xref: /openbmc/linux/drivers/mmc/core/core.c (revision 84744377)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 
38 #include "core.h"
39 #include "bus.h"
40 #include "host.h"
41 #include "sdio_bus.h"
42 
43 #include "mmc_ops.h"
44 #include "sd_ops.h"
45 #include "sdio_ops.h"
46 
47 /* If the device is not responding */
48 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
49 
50 /*
51  * Background operations can take a long time, depending on the housekeeping
52  * operations the card has to perform.
53  */
54 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
55 
56 static struct workqueue_struct *workqueue;
57 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
58 
59 /*
60  * Enabling software CRCs on the data blocks can be a significant (30%)
61  * performance cost, and for other reasons may not always be desired.
62  * So we allow it it to be disabled.
63  */
64 bool use_spi_crc = 1;
65 module_param(use_spi_crc, bool, 0);
66 
67 /*
68  * We normally treat cards as removed during suspend if they are not
69  * known to be on a non-removable bus, to avoid the risk of writing
70  * back data to a different card after resume.  Allow this to be
71  * overridden if necessary.
72  */
73 #ifdef CONFIG_MMC_UNSAFE_RESUME
74 bool mmc_assume_removable;
75 #else
76 bool mmc_assume_removable = 1;
77 #endif
78 EXPORT_SYMBOL(mmc_assume_removable);
79 module_param_named(removable, mmc_assume_removable, bool, 0644);
80 MODULE_PARM_DESC(
81 	removable,
82 	"MMC/SD cards are removable and may be removed during suspend");
83 
84 /*
85  * Internal function. Schedule delayed work in the MMC work queue.
86  */
87 static int mmc_schedule_delayed_work(struct delayed_work *work,
88 				     unsigned long delay)
89 {
90 	return queue_delayed_work(workqueue, work, delay);
91 }
92 
93 /*
94  * Internal function. Flush all scheduled work from the MMC work queue.
95  */
96 static void mmc_flush_scheduled_work(void)
97 {
98 	flush_workqueue(workqueue);
99 }
100 
101 #ifdef CONFIG_FAIL_MMC_REQUEST
102 
103 /*
104  * Internal function. Inject random data errors.
105  * If mmc_data is NULL no errors are injected.
106  */
107 static void mmc_should_fail_request(struct mmc_host *host,
108 				    struct mmc_request *mrq)
109 {
110 	struct mmc_command *cmd = mrq->cmd;
111 	struct mmc_data *data = mrq->data;
112 	static const int data_errors[] = {
113 		-ETIMEDOUT,
114 		-EILSEQ,
115 		-EIO,
116 	};
117 
118 	if (!data)
119 		return;
120 
121 	if (cmd->error || data->error ||
122 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
123 		return;
124 
125 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
126 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
127 }
128 
129 #else /* CONFIG_FAIL_MMC_REQUEST */
130 
131 static inline void mmc_should_fail_request(struct mmc_host *host,
132 					   struct mmc_request *mrq)
133 {
134 }
135 
136 #endif /* CONFIG_FAIL_MMC_REQUEST */
137 
138 /**
139  *	mmc_request_done - finish processing an MMC request
140  *	@host: MMC host which completed request
141  *	@mrq: MMC request which request
142  *
143  *	MMC drivers should call this function when they have completed
144  *	their processing of a request.
145  */
146 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
147 {
148 	struct mmc_command *cmd = mrq->cmd;
149 	int err = cmd->error;
150 
151 	if (err && cmd->retries && mmc_host_is_spi(host)) {
152 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 			cmd->retries = 0;
154 	}
155 
156 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
157 		/*
158 		 * Request starter must handle retries - see
159 		 * mmc_wait_for_req_done().
