1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/suspend.h> 27 #include <linux/fault-inject.h> 28 #include <linux/random.h> 29 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 35 #include "core.h" 36 #include "bus.h" 37 #include "host.h" 38 #include "sdio_bus.h" 39 40 #include "mmc_ops.h" 41 #include "sd_ops.h" 42 #include "sdio_ops.h" 43 44 static struct workqueue_struct *workqueue; 45 46 /* 47 * Enabling software CRCs on the data blocks can be a significant (30%) 48 * performance cost, and for other reasons may not always be desired. 49 * So we allow it it to be disabled. 50 */ 51 bool use_spi_crc = 1; 52 module_param(use_spi_crc, bool, 0); 53 54 /* 55 * We normally treat cards as removed during suspend if they are not 56 * known to be on a non-removable bus, to avoid the risk of writing 57 * back data to a different card after resume. Allow this to be 58 * overridden if necessary. 59 */ 60 #ifdef CONFIG_MMC_UNSAFE_RESUME 61 bool mmc_assume_removable; 62 #else 63 bool mmc_assume_removable = 1; 64 #endif 65 EXPORT_SYMBOL(mmc_assume_removable); 66 module_param_named(removable, mmc_assume_removable, bool, 0644); 67 MODULE_PARM_DESC( 68 removable, 69 "MMC/SD cards are removable and may be removed during suspend"); 70 71 /* 72 * Internal function. Schedule delayed work in the MMC work queue. 73 */ 74 static int mmc_schedule_delayed_work(struct delayed_work *work, 75 unsigned long delay) 76 { 77 return queue_delayed_work(workqueue, work, delay); 78 } 79 80 /* 81 * Internal function. Flush all scheduled work from the MMC work queue. 82 */ 83 static void mmc_flush_scheduled_work(void) 84 { 85 flush_workqueue(workqueue); 86 } 87 88 #ifdef CONFIG_FAIL_MMC_REQUEST 89 90 /* 91 * Internal function. Inject random data errors. 92 * If mmc_data is NULL no errors are injected. 93 */ 94 static void mmc_should_fail_request(struct mmc_host *host, 95 struct mmc_request *mrq) 96 { 97 struct mmc_command *cmd = mrq->cmd; 98 struct mmc_data *data = mrq->data; 99 static const int data_errors[] = { 100 -ETIMEDOUT, 101 -EILSEQ, 102 -EIO, 103 }; 104 105 if (!data) 106 return; 107 108 if (cmd->error || data->error || 109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 110 return; 111 112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; 113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; 114 } 115 116 #else /* CONFIG_FAIL_MMC_REQUEST */ 117 118 static inline void mmc_should_fail_request(struct mmc_host *host, 119 struct mmc_request *mrq) 120 { 121 } 122 123 #endif /* CONFIG_FAIL_MMC_REQUEST */ 124 125 /** 126 * mmc_request_done - finish processing an MMC request 127 * @host: MMC host which completed request 128 * @mrq: MMC request which request 129 * 130 * MMC drivers should call this function when they have completed 131 * their processing of a request. 132 */ 133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 134 { 135 struct mmc_command *cmd = mrq->cmd; 136 int err = cmd->error; 137 138 if (err && cmd->retries && mmc_host_is_spi(host)) { 139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 140 cmd->retries = 0; 141 } 142 143 if (err && cmd->retries && !mmc_card_removed(host->card)) { 144 /* 145 * Request starter must handle retries - see 146 * mmc_wait_for_req_done(). 147 */ 148 if (mrq->done) 149 mrq->done(mrq); 150 } else { 151 mmc_should_fail_request(host, mrq); 152 153 led_trigger_event(host->led, LED_OFF); 154 155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 156 mmc_hostname(host), cmd->opcode, err, 157 cmd->resp[0], cmd->resp[1], 158 cmd->resp[2], cmd->resp[3]); 159 160 if (mrq->data) { 161 pr_debug("%s: %d bytes transferred: %d\n", 162 mmc_hostname(host), 163 mrq->data->bytes_xfered, mrq->data->error); 164 } 165 166 if (mrq->stop) { 167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 168 mmc_hostname(host), mrq->stop->opcode, 169 mrq->stop->error, 170 mrq->stop->resp[0], mrq->stop->resp[1], 171 mrq->stop->resp[2], mrq->stop->resp[3]); 172 } 173 174 if (mrq->done) 175 mrq->done(mrq); 176 177 mmc_host_clk_release(host); 178 } 179 } 180 181 EXPORT_SYMBOL(mmc_request_done); 182 183 static void 184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 185 { 186 #ifdef CONFIG_MMC_DEBUG 187 unsigned int i, sz; 188 struct scatterlist *sg; 189 #endif 190 191 if (mrq->sbc) { 192 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 193 mmc_hostname(host), mrq->sbc->opcode, 194 mrq->sbc->arg, mrq->sbc->flags); 195 } 196 197 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 198 mmc_hostname(host), mrq->cmd->opcode, 199 mrq->cmd->arg, mrq->cmd->flags); 200 201 if (mrq->data) { 202 pr_debug("%s: blksz %d blocks %d flags %08x " 203 "tsac %d ms nsac %d\n", 204 mmc_hostname(host), mrq->data->blksz, 205 mrq->data->blocks, mrq->data->flags, 206 mrq->data->timeout_ns / 1000000, 207 mrq->data->timeout_clks); 208 } 209 210 if (mrq->stop) { 211 pr_debug("%s: CMD%u arg %08x flags %08x\n", 212 mmc_hostname(host), mrq->stop->opcode, 213 mrq->stop->arg, mrq->stop->flags); 214 } 215 216 WARN_ON(!host->claimed); 217 218 mrq->cmd->error = 0; 219 mrq->cmd->mrq = mrq; 220 if (mrq->data) { 221 BUG_ON(mrq->data->blksz > host->max_blk_size); 222 BUG_ON(mrq->data->blocks > host->max_blk_count); 223 BUG_ON(mrq->data->blocks * mrq->data->blksz > 224 host->max_req_size); 225 226 #ifdef CONFIG_MMC_DEBUG 227 sz = 0; 228 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 229 sz += sg->length; 230 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 231 #endif 232 233 mrq->cmd->data = mrq->data; 234 mrq->data->error = 0; 235 mrq->data->mrq = mrq; 236 if (mrq->stop) { 237 mrq->data->stop = mrq->stop; 238 mrq->stop->error = 0; 239 mrq->stop->mrq = mrq; 240 } 241 } 242 mmc_host_clk_hold(host); 243 led_trigger_event(host->led, LED_FULL); 244 host->ops->request(host, mrq); 245 } 246 247 static void mmc_wait_done(struct mmc_request *mrq) 248 { 249 complete(&mrq->completion); 250 } 251 252 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 253 { 254 init_completion(&mrq->completion); 255 mrq->done = mmc_wait_done; 256 if (mmc_card_removed(host->card)) { 257 mrq->cmd->error = -ENOMEDIUM; 258 complete(&mrq->completion); 259 return -ENOMEDIUM; 260 } 261 mmc_start_request(host, mrq); 262 return 0; 263 } 264 265 static void mmc_wait_for_req_done(struct mmc_host *host, 266 struct mmc_request *mrq) 267 { 268 struct mmc_command *cmd; 269 270 while (1) { 271 wait_for_completion(&mrq->completion); 272 273 cmd = mrq->cmd; 274 if (!cmd->error || !cmd->retries || 275 mmc_card_removed(host->card)) 276 break; 277 278 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 279 mmc_hostname(host), cmd->opcode, cmd->error); 280 cmd->retries--; 281 cmd->error = 0; 282 host->ops->request(host, mrq); 283 } 284 } 285 286 /** 287 * mmc_pre_req - Prepare for a new request 288 * @host: MMC host to prepare command 289 * @mrq: MMC request to prepare for 290 * @is_first_req: true if there is no previous started request 291 * that may run in parellel to this call, otherwise false 292 * 293 * mmc_pre_req() is called in prior to mmc_start_req() to let 294 * host prepare for the new request. Preparation of a request may be 295 * performed while another request is running on the host. 296 */ 297 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 298 bool is_first_req) 299 { 300 if (host->ops->pre_req) { 301 mmc_host_clk_hold(host); 302 host->ops->pre_req(host, mrq, is_first_req); 303 mmc_host_clk_release(host); 304 } 305 } 306 307 /** 308 * mmc_post_req - Post process a completed request 309 * @host: MMC host to post process command 310 * @mrq: MMC request to post process for 311 * @err: Error, if non zero, clean up any resources made in pre_req 312 * 313 * Let the host post process a completed request. Post processing of 314 * a request may be performed while another reuqest is running. 315 */ 316 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 317 int err) 318 { 319 if (host->ops->post_req) { 320 mmc_host_clk_hold(host); 321 host->ops->post_req(host, mrq, err); 322 mmc_host_clk_release(host); 323 } 324 } 325 326 /** 327 * mmc_start_req - start a non-blocking request 328 * @host: MMC host to start command 329 * @areq: async request to start 330 * @error: out parameter returns 0 for success, otherwise non zero 331 * 332 * Start a new MMC custom command request for a host. 333 * If there is on ongoing async request wait for completion 334 * of that request and start the new one and return. 