; 987 else 988 opcode = MMC_SEND_TUNING_BLOCK; 989 990 err = host->ops->execute_tuning(host, opcode); 991 992 if (err) 993 pr_err("%s: tuning execution failed: %d\n", 994 mmc_hostname(host), err); 995 else 996 mmc_retune_enable(host); 997 998 return err; 999 } 1000 1001 /* 1002 * Change the bus mode (open drain/push-pull) of a host. 1003 */ 1004 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1005 { 1006 host->ios.bus_mode = mode; 1007 mmc_set_ios(host); 1008 } 1009 1010 /* 1011 * Change data bus width of a host. 1012 */ 1013 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1014 { 1015 host->ios.bus_width = width; 1016 mmc_set_ios(host); 1017 } 1018 1019 /* 1020 * Set initial state after a power cycle or a hw_reset. 1021 */ 1022 void mmc_set_initial_state(struct mmc_host *host) 1023 { 1024 mmc_retune_disable(host); 1025 1026 if (mmc_host_is_spi(host)) 1027 host->ios.chip_select = MMC_CS_HIGH; 1028 else 1029 host->ios.chip_select = MMC_CS_DONTCARE; 1030 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1031 host->ios.bus_width = MMC_BUS_WIDTH_1; 1032 host->ios.timing = MMC_TIMING_LEGACY; 1033 host->ios.drv_type = 0; 1034 host->ios.enhanced_strobe = false; 1035 1036 /* 1037 * Make sure we are in non-enhanced strobe mode before we 1038 * actually enable it in ext_csd. 1039 */ 1040 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1041 host->ops->hs400_enhanced_strobe) 1042 host->ops->hs400_enhanced_strobe(host, &host->ios); 1043 1044 mmc_set_ios(host); 1045 } 1046 1047 /** 1048 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1049 * @vdd: voltage (mV) 1050 * @low_bits: prefer low bits in boundary cases 1051 * 1052 * This function returns the OCR bit number according to the provided @vdd 1053 * value. If conversion is not possible a negative errno value returned. 1054 * 1055 * Depending on the @low_bits flag the function prefers low or high OCR bits 1056 * on boundary voltages. For example, 1057 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1058 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1059 * 1060 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1061 */ 1062 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1063 { 1064 const int max_bit = ilog2(MMC_VDD_35_36); 1065 int bit; 1066 1067 if (vdd < 1650 || vdd > 3600) 1068 return -EINVAL; 1069 1070 if (vdd >= 1650 && vdd <= 1950) 1071 return ilog2(MMC_VDD_165_195); 1072 1073 if (low_bits) 1074 vdd -= 1; 1075 1076 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1077 bit = (vdd - 2000) / 100 + 8; 1078 if (bit > max_bit) 1079 return max_bit; 1080 return bit; 1081 } 1082 1083 /** 1084 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1085 * @vdd_min: minimum voltage value (mV) 1086 * @vdd_max: maximum voltage value (mV) 1087 * 1088 * This function returns the OCR mask bits according to the provided @vdd_min 1089 * and @vdd_max values. If conversion is not possible the function returns 0. 1090 * 1091 * Notes wrt boundary cases: 1092 * This function sets the OCR bits for all boundary voltages, for example 1093 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1094 * MMC_VDD_34_35 mask. 1095 */ 1096 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1097 { 1098 u32 mask = 0; 1099 1100 if (vdd_max < vdd_min) 1101 return 0; 1102 1103 /* Prefer high bits for the boundary vdd_max values. */ 1104 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1105 if (vdd_max < 0) 1106 return 0; 1107 1108 /* Prefer low bits for the boundary vdd_min values. */ 1109 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1110 if (vdd_min < 0) 1111 return 0; 1112 1113 /* Fill the mask, from max bit to min bit. */ 1114 while (vdd_max >= vdd_min) 1115 mask |= 1 << vdd_max--; 1116 1117 return mask; 1118 } 1119 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1120 1121 #ifdef CONFIG_OF 1122 1123 /** 1124 * mmc_of_parse_voltage - return mask of supported voltages 1125 * @np: The device node need to be parsed. 1126 * @mask: mask of voltages available for MMC/SD/SDIO 1127 * 1128 * Parse the "voltage-ranges" DT property, returning zero if it is not 1129 * found, negative errno if the voltage-range specification is invalid, 1130 * or one if the voltage-range is specified and successfully parsed. 1131 */ 1132 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1133 { 1134 const u32 *voltage_ranges; 1135 int num_ranges, i; 1136 1137 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1138 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1139 if (!voltage_ranges) { 1140 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1141 return 0; 1142 } 1143 if (!num_ranges) { 1144 pr_err("%s: voltage-ranges empty\n", np->full_name); 1145 return -EINVAL; 1146 } 1147 1148 for (i = 0; i < num_ranges; i++) { 1149 const int j = i * 2; 1150 u32 ocr_mask; 1151 1152 ocr_mask = mmc_vddrange_to_ocrmask( 1153 be32_to_cpu(voltage_ranges[j]), 1154 be32_to_cpu(voltage_ranges[j + 1])); 1155 if (!ocr_mask) { 1156 pr_err("%s: voltage-range #%d is invalid\n", 1157 np->full_name, i); 1158 return -EINVAL; 1159 } 1160 *mask |= ocr_mask; 1161 } 1162 1163 return 1; 1164 } 1165 EXPORT_SYMBOL(mmc_of_parse_voltage); 1166 1167 #endif /* CONFIG_OF */ 1168 1169 static int mmc_of_get_func_num(struct device_node *node) 1170 { 1171 u32 reg; 1172 int ret; 1173 1174 ret = of_property_read_u32(node, "reg", ®); 1175 if (ret < 0) 1176 return ret; 1177 1178 return reg; 1179 } 1180 1181 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1182 unsigned func_num) 1183 { 1184 struct device_node *node; 1185 1186 if (!host->parent || !host->parent->of_node) 1187 return NULL; 1188 1189 for_each_child_of_node(host->parent->of_node, node) { 1190 if (mmc_of_get_func_num(node) == func_num) 1191 return node; 1192 } 1193 1194 return NULL; 1195 } 1196 1197 #ifdef CONFIG_REGULATOR 1198 1199 /** 1200 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1201 * @vdd_bit: OCR bit number 1202 * @min_uV: minimum voltage value (mV) 1203 * @max_uV: maximum voltage value (mV) 1204 * 1205 * This function returns the voltage range according to the provided OCR 1206 * bit number. If conversion is not possible a negative errno value returned. 1207 */ 1208 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1209 { 1210 int tmp; 1211 1212 if (!vdd_bit) 1213 return -EINVAL; 1214 1215 /* 1216 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1217 * bits this regulator doesn't quite support ... don't 1218 * be too picky, most cards and regulators are OK with 1219 * a 0.1V range goof (it's a small error percentage). 