xref: /openbmc/linux/drivers/mmc/core/core.c (revision a8fe58ce)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 
60 /*
61  * Enabling software CRCs on the data blocks can be a significant (30%)
62  * performance cost, and for other reasons may not always be desired.
63  * So we allow it it to be disabled.
64  */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67 
68 static int mmc_schedule_delayed_work(struct delayed_work *work,
69 				     unsigned long delay)
70 {
71 	/*
72 	 * We use the system_freezable_wq, because of two reasons.
73 	 * First, it allows several works (not the same work item) to be
74 	 * executed simultaneously. Second, the queue becomes frozen when
75 	 * userspace becomes frozen during system PM.
76 	 */
77 	return queue_delayed_work(system_freezable_wq, work, delay);
78 }
79 
80 #ifdef CONFIG_FAIL_MMC_REQUEST
81 
82 /*
83  * Internal function. Inject random data errors.
84  * If mmc_data is NULL no errors are injected.
85  */
86 static void mmc_should_fail_request(struct mmc_host *host,
87 				    struct mmc_request *mrq)
88 {
89 	struct mmc_command *cmd = mrq->cmd;
90 	struct mmc_data *data = mrq->data;
91 	static const int data_errors[] = {
92 		-ETIMEDOUT,
93 		-EILSEQ,
94 		-EIO,
95 	};
96 
97 	if (!data)
98 		return;
99 
100 	if (cmd->error || data->error ||
101 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
102 		return;
103 
104 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
105 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
106 }
107 
108 #else /* CONFIG_FAIL_MMC_REQUEST */
109 
110 static inline void mmc_should_fail_request(struct mmc_host *host,
111 					   struct mmc_request *mrq)
112 {
113 }
114 
115 #endif /* CONFIG_FAIL_MMC_REQUEST */
116 
117 /**
118  *	mmc_request_done - finish processing an MMC request
119  *	@host: MMC host which completed request
120  *	@mrq: MMC request which request
121  *
122  *	MMC drivers should call this function when they have completed
123  *	their processing of a request.
124  */
125 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
126 {
127 	struct mmc_command *cmd = mrq->cmd;
128 	int err = cmd->error;
129 
130 	/* Flag re-tuning needed on CRC errors */
131 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
132 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
133 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
134 	    (mrq->data && mrq->data->error == -EILSEQ) ||
135 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
136 		mmc_retune_needed(host);
137 
138 	if (err && cmd->retries && mmc_host_is_spi(host)) {
139 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 			cmd->retries = 0;
141 	}
142 
143 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 		/*
145 		 * Request starter must handle retries - see
146 		 * mmc_wait_for_req_done().
147 		 */
148 		if (mrq->done)
149 			mrq->done(mrq);
150 	} else {
151 		mmc_should_fail_request(host, mrq);
152 
153 		led_trigger_event(host->led, LED_OFF);
154 
155 		if (mrq->sbc) {
156 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
157 				mmc_hostname(host), mrq->sbc->opcode,
158 				mrq->sbc->error,
159 				mrq->sbc->resp[0], mrq->sbc->resp[1],
160 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
161 		}
162 
163 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 			mmc_hostname(host), cmd->opcode, err,
165 			cmd->resp[0], cmd->resp[1],
166 			cmd->resp[2], cmd->resp[3]);
167 
168 		if (mrq->data) {
169 			pr_debug("%s:     %d bytes transferred: %d\n",
170 				mmc_hostname(host),
171 				mrq->data->bytes_xfered, mrq->data->error);
172 		}
173 
174 		if (mrq->stop) {
175 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
176 				mmc_hostname(host), mrq->stop->opcode,
177 				mrq->stop->error,
178 				mrq->stop->resp[0], mrq->stop->resp[1],
179 				mrq->stop->resp[2], mrq->stop->resp[3]);
180 		}
181 
182 		if (mrq->done)
183 			mrq->done(mrq);
184 	}
185 }
186 
187 EXPORT_SYMBOL(mmc_request_done);
188 
189 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190 {
191 	int err;
192 
193 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
194 	err = mmc_retune(host);
195 	if (err) {
196 		mrq->cmd->error = err;
197 		mmc_request_done(host, mrq);
198 		return;
199 	}
200 
201 	/*
202 	 * For sdio rw commands we must wait for card busy otherwise some
203 	 * sdio devices won't work properly.
204 	 */
205 	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
206 		int tries = 500; /* Wait aprox 500ms at maximum */
207 
208 		while (host->ops->card_busy(host) && --tries)
209 			mmc_delay(1);
210 
211 		if (tries == 0) {
212 			mrq->cmd->error = -EBUSY;
213 			mmc_request_done(host, mrq);
214 			return;
215 		}
216 	}
217 
218 	host->ops->request(host, mrq);
219 }
220 
221 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 #ifdef CONFIG_MMC_DEBUG
224 	unsigned int i, sz;
225 	struct scatterlist *sg;
226 #endif
227 	mmc_retune_hold(host);
228 
229 	if (mmc_card_removed(host->card))
230 		return -ENOMEDIUM;
231 
232 	if (mrq->sbc) {
233 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
234 			 mmc_hostname(host), mrq->sbc->opcode,
235 			 mrq->sbc->arg, mrq->sbc->flags);
236 	}
237 
238 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
239 		 mmc_hostname(host), mrq->cmd->opcode,
240 		 mrq->cmd->arg, mrq->cmd->flags);
241 
242 	if (mrq->data) {
243 		pr_debug("%s:     blksz %d blocks %d flags %08x "
244 			"tsac %d ms nsac %d\n",
245 			mmc_hostname(host), mrq->data->blksz,
246 			mrq->data->blocks, mrq->data->flags,
247 			mrq->data->timeout_ns / 1000000,
248 			mrq->data->timeout_clks);
249 	}
250 
251 	if (mrq->stop) {
252 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
253 			 mmc_hostname(host), mrq->stop->opcode,
254 			 mrq->stop->arg, mrq->stop->flags);
255 	}
256 
257 	WARN_ON(!host->claimed);
258 
259 	mrq->cmd->error = 0;
260 	mrq->cmd->mrq = mrq;
261 	if (mrq->sbc) {
262 		mrq->sbc->error = 0;
263 		mrq->sbc->mrq = mrq;
264 	}
265 	if (mrq->data) {
266 		BUG_ON(mrq->data->blksz > host->max_blk_size);
267 		BUG_ON(mrq->data->blocks > host->max_blk_count);
268 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
269 			host->max_req_size);
270 
271 #ifdef CONFIG_MMC_DEBUG
272 		sz = 0;
273 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
274 			sz += sg->length;
275 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
276 #endif
277 
278 		mrq->cmd->data = mrq->data;
279 		mrq->data->error = 0;
280 		mrq->data->mrq = mrq;
281 		if (mrq->stop) {
282 			mrq->data->stop = mrq->stop;
283 			mrq->stop->error = 0;
284 			mrq->stop->mrq = mrq;
285 		}
286 	}
287 	led_trigger_event(host->led, LED_FULL);
288 	__mmc_start_request(host, mrq);
289 
290 	return 0;
291 }
292 
293 /**
294  *	mmc_start_bkops - start BKOPS for supported cards
295  *	@card: MMC card to start BKOPS
296  *	@form_exception: A flag to indicate if this function was
297  *			 called due to an exception raised by the card
298  *
299  *	Start background operations whenever requested.
300  *	When the urgent BKOPS bit is set in a R1 command response
301  *	then background operations should be started immediately.
302 */
303 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
304 {
305 	int err;
306 	int timeout;
307 	bool use_busy_signal;
308 
309 	BUG_ON(!card);
310 
311 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
312 		return;
313 
314 	err = mmc_read_bkops_status(card);
315 	if (err) {
316 		pr_err("%s: Failed to read bkops status: %d\n",
317 		       mmc_hostname(card->host), err);
318 		return;
319 	}
320 
321 	if (!card->ext_csd.raw_bkops_status)
322 		return;
323 
324 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
325 	    from_exception)
326 		return;
327 
328 	mmc_claim_host(card->host);
329 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
330 		timeout = MMC_BKOPS_MAX_TIMEOUT;
331 		use_busy_signal = true;
332 	} else {
333 		timeout = 0;
334 		use_busy_signal = false;
335 	}
336 
337 	mmc_retune_hold(card->host);
338 
339 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
340 			EXT_CSD_BKOPS_START, 1, timeout,
341 			use_busy_signal, true, false);
342 	if (err) {
343 		pr_warn("%s: Error %d starting bkops\n",
344 			mmc_hostname(card->host), err);
345 		mmc_retune_release(card->host);
346 		goto out;
347 	}
348 
349 	/*
350 	 * For urgent bkops status (LEVEL_2 and more)
351 	 * bkops executed synchronously, otherwise
352 	 * the operation is in progress
353 	 */
354 	if (!use_busy_signal)
355 		mmc_card_set_doing_bkops(card);
356 	else
357 		mmc_retune_release(card->host);
358 out:
359 	mmc_release_host(card->host);
360 }
361 EXPORT_SYMBOL(mmc_start_bkops);
362 
363 /*
364  * mmc_wait_data_done() - done callback for data request
365  * @mrq: done data request
366  *
367  * Wakes up mmc context, passed as a callback to host controller driver
368  */
369 static void mmc_wait_data_done(struct mmc_request *mrq)
370 {
371 	struct mmc_context_info *context_info = &mrq->host->context_info;
372 
373 	context_info->is_done_rcv = true;
374 	wake_up_interruptible(&context_info->wait);
375 }
376 
377 static void mmc_wait_done(struct mmc_request *mrq)
378 {
379 	complete(&mrq->completion);
380 }
381 
382 /*
383  *__mmc_start_data_req() - starts data request
384  * @host: MMC host to start the request
385  * @mrq: data request to start
386  *
387  * Sets the done callback to be called when request is completed by the card.
388  * Starts data mmc request execution
389  */
390 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
391 {
392 	int err;
393 
394 	mrq->done = mmc_wait_data_done;
395 	mrq->host = host;
396 
397 	err = mmc_start_request(host, mrq);
398 	if (err) {
399 		mrq->cmd->error = err;
400 		mmc_wait_data_done(mrq);
401 	}
402 
403 	return err;
404 }
405 
406 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
407 {
408 	int err;
409 
410 	init_completion(&mrq->completion);
411 	mrq->done = mmc_wait_done;
412 
413 	err = mmc_start_request(host, mrq);
414 	if (err) {
415 		mrq->cmd->error = err;
416 		complete(&mrq->completion);
417 	}
418 
419 	return err;
420 }
421 
422 /*
423  * mmc_wait_for_data_req_done() - wait for request completed
424  * @host: MMC host to prepare the command.
425  * @mrq: MMC request to wait for
426  *
427  * Blocks MMC context till host controller will ack end of data request
428  * execution or new request notification arrives from the block layer.
