xref: /openbmc/linux/drivers/mmc/core/core.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 	    !host->retune_crc_disable &&
148 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 	    (mrq->data && mrq->data->error == -EILSEQ) ||
150 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
151 		mmc_retune_needed(host);
152 
153 	if (err && cmd->retries && mmc_host_is_spi(host)) {
154 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 			cmd->retries = 0;
156 	}
157 
158 	if (host->ongoing_mrq == mrq)
159 		host->ongoing_mrq = NULL;
160 
161 	mmc_complete_cmd(mrq);
162 
163 	trace_mmc_request_done(host, mrq);
164 
165 	/*
166 	 * We list various conditions for the command to be considered
167 	 * properly done:
168 	 *
169 	 * - There was no error, OK fine then
170 	 * - We are not doing some kind of retry
171 	 * - The card was removed (...so just complete everything no matter
172 	 *   if there are errors or retries)
173 	 */
174 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 		mmc_should_fail_request(host, mrq);
176 
177 		if (!host->ongoing_mrq)
178 			led_trigger_event(host->led, LED_OFF);
179 
180 		if (mrq->sbc) {
181 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->sbc->opcode,
183 				mrq->sbc->error,
184 				mrq->sbc->resp[0], mrq->sbc->resp[1],
185 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 		}
187 
188 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 			mmc_hostname(host), cmd->opcode, err,
190 			cmd->resp[0], cmd->resp[1],
191 			cmd->resp[2], cmd->resp[3]);
192 
193 		if (mrq->data) {
194 			pr_debug("%s:     %d bytes transferred: %d\n",
195 				mmc_hostname(host),
196 				mrq->data->bytes_xfered, mrq->data->error);
197 		}
198 
199 		if (mrq->stop) {
200 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
201 				mmc_hostname(host), mrq->stop->opcode,
202 				mrq->stop->error,
203 				mrq->stop->resp[0], mrq->stop->resp[1],
204 				mrq->stop->resp[2], mrq->stop->resp[3]);
205 		}
206 	}
207 	/*
208 	 * Request starter must handle retries - see
209 	 * mmc_wait_for_req_done().
210 	 */
211 	if (mrq->done)
212 		mrq->done(mrq);
213 }
214 
215 EXPORT_SYMBOL(mmc_request_done);
216 
217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 	int err;
220 
221 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
222 	err = mmc_retune(host);
223 	if (err) {
224 		mrq->cmd->error = err;
225 		mmc_request_done(host, mrq);
226 		return;
227 	}
228 
229 	/*
230 	 * For sdio rw commands we must wait for card busy otherwise some
231 	 * sdio devices won't work properly.
232 	 * And bypass I/O abort, reset and bus suspend operations.
233 	 */
234 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 	    host->ops->card_busy) {
236 		int tries = 500; /* Wait aprox 500ms at maximum */
237 
238 		while (host->ops->card_busy(host) && --tries)
239 			mmc_delay(1);
240 
241 		if (tries == 0) {
242 			mrq->cmd->error = -EBUSY;
243 			mmc_request_done(host, mrq);
244 			return;
245 		}
246 	}
247 
248 	if (mrq->cap_cmd_during_tfr) {
249 		host->ongoing_mrq = mrq;
250 		/*
251 		 * Retry path could come through here without having waiting on
252 		 * cmd_completion, so ensure it is reinitialised.
253 		 */
254 		reinit_completion(&mrq->cmd_completion);
255 	}
256 
257 	trace_mmc_request_start(host, mrq);
258 
259 	if (host->cqe_on)
260 		host->cqe_ops->cqe_off(host);
261 
262 	host->ops->request(host, mrq);
263 }
264 
265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 			     bool cqe)
267 {
268 	if (mrq->sbc) {
269 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 			 mmc_hostname(host), mrq->sbc->opcode,
271 			 mrq->sbc->arg, mrq->sbc->flags);
272 	}
273 
274 	if (mrq->cmd) {
275 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 			 mmc_hostname(host), cqe ? "CQE direct " : "",
277 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 	} else if (cqe) {
279 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 	}
282 
283 	if (mrq->data) {
284 		pr_debug("%s:     blksz %d blocks %d flags %08x "
285 			"tsac %d ms nsac %d\n",
286 			mmc_hostname(host), mrq->data->blksz,
287 			mrq->data->blocks, mrq->data->flags,
288 			mrq->data->timeout_ns / 1000000,
289 			mrq->data->timeout_clks);
290 	}
291 
292 	if (mrq->stop) {
293 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294 			 mmc_hostname(host), mrq->stop->opcode,
295 			 mrq->stop->arg, mrq->stop->flags);
296 	}
297 }
298 
299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 	unsigned int i, sz = 0;
302 	struct scatterlist *sg;
303 
304 	if (mrq->cmd) {
305 		mrq->cmd->error = 0;
306 		mrq->cmd->mrq = mrq;
307 		mrq->cmd->data = mrq->data;
308 	}
309 	if (mrq->sbc) {
310 		mrq->sbc->error = 0;
311 		mrq->sbc->mrq = mrq;
312 	}
313 	if (mrq->data) {
314 		if (mrq->data->blksz > host->max_blk_size ||
315 		    mrq->data->blocks > host->max_blk_count ||
316 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 			return -EINVAL;
318 
319 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 			sz += sg->length;
321 		if (sz != mrq->data->blocks * mrq->data->blksz)
322 			return -EINVAL;
323 
324 		mrq->data->error = 0;
325 		mrq->data->mrq = mrq;
326 		if (mrq->stop) {
327 			mrq->data->stop = mrq->stop;
328 			mrq->stop->error = 0;
329 			mrq->stop->mrq = mrq;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 	int err;
339 
340 	init_completion(&mrq->cmd_completion);
341 
342 	mmc_retune_hold(host);
343 
344 	if (mmc_card_removed(host->card))
345 		return -ENOMEDIUM;
346 
347 	mmc_mrq_pr_debug(host, mrq, false);
348 
349 	WARN_ON(!host->claimed);
350 
351 	err = mmc_mrq_prep(host, mrq);
352 	if (err)
353 		return err;
354 
355 	led_trigger_event(host->led, LED_FULL);
356 	__mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361 
362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 	complete(&mrq->completion);
365 }
366 
367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370 
371 	/*
372 	 * If there is an ongoing transfer, wait for the command line to become
373 	 * available.
374 	 */
375 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 		wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378 
379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 	int err;
382 
383 	mmc_wait_ongoing_tfr_cmd(host);
384 
385 	init_completion(&mrq->completion);
386 	mrq->done = mmc_wait_done;
387 
388 	err = mmc_start_request(host, mrq);
389 	if (err) {
390 		mrq->cmd->error = err;
391 		mmc_complete_cmd(mrq);
392 		complete(&mrq->completion);
393 	}
394 
395 	return err;
396 }
397 
398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 	struct mmc_command *cmd;
401 
402 	while (1) {
403 		wait_for_completion(&mrq->completion);
404 
405 		cmd = mrq->cmd;
406 
407 		if (!cmd->error || !cmd->retries ||
408 		    mmc_card_removed(host->card))
409 			break;
410 
411 		mmc_retune_recheck(host);
412 
413 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 			 mmc_hostname(host), cmd->opcode, cmd->error);
415 		cmd->retries--;
416 		cmd->error = 0;
417 		__mmc_start_request(host, mrq);
418 	}
419 
420 	mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423 
424 /*
425  * mmc_cqe_start_req - Start a CQE request.
426  * @host: MMC host to start the request
427  * @mrq: request to start
428  *
429  * Start the request, re-tuning if needed and it is possible. Returns an error
430  * code if the request fails to start or -EBUSY if CQE is busy.
431  */
432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 	int err;
435 
436 	/*
437 	 * CQE cannot process re-tuning commands. Caller must hold retuning
438 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
439 	 * active requests i.e. this is the first.  Note, re-tuning will call
440 	 * ->cqe_off().