1220 */ 1221 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1222 if (tmp == 0) { 1223 *min_uV = 1650 * 1000; 1224 *max_uV = 1950 * 1000; 1225 } else { 1226 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1227 *max_uV = *min_uV + 100 * 1000; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * mmc_regulator_get_ocrmask - return mask of supported voltages 1235 * @supply: regulator to use 1236 * 1237 * This returns either a negative errno, or a mask of voltages that 1238 * can be provided to MMC/SD/SDIO devices using the specified voltage 1239 * regulator. This would normally be called before registering the 1240 * MMC host adapter. 1241 */ 1242 int mmc_regulator_get_ocrmask(struct regulator *supply) 1243 { 1244 int result = 0; 1245 int count; 1246 int i; 1247 int vdd_uV; 1248 int vdd_mV; 1249 1250 count = regulator_count_voltages(supply); 1251 if (count < 0) 1252 return count; 1253 1254 for (i = 0; i < count; i++) { 1255 vdd_uV = regulator_list_voltage(supply, i); 1256 if (vdd_uV <= 0) 1257 continue; 1258 1259 vdd_mV = vdd_uV / 1000; 1260 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1261 } 1262 1263 if (!result) { 1264 vdd_uV = regulator_get_voltage(supply); 1265 if (vdd_uV <= 0) 1266 return vdd_uV; 1267 1268 vdd_mV = vdd_uV / 1000; 1269 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1270 } 1271 1272 return result; 1273 } 1274 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1275 1276 /** 1277 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1278 * @mmc: the host to regulate 1279 * @supply: regulator to use 1280 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1281 * 1282 * Returns zero on success, else negative errno. 1283 * 1284 * MMC host drivers may use this to enable or disable a regulator using 1285 * a particular supply voltage. This would normally be called from the 1286 * set_ios() method. 1287 */ 1288 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1289 struct regulator *supply, 1290 unsigned short vdd_bit) 1291 { 1292 int result = 0; 1293 int min_uV, max_uV; 1294 1295 if (vdd_bit) { 1296 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1297 1298 result = regulator_set_voltage(supply, min_uV, max_uV); 1299 if (result == 0 && !mmc->regulator_enabled) { 1300 result = regulator_enable(supply); 1301 if (!result) 1302 mmc->regulator_enabled = true; 1303 } 1304 } else if (mmc->regulator_enabled) { 1305 result = regulator_disable(supply); 1306 if (result == 0) 1307 mmc->regulator_enabled = false; 1308 } 1309 1310 if (result) 1311 dev_err(mmc_dev(mmc), 1312 "could not set regulator OCR (%d)\n", result); 1313 return result; 1314 } 1315 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1316 1317 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1318 int min_uV, int target_uV, 1319 int max_uV) 1320 { 1321 /* 1322 * Check if supported first to avoid errors since we may try several 1323 * signal levels during power up and don't want to show errors. 1324 */ 1325 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1326 return -EINVAL; 1327 1328 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1329 max_uV); 1330 } 1331 1332 /** 1333 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1334 * 1335 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1336 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1337 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1338 * SD card spec also define VQMMC in terms of VMMC. 1339 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1340 * 1341 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1342 * requested voltage. This is definitely a good idea for UHS where there's a 1343 * separate regulator on the card that's trying to make 1.8V and it's best if 1344 * we match. 1345 * 1346 * This function is expected to be used by a controller's 1347 * start_signal_voltage_switch() function. 1348 */ 1349 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1350 { 1351 struct device *dev = mmc_dev(mmc); 1352 int ret, volt, min_uV, max_uV; 1353 1354 /* If no vqmmc supply then we can't change the voltage */ 1355 if (IS_ERR(mmc->supply.vqmmc)) 1356 return -EINVAL; 1357 1358 switch (ios->signal_voltage) { 1359 case MMC_SIGNAL_VOLTAGE_120: 1360 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1361 1100000, 1200000, 1300000); 1362 case MMC_SIGNAL_VOLTAGE_180: 1363 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1364 1700000, 1800000, 1950000); 1365 case MMC_SIGNAL_VOLTAGE_330: 1366 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1367 if (ret < 0) 1368 return ret; 1369 1370 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1371 __func__, volt, max_uV); 1372 1373 min_uV = max(volt - 300000, 2700000); 1374 max_uV = min(max_uV + 200000, 3600000); 1375 1376 /* 1377 * Due to a limitation in the current implementation of 1378 * regulator_set_voltage_triplet() which is taking the lowest 1379 * voltage possible if below the target, search for a suitable 1380 * voltage in two steps and try to stay close to vmmc 1381 * with a 0.3V tolerance at first. 1382 */ 1383 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1384 min_uV, volt, max_uV)) 1385 return 0; 1386 1387 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1388 2700000, volt, 3600000); 1389 default: 1390 return -EINVAL; 1391 } 1392 } 1393 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1394 1395 #endif /* CONFIG_REGULATOR */ 1396 1397 int mmc_regulator_get_supply(struct mmc_host *mmc) 1398 { 1399 struct device *dev = mmc_dev(mmc); 1400 int ret; 1401 1402 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1403 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1404 1405 if (IS_ERR(mmc->supply.vmmc)) { 1406 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1407 return -EPROBE_DEFER; 1408 dev_dbg(dev, "No vmmc regulator found\n"); 1409 } else { 1410 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1411 if (ret > 0) 1412 mmc->ocr_avail = ret; 1413 else 1414 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1415 } 1416 1417 if (IS_ERR(mmc->supply.vqmmc)) { 1418 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1419 return -EPROBE_DEFER; 1420 dev_dbg(dev, "No vqmmc regulator found\n"); 1421 } 1422 1423 return 0; 1424 } 1425 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1426 1427 /* 1428 * Mask off any voltages we don't support and select 1429 * the lowest voltage 1430 */ 1431 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1432 { 1433 int bit; 1434 1435 /* 1436 * Sanity check the voltages that the card claims to 1437 * support. 