335 * Does not wait for the new request to complete. 336 * 337 * Returns the completed request, NULL in case of none completed. 338 * Wait for the an ongoing request (previoulsy started) to complete and 339 * return the completed request. If there is no ongoing request, NULL 340 * is returned without waiting. NULL is not an error condition. 341 */ 342 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 343 struct mmc_async_req *areq, int *error) 344 { 345 int err = 0; 346 int start_err = 0; 347 struct mmc_async_req *data = host->areq; 348 349 /* Prepare a new request */ 350 if (areq) 351 mmc_pre_req(host, areq->mrq, !host->areq); 352 353 if (host->areq) { 354 mmc_wait_for_req_done(host, host->areq->mrq); 355 err = host->areq->err_check(host->card, host->areq); 356 } 357 358 if (!err && areq) 359 start_err = __mmc_start_req(host, areq->mrq); 360 361 if (host->areq) 362 mmc_post_req(host, host->areq->mrq, 0); 363 364 /* Cancel a prepared request if it was not started. */ 365 if ((err || start_err) && areq) 366 mmc_post_req(host, areq->mrq, -EINVAL); 367 368 if (err) 369 host->areq = NULL; 370 else 371 host->areq = areq; 372 373 if (error) 374 *error = err; 375 return data; 376 } 377 EXPORT_SYMBOL(mmc_start_req); 378 379 /** 380 * mmc_wait_for_req - start a request and wait for completion 381 * @host: MMC host to start command 382 * @mrq: MMC request to start 383 * 384 * Start a new MMC custom command request for a host, and wait 385 * for the command to complete. Does not attempt to parse the 386 * response. 387 */ 388 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 389 { 390 __mmc_start_req(host, mrq); 391 mmc_wait_for_req_done(host, mrq); 392 } 393 EXPORT_SYMBOL(mmc_wait_for_req); 394 395 /** 396 * mmc_interrupt_hpi - Issue for High priority Interrupt 397 * @card: the MMC card associated with the HPI transfer 398 * 399 * Issued High Priority Interrupt, and check for card status 400 * util out-of prg-state. 401 */ 402 int mmc_interrupt_hpi(struct mmc_card *card) 403 { 404 int err; 405 u32 status; 406 407 BUG_ON(!card); 408 409 if (!card->ext_csd.hpi_en) { 410 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 411 return 1; 412 } 413 414 mmc_claim_host(card->host); 415 err = mmc_send_status(card, &status); 416 if (err) { 417 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 418 goto out; 419 } 420 421 /* 422 * If the card status is in PRG-state, we can send the HPI command. 423 */ 424 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) { 425 do { 426 /* 427 * We don't know when the HPI command will finish 428 * processing, so we need to resend HPI until out 429 * of prg-state, and keep checking the card status 430 * with SEND_STATUS. If a timeout error occurs when 431 * sending the HPI command, we are already out of 432 * prg-state. 433 */ 434 err = mmc_send_hpi_cmd(card, &status); 435 if (err) 436 pr_debug("%s: abort HPI (%d error)\n", 437 mmc_hostname(card->host), err); 438 439 err = mmc_send_status(card, &status); 440 if (err) 441 break; 442 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); 443 } else 444 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host)); 445 446 out: 447 mmc_release_host(card->host); 448 return err; 449 } 450 EXPORT_SYMBOL(mmc_interrupt_hpi); 451 452 /** 453 * mmc_wait_for_cmd - start a command and wait for completion 454 * @host: MMC host to start command 455 * @cmd: MMC command to start 456 * @retries: maximum number of retries 457 * 458 * Start a new MMC command for a host, and wait for the command 459 * to complete. Return any error that occurred while the command 460 * was executing. Do not attempt to parse the response. 461 */ 462 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 463 { 464 struct mmc_request mrq = {NULL}; 465 466 WARN_ON(!host->claimed); 467 468 memset(cmd->resp, 0, sizeof(cmd->resp)); 469 cmd->retries = retries; 470 471 mrq.cmd = cmd; 472 cmd->data = NULL; 473 474 mmc_wait_for_req(host, &mrq); 475 476 return cmd->error; 477 } 478 479 EXPORT_SYMBOL(mmc_wait_for_cmd); 480 481 /** 482 * mmc_set_data_timeout - set the timeout for a data command 483 * @data: data phase for command 484 * @card: the MMC card associated with the data transfer 485 * 486 * Computes the data timeout parameters according to the 487 * correct algorithm given the card type. 488 */ 489 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 490 { 491 unsigned int mult; 492 493 /* 494 * SDIO cards only define an upper 1 s limit on access. 495 */ 496 if (mmc_card_sdio(card)) { 497 data->timeout_ns = 1000000000; 498 data->timeout_clks = 0; 499 return; 500 } 501 502 /* 503 * SD cards use a 100 multiplier rather than 10 504 */ 505 mult = mmc_card_sd(card) ? 100 : 10; 506 507 /* 508 * Scale up the multiplier (and therefore the timeout) by 509 * the r2w factor for writes. 510 */ 511 if (data->flags & MMC_DATA_WRITE) 512 mult <<= card->csd.r2w_factor; 513 514 data->timeout_ns = card->csd.tacc_ns * mult; 515 data->timeout_clks = card->csd.tacc_clks * mult; 516 517 /* 518 * SD cards also have an upper limit on the timeout. 519 */ 520 if (mmc_card_sd(card)) { 521 unsigned int timeout_us, limit_us; 522 523 timeout_us = data->timeout_ns / 1000; 524 if (mmc_host_clk_rate(card->host)) 525 timeout_us += data->timeout_clks * 1000 / 526 (mmc_host_clk_rate(card->host) / 1000); 527 528 if (data->flags & MMC_DATA_WRITE) 529 /* 530 * The MMC spec "It is strongly recommended 531 * for hosts to implement more than 500ms 532 * timeout value even if the card indicates 533 * the 250ms maximum busy length." Even the 534 * previous value of 300ms is known to be 535 * insufficient for some cards. 536 */ 537 limit_us = 3000000; 538 else 539 limit_us = 100000; 540 541 /* 542 * SDHC cards always use these fixed values. 543 */ 544 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 545 data->timeout_ns = limit_us * 1000; 546 data->timeout_clks = 0; 547 } 548 } 549 550 /* 551 * Some cards require longer data read timeout than indicated in CSD. 552 * Address this by setting the read timeout to a "reasonably high" 553 * value. For the cards tested, 300ms has proven enough. If necessary, 554 * this value can be increased if other problematic cards require this. 555 */ 556 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 557 data->timeout_ns = 300000000; 558 data->timeout_clks = 0; 559 } 560 561 /* 562 * Some cards need very high timeouts if driven in SPI mode. 563 * The worst observed timeout was 900ms after writing a 564 * continuous stream of data until the internal logic 565 * overflowed. 566 */ 567 if (mmc_host_is_spi(card->host)) { 568 if (data->flags & MMC_DATA_WRITE) { 569 if (data->timeout_ns < 1000000000) 570 data->timeout_ns = 1000000000; /* 1s */ 571 } else { 572 if (data->timeout_ns < 100000000) 573 data->timeout_ns = 100000000; /* 100ms */ 574 } 575 } 576 } 577 EXPORT_SYMBOL(mmc_set_data_timeout); 578 579 /** 580 * mmc_align_data_size - pads a transfer size to a more optimal value 581 * @card: the MMC card associated with the data transfer 582 * @sz: original transfer size 583 * 584 * Pads the original data size with a number of extra bytes in 585 * order to avoid controller bugs and/or performance hits 586 * (e.g. some controllers revert to PIO for certain sizes). 587 * 588 * Returns the improved size, which might be unmodified. 589 * 590 * Note that this function is only relevant when issuing a 591 * single scatter gather entry. 592 */ 593 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 594 { 595 /* 596 * FIXME: We don't have a system for the controller to tell 597 * the core about its problems yet, so for now we just 32-bit 598 * align the size. 599 */ 600 sz = ((sz + 3) / 4) * 4; 601 602 return sz; 603 } 604 EXPORT_SYMBOL(mmc_align_data_size); 605 606 /** 607 * __mmc_claim_host - exclusively claim a host 608 * @host: mmc host to claim 609 * @abort: whether or not the operation should be aborted 610 * 611 * Claim a host for a set of operations. If @abort is non null and 612 * dereference a non-zero value then this will return prematurely with 613 * that non-zero value without acquiring the lock. Returns zero 614 * with the lock held otherwise. 