441 	 */
442 	err = mmc_retune(host);
443 	if (err)
444 		goto out_err;
445 
446 	mrq->host = host;
447 
448 	mmc_mrq_pr_debug(host, mrq, true);
449 
450 	err = mmc_mrq_prep(host, mrq);
451 	if (err)
452 		goto out_err;
453 
454 	err = host->cqe_ops->cqe_request(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	trace_mmc_request_start(host, mrq);
459 
460 	return 0;
461 
462 out_err:
463 	if (mrq->cmd) {
464 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 			 mmc_hostname(host), mrq->cmd->opcode, err);
466 	} else {
467 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 			 mmc_hostname(host), mrq->tag, err);
469 	}
470 	return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473 
474 /**
475  *	mmc_cqe_request_done - CQE has finished processing an MMC request
476  *	@host: MMC host which completed request
477  *	@mrq: MMC request which completed
478  *
479  *	CQE drivers should call this function when they have completed
480  *	their processing of a request.
481  */
482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 	mmc_should_fail_request(host, mrq);
485 
486 	/* Flag re-tuning needed on CRC errors */
487 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 	    (mrq->data && mrq->data->error == -EILSEQ))
489 		mmc_retune_needed(host);
490 
491 	trace_mmc_request_done(host, mrq);
492 
493 	if (mrq->cmd) {
494 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 	} else {
497 		pr_debug("%s: CQE transfer done tag %d\n",
498 			 mmc_hostname(host), mrq->tag);
499 	}
500 
501 	if (mrq->data) {
502 		pr_debug("%s:     %d bytes transferred: %d\n",
503 			 mmc_hostname(host),
504 			 mrq->data->bytes_xfered, mrq->data->error);
505 	}
506 
507 	mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510 
511 /**
512  *	mmc_cqe_post_req - CQE post process of a completed MMC request
513  *	@host: MMC host
514  *	@mrq: MMC request to be processed
515  */
516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 	if (host->cqe_ops->cqe_post_req)
519 		host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522 
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT	1000
525 
526 /*
527  * mmc_cqe_recovery - Recover from CQE errors.
528  * @host: MMC host to recover
529  *
530  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531  * in eMMC, and discarding the queue in CQE. CQE must call
532  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533  * fails to discard its queue.
534  */
535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 	struct mmc_command cmd;
538 	int err;
539 
540 	mmc_retune_hold_now(host);
541 
542 	/*
543 	 * Recovery is expected seldom, if at all, but it reduces performance,
544 	 * so make sure it is not completely silent.
545 	 */
546 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547 
548 	host->cqe_ops->cqe_recovery_start(host);
549 
550 	memset(&cmd, 0, sizeof(cmd));
551 	cmd.opcode       = MMC_STOP_TRANSMISSION;
552 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
553 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
554 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 	mmc_wait_for_cmd(host, &cmd, 0);
556 
557 	memset(&cmd, 0, sizeof(cmd));
558 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
559 	cmd.arg          = 1; /* Discard entire queue */
560 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
561 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
562 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 	err = mmc_wait_for_cmd(host, &cmd, 0);
564 
565 	host->cqe_ops->cqe_recovery_finish(host);
566 
567 	mmc_retune_release(host);
568 
569 	return err;
570 }
571 EXPORT_SYMBOL(mmc_cqe_recovery);
572 
573 /**
574  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575  *	@host: MMC host
576  *	@mrq: MMC request
577  *
578  *	mmc_is_req_done() is used with requests that have
579  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580  *	starting a request and before waiting for it to complete. That is,
581  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582  *	and before mmc_wait_for_req_done(). If it is called at other times the
583  *	result is not meaningful.
584  */
585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586 {
587 	return completion_done(&mrq->completion);
588 }
589 EXPORT_SYMBOL(mmc_is_req_done);
590 
591 /**
592  *	mmc_wait_for_req - start a request and wait for completion
593  *	@host: MMC host to start command
594  *	@mrq: MMC request to start
595  *
596  *	Start a new MMC custom command request for a host, and wait
597  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
598  *	requests, the transfer is ongoing and the caller can issue further
599  *	commands that do not use the data lines, and then wait by calling
600  *	mmc_wait_for_req_done().
601  *	Does not attempt to parse the response.
602  */
603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 	__mmc_start_req(host, mrq);
606 
607 	if (!mrq->cap_cmd_during_tfr)
608 		mmc_wait_for_req_done(host, mrq);
609 }
610 EXPORT_SYMBOL(mmc_wait_for_req);
611 
612 /**
613  *	mmc_wait_for_cmd - start a command and wait for completion
614  *	@host: MMC host to start command
615  *	@cmd: MMC command to start
616  *	@retries: maximum number of retries
617  *
618  *	Start a new MMC command for a host, and wait for the command
619  *	to complete.  Return any error that occurred while the command
620  *	was executing.  Do not attempt to parse the response.
621  */
622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623 {
624 	struct mmc_request mrq = {};
625 
626 	WARN_ON(!host->claimed);
627 
628 	memset(cmd->resp, 0, sizeof(cmd->resp));
629 	cmd->retries = retries;
630 
631 	mrq.cmd = cmd;
632 	cmd->data = NULL;
633 
634 	mmc_wait_for_req(host, &mrq);
635 
636 	return cmd->error;
637 }
638 
639 EXPORT_SYMBOL(mmc_wait_for_cmd);
640 
641 /**
642  *	mmc_set_data_timeout - set the timeout for a data command
643  *	@data: data phase for command
644  *	@card: the MMC card associated with the data transfer
645  *
646  *	Computes the data timeout parameters according to the
647  *	correct algorithm given the card type.
648  */
649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650 {
651 	unsigned int mult;
652 
653 	/*
654 	 * SDIO cards only define an upper 1 s limit on access.
655 	 */
656 	if (mmc_card_sdio(card)) {
657 		data->timeout_ns = 1000000000;
658 		data->timeout_clks = 0;
659 		return;
660 	}
661 
662 	/*
663 	 * SD cards use a 100 multiplier rather than 10
664 	 */
665 	mult = mmc_card_sd(card) ? 100 : 10;
666 
667 	/*
668 	 * Scale up the multiplier (and therefore the timeout) by
669 	 * the r2w factor for writes.
670 	 */
671 	if (data->flags & MMC_DATA_WRITE)
672 		mult <<= card->csd.r2w_factor;
673 
674 	data->timeout_ns = card->csd.taac_ns * mult;
675 	data->timeout_clks = card->csd.taac_clks * mult;
676 
677 	/*
678 	 * SD cards also have an upper limit on the timeout.
679 	 */
680 	if (mmc_card_sd(card)) {
681 		unsigned int timeout_us, limit_us;
682 
683 		timeout_us = data->timeout_ns / 1000;
684 		if (card->host->ios.clock)
685 			timeout_us += data->timeout_clks * 1000 /
686 				(card->host->ios.clock / 1000);
687 
688 		if (data->flags & MMC_DATA_WRITE)
689 			/*
690 			 * The MMC spec "It is strongly recommended
691 			 * for hosts to implement more than 500ms
692 			 * timeout value even if the card indicates
693 			 * the 250ms maximum busy length."  Even the
694 			 * previous value of 300ms is known to be
695 			 * insufficient for some cards.
696 			 */
697 			limit_us = 3000000;
698 		else
699 			limit_us = 100000;
700 
701 		/*
702 		 * SDHC cards always use these fixed values.
703 		 */
704 		if (timeout_us > limit_us) {
705 			data->timeout_ns = limit_us * 1000;
706 			data->timeout_clks = 0;
707 		}
708 
709 		/* assign limit value if invalid */
710 		if (timeout_us == 0)
711 			data->timeout_ns = limit_us * 1000;
712 	}
713 
714 	/*
715 	 * Some cards require longer data read timeout than indicated in CSD.
716 	 * Address this by setting the read timeout to a "reasonably high"
717 	 * value. For the cards tested, 600ms has proven enough. If necessary,
718 	 * this value can be increased if other problematic cards require this.