1438 */ 1439 if (ocr & 0x7F) { 1440 dev_warn(mmc_dev(host), 1441 "card claims to support voltages below defined range\n"); 1442 ocr &= ~0x7F; 1443 } 1444 1445 ocr &= host->ocr_avail; 1446 if (!ocr) { 1447 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1448 return 0; 1449 } 1450 1451 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1452 bit = ffs(ocr) - 1; 1453 ocr &= 3 << bit; 1454 mmc_power_cycle(host, ocr); 1455 } else { 1456 bit = fls(ocr) - 1; 1457 ocr &= 3 << bit; 1458 if (bit != host->ios.vdd) 1459 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1460 } 1461 1462 return ocr; 1463 } 1464 1465 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1466 { 1467 int err = 0; 1468 int old_signal_voltage = host->ios.signal_voltage; 1469 1470 host->ios.signal_voltage = signal_voltage; 1471 if (host->ops->start_signal_voltage_switch) 1472 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1473 1474 if (err) 1475 host->ios.signal_voltage = old_signal_voltage; 1476 1477 return err; 1478 1479 } 1480 1481 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1482 { 1483 struct mmc_command cmd = {}; 1484 int err = 0; 1485 u32 clock; 1486 1487 /* 1488 * If we cannot switch voltages, return failure so the caller 1489 * can continue without UHS mode 1490 */ 1491 if (!host->ops->start_signal_voltage_switch) 1492 return -EPERM; 1493 if (!host->ops->card_busy) 1494 pr_warn("%s: cannot verify signal voltage switch\n", 1495 mmc_hostname(host)); 1496 1497 cmd.opcode = SD_SWITCH_VOLTAGE; 1498 cmd.arg = 0; 1499 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1500 1501 err = mmc_wait_for_cmd(host, &cmd, 0); 1502 if (err) 1503 return err; 1504 1505 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1506 return -EIO; 1507 1508 /* 1509 * The card should drive cmd and dat[0:3] low immediately 1510 * after the response of cmd11, but wait 1 ms to be sure 1511 */ 1512 mmc_delay(1); 1513 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1514 err = -EAGAIN; 1515 goto power_cycle; 1516 } 1517 /* 1518 * During a signal voltage level switch, the clock must be gated 1519 * for 5 ms according to the SD spec 1520 */ 1521 clock = host->ios.clock; 1522 host->ios.clock = 0; 1523 mmc_set_ios(host); 1524 1525 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) { 1526 /* 1527 * Voltages may not have been switched, but we've already 1528 * sent CMD11, so a power cycle is required anyway 1529 */ 1530 err = -EAGAIN; 1531 goto power_cycle; 1532 } 1533 1534 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1535 mmc_delay(10); 1536 host->ios.clock = clock; 1537 mmc_set_ios(host); 1538 1539 /* Wait for at least 1 ms according to spec */ 1540 mmc_delay(1); 1541 1542 /* 1543 * Failure to switch is indicated by the card holding 1544 * dat[0:3] low 1545 */ 1546 if (host->ops->card_busy && host->ops->card_busy(host)) 1547 err = -EAGAIN; 1548 1549 power_cycle: 1550 if (err) { 1551 pr_debug("%s: Signal voltage switch failed, " 1552 "power cycling card\n", mmc_hostname(host)); 1553 mmc_power_cycle(host, ocr); 1554 } 1555 1556 return err; 1557 } 1558 1559 /* 1560 * Select timing parameters for host. 1561 */ 1562 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1563 { 1564 host->ios.timing = timing; 1565 mmc_set_ios(host); 1566 } 1567 1568 /* 1569 * Select appropriate driver type for host. 1570 */ 1571 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1572 { 1573 host->ios.drv_type = drv_type; 1574 mmc_set_ios(host); 1575 } 1576 1577 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1578 int card_drv_type, int *drv_type) 1579 { 1580 struct mmc_host *host = card->host; 1581 int host_drv_type = SD_DRIVER_TYPE_B; 1582 1583 *drv_type = 0; 1584 1585 if (!host->ops->select_drive_strength) 1586 return 0; 1587 1588 /* Use SD definition of driver strength for hosts */ 1589 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1590 host_drv_type |= SD_DRIVER_TYPE_A; 1591 1592 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1593 host_drv_type |= SD_DRIVER_TYPE_C; 1594 1595 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1596 host_drv_type |= SD_DRIVER_TYPE_D; 1597 1598 /* 1599 * The drive strength that the hardware can support 1600 * depends on the board design. Pass the appropriate 1601 * information and let the hardware specific code 1602 * return what is possible given the options 1603 */ 1604 return host->ops->select_drive_strength(card, max_dtr, 1605 host_drv_type, 1606 card_drv_type, 1607 drv_type); 1608 } 1609 1610 /* 1611 * Apply power to the MMC stack. This is a two-stage process. 1612 * First, we enable power to the card without the clock running. 1613 * We then wait a bit for the power to stabilise. Finally, 1614 * enable the bus drivers and clock to the card. 1615 * 1616 * We must _NOT_ enable the clock prior to power stablising. 1617 * 1618 * If a host does all the power sequencing itself, ignore the 1619 * initial MMC_POWER_UP stage. 1620 */ 1621 void mmc_power_up(struct mmc_host *host, u32 ocr) 1622 { 1623 if (host->ios.power_mode == MMC_POWER_ON) 1624 return; 1625 1626 mmc_pwrseq_pre_power_on(host); 1627 1628 host->ios.vdd = fls(ocr) - 1; 1629 host->ios.power_mode = MMC_POWER_UP; 1630 /* Set initial state and call mmc_set_ios */ 1631 mmc_set_initial_state(host); 1632 1633 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1634 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1635 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1636 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1637 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1638 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1639 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1640 1641 /* 1642 * This delay should be sufficient to allow the power supply 1643 * to reach the minimum voltage. 1644 */ 1645 mmc_delay(10); 1646 1647 mmc_pwrseq_post_power_on(host); 1648 1649 host->ios.clock = host->f_init; 1650 1651 host->ios.power_mode = MMC_POWER_ON; 1652 mmc_set_ios(host); 1653 1654 /* 1655 * This delay must be at least 74 clock sizes, or 1 ms, or the 1656 * time required to reach a stable voltage. 1657 */ 1658 mmc_delay(10); 1659 } 1660 1661 void mmc_power_off(struct mmc_host *host) 1662 { 1663 if (host->ios.power_mode == MMC_POWER_OFF) 1664 return; 1665 1666 mmc_pwrseq_power_off(host); 1667 1668 host->ios.clock = 0; 1669 host->ios.vdd = 0; 1670 1671 host->ios.power_mode = MMC_POWER_OFF; 1672 /* Set initial state and call mmc_set_ios */ 1673 mmc_set_initial_state(host); 1674 1675 /* 1676 * Some configurations, such as the 802.11 SDIO card in the OLPC 1677 * XO-1.5, require a short delay after poweroff before the card 1678 * can be successfully turned on again. 1679 */ 1680 mmc_delay(1); 1681 } 1682 1683 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1684 { 1685 mmc_power_off(host); 1686 /* Wait at least 1 ms according to SD spec */ 1687 mmc_delay(1); 1688 mmc_power_up(host, ocr); 1689 } 1690 1691 /* 1692 * Cleanup when the last reference to the bus operator is dropped. 