615 */ 616 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 617 { 618 DECLARE_WAITQUEUE(wait, current); 619 unsigned long flags; 620 int stop; 621 622 might_sleep(); 623 624 add_wait_queue(&host->wq, &wait); 625 spin_lock_irqsave(&host->lock, flags); 626 while (1) { 627 set_current_state(TASK_UNINTERRUPTIBLE); 628 stop = abort ? atomic_read(abort) : 0; 629 if (stop || !host->claimed || host->claimer == current) 630 break; 631 spin_unlock_irqrestore(&host->lock, flags); 632 schedule(); 633 spin_lock_irqsave(&host->lock, flags); 634 } 635 set_current_state(TASK_RUNNING); 636 if (!stop) { 637 host->claimed = 1; 638 host->claimer = current; 639 host->claim_cnt += 1; 640 } else 641 wake_up(&host->wq); 642 spin_unlock_irqrestore(&host->lock, flags); 643 remove_wait_queue(&host->wq, &wait); 644 if (host->ops->enable && !stop && host->claim_cnt == 1) 645 host->ops->enable(host); 646 return stop; 647 } 648 649 EXPORT_SYMBOL(__mmc_claim_host); 650 651 /** 652 * mmc_try_claim_host - try exclusively to claim a host 653 * @host: mmc host to claim 654 * 655 * Returns %1 if the host is claimed, %0 otherwise. 656 */ 657 int mmc_try_claim_host(struct mmc_host *host) 658 { 659 int claimed_host = 0; 660 unsigned long flags; 661 662 spin_lock_irqsave(&host->lock, flags); 663 if (!host->claimed || host->claimer == current) { 664 host->claimed = 1; 665 host->claimer = current; 666 host->claim_cnt += 1; 667 claimed_host = 1; 668 } 669 spin_unlock_irqrestore(&host->lock, flags); 670 if (host->ops->enable && claimed_host && host->claim_cnt == 1) 671 host->ops->enable(host); 672 return claimed_host; 673 } 674 EXPORT_SYMBOL(mmc_try_claim_host); 675 676 /** 677 * mmc_release_host - release a host 678 * @host: mmc host to release 679 * 680 * Release a MMC host, allowing others to claim the host 681 * for their operations. 682 */ 683 void mmc_release_host(struct mmc_host *host) 684 { 685 unsigned long flags; 686 687 WARN_ON(!host->claimed); 688 689 if (host->ops->disable && host->claim_cnt == 1) 690 host->ops->disable(host); 691 692 spin_lock_irqsave(&host->lock, flags); 693 if (--host->claim_cnt) { 694 /* Release for nested claim */ 695 spin_unlock_irqrestore(&host->lock, flags); 696 } else { 697 host->claimed = 0; 698 host->claimer = NULL; 699 spin_unlock_irqrestore(&host->lock, flags); 700 wake_up(&host->wq); 701 } 702 } 703 EXPORT_SYMBOL(mmc_release_host); 704 705 /* 706 * Internal function that does the actual ios call to the host driver, 707 * optionally printing some debug output. 708 */ 709 static inline void mmc_set_ios(struct mmc_host *host) 710 { 711 struct mmc_ios *ios = &host->ios; 712 713 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 714 "width %u timing %u\n", 715 mmc_hostname(host), ios->clock, ios->bus_mode, 716 ios->power_mode, ios->chip_select, ios->vdd, 717 ios->bus_width, ios->timing); 718 719 if (ios->clock > 0) 720 mmc_set_ungated(host); 721 host->ops->set_ios(host, ios); 722 } 723 724 /* 725 * Control chip select pin on a host. 726 */ 727 void mmc_set_chip_select(struct mmc_host *host, int mode) 728 { 729 mmc_host_clk_hold(host); 730 host->ios.chip_select = mode; 731 mmc_set_ios(host); 732 mmc_host_clk_release(host); 733 } 734 735 /* 736 * Sets the host clock to the highest possible frequency that 737 * is below "hz". 738 */ 739 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 740 { 741 WARN_ON(hz < host->f_min); 742 743 if (hz > host->f_max) 744 hz = host->f_max; 745 746 host->ios.clock = hz; 747 mmc_set_ios(host); 748 } 749 750 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 751 { 752 mmc_host_clk_hold(host); 753 __mmc_set_clock(host, hz); 754 mmc_host_clk_release(host); 755 } 756 757 #ifdef CONFIG_MMC_CLKGATE 758 /* 759 * This gates the clock by setting it to 0 Hz. 760 */ 761 void mmc_gate_clock(struct mmc_host *host) 762 { 763 unsigned long flags; 764 765 spin_lock_irqsave(&host->clk_lock, flags); 766 host->clk_old = host->ios.clock; 767 host->ios.clock = 0; 768 host->clk_gated = true; 769 spin_unlock_irqrestore(&host->clk_lock, flags); 770 mmc_set_ios(host); 771 } 772 773 /* 774 * This restores the clock from gating by using the cached 775 * clock value. 776 */ 777 void mmc_ungate_clock(struct mmc_host *host) 778 { 779 /* 780 * We should previously have gated the clock, so the clock shall 781 * be 0 here! The clock may however be 0 during initialization, 782 * when some request operations are performed before setting 783 * the frequency. When ungate is requested in that situation 784 * we just ignore the call. 785 */ 786 if (host->clk_old) { 787 BUG_ON(host->ios.clock); 788 /* This call will also set host->clk_gated to false */ 789 __mmc_set_clock(host, host->clk_old); 790 } 791 } 792 793 void mmc_set_ungated(struct mmc_host *host) 794 { 795 unsigned long flags; 796 797 /* 798 * We've been given a new frequency while the clock is gated, 799 * so make sure we regard this as ungating it. 800 */ 801 spin_lock_irqsave(&host->clk_lock, flags); 802 host->clk_gated = false; 803 spin_unlock_irqrestore(&host->clk_lock, flags); 804 } 805 806 #else 807 void mmc_set_ungated(struct mmc_host *host) 808 { 809 } 810 #endif 811 812 /* 813 * Change the bus mode (open drain/push-pull) of a host. 814 */ 815 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 816 { 817 mmc_host_clk_hold(host); 818 host->ios.bus_mode = mode; 819 mmc_set_ios(host); 820 mmc_host_clk_release(host); 821 } 822 823 /* 824 * Change data bus width of a host. 825 */ 826 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 827 { 828 mmc_host_clk_hold(host); 829 host->ios.bus_width = width; 830 mmc_set_ios(host); 831 mmc_host_clk_release(host); 832 } 833 834 /** 835 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 836 * @vdd: voltage (mV) 837 * @low_bits: prefer low bits in boundary cases 838 * 839 * This function returns the OCR bit number according to the provided @vdd 840 * value. If conversion is not possible a negative errno value returned. 841 * 842 * Depending on the @low_bits flag the function prefers low or high OCR bits 843 * on boundary voltages. For example, 844 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 845 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 846 * 847 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 848 */ 849 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 850 { 851 const int max_bit = ilog2(MMC_VDD_35_36); 852 int bit; 853 854 if (vdd < 1650 || vdd > 3600) 855 return -EINVAL; 856 857 if (vdd >= 1650 && vdd <= 1950) 858 return ilog2(MMC_VDD_165_195); 859 860 if (low_bits) 861 vdd -= 1; 862 863 /* Base 2000 mV, step 100 mV, bit's base 8. */ 864 bit = (vdd - 2000) / 100 + 8; 865 if (bit > max_bit) 866 return max_bit; 867 return bit; 868 } 869 870 /** 871 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 872 * @vdd_min: minimum voltage value (mV) 873 * @vdd_max: maximum voltage value (mV) 874 * 875 * This function returns the OCR mask bits according to the provided @vdd_min 876 * and @vdd_max values. If conversion is not possible the function returns 0. 877 * 878 * Notes wrt boundary cases: 879 * This function sets the OCR bits for all boundary voltages, for example 880 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 881 * MMC_VDD_34_35 mask. 882 */ 883 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 884 { 885 u32 mask = 0; 886 887 if (vdd_max < vdd_min) 888 return 0; 889 890 /* Prefer high bits for the boundary vdd_max values. */ 891 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 892 if (vdd_max < 0) 893 return 0; 894 895 /* Prefer low bits for the boundary vdd_min values. */ 896 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 897 if (vdd_min < 0) 898 return 0; 899 900 /* Fill the mask, from max bit to min bit. */ 901 while (vdd_max >= vdd_min) 902 mask |= 1 << vdd_max--; 903 904 return mask; 905 } 906 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 907 908 #ifdef CONFIG_REGULATOR 909 910 /** 911 * mmc_regulator_get_ocrmask - return mask of supported voltages 912 * @supply: regulator to use 913 * 914 * This returns either a negative errno, or a mask of voltages that 915 * can be provided to MMC/SD/SDIO devices using the specified voltage 916 * regulator. This would normally be called before registering the 917 * MMC host adapter. 