429  * Handles command retries.
430  *
431  * Returns enum mmc_blk_status after checking errors.
432  */
433 static int mmc_wait_for_data_req_done(struct mmc_host *host,
434 				      struct mmc_request *mrq,
435 				      struct mmc_async_req *next_req)
436 {
437 	struct mmc_command *cmd;
438 	struct mmc_context_info *context_info = &host->context_info;
439 	int err;
440 	unsigned long flags;
441 
442 	while (1) {
443 		wait_event_interruptible(context_info->wait,
444 				(context_info->is_done_rcv ||
445 				 context_info->is_new_req));
446 		spin_lock_irqsave(&context_info->lock, flags);
447 		context_info->is_waiting_last_req = false;
448 		spin_unlock_irqrestore(&context_info->lock, flags);
449 		if (context_info->is_done_rcv) {
450 			context_info->is_done_rcv = false;
451 			context_info->is_new_req = false;
452 			cmd = mrq->cmd;
453 
454 			if (!cmd->error || !cmd->retries ||
455 			    mmc_card_removed(host->card)) {
456 				err = host->areq->err_check(host->card,
457 							    host->areq);
458 				break; /* return err */
459 			} else {
460 				mmc_retune_recheck(host);
461 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
462 					mmc_hostname(host),
463 					cmd->opcode, cmd->error);
464 				cmd->retries--;
465 				cmd->error = 0;
466 				__mmc_start_request(host, mrq);
467 				continue; /* wait for done/new event again */
468 			}
469 		} else if (context_info->is_new_req) {
470 			context_info->is_new_req = false;
471 			if (!next_req)
472 				return MMC_BLK_NEW_REQUEST;
473 		}
474 	}
475 	mmc_retune_release(host);
476 	return err;
477 }
478 
479 static void mmc_wait_for_req_done(struct mmc_host *host,
480 				  struct mmc_request *mrq)
481 {
482 	struct mmc_command *cmd;
483 
484 	while (1) {
485 		wait_for_completion(&mrq->completion);
486 
487 		cmd = mrq->cmd;
488 
489 		/*
490 		 * If host has timed out waiting for the sanitize
491 		 * to complete, card might be still in programming state
492 		 * so let's try to bring the card out of programming
493 		 * state.
494 		 */
495 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
496 			if (!mmc_interrupt_hpi(host->card)) {
497 				pr_warn("%s: %s: Interrupted sanitize\n",
498 					mmc_hostname(host), __func__);
499 				cmd->error = 0;
500 				break;
501 			} else {
502 				pr_err("%s: %s: Failed to interrupt sanitize\n",
503 				       mmc_hostname(host), __func__);
504 			}
505 		}
506 		if (!cmd->error || !cmd->retries ||
507 		    mmc_card_removed(host->card))
508 			break;
509 
510 		mmc_retune_recheck(host);
511 
512 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
513 			 mmc_hostname(host), cmd->opcode, cmd->error);
514 		cmd->retries--;
515 		cmd->error = 0;
516 		__mmc_start_request(host, mrq);
517 	}
518 
519 	mmc_retune_release(host);
520 }
521 
522 /**
523  *	mmc_pre_req - Prepare for a new request
524  *	@host: MMC host to prepare command
525  *	@mrq: MMC request to prepare for
526  *	@is_first_req: true if there is no previous started request
527  *                     that may run in parellel to this call, otherwise false
528  *
529  *	mmc_pre_req() is called in prior to mmc_start_req() to let
530  *	host prepare for the new request. Preparation of a request may be
531  *	performed while another request is running on the host.
532  */
533 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
534 		 bool is_first_req)
535 {
536 	if (host->ops->pre_req)
537 		host->ops->pre_req(host, mrq, is_first_req);
538 }
539 
540 /**
541  *	mmc_post_req - Post process a completed request
542  *	@host: MMC host to post process command
543  *	@mrq: MMC request to post process for
544  *	@err: Error, if non zero, clean up any resources made in pre_req
545  *
546  *	Let the host post process a completed request. Post processing of
547  *	a request may be performed while another reuqest is running.
548  */
549 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
550 			 int err)
551 {
552 	if (host->ops->post_req)
553 		host->ops->post_req(host, mrq, err);
554 }
555 
556 /**
557  *	mmc_start_req - start a non-blocking request
558  *	@host: MMC host to start command
559  *	@areq: async request to start
560  *	@error: out parameter returns 0 for success, otherwise non zero
561  *
562  *	Start a new MMC custom command request for a host.
563  *	If there is on ongoing async request wait for completion
564  *	of that request and start the new one and return.
565  *	Does not wait for the new request to complete.
566  *
567  *      Returns the completed request, NULL in case of none completed.
568  *	Wait for the an ongoing request (previoulsy started) to complete and
569  *	return the completed request. If there is no ongoing request, NULL
570  *	is returned without waiting. NULL is not an error condition.
571  */
572 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
573 				    struct mmc_async_req *areq, int *error)
574 {
575 	int err = 0;
576 	int start_err = 0;
577 	struct mmc_async_req *data = host->areq;
578 
579 	/* Prepare a new request */
580 	if (areq)
581 		mmc_pre_req(host, areq->mrq, !host->areq);
582 
583 	if (host->areq) {
584 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
585 		if (err == MMC_BLK_NEW_REQUEST) {
586 			if (error)
587 				*error = err;
588 			/*
589 			 * The previous request was not completed,
590 			 * nothing to return
591 			 */
592 			return NULL;
593 		}
594 		/*
595 		 * Check BKOPS urgency for each R1 response
596 		 */
597 		if (host->card && mmc_card_mmc(host->card) &&
598 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
599 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
600 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
601 
602 			/* Cancel the prepared request */
603 			if (areq)
604 				mmc_post_req(host, areq->mrq, -EINVAL);
605 
606 			mmc_start_bkops(host->card, true);
607 
608 			/* prepare the request again */
609 			if (areq)
610 				mmc_pre_req(host, areq->mrq, !host->areq);
611 		}
612 	}
613 
614 	if (!err && areq)
615 		start_err = __mmc_start_data_req(host, areq->mrq);
616 
617 	if (host->areq)
618 		mmc_post_req(host, host->areq->mrq, 0);
619 
620 	 /* Cancel a prepared request if it was not started. */
621 	if ((err || start_err) && areq)
622 		mmc_post_req(host, areq->mrq, -EINVAL);
623 
624 	if (err)
625 		host->areq = NULL;
626 	else
627 		host->areq = areq;
628 
629 	if (error)
630 		*error = err;
631 	return data;
632 }
633 EXPORT_SYMBOL(mmc_start_req);
634 
635 /**
636  *	mmc_wait_for_req - start a request and wait for completion
637  *	@host: MMC host to start command
638  *	@mrq: MMC request to start
639  *
640  *	Start a new MMC custom command request for a host, and wait
641  *	for the command to complete. Does not attempt to parse the
642  *	response.
643  */
644 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
645 {
646 	__mmc_start_req(host, mrq);
647 	mmc_wait_for_req_done(host, mrq);
648 }
649 EXPORT_SYMBOL(mmc_wait_for_req);
650 
651 /**
652  *	mmc_interrupt_hpi - Issue for High priority Interrupt
653  *	@card: the MMC card associated with the HPI transfer
654  *
655  *	Issued High Priority Interrupt, and check for card status
656  *	until out-of prg-state.
657  */
658 int mmc_interrupt_hpi(struct mmc_card *card)
659 {
660 	int err;
661 	u32 status;
662 	unsigned long prg_wait;
663 
664 	BUG_ON(!card);
665 
666 	if (!card->ext_csd.hpi_en) {
667 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
668 		return 1;
669 	}
670 
671 	mmc_claim_host(card->host);
672 	err = mmc_send_status(card, &status);
673 	if (err) {
674 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
675 		goto out;
676 	}
677 
678 	switch (R1_CURRENT_STATE(status)) {
679 	case R1_STATE_IDLE:
680 	case R1_STATE_READY:
681 	case R1_STATE_STBY:
682 	case R1_STATE_TRAN:
683 		/*
684 		 * In idle and transfer states, HPI is not needed and the caller
685 		 * can issue the next intended command immediately
686 		 */
687 		goto out;
688 	case R1_STATE_PRG:
689 		break;
690 	default:
691 		/* In all other states, it's illegal to issue HPI */
692 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
693 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
694 		err = -EINVAL;
695 		goto out;
696 	}
697 
698 	err = mmc_send_hpi_cmd(card, &status);
699 	if (err)
700 		goto out;
701 
702 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
703 	do {
704 		err = mmc_send_status(card, &status);
705 
706 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
707 			break;
708 		if (time_after(jiffies, prg_wait))
709 			err = -ETIMEDOUT;
710 	} while (!err);
711 
712 out:
713 	mmc_release_host(card->host);
714 	return err;
715 }
716 EXPORT_SYMBOL(mmc_interrupt_hpi);
717 
718 /**
719  *	mmc_wait_for_cmd - start a command and wait for completion
720  *	@host: MMC host to start command
721  *	@cmd: MMC command to start
722  *	@retries: maximum number of retries
723  *
724  *	Start a new MMC command for a host, and wait for the command
725  *	to complete.  Return any error that occurred while the command
726  *	was executing.  Do not attempt to parse the response.
727  */
728 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
729 {
730 	struct mmc_request mrq = {NULL};
731 
732 	WARN_ON(!host->claimed);
733 
734 	memset(cmd->resp, 0, sizeof(cmd->resp));
735 	cmd->retries = retries;
736 
737 	mrq.cmd = cmd;
738 	cmd->data = NULL;
739 
740 	mmc_wait_for_req(host, &mrq);
741 
742 	return cmd->error;
743 }
744 
745 EXPORT_SYMBOL(mmc_wait_for_cmd);
746 
747 /**
748  *	mmc_stop_bkops - stop ongoing BKOPS
749  *	@card: MMC card to check BKOPS
750  *
751  *	Send HPI command to stop ongoing background operations to
752  *	allow rapid servicing of foreground operations, e.g. read/
753  *	writes. Wait until the card comes out of the programming state
754  *	to avoid errors in servicing read/write requests.
755  */
756 int mmc_stop_bkops(struct mmc_card *card)
757 {
758 	int err = 0;
759 
760 	BUG_ON(!card);
761 	err = mmc_interrupt_hpi(card);
762 
763 	/*
764 	 * If err is EINVAL, we can't issue an HPI.
765 	 * It should complete the BKOPS.