160 		 */
161 		if (mrq->done)
162 			mrq->done(mrq);
163 	} else {
164 		mmc_should_fail_request(host, mrq);
165 
166 		led_trigger_event(host->led, LED_OFF);
167 
168 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 			mmc_hostname(host), cmd->opcode, err,
170 			cmd->resp[0], cmd->resp[1],
171 			cmd->resp[2], cmd->resp[3]);
172 
173 		if (mrq->data) {
174 			pr_debug("%s:     %d bytes transferred: %d\n",
175 				mmc_hostname(host),
176 				mrq->data->bytes_xfered, mrq->data->error);
177 		}
178 
179 		if (mrq->stop) {
180 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->stop->opcode,
182 				mrq->stop->error,
183 				mrq->stop->resp[0], mrq->stop->resp[1],
184 				mrq->stop->resp[2], mrq->stop->resp[3]);
185 		}
186 
187 		if (mrq->done)
188 			mrq->done(mrq);
189 
190 		mmc_host_clk_release(host);
191 	}
192 }
193 
194 EXPORT_SYMBOL(mmc_request_done);
195 
196 static void
197 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
198 {
199 #ifdef CONFIG_MMC_DEBUG
200 	unsigned int i, sz;
201 	struct scatterlist *sg;
202 #endif
203 
204 	if (mrq->sbc) {
205 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
206 			 mmc_hostname(host), mrq->sbc->opcode,
207 			 mrq->sbc->arg, mrq->sbc->flags);
208 	}
209 
210 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
211 		 mmc_hostname(host), mrq->cmd->opcode,
212 		 mrq->cmd->arg, mrq->cmd->flags);
213 
214 	if (mrq->data) {
215 		pr_debug("%s:     blksz %d blocks %d flags %08x "
216 			"tsac %d ms nsac %d\n",
217 			mmc_hostname(host), mrq->data->blksz,
218 			mrq->data->blocks, mrq->data->flags,
219 			mrq->data->timeout_ns / 1000000,
220 			mrq->data->timeout_clks);
221 	}
222 
223 	if (mrq->stop) {
224 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
225 			 mmc_hostname(host), mrq->stop->opcode,
226 			 mrq->stop->arg, mrq->stop->flags);
227 	}
228 
229 	WARN_ON(!host->claimed);
230 
231 	mrq->cmd->error = 0;
232 	mrq->cmd->mrq = mrq;
233 	if (mrq->data) {
234 		BUG_ON(mrq->data->blksz > host->max_blk_size);
235 		BUG_ON(mrq->data->blocks > host->max_blk_count);
236 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
237 			host->max_req_size);
238 
239 #ifdef CONFIG_MMC_DEBUG
240 		sz = 0;
241 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
242 			sz += sg->length;
243 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
244 #endif
245 
246 		mrq->cmd->data = mrq->data;
247 		mrq->data->error = 0;
248 		mrq->data->mrq = mrq;
249 		if (mrq->stop) {
250 			mrq->data->stop = mrq->stop;
251 			mrq->stop->error = 0;
252 			mrq->stop->mrq = mrq;
253 		}
254 	}
255 	mmc_host_clk_hold(host);
256 	led_trigger_event(host->led, LED_FULL);
257 	host->ops->request(host, mrq);
258 }
259 
260 /**
261  *	mmc_start_bkops - start BKOPS for supported cards
262  *	@card: MMC card to start BKOPS
263  *	@form_exception: A flag to indicate if this function was
264  *			 called due to an exception raised by the card
265  *
266  *	Start background operations whenever requested.
267  *	When the urgent BKOPS bit is set in a R1 command response
268  *	then background operations should be started immediately.
269 */
270 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
271 {
272 	int err;
273 	int timeout;
274 	bool use_busy_signal;
275 
276 	BUG_ON(!card);
277 
278 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
279 		return;
280 
281 	err = mmc_read_bkops_status(card);
282 	if (err) {
283 		pr_err("%s: Failed to read bkops status: %d\n",
284 		       mmc_hostname(card->host), err);
285 		return;
286 	}
287 
288 	if (!card->ext_csd.raw_bkops_status)
289 		return;
290 
291 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
292 	    from_exception)
293 		return;
294 
295 	mmc_claim_host(card->host);
296 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
297 		timeout = MMC_BKOPS_MAX_TIMEOUT;
298 		use_busy_signal = true;
299 	} else {
300 		timeout = 0;
301 		use_busy_signal = false;
302 	}
303 
304 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
305 			EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal, true);
306 	if (err) {
307 		pr_warn("%s: Error %d starting bkops\n",
308 			mmc_hostname(card->host), err);
309 		goto out;
310 	}
311 
312 	/*
313 	 * For urgent bkops status (LEVEL_2 and more)
314 	 * bkops executed synchronously, otherwise
315 	 * the operation is in progress
316 	 */
317 	if (!use_busy_signal)
318 		mmc_card_set_doing_bkops(card);
319 out:
320 	mmc_release_host(card->host);
321 }
322 EXPORT_SYMBOL(mmc_start_bkops);
323 
324 /*
325  * mmc_wait_data_done() - done callback for data request
326  * @mrq: done data request
327  *
328  * Wakes up mmc context, passed as a callback to host controller driver
329  */
330 static void mmc_wait_data_done(struct mmc_request *mrq)
331 {
332 	mrq->host->context_info.is_done_rcv = true;
333 	wake_up_interruptible(&mrq->host->context_info.wait);
334 }
335 
336 static void mmc_wait_done(struct mmc_request *mrq)
337 {
338 	complete(&mrq->completion);
339 }
340 
341 /*
342  *__mmc_start_data_req() - starts data request
343  * @host: MMC host to start the request
344  * @mrq: data request to start
345  *
346  * Sets the done callback to be called when request is completed by the card.