1693 */ 1694 static void __mmc_release_bus(struct mmc_host *host) 1695 { 1696 WARN_ON(!host->bus_dead); 1697 1698 host->bus_ops = NULL; 1699 } 1700 1701 /* 1702 * Increase reference count of bus operator 1703 */ 1704 static inline void mmc_bus_get(struct mmc_host *host) 1705 { 1706 unsigned long flags; 1707 1708 spin_lock_irqsave(&host->lock, flags); 1709 host->bus_refs++; 1710 spin_unlock_irqrestore(&host->lock, flags); 1711 } 1712 1713 /* 1714 * Decrease reference count of bus operator and free it if 1715 * it is the last reference. 1716 */ 1717 static inline void mmc_bus_put(struct mmc_host *host) 1718 { 1719 unsigned long flags; 1720 1721 spin_lock_irqsave(&host->lock, flags); 1722 host->bus_refs--; 1723 if ((host->bus_refs == 0) && host->bus_ops) 1724 __mmc_release_bus(host); 1725 spin_unlock_irqrestore(&host->lock, flags); 1726 } 1727 1728 /* 1729 * Assign a mmc bus handler to a host. Only one bus handler may control a 1730 * host at any given time. 1731 */ 1732 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1733 { 1734 unsigned long flags; 1735 1736 WARN_ON(!host->claimed); 1737 1738 spin_lock_irqsave(&host->lock, flags); 1739 1740 WARN_ON(host->bus_ops); 1741 WARN_ON(host->bus_refs); 1742 1743 host->bus_ops = ops; 1744 host->bus_refs = 1; 1745 host->bus_dead = 0; 1746 1747 spin_unlock_irqrestore(&host->lock, flags); 1748 } 1749 1750 /* 1751 * Remove the current bus handler from a host. 1752 */ 1753 void mmc_detach_bus(struct mmc_host *host) 1754 { 1755 unsigned long flags; 1756 1757 WARN_ON(!host->claimed); 1758 WARN_ON(!host->bus_ops); 1759 1760 spin_lock_irqsave(&host->lock, flags); 1761 1762 host->bus_dead = 1; 1763 1764 spin_unlock_irqrestore(&host->lock, flags); 1765 1766 mmc_bus_put(host); 1767 } 1768 1769 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1770 bool cd_irq) 1771 { 1772 #ifdef CONFIG_MMC_DEBUG 1773 unsigned long flags; 1774 spin_lock_irqsave(&host->lock, flags); 1775 WARN_ON(host->removed); 1776 spin_unlock_irqrestore(&host->lock, flags); 1777 #endif 1778 1779 /* 1780 * If the device is configured as wakeup, we prevent a new sleep for 1781 * 5 s to give provision for user space to consume the event. 1782 */ 1783 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1784 device_can_wakeup(mmc_dev(host))) 1785 pm_wakeup_event(mmc_dev(host), 5000); 1786 1787 host->detect_change = 1; 1788 mmc_schedule_delayed_work(&host->detect, delay); 1789 } 1790 1791 /** 1792 * mmc_detect_change - process change of state on a MMC socket 1793 * @host: host which changed state. 1794 * @delay: optional delay to wait before detection (jiffies) 1795 * 1796 * MMC drivers should call this when they detect a card has been 1797 * inserted or removed. The MMC layer will confirm that any 1798 * present card is still functional, and initialize any newly 1799 * inserted. 1800 */ 1801 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1802 { 1803 _mmc_detect_change(host, delay, true); 1804 } 1805 EXPORT_SYMBOL(mmc_detect_change); 1806 1807 void mmc_init_erase(struct mmc_card *card) 1808 { 1809 unsigned int sz; 1810 1811 if (is_power_of_2(card->erase_size)) 1812 card->erase_shift = ffs(card->erase_size) - 1; 1813 else 1814 card->erase_shift = 0; 1815 1816 /* 1817 * It is possible to erase an arbitrarily large area of an SD or MMC 1818 * card. That is not desirable because it can take a long time 1819 * (minutes) potentially delaying more important I/O, and also the 1820 * timeout calculations become increasingly hugely over-estimated. 1821 * Consequently, 'pref_erase' is defined as a guide to limit erases 1822 * to that size and alignment. 1823 * 1824 * For SD cards that define Allocation Unit size, limit erases to one 1825 * Allocation Unit at a time. 1826 * For MMC, have a stab at ai good value and for modern cards it will 1827 * end up being 4MiB. Note that if the value is too small, it can end 1828 * up taking longer to erase. Also note, erase_size is already set to 1829 * High Capacity Erase Size if available when this function is called. 1830 */ 1831 if (mmc_card_sd(card) && card->ssr.au) { 1832 card->pref_erase = card->ssr.au; 1833 card->erase_shift = ffs(card->ssr.au) - 1; 1834 } else if (card->erase_size) { 1835 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1836 if (sz < 128) 1837 card->pref_erase = 512 * 1024 / 512; 1838 else if (sz < 512) 1839 card->pref_erase = 1024 * 1024 / 512; 1840 else if (sz < 1024) 1841 card->pref_erase = 2 * 1024 * 1024 / 512; 1842 else 1843 card->pref_erase = 4 * 1024 * 1024 / 512; 1844 if (card->pref_erase < card->erase_size) 1845 card->pref_erase = card->erase_size; 1846 else { 1847 sz = card->pref_erase % card->erase_size; 1848 if (sz) 1849 card->pref_erase += card->erase_size - sz; 1850 } 1851 } else 1852 card->pref_erase = 0; 1853 } 1854 1855 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1856 unsigned int arg, unsigned int qty) 1857 { 1858 unsigned int erase_timeout; 1859 1860 if (arg == MMC_DISCARD_ARG || 1861 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1862 erase_timeout = card->ext_csd.trim_timeout; 1863 } else if (card->ext_csd.erase_group_def & 1) { 1864 /* High Capacity Erase Group Size uses HC timeouts */ 1865 if (arg == MMC_TRIM_ARG) 1866 erase_timeout = card->ext_csd.trim_timeout; 1867 else 1868 erase_timeout = card->ext_csd.hc_erase_timeout; 1869 } else { 1870 /* CSD Erase Group Size uses write timeout */ 1871 unsigned int mult = (10 << card->csd.r2w_factor); 1872 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1873 unsigned int timeout_us; 1874 1875 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1876 if (card->csd.tacc_ns < 1000000) 1877 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1878 else 1879 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1880 1881 /* 1882 * ios.clock is only a target. The real clock rate might be 1883 * less but not that much less, so fudge it by multiplying by 2. 