719 	 */
720 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 		data->timeout_ns = 600000000;
722 		data->timeout_clks = 0;
723 	}
724 
725 	/*
726 	 * Some cards need very high timeouts if driven in SPI mode.
727 	 * The worst observed timeout was 900ms after writing a
728 	 * continuous stream of data until the internal logic
729 	 * overflowed.
730 	 */
731 	if (mmc_host_is_spi(card->host)) {
732 		if (data->flags & MMC_DATA_WRITE) {
733 			if (data->timeout_ns < 1000000000)
734 				data->timeout_ns = 1000000000;	/* 1s */
735 		} else {
736 			if (data->timeout_ns < 100000000)
737 				data->timeout_ns =  100000000;	/* 100ms */
738 		}
739 	}
740 }
741 EXPORT_SYMBOL(mmc_set_data_timeout);
742 
743 /*
744  * Allow claiming an already claimed host if the context is the same or there is
745  * no context but the task is the same.
746  */
747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 				   struct task_struct *task)
749 {
750 	return host->claimer == ctx ||
751 	       (!ctx && task && host->claimer->task == task);
752 }
753 
754 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 				       struct mmc_ctx *ctx,
756 				       struct task_struct *task)
757 {
758 	if (!host->claimer) {
759 		if (ctx)
760 			host->claimer = ctx;
761 		else
762 			host->claimer = &host->default_ctx;
763 	}
764 	if (task)
765 		host->claimer->task = task;
766 }
767 
768 /**
769  *	__mmc_claim_host - exclusively claim a host
770  *	@host: mmc host to claim
771  *	@ctx: context that claims the host or NULL in which case the default
772  *	context will be used
773  *	@abort: whether or not the operation should be aborted
774  *
775  *	Claim a host for a set of operations.  If @abort is non null and
776  *	dereference a non-zero value then this will return prematurely with
777  *	that non-zero value without acquiring the lock.  Returns zero
778  *	with the lock held otherwise.
779  */
780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 		     atomic_t *abort)
782 {
783 	struct task_struct *task = ctx ? NULL : current;
784 	DECLARE_WAITQUEUE(wait, current);
785 	unsigned long flags;
786 	int stop;
787 	bool pm = false;
788 
789 	might_sleep();
790 
791 	add_wait_queue(&host->wq, &wait);
792 	spin_lock_irqsave(&host->lock, flags);
793 	while (1) {
794 		set_current_state(TASK_UNINTERRUPTIBLE);
795 		stop = abort ? atomic_read(abort) : 0;
796 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797 			break;
798 		spin_unlock_irqrestore(&host->lock, flags);
799 		schedule();
800 		spin_lock_irqsave(&host->lock, flags);
801 	}
802 	set_current_state(TASK_RUNNING);
803 	if (!stop) {
804 		host->claimed = 1;
805 		mmc_ctx_set_claimer(host, ctx, task);
806 		host->claim_cnt += 1;
807 		if (host->claim_cnt == 1)
808 			pm = true;
809 	} else
810 		wake_up(&host->wq);
811 	spin_unlock_irqrestore(&host->lock, flags);
812 	remove_wait_queue(&host->wq, &wait);
813 
814 	if (pm)
815 		pm_runtime_get_sync(mmc_dev(host));
816 
817 	return stop;
818 }
819 EXPORT_SYMBOL(__mmc_claim_host);
820 
821 /**
822  *	mmc_release_host - release a host
823  *	@host: mmc host to release
824  *
825  *	Release a MMC host, allowing others to claim the host
826  *	for their operations.
827  */
828 void mmc_release_host(struct mmc_host *host)
829 {
830 	unsigned long flags;
831 
832 	WARN_ON(!host->claimed);
833 
834 	spin_lock_irqsave(&host->lock, flags);
835 	if (--host->claim_cnt) {
836 		/* Release for nested claim */
837 		spin_unlock_irqrestore(&host->lock, flags);
838 	} else {
839 		host->claimed = 0;
840 		host->claimer->task = NULL;
841 		host->claimer = NULL;
842 		spin_unlock_irqrestore(&host->lock, flags);
843 		wake_up(&host->wq);
844 		pm_runtime_mark_last_busy(mmc_dev(host));
845 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 			pm_runtime_put_sync_suspend(mmc_dev(host));
847 		else
848 			pm_runtime_put_autosuspend(mmc_dev(host));
849 	}
850 }
851 EXPORT_SYMBOL(mmc_release_host);
852 
853 /*
854  * This is a helper function, which fetches a runtime pm reference for the
855  * card device and also claims the host.
856  */
857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858 {
859 	pm_runtime_get_sync(&card->dev);
860 	__mmc_claim_host(card->host, ctx, NULL);
861 }
862 EXPORT_SYMBOL(mmc_get_card);
863 
864 /*
865  * This is a helper function, which releases the host and drops the runtime
866  * pm reference for the card device.
867  */
868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869 {
870 	struct mmc_host *host = card->host;
871 
872 	WARN_ON(ctx && host->claimer != ctx);
873 
874 	mmc_release_host(host);
875 	pm_runtime_mark_last_busy(&card->dev);
876 	pm_runtime_put_autosuspend(&card->dev);
877 }
878 EXPORT_SYMBOL(mmc_put_card);
879 
880 /*
881  * Internal function that does the actual ios call to the host driver,
882  * optionally printing some debug output.
883  */
884 static inline void mmc_set_ios(struct mmc_host *host)
885 {
886 	struct mmc_ios *ios = &host->ios;
887 
888 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 		"width %u timing %u\n",
890 		 mmc_hostname(host), ios->clock, ios->bus_mode,
891 		 ios->power_mode, ios->chip_select, ios->vdd,
892 		 1 << ios->bus_width, ios->timing);
893 
894 	host->ops->set_ios(host, ios);
895 }
896 
897 /*
898  * Control chip select pin on a host.
899  */
900 void mmc_set_chip_select(struct mmc_host *host, int mode)
901 {
902 	host->ios.chip_select = mode;
903 	mmc_set_ios(host);
904 }
905 
906 /*
907  * Sets the host clock to the highest possible frequency that
908  * is below "hz".
909  */
910 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911 {
912 	WARN_ON(hz && hz < host->f_min);
913 
914 	if (hz > host->f_max)
915 		hz = host->f_max;
916 
917 	host->ios.clock = hz;
918 	mmc_set_ios(host);
919 }
920 
921 int mmc_execute_tuning(struct mmc_card *card)
922 {
923 	struct mmc_host *host = card->host;
924 	u32 opcode;
925 	int err;
926 
927 	if (!host->ops->execute_tuning)
928 		return 0;
929 
930 	if (host->cqe_on)
931 		host->cqe_ops->cqe_off(host);
932 
933 	if (mmc_card_mmc(card))
934 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 	else
936 		opcode = MMC_SEND_TUNING_BLOCK;
937 
938 	err = host->ops->execute_tuning(host, opcode);
939 
940 	if (err) {
941 		pr_err("%s: tuning execution failed: %d\n",
942 			mmc_hostname(host), err);
943 	} else {
944 		host->retune_now = 0;
945 		host->need_retune = 0;
946 		mmc_retune_enable(host);
947 	}
948 
949 	return err;
950 }
951 
952 /*
953  * Change the bus mode (open drain/push-pull) of a host.
954  */
955 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
956 {
957 	host->ios.bus_mode = mode;
958 	mmc_set_ios(host);
959 }
960 
961 /*
962  * Change data bus width of a host.
963  */
964 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
965 {
966 	host->ios.bus_width = width;
967 	mmc_set_ios(host);
968 }
969 
970 /*
971  * Set initial state after a power cycle or a hw_reset.
972  */
973 void mmc_set_initial_state(struct mmc_host *host)
974 {
975 	if (host->cqe_on)
976 		host->cqe_ops->cqe_off(host);
977 
978 	mmc_retune_disable(host);
979 
980 	if (mmc_host_is_spi(host))
981 		host->ios.chip_select = MMC_CS_HIGH;
982 	else
983 		host->ios.chip_select = MMC_CS_DONTCARE;
984 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
985 	host->ios.bus_width = MMC_BUS_WIDTH_1;
986 	host->ios.timing = MMC_TIMING_LEGACY;
987 	host->ios.drv_type = 0;
988 	host->ios.enhanced_strobe = false;
989 
990 	/*
991 	 * Make sure we are in non-enhanced strobe mode before we
992 	 * actually enable it in ext_csd.