766 	 */
767 	if (!err || (err == -EINVAL)) {
768 		mmc_card_clr_doing_bkops(card);
769 		mmc_retune_release(card->host);
770 		err = 0;
771 	}
772 
773 	return err;
774 }
775 EXPORT_SYMBOL(mmc_stop_bkops);
776 
777 int mmc_read_bkops_status(struct mmc_card *card)
778 {
779 	int err;
780 	u8 *ext_csd;
781 
782 	mmc_claim_host(card->host);
783 	err = mmc_get_ext_csd(card, &ext_csd);
784 	mmc_release_host(card->host);
785 	if (err)
786 		return err;
787 
788 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
789 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
790 	kfree(ext_csd);
791 	return 0;
792 }
793 EXPORT_SYMBOL(mmc_read_bkops_status);
794 
795 /**
796  *	mmc_set_data_timeout - set the timeout for a data command
797  *	@data: data phase for command
798  *	@card: the MMC card associated with the data transfer
799  *
800  *	Computes the data timeout parameters according to the
801  *	correct algorithm given the card type.
802  */
803 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
804 {
805 	unsigned int mult;
806 
807 	/*
808 	 * SDIO cards only define an upper 1 s limit on access.
809 	 */
810 	if (mmc_card_sdio(card)) {
811 		data->timeout_ns = 1000000000;
812 		data->timeout_clks = 0;
813 		return;
814 	}
815 
816 	/*
817 	 * SD cards use a 100 multiplier rather than 10
818 	 */
819 	mult = mmc_card_sd(card) ? 100 : 10;
820 
821 	/*
822 	 * Scale up the multiplier (and therefore the timeout) by
823 	 * the r2w factor for writes.
824 	 */
825 	if (data->flags & MMC_DATA_WRITE)
826 		mult <<= card->csd.r2w_factor;
827 
828 	data->timeout_ns = card->csd.tacc_ns * mult;
829 	data->timeout_clks = card->csd.tacc_clks * mult;
830 
831 	/*
832 	 * SD cards also have an upper limit on the timeout.
833 	 */
834 	if (mmc_card_sd(card)) {
835 		unsigned int timeout_us, limit_us;
836 
837 		timeout_us = data->timeout_ns / 1000;
838 		if (card->host->ios.clock)
839 			timeout_us += data->timeout_clks * 1000 /
840 				(card->host->ios.clock / 1000);
841 
842 		if (data->flags & MMC_DATA_WRITE)
843 			/*
844 			 * The MMC spec "It is strongly recommended
845 			 * for hosts to implement more than 500ms
846 			 * timeout value even if the card indicates
847 			 * the 250ms maximum busy length."  Even the
848 			 * previous value of 300ms is known to be
849 			 * insufficient for some cards.
850 			 */
851 			limit_us = 3000000;
852 		else
853 			limit_us = 100000;
854 
855 		/*
856 		 * SDHC cards always use these fixed values.
857 		 */
858 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
859 			data->timeout_ns = limit_us * 1000;
860 			data->timeout_clks = 0;
861 		}
862 
863 		/* assign limit value if invalid */
864 		if (timeout_us == 0)
865 			data->timeout_ns = limit_us * 1000;
866 	}
867 
868 	/*
869 	 * Some cards require longer data read timeout than indicated in CSD.
870 	 * Address this by setting the read timeout to a "reasonably high"
871 	 * value. For the cards tested, 300ms has proven enough. If necessary,
872 	 * this value can be increased if other problematic cards require this.
873 	 */
874 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
875 		data->timeout_ns = 300000000;
876 		data->timeout_clks = 0;
877 	}
878 
879 	/*
880 	 * Some cards need very high timeouts if driven in SPI mode.
881 	 * The worst observed timeout was 900ms after writing a
882 	 * continuous stream of data until the internal logic
883 	 * overflowed.
884 	 */
885 	if (mmc_host_is_spi(card->host)) {
886 		if (data->flags & MMC_DATA_WRITE) {
887 			if (data->timeout_ns < 1000000000)
888 				data->timeout_ns = 1000000000;	/* 1s */
889 		} else {
890 			if (data->timeout_ns < 100000000)
891 				data->timeout_ns =  100000000;	/* 100ms */
892 		}
893 	}
894 }
895 EXPORT_SYMBOL(mmc_set_data_timeout);
896 
897 /**
898  *	mmc_align_data_size - pads a transfer size to a more optimal value
899  *	@card: the MMC card associated with the data transfer
900  *	@sz: original transfer size
901  *
902  *	Pads the original data size with a number of extra bytes in
903  *	order to avoid controller bugs and/or performance hits
904  *	(e.g. some controllers revert to PIO for certain sizes).
905  *
906  *	Returns the improved size, which might be unmodified.
907  *
908  *	Note that this function is only relevant when issuing a
909  *	single scatter gather entry.
910  */
911 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
912 {
913 	/*
914 	 * FIXME: We don't have a system for the controller to tell
915 	 * the core about its problems yet, so for now we just 32-bit
916 	 * align the size.
917 	 */
918 	sz = ((sz + 3) / 4) * 4;
919 
920 	return sz;
921 }
922 EXPORT_SYMBOL(mmc_align_data_size);
923 
924 /**
925  *	__mmc_claim_host - exclusively claim a host
926  *	@host: mmc host to claim
927  *	@abort: whether or not the operation should be aborted
928  *
929  *	Claim a host for a set of operations.  If @abort is non null and
930  *	dereference a non-zero value then this will return prematurely with
931  *	that non-zero value without acquiring the lock.  Returns zero
932  *	with the lock held otherwise.
933  */
934 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
935 {
936 	DECLARE_WAITQUEUE(wait, current);
937 	unsigned long flags;
938 	int stop;
939 	bool pm = false;
940 
941 	might_sleep();
942 
943 	add_wait_queue(&host->wq, &wait);
944 	spin_lock_irqsave(&host->lock, flags);
945 	while (1) {
946 		set_current_state(TASK_UNINTERRUPTIBLE);
947 		stop = abort ? atomic_read(abort) : 0;
948 		if (stop || !host->claimed || host->claimer == current)
949 			break;
950 		spin_unlock_irqrestore(&host->lock, flags);
951 		schedule();
952 		spin_lock_irqsave(&host->lock, flags);
953 	}
954 	set_current_state(TASK_RUNNING);
955 	if (!stop) {
956 		host->claimed = 1;
957 		host->claimer = current;
958 		host->claim_cnt += 1;
959 		if (host->claim_cnt == 1)
960 			pm = true;
961 	} else
962 		wake_up(&host->wq);
963 	spin_unlock_irqrestore(&host->lock, flags);
964 	remove_wait_queue(&host->wq, &wait);
965 
966 	if (pm)
967 		pm_runtime_get_sync(mmc_dev(host));
968 
969 	return stop;
970 }
971 EXPORT_SYMBOL(__mmc_claim_host);
972 
973 /**
974  *	mmc_release_host - release a host
975  *	@host: mmc host to release
976  *
977  *	Release a MMC host, allowing others to claim the host
978  *	for their operations.
979  */
980 void mmc_release_host(struct mmc_host *host)
981 {
982 	unsigned long flags;
983 
984 	WARN_ON(!host->claimed);
985 
986 	spin_lock_irqsave(&host->lock, flags);
987 	if (--host->claim_cnt) {
988 		/* Release for nested claim */
989 		spin_unlock_irqrestore(&host->lock, flags);
990 	} else {
991 		host->claimed = 0;
992 		host->claimer = NULL;
993 		spin_unlock_irqrestore(&host->lock, flags);
994 		wake_up(&host->wq);
995 		pm_runtime_mark_last_busy(mmc_dev(host));
996 		pm_runtime_put_autosuspend(mmc_dev(host));
997 	}
998 }
999 EXPORT_SYMBOL(mmc_release_host);
1000 
1001 /*
1002  * This is a helper function, which fetches a runtime pm reference for the
1003  * card device and also claims the host.
1004  */
1005 void mmc_get_card(struct mmc_card *card)
1006 {
1007 	pm_runtime_get_sync(&card->dev);
1008 	mmc_claim_host(card->host);
1009 }
1010 EXPORT_SYMBOL(mmc_get_card);
1011 
1012 /*
1013  * This is a helper function, which releases the host and drops the runtime
1014  * pm reference for the card device.
1015  */
1016 void mmc_put_card(struct mmc_card *card)
1017 {
1018 	mmc_release_host(card->host);
1019 	pm_runtime_mark_last_busy(&card->dev);
1020 	pm_runtime_put_autosuspend(&card->dev);
1021 }
1022 EXPORT_SYMBOL(mmc_put_card);
1023 
1024 /*
1025  * Internal function that does the actual ios call to the host driver,
1026  * optionally printing some debug output.
1027  */
1028 static inline void mmc_set_ios(struct mmc_host *host)
1029 {
1030 	struct mmc_ios *ios = &host->ios;
1031 
1032 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033 		"width %u timing %u\n",
1034 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1035 		 ios->power_mode, ios->chip_select, ios->vdd,
1036 		 ios->bus_width, ios->timing);
1037 
1038 	host->ops->set_ios(host, ios);
1039 }
1040 
1041 /*
1042  * Control chip select pin on a host.
1043  */
1044 void mmc_set_chip_select(struct mmc_host *host, int mode)
1045 {
1046 	host->ios.chip_select = mode;
1047 	mmc_set_ios(host);
1048 }
1049 
1050 /*
1051  * Sets the host clock to the highest possible frequency that
1052  * is below "hz".
1053  */
1054 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1055 {
1056 	WARN_ON(hz && hz < host->f_min);
1057 
1058 	if (hz > host->f_max)
1059 		hz = host->f_max;
1060 
1061 	host->ios.clock = hz;
1062 	mmc_set_ios(host);
1063 }
1064 
1065 int mmc_execute_tuning(struct mmc_card *card)
1066 {
1067 	struct mmc_host *host = card->host;
1068 	u32 opcode;
1069 	int err;
1070 
1071 	if (!host->ops->execute_tuning)
1072 		return 0;
1073 
1074 	if (mmc_card_mmc(card))
1075 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1076 	else
1077 		opcode = MMC_SEND_TUNING_BLOCK;
1078 
1079 	err = host->ops->execute_tuning(host, opcode);
1080 
1081 	if (err)
1082 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1083 	else
1084 		mmc_retune_enable(host);
1085 
1086 	return err;
1087 }
1088 
1089 /*
1090  * Change the bus mode (open drain/push-pull) of a host.
1091  */
1092 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1093 {
1094 	host->ios.bus_mode = mode;
1095 	mmc_set_ios(host);
1096 }
1097 
1098 /*
1099  * Change data bus width of a host.
1100  */
1101 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1102 {
1103 	host->ios.bus_width = width;
1104 	mmc_set_ios(host);
1105 }
1106 
1107 /*
1108  * Set initial state after a power cycle or a hw_reset.