918 */ 919 int mmc_regulator_get_ocrmask(struct regulator *supply) 920 { 921 int result = 0; 922 int count; 923 int i; 924 925 count = regulator_count_voltages(supply); 926 if (count < 0) 927 return count; 928 929 for (i = 0; i < count; i++) { 930 int vdd_uV; 931 int vdd_mV; 932 933 vdd_uV = regulator_list_voltage(supply, i); 934 if (vdd_uV <= 0) 935 continue; 936 937 vdd_mV = vdd_uV / 1000; 938 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 939 } 940 941 return result; 942 } 943 EXPORT_SYMBOL(mmc_regulator_get_ocrmask); 944 945 /** 946 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 947 * @mmc: the host to regulate 948 * @supply: regulator to use 949 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 950 * 951 * Returns zero on success, else negative errno. 952 * 953 * MMC host drivers may use this to enable or disable a regulator using 954 * a particular supply voltage. This would normally be called from the 955 * set_ios() method. 956 */ 957 int mmc_regulator_set_ocr(struct mmc_host *mmc, 958 struct regulator *supply, 959 unsigned short vdd_bit) 960 { 961 int result = 0; 962 int min_uV, max_uV; 963 964 if (vdd_bit) { 965 int tmp; 966 int voltage; 967 968 /* REVISIT mmc_vddrange_to_ocrmask() may have set some 969 * bits this regulator doesn't quite support ... don't 970 * be too picky, most cards and regulators are OK with 971 * a 0.1V range goof (it's a small error percentage). 972 */ 973 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 974 if (tmp == 0) { 975 min_uV = 1650 * 1000; 976 max_uV = 1950 * 1000; 977 } else { 978 min_uV = 1900 * 1000 + tmp * 100 * 1000; 979 max_uV = min_uV + 100 * 1000; 980 } 981 982 /* avoid needless changes to this voltage; the regulator 983 * might not allow this operation 984 */ 985 voltage = regulator_get_voltage(supply); 986 987 if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE) 988 min_uV = max_uV = voltage; 989 990 if (voltage < 0) 991 result = voltage; 992 else if (voltage < min_uV || voltage > max_uV) 993 result = regulator_set_voltage(supply, min_uV, max_uV); 994 else 995 result = 0; 996 997 if (result == 0 && !mmc->regulator_enabled) { 998 result = regulator_enable(supply); 999 if (!result) 1000 mmc->regulator_enabled = true; 1001 } 1002 } else if (mmc->regulator_enabled) { 1003 result = regulator_disable(supply); 1004 if (result == 0) 1005 mmc->regulator_enabled = false; 1006 } 1007 1008 if (result) 1009 dev_err(mmc_dev(mmc), 1010 "could not set regulator OCR (%d)\n", result); 1011 return result; 1012 } 1013 EXPORT_SYMBOL(mmc_regulator_set_ocr); 1014 1015 #endif /* CONFIG_REGULATOR */ 1016 1017 /* 1018 * Mask off any voltages we don't support and select 1019 * the lowest voltage 1020 */ 1021 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1022 { 1023 int bit; 1024 1025 ocr &= host->ocr_avail; 1026 1027 bit = ffs(ocr); 1028 if (bit) { 1029 bit -= 1; 1030 1031 ocr &= 3 << bit; 1032 1033 mmc_host_clk_hold(host); 1034 host->ios.vdd = bit; 1035 mmc_set_ios(host); 1036 mmc_host_clk_release(host); 1037 } else { 1038 pr_warning("%s: host doesn't support card's voltages\n", 1039 mmc_hostname(host)); 1040 ocr = 0; 1041 } 1042 1043 return ocr; 1044 } 1045 1046 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 1047 { 1048 struct mmc_command cmd = {0}; 1049 int err = 0; 1050 1051 BUG_ON(!host); 1052 1053 /* 1054 * Send CMD11 only if the request is to switch the card to 1055 * 1.8V signalling. 1056 */ 1057 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 1058 cmd.opcode = SD_SWITCH_VOLTAGE; 1059 cmd.arg = 0; 1060 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1061 1062 err = mmc_wait_for_cmd(host, &cmd, 0); 1063 if (err) 1064 return err; 1065 1066 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1067 return -EIO; 1068 } 1069 1070 host->ios.signal_voltage = signal_voltage; 1071 1072 if (host->ops->start_signal_voltage_switch) { 1073 mmc_host_clk_hold(host); 1074 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1075 mmc_host_clk_release(host); 1076 } 1077 1078 return err; 1079 } 1080 1081 /* 1082 * Select timing parameters for host. 1083 */ 1084 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1085 { 1086 mmc_host_clk_hold(host); 1087 host->ios.timing = timing; 1088 mmc_set_ios(host); 1089 mmc_host_clk_release(host); 1090 } 1091 1092 /* 1093 * Select appropriate driver type for host. 1094 */ 1095 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1096 { 1097 mmc_host_clk_hold(host); 1098 host->ios.drv_type = drv_type; 1099 mmc_set_ios(host); 1100 mmc_host_clk_release(host); 1101 } 1102 1103 static void mmc_poweroff_notify(struct mmc_host *host) 1104 { 1105 struct mmc_card *card; 1106 unsigned int timeout; 1107 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION; 1108 int err = 0; 1109 1110 card = host->card; 1111 mmc_claim_host(host); 1112 1113 /* 1114 * Send power notify command only if card 1115 * is mmc and notify state is powered ON 1116 */ 1117 if (card && mmc_card_mmc(card) && 1118 (card->poweroff_notify_state == MMC_POWERED_ON)) { 1119 1120 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) { 1121 notify_type = EXT_CSD_POWER_OFF_SHORT; 1122 timeout = card->ext_csd.generic_cmd6_time; 1123 card->poweroff_notify_state = MMC_POWEROFF_SHORT; 1124 } else { 1125 notify_type = EXT_CSD_POWER_OFF_LONG; 1126 timeout = card->ext_csd.power_off_longtime; 1127 card->poweroff_notify_state = MMC_POWEROFF_LONG; 1128 } 1129 1130 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1131 EXT_CSD_POWER_OFF_NOTIFICATION, 1132 notify_type, timeout); 1133 1134 if (err && err != -EBADMSG) 1135 pr_err("Device failed to respond within %d poweroff " 1136 "time. Forcefully powering down the device\n", 1137 timeout); 1138 1139 /* Set the card state to no notification after the poweroff */ 1140 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION; 1141 } 1142 mmc_release_host(host); 1143 } 1144 1145 /* 1146 * Apply power to the MMC stack. This is a two-stage process. 1147 * First, we enable power to the card without the clock running. 1148 * We then wait a bit for the power to stabilise. Finally, 1149 * enable the bus drivers and clock to the card. 1150 * 1151 * We must _NOT_ enable the clock prior to power stablising. 1152 * 1153 * If a host does all the power sequencing itself, ignore the 1154 * initial MMC_POWER_UP stage. 1155 */ 1156 static void mmc_power_up(struct mmc_host *host) 1157 { 1158 int bit; 1159 1160 mmc_host_clk_hold(host); 1161 1162 /* If ocr is set, we use it */ 1163 if (host->ocr) 1164 bit = ffs(host->ocr) - 1; 1165 else 1166 bit = fls(host->ocr_avail) - 1; 1167 1168 host->ios.vdd = bit; 1169 if (mmc_host_is_spi(host)) 1170 host->ios.chip_select = MMC_CS_HIGH; 1171 else 1172 host->ios.chip_select = MMC_CS_DONTCARE; 1173 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1174 host->ios.power_mode = MMC_POWER_UP; 1175 host->ios.bus_width = MMC_BUS_WIDTH_1; 1176 host->ios.timing = MMC_TIMING_LEGACY; 1177 mmc_set_ios(host); 1178 1179 /* 1180 * This delay should be sufficient to allow the power supply 1181 * to reach the minimum voltage. 1182 */ 1183 mmc_delay(10); 1184 1185 host->ios.clock = host->f_init; 1186 1187 host->ios.power_mode = MMC_POWER_ON; 1188 mmc_set_ios(host); 1189 1190 /* 1191 * This delay must be at least 74 clock sizes, or 1 ms, or the 1192 * time required to reach a stable voltage. 1193 */ 1194 mmc_delay(10); 1195 1196 mmc_host_clk_release(host); 1197 } 1198 1199 void mmc_power_off(struct mmc_host *host) 1200 { 1201 int err = 0; 1202 mmc_host_clk_hold(host); 1203 1204 host->ios.clock = 0; 1205 host->ios.vdd = 0; 1206 1207 /* 1208 * For eMMC 4.5 device send AWAKE command before 1209 * POWER_OFF_NOTIFY command, because in sleep state 1210 * eMMC 4.5 devices respond to only RESET and AWAKE cmd 1211 */ 1212 if (host->card && mmc_card_is_sleep(host->card) && 1213 host->bus_ops->resume) { 1214 err = host->bus_ops->resume(host); 1215 1216 if (!err) 1217 mmc_poweroff_notify(host); 1218 else 1219 pr_warning("%s: error %d during resume " 1220 "(continue with poweroff sequence)\n", 1221 mmc_hostname(host), err); 1222 } 1223 1224 /* 1225 * Reset ocr mask to be the highest possible voltage supported for 1226 * this mmc host. This value will be used at next power up. 1227 */ 1228 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1229 1230 if (!mmc_host_is_spi(host)) { 1231 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1232 host->ios.chip_select = MMC_CS_DONTCARE; 1233 } 1234 host->ios.power_mode = MMC_POWER_OFF; 1235 host->ios.bus_width = MMC_BUS_WIDTH_1; 1236 host->ios.timing = MMC_TIMING_LEGACY; 1237 mmc_set_ios(host); 1238 1239 /* 1240 * Some configurations, such as the 802.11 SDIO card in the OLPC 1241 * XO-1.5, require a short delay after poweroff before the card 1242 * can be successfully turned on again. 