347  * Starts data mmc request execution
348  */
349 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
350 {
351 	mrq->done = mmc_wait_data_done;
352 	mrq->host = host;
353 	if (mmc_card_removed(host->card)) {
354 		mrq->cmd->error = -ENOMEDIUM;
355 		mmc_wait_data_done(mrq);
356 		return -ENOMEDIUM;
357 	}
358 	mmc_start_request(host, mrq);
359 
360 	return 0;
361 }
362 
363 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
364 {
365 	init_completion(&mrq->completion);
366 	mrq->done = mmc_wait_done;
367 	if (mmc_card_removed(host->card)) {
368 		mrq->cmd->error = -ENOMEDIUM;
369 		complete(&mrq->completion);
370 		return -ENOMEDIUM;
371 	}
372 	mmc_start_request(host, mrq);
373 	return 0;
374 }
375 
376 /*
377  * mmc_wait_for_data_req_done() - wait for request completed
378  * @host: MMC host to prepare the command.
379  * @mrq: MMC request to wait for
380  *
381  * Blocks MMC context till host controller will ack end of data request
382  * execution or new request notification arrives from the block layer.
383  * Handles command retries.
384  *
385  * Returns enum mmc_blk_status after checking errors.
386  */
387 static int mmc_wait_for_data_req_done(struct mmc_host *host,
388 				      struct mmc_request *mrq,
389 				      struct mmc_async_req *next_req)
390 {
391 	struct mmc_command *cmd;
392 	struct mmc_context_info *context_info = &host->context_info;
393 	int err;
394 	unsigned long flags;
395 
396 	while (1) {
397 		wait_event_interruptible(context_info->wait,
398 				(context_info->is_done_rcv ||
399 				 context_info->is_new_req));
400 		spin_lock_irqsave(&context_info->lock, flags);
401 		context_info->is_waiting_last_req = false;
402 		spin_unlock_irqrestore(&context_info->lock, flags);
403 		if (context_info->is_done_rcv) {
404 			context_info->is_done_rcv = false;
405 			context_info->is_new_req = false;
406 			cmd = mrq->cmd;
407 
408 			if (!cmd->error || !cmd->retries ||
409 			    mmc_card_removed(host->card)) {
410 				err = host->areq->err_check(host->card,
411 							    host->areq);
412 				break; /* return err */
413 			} else {
414 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
415 					mmc_hostname(host),
416 					cmd->opcode, cmd->error);
417 				cmd->retries--;
418 				cmd->error = 0;
419 				host->ops->request(host, mrq);
420 				continue; /* wait for done/new event again */
421 			}
422 		} else if (context_info->is_new_req) {
423 			context_info->is_new_req = false;
424 			if (!next_req) {
425 				err = MMC_BLK_NEW_REQUEST;
426 				break; /* return err */
427 			}
428 		}
429 	}
430 	return err;
431 }
432 
433 static void mmc_wait_for_req_done(struct mmc_host *host,
434 				  struct mmc_request *mrq)
435 {
436 	struct mmc_command *cmd;
437 
438 	while (1) {
439 		wait_for_completion(&mrq->completion);
440 
441 		cmd = mrq->cmd;
442 
443 		/*
444 		 * If host has timed out waiting for the sanitize
445 		 * to complete, card might be still in programming state
446 		 * so let's try to bring the card out of programming
447 		 * state.
448 		 */
449 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
450 			if (!mmc_interrupt_hpi(host->card)) {
451 				pr_warning("%s: %s: Interrupted sanitize\n",
452 					   mmc_hostname(host), __func__);
453 				cmd->error = 0;
454 				break;
455 			} else {
456 				pr_err("%s: %s: Failed to interrupt sanitize\n",
457 				       mmc_hostname(host), __func__);
458 			}
459 		}
460 		if (!cmd->error || !cmd->retries ||
461 		    mmc_card_removed(host->card))
462 			break;
463 
464 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
465 			 mmc_hostname(host), cmd->opcode, cmd->error);
466 		cmd->retries--;
467 		cmd->error = 0;
468 		host->ops->request(host, mrq);
469 	}
470 }
471 
472 /**
473  *	mmc_pre_req - Prepare for a new request
474  *	@host: MMC host to prepare command
475  *	@mrq: MMC request to prepare for
476  *	@is_first_req: true if there is no previous started request
477  *                     that may run in parellel to this call, otherwise false
478  *
479  *	mmc_pre_req() is called in prior to mmc_start_req() to let
480  *	host prepare for the new request. Preparation of a request may be
481  *	performed while another request is running on the host.