1109  */
1110 void mmc_set_initial_state(struct mmc_host *host)
1111 {
1112 	mmc_retune_disable(host);
1113 
1114 	if (mmc_host_is_spi(host))
1115 		host->ios.chip_select = MMC_CS_HIGH;
1116 	else
1117 		host->ios.chip_select = MMC_CS_DONTCARE;
1118 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1119 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1120 	host->ios.timing = MMC_TIMING_LEGACY;
1121 	host->ios.drv_type = 0;
1122 
1123 	mmc_set_ios(host);
1124 }
1125 
1126 /**
1127  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1128  * @vdd:	voltage (mV)
1129  * @low_bits:	prefer low bits in boundary cases
1130  *
1131  * This function returns the OCR bit number according to the provided @vdd
1132  * value. If conversion is not possible a negative errno value returned.
1133  *
1134  * Depending on the @low_bits flag the function prefers low or high OCR bits
1135  * on boundary voltages. For example,
1136  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1137  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1138  *
1139  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1140  */
1141 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1142 {
1143 	const int max_bit = ilog2(MMC_VDD_35_36);
1144 	int bit;
1145 
1146 	if (vdd < 1650 || vdd > 3600)
1147 		return -EINVAL;
1148 
1149 	if (vdd >= 1650 && vdd <= 1950)
1150 		return ilog2(MMC_VDD_165_195);
1151 
1152 	if (low_bits)
1153 		vdd -= 1;
1154 
1155 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1156 	bit = (vdd - 2000) / 100 + 8;
1157 	if (bit > max_bit)
1158 		return max_bit;
1159 	return bit;
1160 }
1161 
1162 /**
1163  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1164  * @vdd_min:	minimum voltage value (mV)
1165  * @vdd_max:	maximum voltage value (mV)
1166  *
1167  * This function returns the OCR mask bits according to the provided @vdd_min
1168  * and @vdd_max values. If conversion is not possible the function returns 0.
1169  *
1170  * Notes wrt boundary cases:
1171  * This function sets the OCR bits for all boundary voltages, for example
1172  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1173  * MMC_VDD_34_35 mask.
1174  */
1175 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1176 {
1177 	u32 mask = 0;
1178 
1179 	if (vdd_max < vdd_min)
1180 		return 0;
1181 
1182 	/* Prefer high bits for the boundary vdd_max values. */
1183 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1184 	if (vdd_max < 0)
1185 		return 0;
1186 
1187 	/* Prefer low bits for the boundary vdd_min values. */
1188 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1189 	if (vdd_min < 0)
1190 		return 0;
1191 
1192 	/* Fill the mask, from max bit to min bit. */
1193 	while (vdd_max >= vdd_min)
1194 		mask |= 1 << vdd_max--;
1195 
1196 	return mask;
1197 }
1198 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1199 
1200 #ifdef CONFIG_OF
1201 
1202 /**
1203  * mmc_of_parse_voltage - return mask of supported voltages
1204  * @np: The device node need to be parsed.
1205  * @mask: mask of voltages available for MMC/SD/SDIO
1206  *
1207  * 1. Return zero on success.
1208  * 2. Return negative errno: voltage-range is invalid.
1209  */
1210 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1211 {
1212 	const u32 *voltage_ranges;
1213 	int num_ranges, i;
1214 
1215 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1216 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1217 	if (!voltage_ranges || !num_ranges) {
1218 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1219 		return -EINVAL;
1220 	}
1221 
1222 	for (i = 0; i < num_ranges; i++) {
1223 		const int j = i * 2;
1224 		u32 ocr_mask;
1225 
1226 		ocr_mask = mmc_vddrange_to_ocrmask(
1227 				be32_to_cpu(voltage_ranges[j]),
1228 				be32_to_cpu(voltage_ranges[j + 1]));
1229 		if (!ocr_mask) {
1230 			pr_err("%s: voltage-range #%d is invalid\n",
1231 				np->full_name, i);
1232 			return -EINVAL;
1233 		}
1234 		*mask |= ocr_mask;
1235 	}
1236 
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL(mmc_of_parse_voltage);
1240 
1241 #endif /* CONFIG_OF */
1242 
1243 static int mmc_of_get_func_num(struct device_node *node)
1244 {
1245 	u32 reg;
1246 	int ret;
1247 
1248 	ret = of_property_read_u32(node, "reg", &reg);
1249 	if (ret < 0)
1250 		return ret;
1251 
1252 	return reg;
1253 }
1254 
1255 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1256 		unsigned func_num)
1257 {
1258 	struct device_node *node;
1259 
1260 	if (!host->parent || !host->parent->of_node)
1261 		return NULL;
1262 
1263 	for_each_child_of_node(host->parent->of_node, node) {
1264 		if (mmc_of_get_func_num(node) == func_num)
1265 			return node;
1266 	}
1267 
1268 	return NULL;
1269 }
1270 
1271 #ifdef CONFIG_REGULATOR
1272 
1273 /**
1274  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1275  * @vdd_bit:	OCR bit number
1276  * @min_uV:	minimum voltage value (mV)
1277  * @max_uV:	maximum voltage value (mV)
1278  *
1279  * This function returns the voltage range according to the provided OCR
1280  * bit number. If conversion is not possible a negative errno value returned.
1281  */
1282 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1283 {
1284 	int		tmp;
1285 
1286 	if (!vdd_bit)
1287 		return -EINVAL;
1288 
1289 	/*
1290 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1291 	 * bits this regulator doesn't quite support ... don't
1292 	 * be too picky, most cards and regulators are OK with
1293 	 * a 0.1V range goof (it's a small error percentage).
1294 	 */
1295 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1296 	if (tmp == 0) {
1297 		*min_uV = 1650 * 1000;
1298 		*max_uV = 1950 * 1000;
1299 	} else {
1300 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1301 		*max_uV = *min_uV + 100 * 1000;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * mmc_regulator_get_ocrmask - return mask of supported voltages
1309  * @supply: regulator to use
1310  *
1311  * This returns either a negative errno, or a mask of voltages that
1312  * can be provided to MMC/SD/SDIO devices using the specified voltage
1313  * regulator.  This would normally be called before registering the
1314  * MMC host adapter.
1315  */
1316 int mmc_regulator_get_ocrmask(struct regulator *supply)
1317 {
1318 	int			result = 0;
1319 	int			count;
1320 	int			i;
1321 	int			vdd_uV;
1322 	int			vdd_mV;
1323 
1324 	count = regulator_count_voltages(supply);
1325 	if (count < 0)
1326 		return count;
1327 
1328 	for (i = 0; i < count; i++) {
1329 		vdd_uV = regulator_list_voltage(supply, i);
1330 		if (vdd_uV <= 0)
1331 			continue;
1332 
1333 		vdd_mV = vdd_uV / 1000;
1334 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1335 	}
1336 
1337 	if (!result) {
1338 		vdd_uV = regulator_get_voltage(supply);
1339 		if (vdd_uV <= 0)
1340 			return vdd_uV;
1341 
1342 		vdd_mV = vdd_uV / 1000;
1343 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1344 	}
1345 
1346 	return result;
1347 }
1348 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1349 
1350 /**
1351  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1352  * @mmc: the host to regulate
1353  * @supply: regulator to use
1354  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1355  *
1356  * Returns zero on success, else negative errno.
1357  *
1358  * MMC host drivers may use this to enable or disable a regulator using
1359  * a particular supply voltage.  This would normally be called from the
1360  * set_ios() method.
1361  */
1362 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1363 			struct regulator *supply,
1364 			unsigned short vdd_bit)
1365 {
1366 	int			result = 0;
1367 	int			min_uV, max_uV;
1368 
1369 	if (vdd_bit) {
1370 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1371 
1372 		result = regulator_set_voltage(supply, min_uV, max_uV);
1373 		if (result == 0 && !mmc->regulator_enabled) {
1374 			result = regulator_enable(supply);
1375 			if (!result)
1376 				mmc->regulator_enabled = true;
1377 		}
1378 	} else if (mmc->regulator_enabled) {
1379 		result = regulator_disable(supply);
1380 		if (result == 0)
1381 			mmc->regulator_enabled = false;
1382 	}
1383 
1384 	if (result)
1385 		dev_err(mmc_dev(mmc),
1386 			"could not set regulator OCR (%d)\n", result);
1387 	return result;
1388 }
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1390 
1391 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1392 						  int min_uV, int target_uV,
1393 						  int max_uV)
1394 {
1395 	/*
1396 	 * Check if supported first to avoid errors since we may try several
1397 	 * signal levels during power up and don't want to show errors.
1398 	 */
1399 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1400 		return -EINVAL;
1401 
1402 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1403 					     max_uV);
1404 }
1405 
1406 /**
1407  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1408  *
1409  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1410  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1411  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1412  * SD card spec also define VQMMC in terms of VMMC.
1413  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1414  *
1415  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1416  * requested voltage.  This is definitely a good idea for UHS where there's a
1417  * separate regulator on the card that's trying to make 1.8V and it's best if
1418  * we match.
1419  *
1420  * This function is expected to be used by a controller's
1421  * start_signal_voltage_switch() function.
1422  */
1423 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1424 {
1425 	struct device *dev = mmc_dev(mmc);
1426 	int ret, volt, min_uV, max_uV;
1427 
1428 	/* If no vqmmc supply then we can't change the voltage */
1429 	if (IS_ERR(mmc->supply.vqmmc))
1430 		return -EINVAL;
1431 
1432 	switch (ios->signal_voltage) {
1433 	case MMC_SIGNAL_VOLTAGE_120:
1434 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1435 						1100000, 1200000, 1300000);
1436 	case MMC_SIGNAL_VOLTAGE_180:
1437 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1438 						1700000, 1800000, 1950000);
1439 	case MMC_SIGNAL_VOLTAGE_330:
1440 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1441 		if (ret < 0)
1442 			return ret;
1443 
1444 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1445 			__func__, volt, max_uV);
1446 
1447 		min_uV = max(volt - 300000, 2700000);
1448 		max_uV = min(max_uV + 200000, 3600000);
1449 
1450 		/*
1451 		 * Due to a limitation in the current implementation of
1452 		 * regulator_set_voltage_triplet() which is taking the lowest
1453 		 * voltage possible if below the target, search for a suitable
1454 		 * voltage in two steps and try to stay close to vmmc
1455 		 * with a 0.3V tolerance at first.
1456 		 */
1457 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1458 						min_uV, volt, max_uV))
1459 			return 0;
1460 
1461 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1462 						2700000, volt, 3600000);
1463 	default:
1464 		return -EINVAL;
1465 	}
1466 }
1467 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1468 
1469 #endif /* CONFIG_REGULATOR */
1470 
1471 int mmc_regulator_get_supply(struct mmc_host *mmc)
1472 {
1473 	struct device *dev = mmc_dev(mmc);
1474 	int ret;
1475 
1476 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1477 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1478 
1479 	if (IS_ERR(mmc->supply.vmmc)) {
1480 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1481 			return -EPROBE_DEFER;
1482 		dev_dbg(dev, "No vmmc regulator found\n");
1483 	} else {
1484 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1485 		if (ret > 0)
1486 			mmc->ocr_avail = ret;
1487 		else
1488 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1489 	}
1490 
1491 	if (IS_ERR(mmc->supply.vqmmc)) {
1492 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1493 			return -EPROBE_DEFER;
1494 		dev_dbg(dev, "No vqmmc regulator found\n");
1495 	}
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1500 
1501 /*
1502  * Mask off any voltages we don't support and select
1503  * the lowest voltage
1504  */
1505 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1506 {
1507 	int bit;
1508 
1509 	/*
1510 	 * Sanity check the voltages that the card claims to
1511 	 * support.