1243 */ 1244 mmc_delay(1); 1245 1246 mmc_host_clk_release(host); 1247 } 1248 1249 /* 1250 * Cleanup when the last reference to the bus operator is dropped. 1251 */ 1252 static void __mmc_release_bus(struct mmc_host *host) 1253 { 1254 BUG_ON(!host); 1255 BUG_ON(host->bus_refs); 1256 BUG_ON(!host->bus_dead); 1257 1258 host->bus_ops = NULL; 1259 } 1260 1261 /* 1262 * Increase reference count of bus operator 1263 */ 1264 static inline void mmc_bus_get(struct mmc_host *host) 1265 { 1266 unsigned long flags; 1267 1268 spin_lock_irqsave(&host->lock, flags); 1269 host->bus_refs++; 1270 spin_unlock_irqrestore(&host->lock, flags); 1271 } 1272 1273 /* 1274 * Decrease reference count of bus operator and free it if 1275 * it is the last reference. 1276 */ 1277 static inline void mmc_bus_put(struct mmc_host *host) 1278 { 1279 unsigned long flags; 1280 1281 spin_lock_irqsave(&host->lock, flags); 1282 host->bus_refs--; 1283 if ((host->bus_refs == 0) && host->bus_ops) 1284 __mmc_release_bus(host); 1285 spin_unlock_irqrestore(&host->lock, flags); 1286 } 1287 1288 /* 1289 * Assign a mmc bus handler to a host. Only one bus handler may control a 1290 * host at any given time. 1291 */ 1292 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1293 { 1294 unsigned long flags; 1295 1296 BUG_ON(!host); 1297 BUG_ON(!ops); 1298 1299 WARN_ON(!host->claimed); 1300 1301 spin_lock_irqsave(&host->lock, flags); 1302 1303 BUG_ON(host->bus_ops); 1304 BUG_ON(host->bus_refs); 1305 1306 host->bus_ops = ops; 1307 host->bus_refs = 1; 1308 host->bus_dead = 0; 1309 1310 spin_unlock_irqrestore(&host->lock, flags); 1311 } 1312 1313 /* 1314 * Remove the current bus handler from a host. 1315 */ 1316 void mmc_detach_bus(struct mmc_host *host) 1317 { 1318 unsigned long flags; 1319 1320 BUG_ON(!host); 1321 1322 WARN_ON(!host->claimed); 1323 WARN_ON(!host->bus_ops); 1324 1325 spin_lock_irqsave(&host->lock, flags); 1326 1327 host->bus_dead = 1; 1328 1329 spin_unlock_irqrestore(&host->lock, flags); 1330 1331 mmc_bus_put(host); 1332 } 1333 1334 /** 1335 * mmc_detect_change - process change of state on a MMC socket 1336 * @host: host which changed state. 1337 * @delay: optional delay to wait before detection (jiffies) 1338 * 1339 * MMC drivers should call this when they detect a card has been 1340 * inserted or removed. The MMC layer will confirm that any 1341 * present card is still functional, and initialize any newly 1342 * inserted. 1343 */ 1344 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1345 { 1346 #ifdef CONFIG_MMC_DEBUG 1347 unsigned long flags; 1348 spin_lock_irqsave(&host->lock, flags); 1349 WARN_ON(host->removed); 1350 spin_unlock_irqrestore(&host->lock, flags); 1351 #endif 1352 host->detect_change = 1; 1353 mmc_schedule_delayed_work(&host->detect, delay); 1354 } 1355 1356 EXPORT_SYMBOL(mmc_detect_change); 1357 1358 void mmc_init_erase(struct mmc_card *card) 1359 { 1360 unsigned int sz; 1361 1362 if (is_power_of_2(card->erase_size)) 1363 card->erase_shift = ffs(card->erase_size) - 1; 1364 else 1365 card->erase_shift = 0; 1366 1367 /* 1368 * It is possible to erase an arbitrarily large area of an SD or MMC 1369 * card. That is not desirable because it can take a long time 1370 * (minutes) potentially delaying more important I/O, and also the 1371 * timeout calculations become increasingly hugely over-estimated. 1372 * Consequently, 'pref_erase' is defined as a guide to limit erases 1373 * to that size and alignment. 1374 * 1375 * For SD cards that define Allocation Unit size, limit erases to one 1376 * Allocation Unit at a time. For MMC cards that define High Capacity 1377 * Erase Size, whether it is switched on or not, limit to that size. 1378 * Otherwise just have a stab at a good value. For modern cards it 1379 * will end up being 4MiB. Note that if the value is too small, it 1380 * can end up taking longer to erase. 1381 */ 1382 if (mmc_card_sd(card) && card->ssr.au) { 1383 card->pref_erase = card->ssr.au; 1384 card->erase_shift = ffs(card->ssr.au) - 1; 1385 } else if (card->ext_csd.hc_erase_size) { 1386 card->pref_erase = card->ext_csd.hc_erase_size; 1387 } else { 1388 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1389 if (sz < 128) 1390 card->pref_erase = 512 * 1024 / 512; 1391 else if (sz < 512) 1392 card->pref_erase = 1024 * 1024 / 512; 1393 else if (sz < 1024) 1394 card->pref_erase = 2 * 1024 * 1024 / 512; 1395 else 1396 card->pref_erase = 4 * 1024 * 1024 / 512; 1397 if (card->pref_erase < card->erase_size) 1398 card->pref_erase = card->erase_size; 1399 else { 1400 sz = card->pref_erase % card->erase_size; 1401 if (sz) 1402 card->pref_erase += card->erase_size - sz; 1403 } 1404 } 1405 } 1406 1407 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1408 unsigned int arg, unsigned int qty) 1409 { 1410 unsigned int erase_timeout; 1411 1412 if (arg == MMC_DISCARD_ARG || 1413 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1414 erase_timeout = card->ext_csd.trim_timeout; 1415 } else if (card->ext_csd.erase_group_def & 1) { 1416 /* High Capacity Erase Group Size uses HC timeouts */ 1417 if (arg == MMC_TRIM_ARG) 1418 erase_timeout = card->ext_csd.trim_timeout; 1419 else 1420 erase_timeout = card->ext_csd.hc_erase_timeout; 1421 } else { 1422 /* CSD Erase Group Size uses write timeout */ 1423 unsigned int mult = (10 << card->csd.r2w_factor); 1424 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1425 unsigned int timeout_us; 1426 1427 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1428 if (card->csd.tacc_ns < 1000000) 1429 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1430 else 1431 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1432 1433 /* 1434 * ios.clock is only a target. The real clock rate might be 1435 * less but not that much less, so fudge it by multiplying by 2. 1436 */ 1437 timeout_clks <<= 1; 1438 timeout_us += (timeout_clks * 1000) / 1439 (mmc_host_clk_rate(card->host) / 1000); 1440 1441 erase_timeout = timeout_us / 1000; 1442 1443 /* 1444 * Theoretically, the calculation could underflow so round up 1445 * to 1ms in that case. 1446 */ 1447 if (!erase_timeout) 1448 erase_timeout = 1; 1449 } 1450 1451 /* Multiplier for secure operations */ 1452 if (arg & MMC_SECURE_ARGS) { 1453 if (arg == MMC_SECURE_ERASE_ARG) 1454 erase_timeout *= card->ext_csd.sec_erase_mult; 1455 else 1456 erase_timeout *= card->ext_csd.sec_trim_mult; 1457 } 1458 1459 erase_timeout *= qty; 1460 1461 /* 1462 * Ensure at least a 1 second timeout for SPI as per 1463 * 'mmc_set_data_timeout()' 1464 */ 1465 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1466 erase_timeout = 1000; 1467 1468 return erase_timeout; 1469 } 1470 1471 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1472 unsigned int arg, 1473 unsigned int qty) 1474 { 1475 unsigned int erase_timeout; 1476 1477 if (card->ssr.erase_timeout) { 1478 /* Erase timeout specified in SD Status Register (SSR) */ 1479 erase_timeout = card->ssr.erase_timeout * qty + 1480 card->ssr.erase_offset; 1481 } else { 1482 /* 1483 * Erase timeout not specified in SD Status Register (SSR) so 1484 * use 250ms per write block. 1485 */ 1486 erase_timeout = 250 * qty; 1487 } 1488 1489 /* Must not be less than 1 second */ 1490 if (erase_timeout < 1000) 1491 erase_timeout = 1000; 1492 1493 return erase_timeout; 1494 } 1495 1496 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1497 unsigned int arg, 1498 unsigned int qty) 1499 { 1500 if (mmc_card_sd(card)) 1501 return mmc_sd_erase_timeout(card, arg, qty); 1502 else 1503 return mmc_mmc_erase_timeout(card, arg, qty); 1504 } 1505 1506 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1507 unsigned int to, unsigned int arg) 1508 { 1509 struct mmc_command cmd = {0}; 1510 unsigned int qty = 0; 1511 int err; 1512 1513 /* 1514 * qty is used to calculate the erase timeout which depends on how many 1515 * erase groups (or allocation units in SD terminology) are affected. 