1884 */ 1885 timeout_clks <<= 1; 1886 timeout_us += (timeout_clks * 1000) / 1887 (card->host->ios.clock / 1000); 1888 1889 erase_timeout = timeout_us / 1000; 1890 1891 /* 1892 * Theoretically, the calculation could underflow so round up 1893 * to 1ms in that case. 1894 */ 1895 if (!erase_timeout) 1896 erase_timeout = 1; 1897 } 1898 1899 /* Multiplier for secure operations */ 1900 if (arg & MMC_SECURE_ARGS) { 1901 if (arg == MMC_SECURE_ERASE_ARG) 1902 erase_timeout *= card->ext_csd.sec_erase_mult; 1903 else 1904 erase_timeout *= card->ext_csd.sec_trim_mult; 1905 } 1906 1907 erase_timeout *= qty; 1908 1909 /* 1910 * Ensure at least a 1 second timeout for SPI as per 1911 * 'mmc_set_data_timeout()' 1912 */ 1913 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1914 erase_timeout = 1000; 1915 1916 return erase_timeout; 1917 } 1918 1919 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1920 unsigned int arg, 1921 unsigned int qty) 1922 { 1923 unsigned int erase_timeout; 1924 1925 if (card->ssr.erase_timeout) { 1926 /* Erase timeout specified in SD Status Register (SSR) */ 1927 erase_timeout = card->ssr.erase_timeout * qty + 1928 card->ssr.erase_offset; 1929 } else { 1930 /* 1931 * Erase timeout not specified in SD Status Register (SSR) so 1932 * use 250ms per write block. 1933 */ 1934 erase_timeout = 250 * qty; 1935 } 1936 1937 /* Must not be less than 1 second */ 1938 if (erase_timeout < 1000) 1939 erase_timeout = 1000; 1940 1941 return erase_timeout; 1942 } 1943 1944 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1945 unsigned int arg, 1946 unsigned int qty) 1947 { 1948 if (mmc_card_sd(card)) 1949 return mmc_sd_erase_timeout(card, arg, qty); 1950 else 1951 return mmc_mmc_erase_timeout(card, arg, qty); 1952 } 1953 1954 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1955 unsigned int to, unsigned int arg) 1956 { 1957 struct mmc_command cmd = {}; 1958 unsigned int qty = 0, busy_timeout = 0; 1959 bool use_r1b_resp = false; 1960 unsigned long timeout; 1961 int err; 1962 1963 mmc_retune_hold(card->host); 1964 1965 /* 1966 * qty is used to calculate the erase timeout which depends on how many 1967 * erase groups (or allocation units in SD terminology) are affected. 1968 * We count erasing part of an erase group as one erase group. 1969 * For SD, the allocation units are always a power of 2. For MMC, the 1970 * erase group size is almost certainly also power of 2, but it does not 1971 * seem to insist on that in the JEDEC standard, so we fall back to 1972 * division in that case. SD may not specify an allocation unit size, 1973 * in which case the timeout is based on the number of write blocks. 1974 * 1975 * Note that the timeout for secure trim 2 will only be correct if the 1976 * number of erase groups specified is the same as the total of all 1977 * preceding secure trim 1 commands. Since the power may have been 1978 * lost since the secure trim 1 commands occurred, it is generally 1979 * impossible to calculate the secure trim 2 timeout correctly. 1980 */ 1981 if (card->erase_shift) 1982 qty += ((to >> card->erase_shift) - 1983 (from >> card->erase_shift)) + 1; 1984 else if (mmc_card_sd(card)) 1985 qty += to - from + 1; 1986 else 1987 qty += ((to / card->erase_size) - 1988 (from / card->erase_size)) + 1; 1989 1990 if (!mmc_card_blockaddr(card)) { 1991 from <<= 9; 1992 to <<= 9; 1993 } 1994 1995 if (mmc_card_sd(card)) 1996 cmd.opcode = SD_ERASE_WR_BLK_START; 1997 else 1998 cmd.opcode = MMC_ERASE_GROUP_START; 1999 cmd.arg = from; 2000 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2001 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2002 if (err) { 2003 pr_err("mmc_erase: group start error %d, " 2004 "status %#x\n", err, cmd.resp[0]); 2005 err = -EIO; 2006 goto out; 2007 } 2008 2009 memset(&cmd, 0, sizeof(struct mmc_command)); 2010 if (mmc_card_sd(card)) 2011 cmd.opcode = SD_ERASE_WR_BLK_END; 2012 else 2013 cmd.opcode = MMC_ERASE_GROUP_END; 2014 cmd.arg = to; 2015 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2016 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2017 if (err) { 2018 pr_err("mmc_erase: group end error %d, status %#x\n", 2019 err, cmd.resp[0]); 2020 err = -EIO; 2021 goto out; 2022 } 2023 2024 memset(&cmd, 0, sizeof(struct mmc_command)); 2025 cmd.opcode = MMC_ERASE; 2026 cmd.arg = arg; 2027 busy_timeout = mmc_erase_timeout(card, arg, qty); 2028 /* 2029 * If the host controller supports busy signalling and the timeout for 2030 * the erase operation does not exceed the max_busy_timeout, we should 2031 * use R1B response. Or we need to prevent the host from doing hw busy 2032 * detection, which is done by converting to a R1 response instead. 2033 */ 2034 if (card->host->max_busy_timeout && 2035 busy_timeout > card->host->max_busy_timeout) { 2036 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2037 } else { 2038 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2039 cmd.busy_timeout = busy_timeout; 2040 use_r1b_resp = true; 2041 } 2042 2043 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2044 if (err) { 2045 pr_err("mmc_erase: erase error %d, status %#x\n", 2046 err, cmd.resp[0]); 2047 err = -EIO; 2048 goto out; 2049 } 2050 2051 if (mmc_host_is_spi(card->host)) 2052 goto out; 2053 2054 /* 2055 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2056 * shall be avoided. 2057 */ 2058 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2059 goto out; 2060 2061 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2062 do { 2063 memset(&cmd, 0, sizeof(struct mmc_command)); 2064 cmd.opcode = MMC_SEND_STATUS; 2065 cmd.arg = card->rca << 16; 2066 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2067 /* Do not retry else we can't see errors */ 2068 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2069 if (err || (cmd.resp[0] & 0xFDF92000)) { 2070 pr_err("error %d requesting status %#x\n", 2071 err, cmd.resp[0]); 2072 err = -EIO; 2073 goto out; 2074 } 2075 2076 /* Timeout if the device never becomes ready for data and 2077 * never leaves the program state. 2078 */ 2079 if (time_after(jiffies, timeout)) { 2080 pr_err("%s: Card stuck in programming state! %s\n", 2081 mmc_hostname(card->host), __func__); 2082 err = -EIO; 2083 goto out; 2084 } 2085 2086 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2087 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2088 out: 2089 mmc_retune_release(card->host); 2090 return err; 2091 } 2092 2093 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2094 unsigned int *from, 2095 unsigned int *to, 2096 unsigned int nr) 2097 { 2098 unsigned int from_new = *from, nr_new = nr, rem; 2099 2100 /* 2101 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2102 * to align the erase size efficiently. 2103 */ 2104 if (is_power_of_2(card->erase_size)) { 2105 unsigned int temp = from_new; 2106 2107 from_new = round_up(temp, card->erase_size); 2108 rem = from_new - temp; 2109 2110 if (nr_new > rem) 2111 nr_new -= rem; 2112 else 2113 return 0; 2114 2115 nr_new = round_down(nr_new, card->erase_size); 2116 } else { 2117 rem = from_new % card->erase_size; 2118 if (rem) { 2119 rem = card->erase_size - rem; 2120 from_new += rem; 2121 if (nr_new > rem) 2122 nr_new -= rem; 2123 else 2124 return 0; 2125 } 2126 2127 rem = nr_new % card->erase_size; 2128 if (rem) 2129 nr_new -= rem; 2130 } 2131 2132 if (nr_new == 0) 2133 return 0; 2134 2135 *to = from_new + nr_new; 2136 *from = from_new; 2137 2138 return nr_new; 2139 } 2140 2141 /** 2142 * mmc_erase - erase sectors. 