1512 	 */
1513 	if (ocr & 0x7F) {
1514 		dev_warn(mmc_dev(host),
1515 		"card claims to support voltages below defined range\n");
1516 		ocr &= ~0x7F;
1517 	}
1518 
1519 	ocr &= host->ocr_avail;
1520 	if (!ocr) {
1521 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1522 		return 0;
1523 	}
1524 
1525 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1526 		bit = ffs(ocr) - 1;
1527 		ocr &= 3 << bit;
1528 		mmc_power_cycle(host, ocr);
1529 	} else {
1530 		bit = fls(ocr) - 1;
1531 		ocr &= 3 << bit;
1532 		if (bit != host->ios.vdd)
1533 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1534 	}
1535 
1536 	return ocr;
1537 }
1538 
1539 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1540 {
1541 	int err = 0;
1542 	int old_signal_voltage = host->ios.signal_voltage;
1543 
1544 	host->ios.signal_voltage = signal_voltage;
1545 	if (host->ops->start_signal_voltage_switch)
1546 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1547 
1548 	if (err)
1549 		host->ios.signal_voltage = old_signal_voltage;
1550 
1551 	return err;
1552 
1553 }
1554 
1555 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1556 {
1557 	struct mmc_command cmd = {0};
1558 	int err = 0;
1559 	u32 clock;
1560 
1561 	BUG_ON(!host);
1562 
1563 	/*
1564 	 * Send CMD11 only if the request is to switch the card to
1565 	 * 1.8V signalling.
1566 	 */
1567 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1568 		return __mmc_set_signal_voltage(host, signal_voltage);
1569 
1570 	/*
1571 	 * If we cannot switch voltages, return failure so the caller
1572 	 * can continue without UHS mode
1573 	 */
1574 	if (!host->ops->start_signal_voltage_switch)
1575 		return -EPERM;
1576 	if (!host->ops->card_busy)
1577 		pr_warn("%s: cannot verify signal voltage switch\n",
1578 			mmc_hostname(host));
1579 
1580 	cmd.opcode = SD_SWITCH_VOLTAGE;
1581 	cmd.arg = 0;
1582 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1583 
1584 	err = mmc_wait_for_cmd(host, &cmd, 0);
1585 	if (err)
1586 		return err;
1587 
1588 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1589 		return -EIO;
1590 
1591 	/*
1592 	 * The card should drive cmd and dat[0:3] low immediately
1593 	 * after the response of cmd11, but wait 1 ms to be sure
1594 	 */
1595 	mmc_delay(1);
1596 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1597 		err = -EAGAIN;
1598 		goto power_cycle;
1599 	}
1600 	/*
1601 	 * During a signal voltage level switch, the clock must be gated
1602 	 * for 5 ms according to the SD spec
1603 	 */
1604 	clock = host->ios.clock;
1605 	host->ios.clock = 0;
1606 	mmc_set_ios(host);
1607 
1608 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1609 		/*
1610 		 * Voltages may not have been switched, but we've already
1611 		 * sent CMD11, so a power cycle is required anyway
1612 		 */
1613 		err = -EAGAIN;
1614 		goto power_cycle;
1615 	}
1616 
1617 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1618 	mmc_delay(10);
1619 	host->ios.clock = clock;
1620 	mmc_set_ios(host);
1621 
1622 	/* Wait for at least 1 ms according to spec */
1623 	mmc_delay(1);
1624 
1625 	/*
1626 	 * Failure to switch is indicated by the card holding
1627 	 * dat[0:3] low
1628 	 */
1629 	if (host->ops->card_busy && host->ops->card_busy(host))
1630 		err = -EAGAIN;
1631 
1632 power_cycle:
1633 	if (err) {
1634 		pr_debug("%s: Signal voltage switch failed, "
1635 			"power cycling card\n", mmc_hostname(host));
1636 		mmc_power_cycle(host, ocr);
1637 	}
1638 
1639 	return err;
1640 }
1641 
1642 /*
1643  * Select timing parameters for host.
1644  */
1645 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1646 {
1647 	host->ios.timing = timing;
1648 	mmc_set_ios(host);
1649 }
1650 
1651 /*
1652  * Select appropriate driver type for host.
1653  */
1654 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1655 {
1656 	host->ios.drv_type = drv_type;
1657 	mmc_set_ios(host);
1658 }
1659 
1660 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1661 			      int card_drv_type, int *drv_type)
1662 {
1663 	struct mmc_host *host = card->host;
1664 	int host_drv_type = SD_DRIVER_TYPE_B;
1665 
1666 	*drv_type = 0;
1667 
1668 	if (!host->ops->select_drive_strength)
1669 		return 0;
1670 
1671 	/* Use SD definition of driver strength for hosts */
1672 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1673 		host_drv_type |= SD_DRIVER_TYPE_A;
1674 
1675 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1676 		host_drv_type |= SD_DRIVER_TYPE_C;
1677 
1678 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1679 		host_drv_type |= SD_DRIVER_TYPE_D;
1680 
1681 	/*
1682 	 * The drive strength that the hardware can support
1683 	 * depends on the board design.  Pass the appropriate
1684 	 * information and let the hardware specific code
1685 	 * return what is possible given the options
1686 	 */
1687 	return host->ops->select_drive_strength(card, max_dtr,
1688 						host_drv_type,
1689 						card_drv_type,
1690 						drv_type);
1691 }
1692 
1693 /*
1694  * Apply power to the MMC stack.  This is a two-stage process.
1695  * First, we enable power to the card without the clock running.
1696  * We then wait a bit for the power to stabilise.  Finally,
1697  * enable the bus drivers and clock to the card.
1698  *
1699  * We must _NOT_ enable the clock prior to power stablising.
1700  *
1701  * If a host does all the power sequencing itself, ignore the
1702  * initial MMC_POWER_UP stage.
1703  */
1704 void mmc_power_up(struct mmc_host *host, u32 ocr)
1705 {
1706 	if (host->ios.power_mode == MMC_POWER_ON)
1707 		return;
1708 
1709 	mmc_pwrseq_pre_power_on(host);
1710 
1711 	host->ios.vdd = fls(ocr) - 1;
1712 	host->ios.power_mode = MMC_POWER_UP;
1713 	/* Set initial state and call mmc_set_ios */
1714 	mmc_set_initial_state(host);
1715 
1716 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1717 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1718 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1719 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1720 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1721 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1722 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1723 
1724 	/*
1725 	 * This delay should be sufficient to allow the power supply
1726 	 * to reach the minimum voltage.
1727 	 */
1728 	mmc_delay(10);
1729 
1730 	mmc_pwrseq_post_power_on(host);
1731 
1732 	host->ios.clock = host->f_init;
1733 
1734 	host->ios.power_mode = MMC_POWER_ON;
1735 	mmc_set_ios(host);
1736 
1737 	/*
1738 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1739 	 * time required to reach a stable voltage.
1740 	 */
1741 	mmc_delay(10);
1742 }
1743 
1744 void mmc_power_off(struct mmc_host *host)
1745 {
1746 	if (host->ios.power_mode == MMC_POWER_OFF)
1747 		return;
1748 
1749 	mmc_pwrseq_power_off(host);
1750 
1751 	host->ios.clock = 0;
1752 	host->ios.vdd = 0;
1753 
1754 	host->ios.power_mode = MMC_POWER_OFF;
1755 	/* Set initial state and call mmc_set_ios */
1756 	mmc_set_initial_state(host);
1757 
1758 	/*
1759 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1760 	 * XO-1.5, require a short delay after poweroff before the card
1761 	 * can be successfully turned on again.
1762 	 */
1763 	mmc_delay(1);
1764 }
1765 
1766 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1767 {
1768 	mmc_power_off(host);
1769 	/* Wait at least 1 ms according to SD spec */
1770 	mmc_delay(1);
1771 	mmc_power_up(host, ocr);
1772 }
1773 
1774 /*
1775  * Cleanup when the last reference to the bus operator is dropped.
1776  */
1777 static void __mmc_release_bus(struct mmc_host *host)
1778 {
1779 	BUG_ON(!host);
1780 	BUG_ON(host->bus_refs);
1781 	BUG_ON(!host->bus_dead);
1782 
1783 	host->bus_ops = NULL;
1784 }
1785 
1786 /*
1787  * Increase reference count of bus operator
1788  */
1789 static inline void mmc_bus_get(struct mmc_host *host)
1790 {
1791 	unsigned long flags;
1792 
1793 	spin_lock_irqsave(&host->lock, flags);
1794 	host->bus_refs++;
1795 	spin_unlock_irqrestore(&host->lock, flags);
1796 }
1797 
1798 /*
1799  * Decrease reference count of bus operator and free it if
1800  * it is the last reference.
1801  */
1802 static inline void mmc_bus_put(struct mmc_host *host)
1803 {
1804 	unsigned long flags;
1805 
1806 	spin_lock_irqsave(&host->lock, flags);
1807 	host->bus_refs--;
1808 	if ((host->bus_refs == 0) && host->bus_ops)
1809 		__mmc_release_bus(host);
1810 	spin_unlock_irqrestore(&host->lock, flags);
1811 }
1812 
1813 /*
1814  * Assign a mmc bus handler to a host. Only one bus handler may control a
1815  * host at any given time.
1816  */
1817 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1818 {
1819 	unsigned long flags;
1820 
1821 	BUG_ON(!host);
1822 	BUG_ON(!ops);
1823 
1824 	WARN_ON(!host->claimed);
1825 
1826 	spin_lock_irqsave(&host->lock, flags);
1827 
1828 	BUG_ON(host->bus_ops);
1829 	BUG_ON(host->bus_refs);
1830 
1831 	host->bus_ops = ops;
1832 	host->bus_refs = 1;
1833 	host->bus_dead = 0;
1834 
1835 	spin_unlock_irqrestore(&host->lock, flags);
1836 }
1837 
1838 /*
1839  * Remove the current bus handler from a host.