993 	 */
994 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
995 	     host->ops->hs400_enhanced_strobe)
996 		host->ops->hs400_enhanced_strobe(host, &host->ios);
997 
998 	mmc_set_ios(host);
999 
1000 	mmc_crypto_set_initial_state(host);
1001 }
1002 
1003 /**
1004  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005  * @vdd:	voltage (mV)
1006  * @low_bits:	prefer low bits in boundary cases
1007  *
1008  * This function returns the OCR bit number according to the provided @vdd
1009  * value. If conversion is not possible a negative errno value returned.
1010  *
1011  * Depending on the @low_bits flag the function prefers low or high OCR bits
1012  * on boundary voltages. For example,
1013  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015  *
1016  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017  */
1018 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019 {
1020 	const int max_bit = ilog2(MMC_VDD_35_36);
1021 	int bit;
1022 
1023 	if (vdd < 1650 || vdd > 3600)
1024 		return -EINVAL;
1025 
1026 	if (vdd >= 1650 && vdd <= 1950)
1027 		return ilog2(MMC_VDD_165_195);
1028 
1029 	if (low_bits)
1030 		vdd -= 1;
1031 
1032 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1033 	bit = (vdd - 2000) / 100 + 8;
1034 	if (bit > max_bit)
1035 		return max_bit;
1036 	return bit;
1037 }
1038 
1039 /**
1040  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041  * @vdd_min:	minimum voltage value (mV)
1042  * @vdd_max:	maximum voltage value (mV)
1043  *
1044  * This function returns the OCR mask bits according to the provided @vdd_min
1045  * and @vdd_max values. If conversion is not possible the function returns 0.
1046  *
1047  * Notes wrt boundary cases:
1048  * This function sets the OCR bits for all boundary voltages, for example
1049  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050  * MMC_VDD_34_35 mask.
1051  */
1052 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053 {
1054 	u32 mask = 0;
1055 
1056 	if (vdd_max < vdd_min)
1057 		return 0;
1058 
1059 	/* Prefer high bits for the boundary vdd_max values. */
1060 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061 	if (vdd_max < 0)
1062 		return 0;
1063 
1064 	/* Prefer low bits for the boundary vdd_min values. */
1065 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066 	if (vdd_min < 0)
1067 		return 0;
1068 
1069 	/* Fill the mask, from max bit to min bit. */
1070 	while (vdd_max >= vdd_min)
1071 		mask |= 1 << vdd_max--;
1072 
1073 	return mask;
1074 }
1075 
1076 static int mmc_of_get_func_num(struct device_node *node)
1077 {
1078 	u32 reg;
1079 	int ret;
1080 
1081 	ret = of_property_read_u32(node, "reg", &reg);
1082 	if (ret < 0)
1083 		return ret;
1084 
1085 	return reg;
1086 }
1087 
1088 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089 		unsigned func_num)
1090 {
1091 	struct device_node *node;
1092 
1093 	if (!host->parent || !host->parent->of_node)
1094 		return NULL;
1095 
1096 	for_each_child_of_node(host->parent->of_node, node) {
1097 		if (mmc_of_get_func_num(node) == func_num)
1098 			return node;
1099 	}
1100 
1101 	return NULL;
1102 }
1103 
1104 /*
1105  * Mask off any voltages we don't support and select
1106  * the lowest voltage
1107  */
1108 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109 {
1110 	int bit;
1111 
1112 	/*
1113 	 * Sanity check the voltages that the card claims to
1114 	 * support.
1115 	 */
1116 	if (ocr & 0x7F) {
1117 		dev_warn(mmc_dev(host),
1118 		"card claims to support voltages below defined range\n");
1119 		ocr &= ~0x7F;
1120 	}
1121 
1122 	ocr &= host->ocr_avail;
1123 	if (!ocr) {
1124 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1125 		return 0;
1126 	}
1127 
1128 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129 		bit = ffs(ocr) - 1;
1130 		ocr &= 3 << bit;
1131 		mmc_power_cycle(host, ocr);
1132 	} else {
1133 		bit = fls(ocr) - 1;
1134 		ocr &= 3 << bit;
1135 		if (bit != host->ios.vdd)
1136 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1137 	}
1138 
1139 	return ocr;
1140 }
1141 
1142 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1143 {
1144 	int err = 0;
1145 	int old_signal_voltage = host->ios.signal_voltage;
1146 
1147 	host->ios.signal_voltage = signal_voltage;
1148 	if (host->ops->start_signal_voltage_switch)
1149 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1150 
1151 	if (err)
1152 		host->ios.signal_voltage = old_signal_voltage;
1153 
1154 	return err;
1155 
1156 }
1157 
1158 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1159 {
1160 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1161 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1162 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1163 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1164 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1165 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1166 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1167 }
1168 
1169 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1170 {
1171 	u32 clock;
1172 
1173 	/*
1174 	 * During a signal voltage level switch, the clock must be gated
1175 	 * for 5 ms according to the SD spec
1176 	 */
1177 	clock = host->ios.clock;
1178 	host->ios.clock = 0;
1179 	mmc_set_ios(host);
1180 
1181 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 		return -EAGAIN;
1183 
1184 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1185 	mmc_delay(10);
1186 	host->ios.clock = clock;
1187 	mmc_set_ios(host);
1188 
1189 	return 0;
1190 }
1191 
1192 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1193 {
1194 	struct mmc_command cmd = {};
1195 	int err = 0;
1196 
1197 	/*
1198 	 * If we cannot switch voltages, return failure so the caller
1199 	 * can continue without UHS mode
1200 	 */
1201 	if (!host->ops->start_signal_voltage_switch)
1202 		return -EPERM;
1203 	if (!host->ops->card_busy)
1204 		pr_warn("%s: cannot verify signal voltage switch\n",
1205 			mmc_hostname(host));
1206 
1207 	cmd.opcode = SD_SWITCH_VOLTAGE;
1208 	cmd.arg = 0;
1209 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1210 
1211 	err = mmc_wait_for_cmd(host, &cmd, 0);
1212 	if (err)
1213 		goto power_cycle;
1214 
1215 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1216 		return -EIO;
1217 
1218 	/*
1219 	 * The card should drive cmd and dat[0:3] low immediately
1220 	 * after the response of cmd11, but wait 1 ms to be sure
1221 	 */
1222 	mmc_delay(1);
1223 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1224 		err = -EAGAIN;
1225 		goto power_cycle;
1226 	}
1227 
1228 	if (mmc_host_set_uhs_voltage(host)) {
1229 		/*
1230 		 * Voltages may not have been switched, but we've already
1231 		 * sent CMD11, so a power cycle is required anyway
1232 		 */
1233 		err = -EAGAIN;
1234 		goto power_cycle;
1235 	}
1236 
1237 	/* Wait for at least 1 ms according to spec */
1238 	mmc_delay(1);
1239 
1240 	/*
1241 	 * Failure to switch is indicated by the card holding
1242 	 * dat[0:3] low
1243 	 */
1244 	if (host->ops->card_busy && host->ops->card_busy(host))
1245 		err = -EAGAIN;
1246 
1247 power_cycle:
1248 	if (err) {
1249 		pr_debug("%s: Signal voltage switch failed, "
1250 			"power cycling card\n", mmc_hostname(host));
1251 		mmc_power_cycle(host, ocr);
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 /*
1258  * Select timing parameters for host.
1259  */
1260 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261 {
1262 	host->ios.timing = timing;
1263 	mmc_set_ios(host);
1264 }
1265 
1266 /*
1267  * Select appropriate driver type for host.