2143 * @card: card to erase 2144 * @from: first sector to erase 2145 * @nr: number of sectors to erase 2146 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2147 * 2148 * Caller must claim host before calling this function. 2149 */ 2150 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2151 unsigned int arg) 2152 { 2153 unsigned int rem, to = from + nr; 2154 int err; 2155 2156 if (!(card->host->caps & MMC_CAP_ERASE) || 2157 !(card->csd.cmdclass & CCC_ERASE)) 2158 return -EOPNOTSUPP; 2159 2160 if (!card->erase_size) 2161 return -EOPNOTSUPP; 2162 2163 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2164 return -EOPNOTSUPP; 2165 2166 if ((arg & MMC_SECURE_ARGS) && 2167 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2168 return -EOPNOTSUPP; 2169 2170 if ((arg & MMC_TRIM_ARGS) && 2171 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2172 return -EOPNOTSUPP; 2173 2174 if (arg == MMC_SECURE_ERASE_ARG) { 2175 if (from % card->erase_size || nr % card->erase_size) 2176 return -EINVAL; 2177 } 2178 2179 if (arg == MMC_ERASE_ARG) 2180 nr = mmc_align_erase_size(card, &from, &to, nr); 2181 2182 if (nr == 0) 2183 return 0; 2184 2185 if (to <= from) 2186 return -EINVAL; 2187 2188 /* 'from' and 'to' are inclusive */ 2189 to -= 1; 2190 2191 /* 2192 * Special case where only one erase-group fits in the timeout budget: 2193 * If the region crosses an erase-group boundary on this particular 2194 * case, we will be trimming more than one erase-group which, does not 2195 * fit in the timeout budget of the controller, so we need to split it 2196 * and call mmc_do_erase() twice if necessary. This special case is 2197 * identified by the card->eg_boundary flag. 2198 */ 2199 rem = card->erase_size - (from % card->erase_size); 2200 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2201 err = mmc_do_erase(card, from, from + rem - 1, arg); 2202 from += rem; 2203 if ((err) || (to <= from)) 2204 return err; 2205 } 2206 2207 return mmc_do_erase(card, from, to, arg); 2208 } 2209 EXPORT_SYMBOL(mmc_erase); 2210 2211 int mmc_can_erase(struct mmc_card *card) 2212 { 2213 if ((card->host->caps & MMC_CAP_ERASE) && 2214 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2215 return 1; 2216 return 0; 2217 } 2218 EXPORT_SYMBOL(mmc_can_erase); 2219 2220 int mmc_can_trim(struct mmc_card *card) 2221 { 2222 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2223 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2224 return 1; 2225 return 0; 2226 } 2227 EXPORT_SYMBOL(mmc_can_trim); 2228 2229 int mmc_can_discard(struct mmc_card *card) 2230 { 2231 /* 2232 * As there's no way to detect the discard support bit at v4.5 2233 * use the s/w feature support filed. 2234 */ 2235 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2236 return 1; 2237 return 0; 2238 } 2239 EXPORT_SYMBOL(mmc_can_discard); 2240 2241 int mmc_can_sanitize(struct mmc_card *card) 2242 { 2243 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2244 return 0; 2245 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2246 return 1; 2247 return 0; 2248 } 2249 EXPORT_SYMBOL(mmc_can_sanitize); 2250 2251 int mmc_can_secure_erase_trim(struct mmc_card *card) 2252 { 2253 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2254 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2255 return 1; 2256 return 0; 2257 } 2258 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2259 2260 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2261 unsigned int nr) 2262 { 2263 if (!card->erase_size) 2264 return 0; 2265 if (from % card->erase_size || nr % card->erase_size) 2266 return 0; 2267 return 1; 2268 } 2269 EXPORT_SYMBOL(mmc_erase_group_aligned); 2270 2271 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2272 unsigned int arg) 2273 { 2274 struct mmc_host *host = card->host; 2275 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2276 unsigned int last_timeout = 0; 2277 unsigned int max_busy_timeout = host->max_busy_timeout ? 2278 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2279 2280 if (card->erase_shift) { 2281 max_qty = UINT_MAX >> card->erase_shift; 2282 min_qty = card->pref_erase >> card->erase_shift; 2283 } else if (mmc_card_sd(card)) { 2284 max_qty = UINT_MAX; 2285 min_qty = card->pref_erase; 2286 } else { 2287 max_qty = UINT_MAX / card->erase_size; 2288 min_qty = card->pref_erase / card->erase_size; 2289 } 2290 2291 /* 2292 * We should not only use 'host->max_busy_timeout' as the limitation 2293 * when deciding the max discard sectors. We should set a balance value 2294 * to improve the erase speed, and it can not get too long timeout at 2295 * the same time. 2296 * 2297 * Here we set 'card->pref_erase' as the minimal discard sectors no 2298 * matter what size of 'host->max_busy_timeout', but if the 2299 * 'host->max_busy_timeout' is large enough for more discard sectors, 2300 * then we can continue to increase the max discard sectors until we 2301 * get a balance value. In cases when the 'host->max_busy_timeout' 2302 * isn't specified, use the default max erase timeout. 2303 */ 2304 do { 2305 y = 0; 2306 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2307 timeout = mmc_erase_timeout(card, arg, qty + x); 2308 2309 if (qty + x > min_qty && timeout > max_busy_timeout) 2310 break; 2311 2312 if (timeout < last_timeout) 2313 break; 2314 last_timeout = timeout; 2315 y = x; 2316 } 2317 qty += y; 2318 } while (y); 2319 2320 if (!qty) 2321 return 0; 2322 2323 /* 2324 * When specifying a sector range to trim, chances are we might cross 2325 * an erase-group boundary even if the amount of sectors is less than 2326 * one erase-group. 2327 * If we can only fit one erase-group in the controller timeout budget, 2328 * we have to care that erase-group boundaries are not crossed by a 2329 * single trim operation. We flag that special case with "eg_boundary". 2330 * In all other cases we can just decrement qty and pretend that we 2331 * always touch (qty + 1) erase-groups as a simple optimization. 