1840  */
1841 void mmc_detach_bus(struct mmc_host *host)
1842 {
1843 	unsigned long flags;
1844 
1845 	BUG_ON(!host);
1846 
1847 	WARN_ON(!host->claimed);
1848 	WARN_ON(!host->bus_ops);
1849 
1850 	spin_lock_irqsave(&host->lock, flags);
1851 
1852 	host->bus_dead = 1;
1853 
1854 	spin_unlock_irqrestore(&host->lock, flags);
1855 
1856 	mmc_bus_put(host);
1857 }
1858 
1859 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1860 				bool cd_irq)
1861 {
1862 #ifdef CONFIG_MMC_DEBUG
1863 	unsigned long flags;
1864 	spin_lock_irqsave(&host->lock, flags);
1865 	WARN_ON(host->removed);
1866 	spin_unlock_irqrestore(&host->lock, flags);
1867 #endif
1868 
1869 	/*
1870 	 * If the device is configured as wakeup, we prevent a new sleep for
1871 	 * 5 s to give provision for user space to consume the event.
1872 	 */
1873 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1874 		device_can_wakeup(mmc_dev(host)))
1875 		pm_wakeup_event(mmc_dev(host), 5000);
1876 
1877 	host->detect_change = 1;
1878 	mmc_schedule_delayed_work(&host->detect, delay);
1879 }
1880 
1881 /**
1882  *	mmc_detect_change - process change of state on a MMC socket
1883  *	@host: host which changed state.
1884  *	@delay: optional delay to wait before detection (jiffies)
1885  *
1886  *	MMC drivers should call this when they detect a card has been
1887  *	inserted or removed. The MMC layer will confirm that any
1888  *	present card is still functional, and initialize any newly
1889  *	inserted.
1890  */
1891 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1892 {
1893 	_mmc_detect_change(host, delay, true);
1894 }
1895 EXPORT_SYMBOL(mmc_detect_change);
1896 
1897 void mmc_init_erase(struct mmc_card *card)
1898 {
1899 	unsigned int sz;
1900 
1901 	if (is_power_of_2(card->erase_size))
1902 		card->erase_shift = ffs(card->erase_size) - 1;
1903 	else
1904 		card->erase_shift = 0;
1905 
1906 	/*
1907 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1908 	 * card.  That is not desirable because it can take a long time
1909 	 * (minutes) potentially delaying more important I/O, and also the
1910 	 * timeout calculations become increasingly hugely over-estimated.
1911 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1912 	 * to that size and alignment.
1913 	 *
1914 	 * For SD cards that define Allocation Unit size, limit erases to one
1915 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1916 	 * Erase Size, whether it is switched on or not, limit to that size.
1917 	 * Otherwise just have a stab at a good value.  For modern cards it
1918 	 * will end up being 4MiB.  Note that if the value is too small, it
1919 	 * can end up taking longer to erase.
1920 	 */
1921 	if (mmc_card_sd(card) && card->ssr.au) {
1922 		card->pref_erase = card->ssr.au;
1923 		card->erase_shift = ffs(card->ssr.au) - 1;
1924 	} else if (card->ext_csd.hc_erase_size) {
1925 		card->pref_erase = card->ext_csd.hc_erase_size;
1926 	} else if (card->erase_size) {
1927 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1928 		if (sz < 128)
1929 			card->pref_erase = 512 * 1024 / 512;
1930 		else if (sz < 512)
1931 			card->pref_erase = 1024 * 1024 / 512;
1932 		else if (sz < 1024)
1933 			card->pref_erase = 2 * 1024 * 1024 / 512;
1934 		else
1935 			card->pref_erase = 4 * 1024 * 1024 / 512;
1936 		if (card->pref_erase < card->erase_size)
1937 			card->pref_erase = card->erase_size;
1938 		else {
1939 			sz = card->pref_erase % card->erase_size;
1940 			if (sz)
1941 				card->pref_erase += card->erase_size - sz;
1942 		}
1943 	} else
1944 		card->pref_erase = 0;
1945 }
1946 
1947 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1948 				          unsigned int arg, unsigned int qty)
1949 {
1950 	unsigned int erase_timeout;
1951 
1952 	if (arg == MMC_DISCARD_ARG ||
1953 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1954 		erase_timeout = card->ext_csd.trim_timeout;
1955 	} else if (card->ext_csd.erase_group_def & 1) {
1956 		/* High Capacity Erase Group Size uses HC timeouts */
1957 		if (arg == MMC_TRIM_ARG)
1958 			erase_timeout = card->ext_csd.trim_timeout;
1959 		else
1960 			erase_timeout = card->ext_csd.hc_erase_timeout;
1961 	} else {
1962 		/* CSD Erase Group Size uses write timeout */
1963 		unsigned int mult = (10 << card->csd.r2w_factor);
1964 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1965 		unsigned int timeout_us;
1966 
1967 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1968 		if (card->csd.tacc_ns < 1000000)
1969 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1970 		else
1971 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1972 
1973 		/*
1974 		 * ios.clock is only a target.  The real clock rate might be
1975 		 * less but not that much less, so fudge it by multiplying by 2.
1976 		 */
1977 		timeout_clks <<= 1;
1978 		timeout_us += (timeout_clks * 1000) /
1979 			      (card->host->ios.clock / 1000);
1980 
1981 		erase_timeout = timeout_us / 1000;
1982 
1983 		/*
1984 		 * Theoretically, the calculation could underflow so round up
1985 		 * to 1ms in that case.
1986 		 */
1987 		if (!erase_timeout)
1988 			erase_timeout = 1;
1989 	}
1990 
1991 	/* Multiplier for secure operations */
1992 	if (arg & MMC_SECURE_ARGS) {
1993 		if (arg == MMC_SECURE_ERASE_ARG)
1994 			erase_timeout *= card->ext_csd.sec_erase_mult;
1995 		else
1996 			erase_timeout *= card->ext_csd.sec_trim_mult;
1997 	}
1998 
1999 	erase_timeout *= qty;
2000 
2001 	/*
2002 	 * Ensure at least a 1 second timeout for SPI as per
2003 	 * 'mmc_set_data_timeout()'
2004 	 */
2005 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2006 		erase_timeout = 1000;
2007 
2008 	return erase_timeout;
2009 }
2010 
2011 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2012 					 unsigned int arg,
2013 					 unsigned int qty)
2014 {
2015 	unsigned int erase_timeout;
2016 
2017 	if (card->ssr.erase_timeout) {
2018 		/* Erase timeout specified in SD Status Register (SSR) */
2019 		erase_timeout = card->ssr.erase_timeout * qty +
2020 				card->ssr.erase_offset;
2021 	} else {
2022 		/*
2023 		 * Erase timeout not specified in SD Status Register (SSR) so
2024 		 * use 250ms per write block.
2025 		 */
2026 		erase_timeout = 250 * qty;
2027 	}
2028 
2029 	/* Must not be less than 1 second */
2030 	if (erase_timeout < 1000)
2031 		erase_timeout = 1000;
2032 
2033 	return erase_timeout;
2034 }
2035 
2036 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2037 				      unsigned int arg,
2038 				      unsigned int qty)
2039 {
2040 	if (mmc_card_sd(card))
2041 		return mmc_sd_erase_timeout(card, arg, qty);
2042 	else
2043 		return mmc_mmc_erase_timeout(card, arg, qty);
2044 }
2045 
2046 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2047 			unsigned int to, unsigned int arg)
2048 {
2049 	struct mmc_command cmd = {0};
2050 	unsigned int qty = 0;
2051 	unsigned long timeout;
2052 	int err;
2053 
2054 	mmc_retune_hold(card->host);
2055 
2056 	/*
2057 	 * qty is used to calculate the erase timeout which depends on how many
2058 	 * erase groups (or allocation units in SD terminology) are affected.
2059 	 * We count erasing part of an erase group as one erase group.
2060 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2061 	 * erase group size is almost certainly also power of 2, but it does not
2062 	 * seem to insist on that in the JEDEC standard, so we fall back to
2063 	 * division in that case.  SD may not specify an allocation unit size,
2064 	 * in which case the timeout is based on the number of write blocks.
2065 	 *
2066 	 * Note that the timeout for secure trim 2 will only be correct if the
2067 	 * number of erase groups specified is the same as the total of all
2068 	 * preceding secure trim 1 commands.  Since the power may have been
2069 	 * lost since the secure trim 1 commands occurred, it is generally
2070 	 * impossible to calculate the secure trim 2 timeout correctly.
2071 	 */
2072 	if (card->erase_shift)
2073 		qty += ((to >> card->erase_shift) -
2074 			(from >> card->erase_shift)) + 1;
2075 	else if (mmc_card_sd(card))
2076 		qty += to - from + 1;
2077 	else
2078 		qty += ((to / card->erase_size) -
2079 			(from / card->erase_size)) + 1;
2080 
2081 	if (!mmc_card_blockaddr(card)) {
2082 		from <<= 9;
2083 		to <<= 9;
2084 	}
2085 
2086 	if (mmc_card_sd(card))
2087 		cmd.opcode = SD_ERASE_WR_BLK_START;
2088 	else
2089 		cmd.opcode = MMC_ERASE_GROUP_START;
2090 	cmd.arg = from;
2091 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2092 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2093 	if (err) {
2094 		pr_err("mmc_erase: group start error %d, "
2095 		       "status %#x\n", err, cmd.resp[0]);
2096 		err = -EIO;
2097 		goto out;
2098 	}
2099 
2100 	memset(&cmd, 0, sizeof(struct mmc_command));
2101 	if (mmc_card_sd(card))
2102 		cmd.opcode = SD_ERASE_WR_BLK_END;
2103 	else
2104 		cmd.opcode = MMC_ERASE_GROUP_END;
2105 	cmd.arg = to;
2106 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2107 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2108 	if (err) {
2109 		pr_err("mmc_erase: group end error %d, status %#x\n",
2110 		       err, cmd.resp[0]);
2111 		err = -EIO;
2112 		goto out;
2113 	}
2114 
2115 	memset(&cmd, 0, sizeof(struct mmc_command));
2116 	cmd.opcode = MMC_ERASE;
2117 	cmd.arg = arg;
2118 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2119 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2120 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2121 	if (err) {
2122 		pr_err("mmc_erase: erase error %d, status %#x\n",
2123 		       err, cmd.resp[0]);
2124 		err = -EIO;
2125 		goto out;
2126 	}
2127 
2128 	if (mmc_host_is_spi(card->host))
2129 		goto out;
2130 
2131 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2132 	do {
2133 		memset(&cmd, 0, sizeof(struct mmc_command));
2134 		cmd.opcode = MMC_SEND_STATUS;
2135 		cmd.arg = card->rca << 16;
2136 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2137 		/* Do not retry else we can't see errors */
2138 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2139 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2140 			pr_err("error %d requesting status %#x\n",
2141 				err, cmd.resp[0]);
2142 			err = -EIO;
2143 			goto out;
2144 		}
2145 
2146 		/* Timeout if the device never becomes ready for data and
2147 		 * never leaves the program state.