1268  */
1269 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1270 {
1271 	host->ios.drv_type = drv_type;
1272 	mmc_set_ios(host);
1273 }
1274 
1275 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1276 			      int card_drv_type, int *drv_type)
1277 {
1278 	struct mmc_host *host = card->host;
1279 	int host_drv_type = SD_DRIVER_TYPE_B;
1280 
1281 	*drv_type = 0;
1282 
1283 	if (!host->ops->select_drive_strength)
1284 		return 0;
1285 
1286 	/* Use SD definition of driver strength for hosts */
1287 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1288 		host_drv_type |= SD_DRIVER_TYPE_A;
1289 
1290 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1291 		host_drv_type |= SD_DRIVER_TYPE_C;
1292 
1293 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1294 		host_drv_type |= SD_DRIVER_TYPE_D;
1295 
1296 	/*
1297 	 * The drive strength that the hardware can support
1298 	 * depends on the board design.  Pass the appropriate
1299 	 * information and let the hardware specific code
1300 	 * return what is possible given the options
1301 	 */
1302 	return host->ops->select_drive_strength(card, max_dtr,
1303 						host_drv_type,
1304 						card_drv_type,
1305 						drv_type);
1306 }
1307 
1308 /*
1309  * Apply power to the MMC stack.  This is a two-stage process.
1310  * First, we enable power to the card without the clock running.
1311  * We then wait a bit for the power to stabilise.  Finally,
1312  * enable the bus drivers and clock to the card.
1313  *
1314  * We must _NOT_ enable the clock prior to power stablising.
1315  *
1316  * If a host does all the power sequencing itself, ignore the
1317  * initial MMC_POWER_UP stage.
1318  */
1319 void mmc_power_up(struct mmc_host *host, u32 ocr)
1320 {
1321 	if (host->ios.power_mode == MMC_POWER_ON)
1322 		return;
1323 
1324 	mmc_pwrseq_pre_power_on(host);
1325 
1326 	host->ios.vdd = fls(ocr) - 1;
1327 	host->ios.power_mode = MMC_POWER_UP;
1328 	/* Set initial state and call mmc_set_ios */
1329 	mmc_set_initial_state(host);
1330 
1331 	mmc_set_initial_signal_voltage(host);
1332 
1333 	/*
1334 	 * This delay should be sufficient to allow the power supply
1335 	 * to reach the minimum voltage.
1336 	 */
1337 	mmc_delay(host->ios.power_delay_ms);
1338 
1339 	mmc_pwrseq_post_power_on(host);
1340 
1341 	host->ios.clock = host->f_init;
1342 
1343 	host->ios.power_mode = MMC_POWER_ON;
1344 	mmc_set_ios(host);
1345 
1346 	/*
1347 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1348 	 * time required to reach a stable voltage.
1349 	 */
1350 	mmc_delay(host->ios.power_delay_ms);
1351 }
1352 
1353 void mmc_power_off(struct mmc_host *host)
1354 {
1355 	if (host->ios.power_mode == MMC_POWER_OFF)
1356 		return;
1357 
1358 	mmc_pwrseq_power_off(host);
1359 
1360 	host->ios.clock = 0;
1361 	host->ios.vdd = 0;
1362 
1363 	host->ios.power_mode = MMC_POWER_OFF;
1364 	/* Set initial state and call mmc_set_ios */
1365 	mmc_set_initial_state(host);
1366 
1367 	/*
1368 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1369 	 * XO-1.5, require a short delay after poweroff before the card
1370 	 * can be successfully turned on again.
1371 	 */
1372 	mmc_delay(1);
1373 }
1374 
1375 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1376 {
1377 	mmc_power_off(host);
1378 	/* Wait at least 1 ms according to SD spec */
1379 	mmc_delay(1);
1380 	mmc_power_up(host, ocr);
1381 }
1382 
1383 /*
1384  * Assign a mmc bus handler to a host. Only one bus handler may control a
1385  * host at any given time.
1386  */
1387 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1388 {
1389 	host->bus_ops = ops;
1390 }
1391 
1392 /*
1393  * Remove the current bus handler from a host.
1394  */
1395 void mmc_detach_bus(struct mmc_host *host)
1396 {
1397 	host->bus_ops = NULL;
1398 }
1399 
1400 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1401 {
1402 	/*
1403 	 * Prevent system sleep for 5s to allow user space to consume the
1404 	 * corresponding uevent. This is especially useful, when CD irq is used
1405 	 * as a system wakeup, but doesn't hurt in other cases.
1406 	 */
1407 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1408 		__pm_wakeup_event(host->ws, 5000);
1409 
1410 	host->detect_change = 1;
1411 	mmc_schedule_delayed_work(&host->detect, delay);
1412 }
1413 
1414 /**
1415  *	mmc_detect_change - process change of state on a MMC socket
1416  *	@host: host which changed state.
1417  *	@delay: optional delay to wait before detection (jiffies)
1418  *
1419  *	MMC drivers should call this when they detect a card has been
1420  *	inserted or removed. The MMC layer will confirm that any
1421  *	present card is still functional, and initialize any newly
1422  *	inserted.
1423  */
1424 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1425 {
1426 	_mmc_detect_change(host, delay, true);
1427 }
1428 EXPORT_SYMBOL(mmc_detect_change);
1429 
1430 void mmc_init_erase(struct mmc_card *card)
1431 {
1432 	unsigned int sz;
1433 
1434 	if (is_power_of_2(card->erase_size))
1435 		card->erase_shift = ffs(card->erase_size) - 1;
1436 	else
1437 		card->erase_shift = 0;
1438 
1439 	/*
1440 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1441 	 * card.  That is not desirable because it can take a long time
1442 	 * (minutes) potentially delaying more important I/O, and also the
1443 	 * timeout calculations become increasingly hugely over-estimated.
1444 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1445 	 * to that size and alignment.
1446 	 *
1447 	 * For SD cards that define Allocation Unit size, limit erases to one
1448 	 * Allocation Unit at a time.
1449 	 * For MMC, have a stab at ai good value and for modern cards it will
1450 	 * end up being 4MiB. Note that if the value is too small, it can end
1451 	 * up taking longer to erase. Also note, erase_size is already set to
1452 	 * High Capacity Erase Size if available when this function is called.
1453 	 */
1454 	if (mmc_card_sd(card) && card->ssr.au) {
1455 		card->pref_erase = card->ssr.au;
1456 		card->erase_shift = ffs(card->ssr.au) - 1;
1457 	} else if (card->erase_size) {
1458 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1459 		if (sz < 128)
1460 			card->pref_erase = 512 * 1024 / 512;
1461 		else if (sz < 512)
1462 			card->pref_erase = 1024 * 1024 / 512;
1463 		else if (sz < 1024)
1464 			card->pref_erase = 2 * 1024 * 1024 / 512;
1465 		else
1466 			card->pref_erase = 4 * 1024 * 1024 / 512;
1467 		if (card->pref_erase < card->erase_size)
1468 			card->pref_erase = card->erase_size;
1469 		else {
1470 			sz = card->pref_erase % card->erase_size;
1471 			if (sz)
1472 				card->pref_erase += card->erase_size - sz;
1473 		}
1474 	} else
1475 		card->pref_erase = 0;
1476 }
1477 
1478 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1479 				          unsigned int arg, unsigned int qty)
1480 {
1481 	unsigned int erase_timeout;
1482 
1483 	if (arg == MMC_DISCARD_ARG ||
1484 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1485 		erase_timeout = card->ext_csd.trim_timeout;
1486 	} else if (card->ext_csd.erase_group_def & 1) {
1487 		/* High Capacity Erase Group Size uses HC timeouts */
1488 		if (arg == MMC_TRIM_ARG)
1489 			erase_timeout = card->ext_csd.trim_timeout;
1490 		else
1491 			erase_timeout = card->ext_csd.hc_erase_timeout;
1492 	} else {
1493 		/* CSD Erase Group Size uses write timeout */
1494 		unsigned int mult = (10 << card->csd.r2w_factor);
1495 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1496 		unsigned int timeout_us;
1497 
1498 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1499 		if (card->csd.taac_ns < 1000000)
1500 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1501 		else
1502 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1503 
1504 		/*
1505 		 * ios.clock is only a target.  The real clock rate might be
1506 		 * less but not that much less, so fudge it by multiplying by 2.