2332 */ 2333 if (qty == 1) 2334 card->eg_boundary = 1; 2335 else 2336 qty--; 2337 2338 /* Convert qty to sectors */ 2339 if (card->erase_shift) 2340 max_discard = qty << card->erase_shift; 2341 else if (mmc_card_sd(card)) 2342 max_discard = qty + 1; 2343 else 2344 max_discard = qty * card->erase_size; 2345 2346 return max_discard; 2347 } 2348 2349 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2350 { 2351 struct mmc_host *host = card->host; 2352 unsigned int max_discard, max_trim; 2353 2354 /* 2355 * Without erase_group_def set, MMC erase timeout depends on clock 2356 * frequence which can change. In that case, the best choice is 2357 * just the preferred erase size. 2358 */ 2359 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2360 return card->pref_erase; 2361 2362 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2363 if (mmc_can_trim(card)) { 2364 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2365 if (max_trim < max_discard) 2366 max_discard = max_trim; 2367 } else if (max_discard < card->erase_size) { 2368 max_discard = 0; 2369 } 2370 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2371 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2372 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2373 return max_discard; 2374 } 2375 EXPORT_SYMBOL(mmc_calc_max_discard); 2376 2377 bool mmc_card_is_blockaddr(struct mmc_card *card) 2378 { 2379 return card ? mmc_card_blockaddr(card) : false; 2380 } 2381 EXPORT_SYMBOL(mmc_card_is_blockaddr); 2382 2383 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2384 { 2385 struct mmc_command cmd = {}; 2386 2387 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2388 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2389 return 0; 2390 2391 cmd.opcode = MMC_SET_BLOCKLEN; 2392 cmd.arg = blocklen; 2393 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2394 return mmc_wait_for_cmd(card->host, &cmd, 5); 2395 } 2396 EXPORT_SYMBOL(mmc_set_blocklen); 2397 2398 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2399 bool is_rel_write) 2400 { 2401 struct mmc_command cmd = {}; 2402 2403 cmd.opcode = MMC_SET_BLOCK_COUNT; 2404 cmd.arg = blockcount & 0x0000FFFF; 2405 if (is_rel_write) 2406 cmd.arg |= 1 << 31; 2407 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2408 return mmc_wait_for_cmd(card->host, &cmd, 5); 2409 } 2410 EXPORT_SYMBOL(mmc_set_blockcount); 2411 2412 static void mmc_hw_reset_for_init(struct mmc_host *host) 2413 { 2414 mmc_pwrseq_reset(host); 2415 2416 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2417 return; 2418 host->ops->hw_reset(host); 2419 } 2420 2421 int mmc_hw_reset(struct mmc_host *host) 2422 { 2423 int ret; 2424 2425 if (!host->card) 2426 return -EINVAL; 2427 2428 mmc_bus_get(host); 2429 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2430 mmc_bus_put(host); 2431 return -EOPNOTSUPP; 2432 } 2433 2434 ret = host->bus_ops->reset(host); 2435 mmc_bus_put(host); 2436 2437 if (ret) 2438 pr_warn("%s: tried to reset card, got error %d\n", 2439 mmc_hostname(host), ret); 2440 2441 return ret; 2442 } 2443 EXPORT_SYMBOL(mmc_hw_reset); 2444 2445 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2446 { 2447 host->f_init = freq; 2448 2449 #ifdef CONFIG_MMC_DEBUG 2450 pr_info("%s: %s: trying to init card at %u Hz\n", 2451 mmc_hostname(host), __func__, host->f_init); 2452 #endif 2453 mmc_power_up(host, host->ocr_avail); 2454 2455 /* 2456 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2457 * do a hardware reset if possible. 2458 */ 2459 mmc_hw_reset_for_init(host); 2460 2461 /* 2462 * sdio_reset sends CMD52 to reset card. Since we do not know 2463 * if the card is being re-initialized, just send it. CMD52 2464 * should be ignored by SD/eMMC cards. 2465 * Skip it if we already know that we do not support SDIO commands 2466 */ 2467 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2468 sdio_reset(host); 2469 2470 mmc_go_idle(host); 2471 2472 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2473 mmc_send_if_cond(host, host->ocr_avail); 2474 2475 /* Order's important: probe SDIO, then SD, then MMC */ 2476 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2477 if (!mmc_attach_sdio(host)) 2478 return 0; 2479 2480 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2481 if (!mmc_attach_sd(host)) 2482 return 0; 2483 2484 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2485 if (!mmc_attach_mmc(host)) 2486 return 0; 2487 2488 mmc_power_off(host); 2489 return -EIO; 2490 } 2491 2492 int _mmc_detect_card_removed(struct mmc_host *host) 2493 { 2494 int ret; 2495 2496 if (!host->card || mmc_card_removed(host->card)) 2497 return 1; 2498 2499 ret = host->bus_ops->alive(host); 2500 2501 /* 2502 * Card detect status and alive check may be out of sync if card is 2503 * removed slowly, when card detect switch changes while card/slot 2504 * pads are still contacted in hardware (refer to "SD Card Mechanical 2505 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2506 * detect work 200ms later for this case. 2507 */ 2508 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2509 mmc_detect_change(host, msecs_to_jiffies(200)); 2510 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2511 } 2512 2513 if (ret) { 2514 mmc_card_set_removed(host->card); 2515 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2516 } 2517 2518 return ret; 2519 } 2520 2521 int mmc_detect_card_removed(struct mmc_host *host) 2522 { 2523 struct mmc_card *card = host->card; 2524 int ret; 2525 2526 WARN_ON(!host->claimed); 2527 2528 if (!card) 2529 return 1; 2530 2531 if (!mmc_card_is_removable(host)) 2532 return 0; 2533 2534 ret = mmc_card_removed(card); 2535 /* 2536 * The card will be considered unchanged unless we have been asked to 2537 * detect a change or host requires polling to provide card detection. 2538 */ 2539 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2540 return ret; 2541 2542 host->detect_change = 0; 2543 if (!ret) { 2544 ret = _mmc_detect_card_removed(host); 2545 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2546 /* 2547 * Schedule a detect work as soon as possible to let a 2548 * rescan handle the card removal. 2549 */ 2550 cancel_delayed_work(&host->detect); 2551 _mmc_detect_change(host, 0, false); 2552 } 2553 } 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(mmc_detect_card_removed); 2558 2559 void mmc_rescan(struct work_struct *work) 2560 { 2561 struct mmc_host *host = 2562 container_of(work, struct mmc_host, detect.work); 2563 int i; 2564 2565 if (host->rescan_disable) 2566 return; 2567 2568 /* If there is a non-removable card registered, only scan once */ 2569 if (!mmc_card_is_removable(host) && host->rescan_entered) 2570 return; 2571 host->rescan_entered = 1; 2572 2573 if (host->trigger_card_event && host->ops->card_event) { 2574 mmc_claim_host(host); 2575 host->ops->card_event(host); 2576 mmc_release_host(host); 2577 host->trigger_card_event = false; 2578 } 2579 2580 mmc_bus_get(host); 2581 2582 /* 2583 * if there is a _removable_ card registered, check whether it is 2584 * still present 2585 */ 2586 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2587 host->bus_ops->detect(host); 2588 2589 host->detect_change = 0; 2590 2591 /* 2592 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2593 * the card is no longer present. 