1516 * We count erasing part of an erase group as one erase group. 1517 * For SD, the allocation units are always a power of 2. For MMC, the 1518 * erase group size is almost certainly also power of 2, but it does not 1519 * seem to insist on that in the JEDEC standard, so we fall back to 1520 * division in that case. SD may not specify an allocation unit size, 1521 * in which case the timeout is based on the number of write blocks. 1522 * 1523 * Note that the timeout for secure trim 2 will only be correct if the 1524 * number of erase groups specified is the same as the total of all 1525 * preceding secure trim 1 commands. Since the power may have been 1526 * lost since the secure trim 1 commands occurred, it is generally 1527 * impossible to calculate the secure trim 2 timeout correctly. 1528 */ 1529 if (card->erase_shift) 1530 qty += ((to >> card->erase_shift) - 1531 (from >> card->erase_shift)) + 1; 1532 else if (mmc_card_sd(card)) 1533 qty += to - from + 1; 1534 else 1535 qty += ((to / card->erase_size) - 1536 (from / card->erase_size)) + 1; 1537 1538 if (!mmc_card_blockaddr(card)) { 1539 from <<= 9; 1540 to <<= 9; 1541 } 1542 1543 if (mmc_card_sd(card)) 1544 cmd.opcode = SD_ERASE_WR_BLK_START; 1545 else 1546 cmd.opcode = MMC_ERASE_GROUP_START; 1547 cmd.arg = from; 1548 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1549 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1550 if (err) { 1551 pr_err("mmc_erase: group start error %d, " 1552 "status %#x\n", err, cmd.resp[0]); 1553 err = -EIO; 1554 goto out; 1555 } 1556 1557 memset(&cmd, 0, sizeof(struct mmc_command)); 1558 if (mmc_card_sd(card)) 1559 cmd.opcode = SD_ERASE_WR_BLK_END; 1560 else 1561 cmd.opcode = MMC_ERASE_GROUP_END; 1562 cmd.arg = to; 1563 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1564 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1565 if (err) { 1566 pr_err("mmc_erase: group end error %d, status %#x\n", 1567 err, cmd.resp[0]); 1568 err = -EIO; 1569 goto out; 1570 } 1571 1572 memset(&cmd, 0, sizeof(struct mmc_command)); 1573 cmd.opcode = MMC_ERASE; 1574 cmd.arg = arg; 1575 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1576 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1577 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1578 if (err) { 1579 pr_err("mmc_erase: erase error %d, status %#x\n", 1580 err, cmd.resp[0]); 1581 err = -EIO; 1582 goto out; 1583 } 1584 1585 if (mmc_host_is_spi(card->host)) 1586 goto out; 1587 1588 do { 1589 memset(&cmd, 0, sizeof(struct mmc_command)); 1590 cmd.opcode = MMC_SEND_STATUS; 1591 cmd.arg = card->rca << 16; 1592 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1593 /* Do not retry else we can't see errors */ 1594 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1595 if (err || (cmd.resp[0] & 0xFDF92000)) { 1596 pr_err("error %d requesting status %#x\n", 1597 err, cmd.resp[0]); 1598 err = -EIO; 1599 goto out; 1600 } 1601 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1602 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); 1603 out: 1604 return err; 1605 } 1606 1607 /** 1608 * mmc_erase - erase sectors. 1609 * @card: card to erase 1610 * @from: first sector to erase 1611 * @nr: number of sectors to erase 1612 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1613 * 1614 * Caller must claim host before calling this function. 1615 */ 1616 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1617 unsigned int arg) 1618 { 1619 unsigned int rem, to = from + nr; 1620 1621 if (!(card->host->caps & MMC_CAP_ERASE) || 1622 !(card->csd.cmdclass & CCC_ERASE)) 1623 return -EOPNOTSUPP; 1624 1625 if (!card->erase_size) 1626 return -EOPNOTSUPP; 1627 1628 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1629 return -EOPNOTSUPP; 1630 1631 if ((arg & MMC_SECURE_ARGS) && 1632 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1633 return -EOPNOTSUPP; 1634 1635 if ((arg & MMC_TRIM_ARGS) && 1636 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1637 return -EOPNOTSUPP; 1638 1639 if (arg == MMC_SECURE_ERASE_ARG) { 1640 if (from % card->erase_size || nr % card->erase_size) 1641 return -EINVAL; 1642 } 1643 1644 if (arg == MMC_ERASE_ARG) { 1645 rem = from % card->erase_size; 1646 if (rem) { 1647 rem = card->erase_size - rem; 1648 from += rem; 1649 if (nr > rem) 1650 nr -= rem; 1651 else 1652 return 0; 1653 } 1654 rem = nr % card->erase_size; 1655 if (rem) 1656 nr -= rem; 1657 } 1658 1659 if (nr == 0) 1660 return 0; 1661 1662 to = from + nr; 1663 1664 if (to <= from) 1665 return -EINVAL; 1666 1667 /* 'from' and 'to' are inclusive */ 1668 to -= 1; 1669 1670 return mmc_do_erase(card, from, to, arg); 1671 } 1672 EXPORT_SYMBOL(mmc_erase); 1673 1674 int mmc_can_erase(struct mmc_card *card) 1675 { 1676 if ((card->host->caps & MMC_CAP_ERASE) && 1677 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1678 return 1; 1679 return 0; 1680 } 1681 EXPORT_SYMBOL(mmc_can_erase); 1682 1683 int mmc_can_trim(struct mmc_card *card) 1684 { 1685 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1686 return 1; 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(mmc_can_trim); 1690 1691 int mmc_can_discard(struct mmc_card *card) 1692 { 1693 /* 1694 * As there's no way to detect the discard support bit at v4.5 1695 * use the s/w feature support filed. 1696 */ 1697 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1698 return 1; 1699 return 0; 1700 } 1701 EXPORT_SYMBOL(mmc_can_discard); 1702 1703 int mmc_can_sanitize(struct mmc_card *card) 1704 { 1705 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1706 return 0; 1707 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1708 return 1; 1709 return 0; 1710 } 1711 EXPORT_SYMBOL(mmc_can_sanitize); 1712 1713 int mmc_can_secure_erase_trim(struct mmc_card *card) 1714 { 1715 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1716 return 1; 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1720 1721 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1722 unsigned int nr) 1723 { 1724 if (!card->erase_size) 1725 return 0; 1726 if (from % card->erase_size || nr % card->erase_size) 1727 return 0; 1728 return 1; 1729 } 1730 EXPORT_SYMBOL(mmc_erase_group_aligned); 1731 1732 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1733 unsigned int arg) 1734 { 1735 struct mmc_host *host = card->host; 1736 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 1737 unsigned int last_timeout = 0; 1738 1739 if (card->erase_shift) 1740 max_qty = UINT_MAX >> card->erase_shift; 1741 else if (mmc_card_sd(card)) 1742 max_qty = UINT_MAX; 1743 else 1744 max_qty = UINT_MAX / card->erase_size; 1745 1746 /* Find the largest qty with an OK timeout */ 1747 do { 1748 y = 0; 1749 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1750 timeout = mmc_erase_timeout(card, arg, qty + x); 1751 if (timeout > host->max_discard_to) 1752 break; 1753 if (timeout < last_timeout) 1754 break; 1755 last_timeout = timeout; 1756 y = x; 1757 } 1758 qty += y; 1759 } while (y); 1760 1761 if (!qty) 1762 return 0; 1763 1764 if (qty == 1) 1765 return 1; 1766 1767 /* Convert qty to sectors */ 1768 if (card->erase_shift) 1769 max_discard = --qty << card->erase_shift; 1770 else if (mmc_card_sd(card)) 1771 max_discard = qty; 1772 else 1773 max_discard = --qty * card->erase_size; 1774 1775 return max_discard; 1776 } 1777 1778 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1779 { 1780 struct mmc_host *host = card->host; 1781 unsigned int max_discard, max_trim; 1782 1783 if (!host->max_discard_to) 1784 return UINT_MAX; 1785 1786 /* 1787 * Without erase_group_def set, MMC erase timeout depends on clock 1788 * frequence which can change. In that case, the best choice is 1789 * just the preferred erase size. 1790 */ 1791 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1792 return card->pref_erase; 1793 1794 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1795 if (mmc_can_trim(card)) { 1796 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1797 if (max_trim < max_discard) 1798 max_discard = max_trim; 1799 } else if (max_discard < card->erase_size) { 1800 max_discard = 0; 1801 } 1802 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1803 mmc_hostname(host), max_discard, host->max_discard_to); 1804 return max_discard; 1805 } 1806 EXPORT_SYMBOL(mmc_calc_max_discard); 1807 1808 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1809 { 1810 struct mmc_command cmd = {0}; 1811 1812 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1813 return 0; 1814 1815 cmd.opcode = MMC_SET_BLOCKLEN; 1816 cmd.arg = blocklen; 1817 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1818 return mmc_wait_for_cmd(card->host, &cmd, 5); 1819 } 1820 EXPORT_SYMBOL(mmc_set_blocklen); 1821 1822 static void mmc_hw_reset_for_init(struct mmc_host *host) 1823 { 1824 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1825 return; 1826 mmc_host_clk_hold(host); 1827 host->ops->hw_reset(host); 1828 mmc_host_clk_release(host); 1829 } 1830 1831 int mmc_can_reset(struct mmc_card *card) 1832 { 1833 u8 rst_n_function; 1834 1835 if (!mmc_card_mmc(card)) 1836 return 0; 1837 rst_n_function = card->ext_csd.rst_n_function; 1838 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1839 return 0; 1840 return 1; 1841 } 1842 EXPORT_SYMBOL(mmc_can_reset); 1843 1844 static int mmc_do_hw_reset(struct mmc_host *host, int check) 1845 { 1846 struct mmc_card *card = host->card; 1847 1848 if (!host->bus_ops->power_restore) 1849 return -EOPNOTSUPP; 1850 1851 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1852 return -EOPNOTSUPP; 1853 1854 if (!card) 1855 return -EINVAL; 1856 1857 if (!mmc_can_reset(card)) 1858 return -EOPNOTSUPP; 1859 1860 mmc_host_clk_hold(host); 1861 mmc_set_clock(host, host->f_init); 1862 1863 host->ops->hw_reset(host); 1864 1865 /* If the reset has happened, then a status command will fail */ 1866 if (check) { 1867 struct mmc_command cmd = {0}; 1868 int err; 1869 1870 cmd.opcode = MMC_SEND_STATUS; 1871 if (!mmc_host_is_spi(card->host)) 1872 cmd.arg = card->rca << 16; 1873 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 1874 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1875 if (!err) { 1876 mmc_host_clk_release(host); 1877 return -ENOSYS; 1878 } 1879 } 1880 1881 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 1882 if (mmc_host_is_spi(host)) { 1883 host->ios.chip_select = MMC_CS_HIGH; 1884 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1885 } else { 1886 host->ios.chip_select = MMC_CS_DONTCARE; 1887 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1888 } 1889 host->ios.bus_width = MMC_BUS_WIDTH_1; 1890 host->ios.timing = MMC_TIMING_LEGACY; 1891 mmc_set_ios(host); 1892 1893 mmc_host_clk_release(host); 1894 1895 return host->bus_ops->power_restore(host); 1896 } 1897 1898 int mmc_hw_reset(struct mmc_host *host) 1899 { 1900 return mmc_do_hw_reset(host, 0); 1901 } 1902 EXPORT_SYMBOL(mmc_hw_reset); 1903 1904 int mmc_hw_reset_check(struct mmc_host *host) 1905 { 1906 return mmc_do_hw_reset(host, 1); 1907 } 1908 EXPORT_SYMBOL(mmc_hw_reset_check); 1909 1910 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 1911 { 1912 host->f_init = freq; 1913 1914 #ifdef CONFIG_MMC_DEBUG 1915 pr_info("%s: %s: trying to init card at %u Hz\n", 1916 mmc_hostname(host), __func__, host->f_init); 1917 #endif 1918 mmc_power_up(host); 1919 1920 /* 1921 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 1922 * do a hardware reset if possible. 1923 */ 1924 mmc_hw_reset_for_init(host); 1925 1926 /* Initialization should be done at 3.3 V I/O voltage. */ 1927 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0); 1928 1929 /* 1930 * sdio_reset sends CMD52 to reset card. Since we do not know 1931 * if the card is being re-initialized, just send it. CMD52 1932 * should be ignored by SD/eMMC cards. 1933 */ 1934 sdio_reset(host); 1935 mmc_go_idle(host); 1936 1937 mmc_send_if_cond(host, host->ocr_avail); 1938 1939 /* Order's important: probe SDIO, then SD, then MMC */ 1940 if (!mmc_attach_sdio(host)) 1941 return 0; 1942 if (!mmc_attach_sd(host)) 1943 return 0; 1944 if (!mmc_attach_mmc(host)) 1945 return 0; 1946 1947 mmc_power_off(host); 1948 return -EIO; 1949 } 1950 1951 int _mmc_detect_card_removed(struct mmc_host *host) 1952 { 1953 int ret; 1954 1955 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) 1956 return 0; 1957 1958 if (!host->card || mmc_card_removed(host->card)) 1959 return 1; 1960 1961 ret = host->bus_ops->alive(host); 1962 if (ret) { 1963 mmc_card_set_removed(host->card); 1964 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 1965 } 1966 1967 return ret; 1968 } 1969 1970 int mmc_detect_card_removed(struct mmc_host *host) 1971 { 1972 struct mmc_card *card = host->card; 1973 int ret; 1974 1975 WARN_ON(!host->claimed); 1976 1977 if (!card) 1978 return 1; 1979 1980 ret = mmc_card_removed(card); 1981 /* 1982 * The card will be considered unchanged unless we have been asked to 1983 * detect a change or host requires polling to provide card detection. 1984 */ 1985 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) && 1986 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR)) 1987 return ret; 1988 1989 host->detect_change = 0; 1990 if (!ret) { 1991 ret = _mmc_detect_card_removed(host); 1992 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) { 1993 /* 1994 * Schedule a detect work as soon as possible to let a 1995 * rescan handle the card removal. 1996 */ 1997 cancel_delayed_work(&host->detect); 1998 mmc_detect_change(host, 0); 1999 } 2000 } 2001 2002 return ret; 2003 } 2004 EXPORT_SYMBOL(mmc_detect_card_removed); 2005 2006 void mmc_rescan(struct work_struct *work) 2007 { 2008 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 2009 struct mmc_host *host = 2010 container_of(work, struct mmc_host, detect.work); 2011 int i; 2012 2013 if (host->rescan_disable) 2014 return; 2015 2016 mmc_bus_get(host); 2017 2018 /* 2019 * if there is a _removable_ card registered, check whether it is 2020 * still present 2021 */ 2022 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2023 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2024 host->bus_ops->detect(host); 2025 2026 host->detect_change = 0; 2027 2028 /* 2029 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2030 * the card is no longer present. 2031 */ 2032 mmc_bus_put(host); 2033 mmc_bus_get(host); 2034 2035 /* if there still is a card present, stop here */ 2036 if (host->bus_ops != NULL) { 2037 mmc_bus_put(host); 2038 goto out; 2039 } 2040 2041 /* 2042 * Only we can add a new handler, so it's safe to 2043 * release the lock here. 2044 */ 2045 mmc_bus_put(host); 2046 2047 if (host->ops->get_cd && host->ops->get_cd(host) == 0) 2048 goto out; 2049 2050 mmc_claim_host(host); 2051 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2052 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2053 break; 2054 if (freqs[i] <= host->f_min) 2055 break; 2056 } 2057 mmc_release_host(host); 2058 2059 out: 2060 if (host->caps & MMC_CAP_NEEDS_POLL) 2061 mmc_schedule_delayed_work(&host->detect, HZ); 2062 } 2063 2064 void mmc_start_host(struct mmc_host *host) 2065 { 2066 mmc_power_off(host); 2067 mmc_detect_change(host, 0); 2068 } 2069 2070 void mmc_stop_host(struct mmc_host *host) 2071 { 2072 #ifdef CONFIG_MMC_DEBUG 2073 unsigned long flags; 2074 spin_lock_irqsave(&host->lock, flags); 2075 host->removed = 1; 2076 spin_unlock_irqrestore(&host->lock, flags); 2077 #endif 2078 2079 cancel_delayed_work_sync(&host->detect); 2080 mmc_flush_scheduled_work(); 2081 2082 /* clear pm flags now and let card drivers set them as needed */ 2083 host->pm_flags = 0; 2084 2085 mmc_bus_get(host); 2086 if (host->bus_ops && !host->bus_dead) { 2087 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2088 if (host->bus_ops->remove) 2089 host->bus_ops->remove(host); 2090 2091 mmc_claim_host(host); 2092 mmc_detach_bus(host); 2093 mmc_power_off(host); 2094 mmc_release_host(host); 2095 mmc_bus_put(host); 2096 return; 2097 } 2098 mmc_bus_put(host); 2099 2100 BUG_ON(host->card); 2101 2102 mmc_power_off(host); 2103 } 2104 2105 int mmc_power_save_host(struct mmc_host *host) 2106 { 2107 int ret = 0; 2108 2109 #ifdef CONFIG_MMC_DEBUG 2110 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2111 #endif 2112 2113 mmc_bus_get(host); 