1507 		 */
1508 		timeout_clks <<= 1;
1509 		timeout_us += (timeout_clks * 1000) /
1510 			      (card->host->ios.clock / 1000);
1511 
1512 		erase_timeout = timeout_us / 1000;
1513 
1514 		/*
1515 		 * Theoretically, the calculation could underflow so round up
1516 		 * to 1ms in that case.
1517 		 */
1518 		if (!erase_timeout)
1519 			erase_timeout = 1;
1520 	}
1521 
1522 	/* Multiplier for secure operations */
1523 	if (arg & MMC_SECURE_ARGS) {
1524 		if (arg == MMC_SECURE_ERASE_ARG)
1525 			erase_timeout *= card->ext_csd.sec_erase_mult;
1526 		else
1527 			erase_timeout *= card->ext_csd.sec_trim_mult;
1528 	}
1529 
1530 	erase_timeout *= qty;
1531 
1532 	/*
1533 	 * Ensure at least a 1 second timeout for SPI as per
1534 	 * 'mmc_set_data_timeout()'
1535 	 */
1536 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1537 		erase_timeout = 1000;
1538 
1539 	return erase_timeout;
1540 }
1541 
1542 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1543 					 unsigned int arg,
1544 					 unsigned int qty)
1545 {
1546 	unsigned int erase_timeout;
1547 
1548 	/* for DISCARD none of the below calculation applies.
1549 	 * the busy timeout is 250msec per discard command.
1550 	 */
1551 	if (arg == SD_DISCARD_ARG)
1552 		return SD_DISCARD_TIMEOUT_MS;
1553 
1554 	if (card->ssr.erase_timeout) {
1555 		/* Erase timeout specified in SD Status Register (SSR) */
1556 		erase_timeout = card->ssr.erase_timeout * qty +
1557 				card->ssr.erase_offset;
1558 	} else {
1559 		/*
1560 		 * Erase timeout not specified in SD Status Register (SSR) so
1561 		 * use 250ms per write block.
1562 		 */
1563 		erase_timeout = 250 * qty;
1564 	}
1565 
1566 	/* Must not be less than 1 second */
1567 	if (erase_timeout < 1000)
1568 		erase_timeout = 1000;
1569 
1570 	return erase_timeout;
1571 }
1572 
1573 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1574 				      unsigned int arg,
1575 				      unsigned int qty)
1576 {
1577 	if (mmc_card_sd(card))
1578 		return mmc_sd_erase_timeout(card, arg, qty);
1579 	else
1580 		return mmc_mmc_erase_timeout(card, arg, qty);
1581 }
1582 
1583 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1584 			unsigned int to, unsigned int arg)
1585 {
1586 	struct mmc_command cmd = {};
1587 	unsigned int qty = 0, busy_timeout = 0;
1588 	bool use_r1b_resp;
1589 	int err;
1590 
1591 	mmc_retune_hold(card->host);
1592 
1593 	/*
1594 	 * qty is used to calculate the erase timeout which depends on how many
1595 	 * erase groups (or allocation units in SD terminology) are affected.
1596 	 * We count erasing part of an erase group as one erase group.
1597 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1598 	 * erase group size is almost certainly also power of 2, but it does not
1599 	 * seem to insist on that in the JEDEC standard, so we fall back to
1600 	 * division in that case.  SD may not specify an allocation unit size,
1601 	 * in which case the timeout is based on the number of write blocks.
1602 	 *
1603 	 * Note that the timeout for secure trim 2 will only be correct if the
1604 	 * number of erase groups specified is the same as the total of all
1605 	 * preceding secure trim 1 commands.  Since the power may have been
1606 	 * lost since the secure trim 1 commands occurred, it is generally
1607 	 * impossible to calculate the secure trim 2 timeout correctly.
1608 	 */
1609 	if (card->erase_shift)
1610 		qty += ((to >> card->erase_shift) -
1611 			(from >> card->erase_shift)) + 1;
1612 	else if (mmc_card_sd(card))
1613 		qty += to - from + 1;
1614 	else
1615 		qty += ((to / card->erase_size) -
1616 			(from / card->erase_size)) + 1;
1617 
1618 	if (!mmc_card_blockaddr(card)) {
1619 		from <<= 9;
1620 		to <<= 9;
1621 	}
1622 
1623 	if (mmc_card_sd(card))
1624 		cmd.opcode = SD_ERASE_WR_BLK_START;
1625 	else
1626 		cmd.opcode = MMC_ERASE_GROUP_START;
1627 	cmd.arg = from;
1628 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1629 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1630 	if (err) {
1631 		pr_err("mmc_erase: group start error %d, "
1632 		       "status %#x\n", err, cmd.resp[0]);
1633 		err = -EIO;
1634 		goto out;
1635 	}
1636 
1637 	memset(&cmd, 0, sizeof(struct mmc_command));
1638 	if (mmc_card_sd(card))
1639 		cmd.opcode = SD_ERASE_WR_BLK_END;
1640 	else
1641 		cmd.opcode = MMC_ERASE_GROUP_END;
1642 	cmd.arg = to;
1643 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1644 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1645 	if (err) {
1646 		pr_err("mmc_erase: group end error %d, status %#x\n",
1647 		       err, cmd.resp[0]);
1648 		err = -EIO;
1649 		goto out;
1650 	}
1651 
1652 	memset(&cmd, 0, sizeof(struct mmc_command));
1653 	cmd.opcode = MMC_ERASE;
1654 	cmd.arg = arg;
1655 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1656 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1657 
1658 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 	if (err) {
1660 		pr_err("mmc_erase: erase error %d, status %#x\n",
1661 		       err, cmd.resp[0]);
1662 		err = -EIO;
1663 		goto out;
1664 	}
1665 
1666 	if (mmc_host_is_spi(card->host))
1667 		goto out;
1668 
1669 	/*
1670 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1671 	 * shall be avoided.
1672 	 */
1673 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1674 		goto out;
1675 
1676 	/* Let's poll to find out when the erase operation completes. */
1677 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1678 
1679 out:
1680 	mmc_retune_release(card->host);
1681 	return err;
1682 }
1683 
1684 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1685 					 unsigned int *from,
1686 					 unsigned int *to,
1687 					 unsigned int nr)
1688 {
1689 	unsigned int from_new = *from, nr_new = nr, rem;
1690 
1691 	/*
1692 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1693 	 * to align the erase size efficiently.
1694 	 */
1695 	if (is_power_of_2(card->erase_size)) {
1696 		unsigned int temp = from_new;
1697 
1698 		from_new = round_up(temp, card->erase_size);
1699 		rem = from_new - temp;
1700 
1701 		if (nr_new > rem)
1702 			nr_new -= rem;
1703 		else
1704 			return 0;
1705 
1706 		nr_new = round_down(nr_new, card->erase_size);
1707 	} else {
1708 		rem = from_new % card->erase_size;
1709 		if (rem) {
1710 			rem = card->erase_size - rem;
1711 			from_new += rem;
1712 			if (nr_new > rem)
1713 				nr_new -= rem;
1714 			else
1715 				return 0;
1716 		}
1717 
1718 		rem = nr_new % card->erase_size;
1719 		if (rem)
1720 			nr_new -= rem;
1721 	}
1722 
1723 	if (nr_new == 0)
1724 		return 0;
1725 
1726 	*to = from_new + nr_new;
1727 	*from = from_new;
1728 
1729 	return nr_new;
1730 }
1731 
1732 /**
1733  * mmc_erase - erase sectors.
1734  * @card: card to erase
1735  * @from: first sector to erase
1736  * @nr: number of sectors to erase
1737  * @arg: erase command argument
1738  *
1739  * Caller must claim host before calling this function.