2148 		 */
2149 		if (time_after(jiffies, timeout)) {
2150 			pr_err("%s: Card stuck in programming state! %s\n",
2151 				mmc_hostname(card->host), __func__);
2152 			err =  -EIO;
2153 			goto out;
2154 		}
2155 
2156 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2157 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2158 out:
2159 	mmc_retune_release(card->host);
2160 	return err;
2161 }
2162 
2163 /**
2164  * mmc_erase - erase sectors.
2165  * @card: card to erase
2166  * @from: first sector to erase
2167  * @nr: number of sectors to erase
2168  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2169  *
2170  * Caller must claim host before calling this function.
2171  */
2172 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2173 	      unsigned int arg)
2174 {
2175 	unsigned int rem, to = from + nr;
2176 	int err;
2177 
2178 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2179 	    !(card->csd.cmdclass & CCC_ERASE))
2180 		return -EOPNOTSUPP;
2181 
2182 	if (!card->erase_size)
2183 		return -EOPNOTSUPP;
2184 
2185 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2186 		return -EOPNOTSUPP;
2187 
2188 	if ((arg & MMC_SECURE_ARGS) &&
2189 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2190 		return -EOPNOTSUPP;
2191 
2192 	if ((arg & MMC_TRIM_ARGS) &&
2193 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2194 		return -EOPNOTSUPP;
2195 
2196 	if (arg == MMC_SECURE_ERASE_ARG) {
2197 		if (from % card->erase_size || nr % card->erase_size)
2198 			return -EINVAL;
2199 	}
2200 
2201 	if (arg == MMC_ERASE_ARG) {
2202 		rem = from % card->erase_size;
2203 		if (rem) {
2204 			rem = card->erase_size - rem;
2205 			from += rem;
2206 			if (nr > rem)
2207 				nr -= rem;
2208 			else
2209 				return 0;
2210 		}
2211 		rem = nr % card->erase_size;
2212 		if (rem)
2213 			nr -= rem;
2214 	}
2215 
2216 	if (nr == 0)
2217 		return 0;
2218 
2219 	to = from + nr;
2220 
2221 	if (to <= from)
2222 		return -EINVAL;
2223 
2224 	/* 'from' and 'to' are inclusive */
2225 	to -= 1;
2226 
2227 	/*
2228 	 * Special case where only one erase-group fits in the timeout budget:
2229 	 * If the region crosses an erase-group boundary on this particular
2230 	 * case, we will be trimming more than one erase-group which, does not
2231 	 * fit in the timeout budget of the controller, so we need to split it
2232 	 * and call mmc_do_erase() twice if necessary. This special case is
2233 	 * identified by the card->eg_boundary flag.
2234 	 */
2235 	rem = card->erase_size - (from % card->erase_size);
2236 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2237 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2238 		from += rem;
2239 		if ((err) || (to <= from))
2240 			return err;
2241 	}
2242 
2243 	return mmc_do_erase(card, from, to, arg);
2244 }
2245 EXPORT_SYMBOL(mmc_erase);
2246 
2247 int mmc_can_erase(struct mmc_card *card)
2248 {
2249 	if ((card->host->caps & MMC_CAP_ERASE) &&
2250 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2251 		return 1;
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(mmc_can_erase);
2255 
2256 int mmc_can_trim(struct mmc_card *card)
2257 {
2258 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2259 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2260 		return 1;
2261 	return 0;
2262 }
2263 EXPORT_SYMBOL(mmc_can_trim);
2264 
2265 int mmc_can_discard(struct mmc_card *card)
2266 {
2267 	/*
2268 	 * As there's no way to detect the discard support bit at v4.5
2269 	 * use the s/w feature support filed.
2270 	 */
2271 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2272 		return 1;
2273 	return 0;
2274 }
2275 EXPORT_SYMBOL(mmc_can_discard);
2276 
2277 int mmc_can_sanitize(struct mmc_card *card)
2278 {
2279 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2280 		return 0;
2281 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2282 		return 1;
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(mmc_can_sanitize);
2286 
2287 int mmc_can_secure_erase_trim(struct mmc_card *card)
2288 {
2289 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2290 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2291 		return 1;
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2295 
2296 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2297 			    unsigned int nr)
2298 {
2299 	if (!card->erase_size)
2300 		return 0;
2301 	if (from % card->erase_size || nr % card->erase_size)
2302 		return 0;
2303 	return 1;
2304 }
2305 EXPORT_SYMBOL(mmc_erase_group_aligned);
2306 
2307 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2308 					    unsigned int arg)
2309 {
2310 	struct mmc_host *host = card->host;
2311 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2312 	unsigned int last_timeout = 0;
2313 
2314 	if (card->erase_shift)
2315 		max_qty = UINT_MAX >> card->erase_shift;
2316 	else if (mmc_card_sd(card))
2317 		max_qty = UINT_MAX;
2318 	else
2319 		max_qty = UINT_MAX / card->erase_size;
2320 
2321 	/* Find the largest qty with an OK timeout */
2322 	do {
2323 		y = 0;
2324 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2325 			timeout = mmc_erase_timeout(card, arg, qty + x);
2326 			if (timeout > host->max_busy_timeout)
2327 				break;
2328 			if (timeout < last_timeout)
2329 				break;
2330 			last_timeout = timeout;
2331 			y = x;
2332 		}
2333 		qty += y;
2334 	} while (y);
2335 
2336 	if (!qty)
2337 		return 0;
2338 
2339 	/*
2340 	 * When specifying a sector range to trim, chances are we might cross
2341 	 * an erase-group boundary even if the amount of sectors is less than
2342 	 * one erase-group.
2343 	 * If we can only fit one erase-group in the controller timeout budget,
2344 	 * we have to care that erase-group boundaries are not crossed by a
2345 	 * single trim operation. We flag that special case with "eg_boundary".
2346 	 * In all other cases we can just decrement qty and pretend that we
2347 	 * always touch (qty + 1) erase-groups as a simple optimization.
2348 	 */
2349 	if (qty == 1)
2350 		card->eg_boundary = 1;
2351 	else
2352 		qty--;
2353 
2354 	/* Convert qty to sectors */
2355 	if (card->erase_shift)
2356 		max_discard = qty << card->erase_shift;
2357 	else if (mmc_card_sd(card))
2358 		max_discard = qty + 1;
2359 	else
2360 		max_discard = qty * card->erase_size;
2361 
2362 	return max_discard;
2363 }
2364 
2365 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2366 {
2367 	struct mmc_host *host = card->host;
2368 	unsigned int max_discard, max_trim;
2369 
2370 	if (!host->max_busy_timeout)
2371 		return UINT_MAX;
2372 
2373 	/*
2374 	 * Without erase_group_def set, MMC erase timeout depends on clock
2375 	 * frequence which can change.  In that case, the best choice is
2376 	 * just the preferred erase size.
2377 	 */
2378 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2379 		return card->pref_erase;
2380 
2381 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2382 	if (mmc_can_trim(card)) {
2383 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2384 		if (max_trim < max_discard)
2385 			max_discard = max_trim;
2386 	} else if (max_discard < card->erase_size) {
2387 		max_discard = 0;
2388 	}
2389 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2390 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2391 	return max_discard;
2392 }
2393 EXPORT_SYMBOL(mmc_calc_max_discard);
2394 
2395 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2396 {
2397 	struct mmc_command cmd = {0};
2398 
2399 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2400 		return 0;
2401 
2402 	cmd.opcode = MMC_SET_BLOCKLEN;
2403 	cmd.arg = blocklen;
2404 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2405 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2406 }
2407 EXPORT_SYMBOL(mmc_set_blocklen);
2408 
2409 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2410 			bool is_rel_write)
2411 {
2412 	struct mmc_command cmd = {0};
2413 
2414 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2415 	cmd.arg = blockcount & 0x0000FFFF;
2416 	if (is_rel_write)
2417 		cmd.arg |= 1 << 31;
2418 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2419 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2420 }
2421 EXPORT_SYMBOL(mmc_set_blockcount);
2422 
2423 static void mmc_hw_reset_for_init(struct mmc_host *host)
2424 {
2425 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 		return;
2427 	host->ops->hw_reset(host);
2428 }
2429 
2430 int mmc_hw_reset(struct mmc_host *host)
2431 {
2432 	int ret;
2433 
2434 	if (!host->card)
2435 		return -EINVAL;
2436 
2437 	mmc_bus_get(host);
2438 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 		mmc_bus_put(host);
2440 		return -EOPNOTSUPP;
2441 	}
2442 
2443 	ret = host->bus_ops->reset(host);
2444 	mmc_bus_put(host);
2445 
2446 	if (ret != -EOPNOTSUPP)
2447 		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2448 
2449 	return ret;
2450 }
2451 EXPORT_SYMBOL(mmc_hw_reset);
2452 
2453 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2454 {
2455 	host->f_init = freq;
2456 
2457 #ifdef CONFIG_MMC_DEBUG
2458 	pr_info("%s: %s: trying to init card at %u Hz\n",
2459 		mmc_hostname(host), __func__, host->f_init);
2460 #endif
2461 	mmc_power_up(host, host->ocr_avail);
2462 
2463 	/*
2464 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 	 * do a hardware reset if possible.
2466 	 */
2467 	mmc_hw_reset_for_init(host);
2468 
2469 	/*
2470 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2471 	 * if the card is being re-initialized, just send it.  CMD52
2472 	 * should be ignored by SD/eMMC cards.
2473 	 * Skip it if we already know that we do not support SDIO commands
2474 	 */
2475 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 		sdio_reset(host);
2477 
2478 	mmc_go_idle(host);
2479 
2480 	mmc_send_if_cond(host, host->ocr_avail);
2481 
2482 	/* Order's important: probe SDIO, then SD, then MMC */
2483 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2484 		if (!mmc_attach_sdio(host))
2485 			return 0;
2486 
2487 	if (!mmc_attach_sd(host))
2488 		return 0;
2489 	if (!mmc_attach_mmc(host))
2490 		return 0;
2491 
2492 	mmc_power_off(host);
2493 	return -EIO;
2494 }
2495 
2496 int _mmc_detect_card_removed(struct mmc_host *host)
2497 {
2498 	int ret;
2499 
2500 	if (!host->card || mmc_card_removed(host->card))
2501 		return 1;
2502 
2503 	ret = host->bus_ops->alive(host);
2504 
2505 	/*
2506 	 * Card detect status and alive check may be out of sync if card is
2507 	 * removed slowly, when card detect switch changes while card/slot
2508 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2509 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2510 	 * detect work 200ms later for this case.