2114 2115 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2116 mmc_bus_put(host); 2117 return -EINVAL; 2118 } 2119 2120 if (host->bus_ops->power_save) 2121 ret = host->bus_ops->power_save(host); 2122 2123 mmc_bus_put(host); 2124 2125 mmc_power_off(host); 2126 2127 return ret; 2128 } 2129 EXPORT_SYMBOL(mmc_power_save_host); 2130 2131 int mmc_power_restore_host(struct mmc_host *host) 2132 { 2133 int ret; 2134 2135 #ifdef CONFIG_MMC_DEBUG 2136 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2137 #endif 2138 2139 mmc_bus_get(host); 2140 2141 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2142 mmc_bus_put(host); 2143 return -EINVAL; 2144 } 2145 2146 mmc_power_up(host); 2147 ret = host->bus_ops->power_restore(host); 2148 2149 mmc_bus_put(host); 2150 2151 return ret; 2152 } 2153 EXPORT_SYMBOL(mmc_power_restore_host); 2154 2155 int mmc_card_awake(struct mmc_host *host) 2156 { 2157 int err = -ENOSYS; 2158 2159 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2160 return 0; 2161 2162 mmc_bus_get(host); 2163 2164 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2165 err = host->bus_ops->awake(host); 2166 2167 mmc_bus_put(host); 2168 2169 return err; 2170 } 2171 EXPORT_SYMBOL(mmc_card_awake); 2172 2173 int mmc_card_sleep(struct mmc_host *host) 2174 { 2175 int err = -ENOSYS; 2176 2177 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2178 return 0; 2179 2180 mmc_bus_get(host); 2181 2182 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep) 2183 err = host->bus_ops->sleep(host); 2184 2185 mmc_bus_put(host); 2186 2187 return err; 2188 } 2189 EXPORT_SYMBOL(mmc_card_sleep); 2190 2191 int mmc_card_can_sleep(struct mmc_host *host) 2192 { 2193 struct mmc_card *card = host->card; 2194 2195 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 2196 return 1; 2197 return 0; 2198 } 2199 EXPORT_SYMBOL(mmc_card_can_sleep); 2200 2201 /* 2202 * Flush the cache to the non-volatile storage. 2203 */ 2204 int mmc_flush_cache(struct mmc_card *card) 2205 { 2206 struct mmc_host *host = card->host; 2207 int err = 0; 2208 2209 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2210 return err; 2211 2212 if (mmc_card_mmc(card) && 2213 (card->ext_csd.cache_size > 0) && 2214 (card->ext_csd.cache_ctrl & 1)) { 2215 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2216 EXT_CSD_FLUSH_CACHE, 1, 0); 2217 if (err) 2218 pr_err("%s: cache flush error %d\n", 2219 mmc_hostname(card->host), err); 2220 } 2221 2222 return err; 2223 } 2224 EXPORT_SYMBOL(mmc_flush_cache); 2225 2226 /* 2227 * Turn the cache ON/OFF. 2228 * Turning the cache OFF shall trigger flushing of the data 2229 * to the non-volatile storage. 2230 */ 2231 int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2232 { 2233 struct mmc_card *card = host->card; 2234 unsigned int timeout; 2235 int err = 0; 2236 2237 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2238 mmc_card_is_removable(host)) 2239 return err; 2240 2241 mmc_claim_host(host); 2242 if (card && mmc_card_mmc(card) && 2243 (card->ext_csd.cache_size > 0)) { 2244 enable = !!enable; 2245 2246 if (card->ext_csd.cache_ctrl ^ enable) { 2247 timeout = enable ? card->ext_csd.generic_cmd6_time : 0; 2248 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2249 EXT_CSD_CACHE_CTRL, enable, timeout); 2250 if (err) 2251 pr_err("%s: cache %s error %d\n", 2252 mmc_hostname(card->host), 2253 enable ? "on" : "off", 2254 err); 2255 else 2256 card->ext_csd.cache_ctrl = enable; 2257 } 2258 } 2259 mmc_release_host(host); 2260 2261 return err; 2262 } 2263 EXPORT_SYMBOL(mmc_cache_ctrl); 2264 2265 #ifdef CONFIG_PM 2266 2267 /** 2268 * mmc_suspend_host - suspend a host 2269 * @host: mmc host 2270 */ 2271 int mmc_suspend_host(struct mmc_host *host) 2272 { 2273 int err = 0; 2274 2275 cancel_delayed_work(&host->detect); 2276 mmc_flush_scheduled_work(); 2277 2278 err = mmc_cache_ctrl(host, 0); 2279 if (err) 2280 goto out; 2281 2282 mmc_bus_get(host); 2283 if (host->bus_ops && !host->bus_dead) { 2284 2285 if (host->bus_ops->suspend) 2286 err = host->bus_ops->suspend(host); 2287 2288 if (err == -ENOSYS || !host->bus_ops->resume) { 2289 /* 2290 * We simply "remove" the card in this case. 2291 * It will be redetected on resume. (Calling 2292 * bus_ops->remove() with a claimed host can 2293 * deadlock.) 2294 */ 2295 if (host->bus_ops->remove) 2296 host->bus_ops->remove(host); 2297 mmc_claim_host(host); 2298 mmc_detach_bus(host); 2299 mmc_power_off(host); 2300 mmc_release_host(host); 2301 host->pm_flags = 0; 2302 err = 0; 2303 } 2304 } 2305 mmc_bus_put(host); 2306 2307 if (!err && !mmc_card_keep_power(host)) 2308 mmc_power_off(host); 2309 2310 out: 2311 return err; 2312 } 2313 2314 EXPORT_SYMBOL(mmc_suspend_host); 2315 2316 /** 2317 * mmc_resume_host - resume a previously suspended host 2318 * @host: mmc host 2319 */ 2320 int mmc_resume_host(struct mmc_host *host) 2321 { 2322 int err = 0; 2323 2324 mmc_bus_get(host); 2325 if (host->bus_ops && !host->bus_dead) { 2326 if (!mmc_card_keep_power(host)) { 2327 mmc_power_up(host); 2328 mmc_select_voltage(host, host->ocr); 2329 /* 2330 * Tell runtime PM core we just powered up the card, 2331 * since it still believes the card is powered off. 2332 * Note that currently runtime PM is only enabled 2333 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 2334 */ 2335 if (mmc_card_sdio(host->card) && 2336 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 2337 pm_runtime_disable(&host->card->dev); 2338 pm_runtime_set_active(&host->card->dev); 2339 pm_runtime_enable(&host->card->dev); 2340 } 2341 } 2342 BUG_ON(!host->bus_ops->resume); 2343 err = host->bus_ops->resume(host); 2344 if (err) { 2345 pr_warning("%s: error %d during resume " 2346 "(card was removed?)\n", 2347 mmc_hostname(host), err); 2348 err = 0; 2349 } 2350 } 2351 host->pm_flags &= ~MMC_PM_KEEP_POWER; 2352 mmc_bus_put(host); 2353 2354 return err; 2355 } 2356 EXPORT_SYMBOL(mmc_resume_host); 2357 2358 /* Do the card removal on suspend if card is assumed removeable 2359 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2360 to sync the card. 2361 */ 2362 int mmc_pm_notify(struct notifier_block *notify_block, 2363 unsigned long mode, void *unused) 2364 { 2365 struct mmc_host *host = container_of( 2366 notify_block, struct mmc_host, pm_notify); 2367 unsigned long flags; 2368 2369 2370 switch (mode) { 2371 case PM_HIBERNATION_PREPARE: 2372 case PM_SUSPEND_PREPARE: 2373 2374 spin_lock_irqsave(&host->lock, flags); 2375 host->rescan_disable = 1; 2376 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT; 2377 spin_unlock_irqrestore(&host->lock, flags); 2378 cancel_delayed_work_sync(&host->detect); 2379 2380 if (!host->bus_ops || host->bus_ops->suspend) 2381 break; 2382 2383 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2384 if (host->bus_ops->remove) 2385 host->bus_ops->remove(host); 2386 2387 mmc_claim_host(host); 2388 mmc_detach_bus(host); 2389 mmc_power_off(host); 2390 mmc_release_host(host); 2391 host->pm_flags = 0; 2392 break; 2393 2394 case PM_POST_SUSPEND: 2395 case PM_POST_HIBERNATION: 2396 case PM_POST_RESTORE: 2397 2398 spin_lock_irqsave(&host->lock, flags); 2399 host->rescan_disable = 0; 2400 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG; 2401 spin_unlock_irqrestore(&host->lock, flags); 2402 mmc_detect_change(host, 0); 2403 2404 } 2405 2406 return 0; 2407 } 2408 #endif 2409 2410 static int __init mmc_init(void) 2411 { 2412 int ret; 2413 2414 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2415 if (!workqueue) 2416 return -ENOMEM; 2417 2418 ret = mmc_register_bus(); 2419 if (ret) 2420 goto destroy_workqueue; 2421 2422 ret = mmc_register_host_class(); 2423 if (ret) 2424 goto unregister_bus; 2425 2426 ret = sdio_register_bus(); 2427 if (ret) 2428 goto unregister_host_class; 2429 2430 return 0; 2431 2432 unregister_host_class: 2433 mmc_unregister_host_class(); 2434 unregister_bus: 2435 mmc_unregister_bus(); 2436 destroy_workqueue: 2437 destroy_workqueue(workqueue); 2438 2439 return ret; 2440 } 2441 2442 static void __exit mmc_exit(void) 2443 { 2444 sdio_unregister_bus(); 2445 mmc_unregister_host_class(); 2446 mmc_unregister_bus(); 2447 destroy_workqueue(workqueue); 2448 } 2449 2450 subsys_initcall(mmc_init); 2451 module_exit(mmc_exit); 2452 2453 MODULE_LICENSE("GPL"); 2454