1740  */
1741 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1742 	      unsigned int arg)
1743 {
1744 	unsigned int rem, to = from + nr;
1745 	int err;
1746 
1747 	if (!(card->csd.cmdclass & CCC_ERASE))
1748 		return -EOPNOTSUPP;
1749 
1750 	if (!card->erase_size)
1751 		return -EOPNOTSUPP;
1752 
1753 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1754 		return -EOPNOTSUPP;
1755 
1756 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1757 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1758 		return -EOPNOTSUPP;
1759 
1760 	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1761 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1762 		return -EOPNOTSUPP;
1763 
1764 	if (arg == MMC_SECURE_ERASE_ARG) {
1765 		if (from % card->erase_size || nr % card->erase_size)
1766 			return -EINVAL;
1767 	}
1768 
1769 	if (arg == MMC_ERASE_ARG)
1770 		nr = mmc_align_erase_size(card, &from, &to, nr);
1771 
1772 	if (nr == 0)
1773 		return 0;
1774 
1775 	if (to <= from)
1776 		return -EINVAL;
1777 
1778 	/* 'from' and 'to' are inclusive */
1779 	to -= 1;
1780 
1781 	/*
1782 	 * Special case where only one erase-group fits in the timeout budget:
1783 	 * If the region crosses an erase-group boundary on this particular
1784 	 * case, we will be trimming more than one erase-group which, does not
1785 	 * fit in the timeout budget of the controller, so we need to split it
1786 	 * and call mmc_do_erase() twice if necessary. This special case is
1787 	 * identified by the card->eg_boundary flag.
1788 	 */
1789 	rem = card->erase_size - (from % card->erase_size);
1790 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1791 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1792 		from += rem;
1793 		if ((err) || (to <= from))
1794 			return err;
1795 	}
1796 
1797 	return mmc_do_erase(card, from, to, arg);
1798 }
1799 EXPORT_SYMBOL(mmc_erase);
1800 
1801 int mmc_can_erase(struct mmc_card *card)
1802 {
1803 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1804 		return 1;
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(mmc_can_erase);
1808 
1809 int mmc_can_trim(struct mmc_card *card)
1810 {
1811 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1812 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1813 		return 1;
1814 	return 0;
1815 }
1816 EXPORT_SYMBOL(mmc_can_trim);
1817 
1818 int mmc_can_discard(struct mmc_card *card)
1819 {
1820 	/*
1821 	 * As there's no way to detect the discard support bit at v4.5
1822 	 * use the s/w feature support filed.
1823 	 */
1824 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1825 		return 1;
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(mmc_can_discard);
1829 
1830 int mmc_can_sanitize(struct mmc_card *card)
1831 {
1832 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1833 		return 0;
1834 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1835 		return 1;
1836 	return 0;
1837 }
1838 
1839 int mmc_can_secure_erase_trim(struct mmc_card *card)
1840 {
1841 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1842 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1843 		return 1;
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1847 
1848 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1849 			    unsigned int nr)
1850 {
1851 	if (!card->erase_size)
1852 		return 0;
1853 	if (from % card->erase_size || nr % card->erase_size)
1854 		return 0;
1855 	return 1;
1856 }
1857 EXPORT_SYMBOL(mmc_erase_group_aligned);
1858 
1859 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1860 					    unsigned int arg)
1861 {
1862 	struct mmc_host *host = card->host;
1863 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1864 	unsigned int last_timeout = 0;
1865 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1866 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1867 
1868 	if (card->erase_shift) {
1869 		max_qty = UINT_MAX >> card->erase_shift;
1870 		min_qty = card->pref_erase >> card->erase_shift;
1871 	} else if (mmc_card_sd(card)) {
1872 		max_qty = UINT_MAX;
1873 		min_qty = card->pref_erase;
1874 	} else {
1875 		max_qty = UINT_MAX / card->erase_size;
1876 		min_qty = card->pref_erase / card->erase_size;
1877 	}
1878 
1879 	/*
1880 	 * We should not only use 'host->max_busy_timeout' as the limitation
1881 	 * when deciding the max discard sectors. We should set a balance value
1882 	 * to improve the erase speed, and it can not get too long timeout at
1883 	 * the same time.
1884 	 *
1885 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1886 	 * matter what size of 'host->max_busy_timeout', but if the
1887 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1888 	 * then we can continue to increase the max discard sectors until we
1889 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1890 	 * isn't specified, use the default max erase timeout.
1891 	 */
1892 	do {
1893 		y = 0;
1894 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895 			timeout = mmc_erase_timeout(card, arg, qty + x);
1896 
1897 			if (qty + x > min_qty && timeout > max_busy_timeout)
1898 				break;
1899 
1900 			if (timeout < last_timeout)
1901 				break;
1902 			last_timeout = timeout;
1903 			y = x;
1904 		}
1905 		qty += y;
1906 	} while (y);
1907 
1908 	if (!qty)
1909 		return 0;
1910 
1911 	/*
1912 	 * When specifying a sector range to trim, chances are we might cross
1913 	 * an erase-group boundary even if the amount of sectors is less than
1914 	 * one erase-group.
1915 	 * If we can only fit one erase-group in the controller timeout budget,
1916 	 * we have to care that erase-group boundaries are not crossed by a
1917 	 * single trim operation. We flag that special case with "eg_boundary".
1918 	 * In all other cases we can just decrement qty and pretend that we
1919 	 * always touch (qty + 1) erase-groups as a simple optimization.
1920 	 */
1921 	if (qty == 1)
1922 		card->eg_boundary = 1;
1923 	else
1924 		qty--;
1925 
1926 	/* Convert qty to sectors */
1927 	if (card->erase_shift)
1928 		max_discard = qty << card->erase_shift;
1929 	else if (mmc_card_sd(card))
1930 		max_discard = qty + 1;
1931 	else
1932 		max_discard = qty * card->erase_size;
1933 
1934 	return max_discard;
1935 }
1936 
1937 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1938 {
1939 	struct mmc_host *host = card->host;
1940 	unsigned int max_discard, max_trim;
1941 
1942 	/*
1943 	 * Without erase_group_def set, MMC erase timeout depends on clock
1944 	 * frequence which can change.  In that case, the best choice is
1945 	 * just the preferred erase size.
1946 	 */
1947 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1948 		return card->pref_erase;
1949 
1950 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1951 	if (mmc_can_trim(card)) {
1952 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1953 		if (max_trim < max_discard || max_discard == 0)
1954 			max_discard = max_trim;
1955 	} else if (max_discard < card->erase_size) {
1956 		max_discard = 0;
1957 	}
1958 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1959 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1960 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1961 	return max_discard;
1962 }
1963 EXPORT_SYMBOL(mmc_calc_max_discard);
1964 
1965 bool mmc_card_is_blockaddr(struct mmc_card *card)
1966 {
1967 	return card ? mmc_card_blockaddr(card) : false;
1968 }
1969 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1970 
1971 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1972 {
1973 	struct mmc_command cmd = {};
1974 
1975 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1976 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1977 		return 0;
1978 
1979 	cmd.opcode = MMC_SET_BLOCKLEN;
1980 	cmd.arg = blocklen;
1981 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1982 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1983 }
1984 EXPORT_SYMBOL(mmc_set_blocklen);
1985 
1986 static void mmc_hw_reset_for_init(struct mmc_host *host)
1987 {
1988 	mmc_pwrseq_reset(host);
1989 
1990 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1991 		return;
1992 	host->ops->hw_reset(host);
1993 }
1994 
1995 /**
1996  * mmc_hw_reset - reset the card in hardware
1997  * @host: MMC host to which the card is attached
1998  *
1999  * Hard reset the card. This function is only for upper layers, like the
2000  * block layer or card drivers. You cannot use it in host drivers (struct
2001  * mmc_card might be gone then).