2511 	 */
2512 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2513 		mmc_detect_change(host, msecs_to_jiffies(200));
2514 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2515 	}
2516 
2517 	if (ret) {
2518 		mmc_card_set_removed(host->card);
2519 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2520 	}
2521 
2522 	return ret;
2523 }
2524 
2525 int mmc_detect_card_removed(struct mmc_host *host)
2526 {
2527 	struct mmc_card *card = host->card;
2528 	int ret;
2529 
2530 	WARN_ON(!host->claimed);
2531 
2532 	if (!card)
2533 		return 1;
2534 
2535 	if (host->caps & MMC_CAP_NONREMOVABLE)
2536 		return 0;
2537 
2538 	ret = mmc_card_removed(card);
2539 	/*
2540 	 * The card will be considered unchanged unless we have been asked to
2541 	 * detect a change or host requires polling to provide card detection.
2542 	 */
2543 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2544 		return ret;
2545 
2546 	host->detect_change = 0;
2547 	if (!ret) {
2548 		ret = _mmc_detect_card_removed(host);
2549 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2550 			/*
2551 			 * Schedule a detect work as soon as possible to let a
2552 			 * rescan handle the card removal.
2553 			 */
2554 			cancel_delayed_work(&host->detect);
2555 			_mmc_detect_change(host, 0, false);
2556 		}
2557 	}
2558 
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(mmc_detect_card_removed);
2562 
2563 void mmc_rescan(struct work_struct *work)
2564 {
2565 	struct mmc_host *host =
2566 		container_of(work, struct mmc_host, detect.work);
2567 	int i;
2568 
2569 	if (host->rescan_disable)
2570 		return;
2571 
2572 	/* If there is a non-removable card registered, only scan once */
2573 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2574 		return;
2575 	host->rescan_entered = 1;
2576 
2577 	if (host->trigger_card_event && host->ops->card_event) {
2578 		mmc_claim_host(host);
2579 		host->ops->card_event(host);
2580 		mmc_release_host(host);
2581 		host->trigger_card_event = false;
2582 	}
2583 
2584 	mmc_bus_get(host);
2585 
2586 	/*
2587 	 * if there is a _removable_ card registered, check whether it is
2588 	 * still present
2589 	 */
2590 	if (host->bus_ops && !host->bus_dead
2591 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2592 		host->bus_ops->detect(host);
2593 
2594 	host->detect_change = 0;
2595 
2596 	/*
2597 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2598 	 * the card is no longer present.
2599 	 */
2600 	mmc_bus_put(host);
2601 	mmc_bus_get(host);
2602 
2603 	/* if there still is a card present, stop here */
2604 	if (host->bus_ops != NULL) {
2605 		mmc_bus_put(host);
2606 		goto out;
2607 	}
2608 
2609 	/*
2610 	 * Only we can add a new handler, so it's safe to
2611 	 * release the lock here.
2612 	 */
2613 	mmc_bus_put(host);
2614 
2615 	mmc_claim_host(host);
2616 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2617 			host->ops->get_cd(host) == 0) {
2618 		mmc_power_off(host);
2619 		mmc_release_host(host);
2620 		goto out;
2621 	}
2622 
2623 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2624 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2625 			break;
2626 		if (freqs[i] <= host->f_min)
2627 			break;
2628 	}
2629 	mmc_release_host(host);
2630 
2631  out:
2632 	if (host->caps & MMC_CAP_NEEDS_POLL)
2633 		mmc_schedule_delayed_work(&host->detect, HZ);
2634 }
2635 
2636 void mmc_start_host(struct mmc_host *host)
2637 {
2638 	host->f_init = max(freqs[0], host->f_min);
2639 	host->rescan_disable = 0;
2640 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2641 
2642 	mmc_claim_host(host);
2643 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2644 		mmc_power_off(host);
2645 	else
2646 		mmc_power_up(host, host->ocr_avail);
2647 	mmc_release_host(host);
2648 
2649 	mmc_gpiod_request_cd_irq(host);
2650 	_mmc_detect_change(host, 0, false);
2651 }
2652 
2653 void mmc_stop_host(struct mmc_host *host)
2654 {
2655 #ifdef CONFIG_MMC_DEBUG
2656 	unsigned long flags;
2657 	spin_lock_irqsave(&host->lock, flags);
2658 	host->removed = 1;
2659 	spin_unlock_irqrestore(&host->lock, flags);
2660 #endif
2661 	if (host->slot.cd_irq >= 0)
2662 		disable_irq(host->slot.cd_irq);
2663 
2664 	host->rescan_disable = 1;
2665 	cancel_delayed_work_sync(&host->detect);
2666 
2667 	/* clear pm flags now and let card drivers set them as needed */
2668 	host->pm_flags = 0;
2669 
2670 	mmc_bus_get(host);
2671 	if (host->bus_ops && !host->bus_dead) {
2672 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2673 		host->bus_ops->remove(host);
2674 		mmc_claim_host(host);
2675 		mmc_detach_bus(host);
2676 		mmc_power_off(host);
2677 		mmc_release_host(host);
2678 		mmc_bus_put(host);
2679 		return;
2680 	}
2681 	mmc_bus_put(host);
2682 
2683 	BUG_ON(host->card);
2684 
2685 	mmc_claim_host(host);
2686 	mmc_power_off(host);
2687 	mmc_release_host(host);
2688 }
2689 
2690 int mmc_power_save_host(struct mmc_host *host)
2691 {
2692 	int ret = 0;
2693 
2694 #ifdef CONFIG_MMC_DEBUG
2695 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2696 #endif
2697 
2698 	mmc_bus_get(host);
2699 
2700 	if (!host->bus_ops || host->bus_dead) {
2701 		mmc_bus_put(host);
2702 		return -EINVAL;
2703 	}
2704 
2705 	if (host->bus_ops->power_save)
2706 		ret = host->bus_ops->power_save(host);
2707 
2708 	mmc_bus_put(host);
2709 
2710 	mmc_power_off(host);
2711 
2712 	return ret;
2713 }
2714 EXPORT_SYMBOL(mmc_power_save_host);
2715 
2716 int mmc_power_restore_host(struct mmc_host *host)
2717 {
2718 	int ret;
2719 
2720 #ifdef CONFIG_MMC_DEBUG
2721 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2722 #endif
2723 
2724 	mmc_bus_get(host);
2725 
2726 	if (!host->bus_ops || host->bus_dead) {
2727 		mmc_bus_put(host);
2728 		return -EINVAL;
2729 	}
2730 
2731 	mmc_power_up(host, host->card->ocr);
2732 	ret = host->bus_ops->power_restore(host);
2733 
2734 	mmc_bus_put(host);
2735 
2736 	return ret;
2737 }
2738 EXPORT_SYMBOL(mmc_power_restore_host);
2739 
2740 /*
2741  * Flush the cache to the non-volatile storage.
2742  */
2743 int mmc_flush_cache(struct mmc_card *card)
2744 {
2745 	int err = 0;
2746 
2747 	if (mmc_card_mmc(card) &&
2748 			(card->ext_csd.cache_size > 0) &&
2749 			(card->ext_csd.cache_ctrl & 1)) {
2750 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2751 				EXT_CSD_FLUSH_CACHE, 1, 0);
2752 		if (err)
2753 			pr_err("%s: cache flush error %d\n",
2754 					mmc_hostname(card->host), err);
2755 	}
2756 
2757 	return err;
2758 }
2759 EXPORT_SYMBOL(mmc_flush_cache);
2760 
2761 #ifdef CONFIG_PM_SLEEP
2762 /* Do the card removal on suspend if card is assumed removeable
2763  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2764    to sync the card.
2765 */
2766 static int mmc_pm_notify(struct notifier_block *notify_block,
2767 			unsigned long mode, void *unused)
2768 {
2769 	struct mmc_host *host = container_of(
2770 		notify_block, struct mmc_host, pm_notify);
2771 	unsigned long flags;
2772 	int err = 0;
2773 
2774 	switch (mode) {
2775 	case PM_HIBERNATION_PREPARE:
2776 	case PM_SUSPEND_PREPARE:
2777 	case PM_RESTORE_PREPARE:
2778 		spin_lock_irqsave(&host->lock, flags);
2779 		host->rescan_disable = 1;
2780 		spin_unlock_irqrestore(&host->lock, flags);
2781 		cancel_delayed_work_sync(&host->detect);
2782 
2783 		if (!host->bus_ops)
2784 			break;
2785 
2786 		/* Validate prerequisites for suspend */
2787 		if (host->bus_ops->pre_suspend)
2788 			err = host->bus_ops->pre_suspend(host);
2789 		if (!err)
2790 			break;
2791 
2792 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2793 		host->bus_ops->remove(host);
2794 		mmc_claim_host(host);
2795 		mmc_detach_bus(host);
2796 		mmc_power_off(host);
2797 		mmc_release_host(host);
2798 		host->pm_flags = 0;
2799 		break;
2800 
2801 	case PM_POST_SUSPEND:
2802 	case PM_POST_HIBERNATION:
2803 	case PM_POST_RESTORE:
2804 
2805 		spin_lock_irqsave(&host->lock, flags);
2806 		host->rescan_disable = 0;
2807 		spin_unlock_irqrestore(&host->lock, flags);
2808 		_mmc_detect_change(host, 0, false);
2809 
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 void mmc_register_pm_notifier(struct mmc_host *host)
2816 {
2817 	host->pm_notify.notifier_call = mmc_pm_notify;
2818 	register_pm_notifier(&host->pm_notify);
2819 }
2820 
2821 void mmc_unregister_pm_notifier(struct mmc_host *host)
2822 {
2823 	unregister_pm_notifier(&host->pm_notify);
2824 }
2825 #endif
2826 
2827 /**
2828  * mmc_init_context_info() - init synchronization context
2829  * @host: mmc host
2830  *
2831  * Init struct context_info needed to implement asynchronous
2832  * request mechanism, used by mmc core, host driver and mmc requests
2833  * supplier.
2834  */
2835 void mmc_init_context_info(struct mmc_host *host)
2836 {
2837 	spin_lock_init(&host->context_info.lock);
2838 	host->context_info.is_new_req = false;
2839 	host->context_info.is_done_rcv = false;
2840 	host->context_info.is_waiting_last_req = false;
2841 	init_waitqueue_head(&host->context_info.wait);
2842 }
2843 
2844 static int __init mmc_init(void)
2845 {
2846 	int ret;
2847 
2848 	ret = mmc_register_bus();
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = mmc_register_host_class();
2853 	if (ret)
2854 		goto unregister_bus;
2855 
2856 	ret = sdio_register_bus();
2857 	if (ret)
2858 		goto unregister_host_class;
2859 
2860 	return 0;
2861 
2862 unregister_host_class:
2863 	mmc_unregister_host_class();
2864 unregister_bus:
2865 	mmc_unregister_bus();
2866 	return ret;
2867 }
2868 
2869 static void __exit mmc_exit(void)
2870 {
2871 	sdio_unregister_bus();
2872 	mmc_unregister_host_class();
2873 	mmc_unregister_bus();
2874 }
2875 
2876 subsys_initcall(mmc_init);
2877 module_exit(mmc_exit);
2878 
2879 MODULE_LICENSE("GPL");
2880