2594 */ 2595 mmc_bus_put(host); 2596 mmc_bus_get(host); 2597 2598 /* if there still is a card present, stop here */ 2599 if (host->bus_ops != NULL) { 2600 mmc_bus_put(host); 2601 goto out; 2602 } 2603 2604 /* 2605 * Only we can add a new handler, so it's safe to 2606 * release the lock here. 2607 */ 2608 mmc_bus_put(host); 2609 2610 mmc_claim_host(host); 2611 if (mmc_card_is_removable(host) && host->ops->get_cd && 2612 host->ops->get_cd(host) == 0) { 2613 mmc_power_off(host); 2614 mmc_release_host(host); 2615 goto out; 2616 } 2617 2618 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2619 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2620 break; 2621 if (freqs[i] <= host->f_min) 2622 break; 2623 } 2624 mmc_release_host(host); 2625 2626 out: 2627 if (host->caps & MMC_CAP_NEEDS_POLL) 2628 mmc_schedule_delayed_work(&host->detect, HZ); 2629 } 2630 2631 void mmc_start_host(struct mmc_host *host) 2632 { 2633 host->f_init = max(freqs[0], host->f_min); 2634 host->rescan_disable = 0; 2635 host->ios.power_mode = MMC_POWER_UNDEFINED; 2636 2637 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2638 mmc_claim_host(host); 2639 mmc_power_up(host, host->ocr_avail); 2640 mmc_release_host(host); 2641 } 2642 2643 mmc_gpiod_request_cd_irq(host); 2644 _mmc_detect_change(host, 0, false); 2645 } 2646 2647 void mmc_stop_host(struct mmc_host *host) 2648 { 2649 #ifdef CONFIG_MMC_DEBUG 2650 unsigned long flags; 2651 spin_lock_irqsave(&host->lock, flags); 2652 host->removed = 1; 2653 spin_unlock_irqrestore(&host->lock, flags); 2654 #endif 2655 if (host->slot.cd_irq >= 0) { 2656 if (host->slot.cd_wake_enabled) 2657 disable_irq_wake(host->slot.cd_irq); 2658 disable_irq(host->slot.cd_irq); 2659 } 2660 2661 host->rescan_disable = 1; 2662 cancel_delayed_work_sync(&host->detect); 2663 2664 /* clear pm flags now and let card drivers set them as needed */ 2665 host->pm_flags = 0; 2666 2667 mmc_bus_get(host); 2668 if (host->bus_ops && !host->bus_dead) { 2669 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2670 host->bus_ops->remove(host); 2671 mmc_claim_host(host); 2672 mmc_detach_bus(host); 2673 mmc_power_off(host); 2674 mmc_release_host(host); 2675 mmc_bus_put(host); 2676 return; 2677 } 2678 mmc_bus_put(host); 2679 2680 mmc_claim_host(host); 2681 mmc_power_off(host); 2682 mmc_release_host(host); 2683 } 2684 2685 int mmc_power_save_host(struct mmc_host *host) 2686 { 2687 int ret = 0; 2688 2689 #ifdef CONFIG_MMC_DEBUG 2690 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2691 #endif 2692 2693 mmc_bus_get(host); 2694 2695 if (!host->bus_ops || host->bus_dead) { 2696 mmc_bus_put(host); 2697 return -EINVAL; 2698 } 2699 2700 if (host->bus_ops->power_save) 2701 ret = host->bus_ops->power_save(host); 2702 2703 mmc_bus_put(host); 2704 2705 mmc_power_off(host); 2706 2707 return ret; 2708 } 2709 EXPORT_SYMBOL(mmc_power_save_host); 2710 2711 int mmc_power_restore_host(struct mmc_host *host) 2712 { 2713 int ret; 2714 2715 #ifdef CONFIG_MMC_DEBUG 2716 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2717 #endif 2718 2719 mmc_bus_get(host); 2720 2721 if (!host->bus_ops || host->bus_dead) { 2722 mmc_bus_put(host); 2723 return -EINVAL; 2724 } 2725 2726 mmc_power_up(host, host->card->ocr); 2727 ret = host->bus_ops->power_restore(host); 2728 2729 mmc_bus_put(host); 2730 2731 return ret; 2732 } 2733 EXPORT_SYMBOL(mmc_power_restore_host); 2734 2735 #ifdef CONFIG_PM_SLEEP 2736 /* Do the card removal on suspend if card is assumed removeable 2737 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2738 to sync the card. 2739 */ 2740 static int mmc_pm_notify(struct notifier_block *notify_block, 2741 unsigned long mode, void *unused) 2742 { 2743 struct mmc_host *host = container_of( 2744 notify_block, struct mmc_host, pm_notify); 2745 unsigned long flags; 2746 int err = 0; 2747 2748 switch (mode) { 2749 case PM_HIBERNATION_PREPARE: 2750 case PM_SUSPEND_PREPARE: 2751 case PM_RESTORE_PREPARE: 2752 spin_lock_irqsave(&host->lock, flags); 2753 host->rescan_disable = 1; 2754 spin_unlock_irqrestore(&host->lock, flags); 2755 cancel_delayed_work_sync(&host->detect); 2756 2757 if (!host->bus_ops) 2758 break; 2759 2760 /* Validate prerequisites for suspend */ 2761 if (host->bus_ops->pre_suspend) 2762 err = host->bus_ops->pre_suspend(host); 2763 if (!err) 2764 break; 2765 2766 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2767 host->bus_ops->remove(host); 2768 mmc_claim_host(host); 2769 mmc_detach_bus(host); 2770 mmc_power_off(host); 2771 mmc_release_host(host); 2772 host->pm_flags = 0; 2773 break; 2774 2775 case PM_POST_SUSPEND: 2776 case PM_POST_HIBERNATION: 2777 case PM_POST_RESTORE: 2778 2779 spin_lock_irqsave(&host->lock, flags); 2780 host->rescan_disable = 0; 2781 spin_unlock_irqrestore(&host->lock, flags); 2782 _mmc_detect_change(host, 0, false); 2783 2784 } 2785 2786 return 0; 2787 } 2788 2789 void mmc_register_pm_notifier(struct mmc_host *host) 2790 { 2791 host->pm_notify.notifier_call = mmc_pm_notify; 2792 register_pm_notifier(&host->pm_notify); 2793 } 2794 2795 void mmc_unregister_pm_notifier(struct mmc_host *host) 2796 { 2797 unregister_pm_notifier(&host->pm_notify); 2798 } 2799 #endif 2800 2801 /** 2802 * mmc_init_context_info() - init synchronization context 2803 * @host: mmc host 2804 * 2805 * Init struct context_info needed to implement asynchronous 2806 * request mechanism, used by mmc core, host driver and mmc requests 2807 * supplier. 2808 */ 2809 void mmc_init_context_info(struct mmc_host *host) 2810 { 2811 host->context_info.is_new_req = false; 2812 host->context_info.is_done_rcv = false; 2813 host->context_info.is_waiting_last_req = false; 2814 init_waitqueue_head(&host->context_info.wait); 2815 } 2816 2817 static int __init mmc_init(void) 2818 { 2819 int ret; 2820 2821 ret = mmc_register_bus(); 2822 if (ret) 2823 return ret; 2824 2825 ret = mmc_register_host_class(); 2826 if (ret) 2827 goto unregister_bus; 2828 2829 ret = sdio_register_bus(); 2830 if (ret) 2831 goto unregister_host_class; 2832 2833 return 0; 2834 2835 unregister_host_class: 2836 mmc_unregister_host_class(); 2837 unregister_bus: 2838 mmc_unregister_bus(); 2839 return ret; 2840 } 2841 2842 static void __exit mmc_exit(void) 2843 { 2844 sdio_unregister_bus(); 2845 mmc_unregister_host_class(); 2846 mmc_unregister_bus(); 2847 } 2848 2849 subsys_initcall(mmc_init); 2850 module_exit(mmc_exit); 2851 2852 MODULE_LICENSE("GPL"); 2853