2002  *
2003  * Return: 0 on success, -errno on failure
2004  */
2005 int mmc_hw_reset(struct mmc_host *host)
2006 {
2007 	int ret;
2008 
2009 	ret = host->bus_ops->hw_reset(host);
2010 	if (ret < 0)
2011 		pr_warn("%s: tried to HW reset card, got error %d\n",
2012 			mmc_hostname(host), ret);
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL(mmc_hw_reset);
2017 
2018 int mmc_sw_reset(struct mmc_host *host)
2019 {
2020 	int ret;
2021 
2022 	if (!host->bus_ops->sw_reset)
2023 		return -EOPNOTSUPP;
2024 
2025 	ret = host->bus_ops->sw_reset(host);
2026 	if (ret)
2027 		pr_warn("%s: tried to SW reset card, got error %d\n",
2028 			mmc_hostname(host), ret);
2029 
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL(mmc_sw_reset);
2033 
2034 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2035 {
2036 	host->f_init = freq;
2037 
2038 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2039 		mmc_hostname(host), __func__, host->f_init);
2040 
2041 	mmc_power_up(host, host->ocr_avail);
2042 
2043 	/*
2044 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 	 * do a hardware reset if possible.
2046 	 */
2047 	mmc_hw_reset_for_init(host);
2048 
2049 	/*
2050 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2051 	 * if the card is being re-initialized, just send it.  CMD52
2052 	 * should be ignored by SD/eMMC cards.
2053 	 * Skip it if we already know that we do not support SDIO commands
2054 	 */
2055 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2056 		sdio_reset(host);
2057 
2058 	mmc_go_idle(host);
2059 
2060 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2061 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2062 			goto out;
2063 		if (mmc_card_sd_express(host))
2064 			return 0;
2065 	}
2066 
2067 	/* Order's important: probe SDIO, then SD, then MMC */
2068 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2069 		if (!mmc_attach_sdio(host))
2070 			return 0;
2071 
2072 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2073 		if (!mmc_attach_sd(host))
2074 			return 0;
2075 
2076 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2077 		if (!mmc_attach_mmc(host))
2078 			return 0;
2079 
2080 out:
2081 	mmc_power_off(host);
2082 	return -EIO;
2083 }
2084 
2085 int _mmc_detect_card_removed(struct mmc_host *host)
2086 {
2087 	int ret;
2088 
2089 	if (!host->card || mmc_card_removed(host->card))
2090 		return 1;
2091 
2092 	ret = host->bus_ops->alive(host);
2093 
2094 	/*
2095 	 * Card detect status and alive check may be out of sync if card is
2096 	 * removed slowly, when card detect switch changes while card/slot
2097 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2098 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2099 	 * detect work 200ms later for this case.
2100 	 */
2101 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2102 		mmc_detect_change(host, msecs_to_jiffies(200));
2103 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2104 	}
2105 
2106 	if (ret) {
2107 		mmc_card_set_removed(host->card);
2108 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 int mmc_detect_card_removed(struct mmc_host *host)
2115 {
2116 	struct mmc_card *card = host->card;
2117 	int ret;
2118 
2119 	WARN_ON(!host->claimed);
2120 
2121 	if (!card)
2122 		return 1;
2123 
2124 	if (!mmc_card_is_removable(host))
2125 		return 0;
2126 
2127 	ret = mmc_card_removed(card);
2128 	/*
2129 	 * The card will be considered unchanged unless we have been asked to
2130 	 * detect a change or host requires polling to provide card detection.
2131 	 */
2132 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2133 		return ret;
2134 
2135 	host->detect_change = 0;
2136 	if (!ret) {
2137 		ret = _mmc_detect_card_removed(host);
2138 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2139 			/*
2140 			 * Schedule a detect work as soon as possible to let a
2141 			 * rescan handle the card removal.
2142 			 */
2143 			cancel_delayed_work(&host->detect);
2144 			_mmc_detect_change(host, 0, false);
2145 		}
2146 	}
2147 
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL(mmc_detect_card_removed);
2151 
2152 void mmc_rescan(struct work_struct *work)
2153 {
2154 	struct mmc_host *host =
2155 		container_of(work, struct mmc_host, detect.work);
2156 	int i;
2157 
2158 	if (host->rescan_disable)
2159 		return;
2160 
2161 	/* If there is a non-removable card registered, only scan once */
2162 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2163 		return;
2164 	host->rescan_entered = 1;
2165 
2166 	if (host->trigger_card_event && host->ops->card_event) {
2167 		mmc_claim_host(host);
2168 		host->ops->card_event(host);
2169 		mmc_release_host(host);
2170 		host->trigger_card_event = false;
2171 	}
2172 
2173 	/* Verify a registered card to be functional, else remove it. */
2174 	if (host->bus_ops)
2175 		host->bus_ops->detect(host);
2176 
2177 	host->detect_change = 0;
2178 
2179 	/* if there still is a card present, stop here */
2180 	if (host->bus_ops != NULL)
2181 		goto out;
2182 
2183 	mmc_claim_host(host);
2184 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2185 			host->ops->get_cd(host) == 0) {
2186 		mmc_power_off(host);
2187 		mmc_release_host(host);
2188 		goto out;
2189 	}
2190 
2191 	/* If an SD express card is present, then leave it as is. */
2192 	if (mmc_card_sd_express(host)) {
2193 		mmc_release_host(host);
2194 		goto out;
2195 	}
2196 
2197 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2198 		unsigned int freq = freqs[i];
2199 		if (freq > host->f_max) {
2200 			if (i + 1 < ARRAY_SIZE(freqs))
2201 				continue;
2202 			freq = host->f_max;
2203 		}
2204 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2205 			break;
2206 		if (freqs[i] <= host->f_min)
2207 			break;
2208 	}
2209 	mmc_release_host(host);
2210 
2211  out:
2212 	if (host->caps & MMC_CAP_NEEDS_POLL)
2213 		mmc_schedule_delayed_work(&host->detect, HZ);
2214 }
2215 
2216 void mmc_start_host(struct mmc_host *host)
2217 {
2218 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2219 	host->rescan_disable = 0;
2220 
2221 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2222 		mmc_claim_host(host);
2223 		mmc_power_up(host, host->ocr_avail);
2224 		mmc_release_host(host);
2225 	}
2226 
2227 	mmc_gpiod_request_cd_irq(host);
2228 	_mmc_detect_change(host, 0, false);
2229 }
2230 
2231 void mmc_stop_host(struct mmc_host *host)
2232 {
2233 	if (host->slot.cd_irq >= 0) {
2234 		mmc_gpio_set_cd_wake(host, false);
2235 		disable_irq(host->slot.cd_irq);
2236 	}
2237 
2238 	host->rescan_disable = 1;
2239 	cancel_delayed_work_sync(&host->detect);
2240 
2241 	/* clear pm flags now and let card drivers set them as needed */
2242 	host->pm_flags = 0;
2243 
2244 	if (host->bus_ops) {
2245 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2246 		host->bus_ops->remove(host);
2247 		mmc_claim_host(host);
2248 		mmc_detach_bus(host);
2249 		mmc_power_off(host);
2250 		mmc_release_host(host);
2251 		return;
2252 	}
2253 
2254 	mmc_claim_host(host);
2255 	mmc_power_off(host);
2256 	mmc_release_host(host);
2257 }
2258 
2259 static int __init mmc_init(void)
2260 {
2261 	int ret;
2262 
2263 	ret = mmc_register_bus();
2264 	if (ret)
2265 		return ret;
2266 
2267 	ret = mmc_register_host_class();
2268 	if (ret)
2269 		goto unregister_bus;
2270 
2271 	ret = sdio_register_bus();
2272 	if (ret)
2273 		goto unregister_host_class;
2274 
2275 	return 0;
2276 
2277 unregister_host_class:
2278 	mmc_unregister_host_class();
2279 unregister_bus:
2280 	mmc_unregister_bus();
2281 	return ret;
2282 }
2283 
2284 static void __exit mmc_exit(void)
2285 {
2286 	sdio_unregister_bus();
2287 	mmc_unregister_host_class();
2288 	mmc_unregister_bus();
2289 }
2290 
2291 subsys_initcall(mmc_init);
2292 module_exit(mmc_exit);
2293 
2294 MODULE_LICENSE("GPL");
2295