482  */
483 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
484 		 bool is_first_req)
485 {
486 	if (host->ops->pre_req) {
487 		mmc_host_clk_hold(host);
488 		host->ops->pre_req(host, mrq, is_first_req);
489 		mmc_host_clk_release(host);
490 	}
491 }
492 
493 /**
494  *	mmc_post_req - Post process a completed request
495  *	@host: MMC host to post process command
496  *	@mrq: MMC request to post process for
497  *	@err: Error, if non zero, clean up any resources made in pre_req
498  *
499  *	Let the host post process a completed request. Post processing of
500  *	a request may be performed while another reuqest is running.
501  */
502 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
503 			 int err)
504 {
505 	if (host->ops->post_req) {
506 		mmc_host_clk_hold(host);
507 		host->ops->post_req(host, mrq, err);
508 		mmc_host_clk_release(host);
509 	}
510 }
511 
512 /**
513  *	mmc_start_req - start a non-blocking request
514  *	@host: MMC host to start command
515  *	@areq: async request to start
516  *	@error: out parameter returns 0 for success, otherwise non zero
517  *
518  *	Start a new MMC custom command request for a host.
519  *	If there is on ongoing async request wait for completion
520  *	of that request and start the new one and return.
521  *	Does not wait for the new request to complete.
522  *
523  *      Returns the completed request, NULL in case of none completed.
524  *	Wait for the an ongoing request (previoulsy started) to complete and
525  *	return the completed request. If there is no ongoing request, NULL
526  *	is returned without waiting. NULL is not an error condition.
527  */
528 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
529 				    struct mmc_async_req *areq, int *error)
530 {
531 	int err = 0;
532 	int start_err = 0;
533 	struct mmc_async_req *data = host->areq;
534 
535 	/* Prepare a new request */
536 	if (areq)
537 		mmc_pre_req(host, areq->mrq, !host->areq);
538 
539 	if (host->areq) {
540 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
541 		if (err == MMC_BLK_NEW_REQUEST) {
542 			if (error)
543 				*error = err;
544 			/*
545 			 * The previous request was not completed,
546 			 * nothing to return
547 			 */
548 			return NULL;
549 		}
550 		/*
551 		 * Check BKOPS urgency for each R1 response
552 		 */
553 		if (host->card && mmc_card_mmc(host->card) &&
554 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
555 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
556 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
557 			mmc_start_bkops(host->card, true);
558 	}
559 
560 	if (!err && areq)
561 		start_err = __mmc_start_data_req(host, areq->mrq);
562 
563 	if (host->areq)
564 		mmc_post_req(host, host->areq->mrq, 0);
565 
566 	 /* Cancel a prepared request if it was not started. */
567 	if ((err || start_err) && areq)
568 		mmc_post_req(host, areq->mrq, -EINVAL);
569 
570 	if (err)
571 		host->areq = NULL;
572 	else
573 		host->areq = areq;
574 
575 	if (error)
576 		*error = err;
577 	return data;
578 }
579 EXPORT_SYMBOL(mmc_start_req);
580 
581 /**
582  *	mmc_wait_for_req - start a request and wait for completion
583  *	@host: MMC host to start command
584  *	@mrq: MMC request to start
585  *
586  *	Start a new MMC custom command request for a host, and wait
587  *	for the command to complete. Does not attempt to parse the
588  *	response.
589  */
590 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 	__mmc_start_req(host, mrq);
593 	mmc_wait_for_req_done(host, mrq);
594 }
595 EXPORT_SYMBOL(mmc_wait_for_req);
596 
597 /**
598  *	mmc_interrupt_hpi - Issue for High priority Interrupt
599  *	@card: the MMC card associated with the HPI transfer
600  *
601  *	Issued High Priority Interrupt, and check for card status
602  *	until out-of prg-state.
603  */
604 int mmc_interrupt_hpi(struct mmc_card *card)
605 {
606 	int err;
607 	u32 status;
608 	unsigned long prg_wait;
609 
610 	BUG_ON(!card);
611 
612 	if (!card->ext_csd.hpi_en) {
613 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
614 		return 1;
615 	}
616 
617 	mmc_claim_host(card->host);
618 	err = mmc_send_status(card, &status);
619 	if (err) {
620 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
621 		goto out;
622 	}
623 
624 	switch (R1_CURRENT_STATE(status)) {
625 	case R1_STATE_IDLE:
626 	case R1_STATE_READY:
627 	case R1_STATE_STBY:
628 	case R1_STATE_TRAN:
629 		/*
630 		 * In idle and transfer states, HPI is not needed and the caller
631 		 * can issue the next intended command immediately
632 		 */
633 		goto out;
634 	case R1_STATE_PRG:
635 		break;
636 	default:
637 		/* In all other states, it's illegal to issue HPI */
638 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
639 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
640 		err = -EINVAL;
641 		goto out;
642 	}
643 
644 	err = mmc_send_hpi_cmd(card, &status);
645 	if (err)
646 		goto out;
647 
648 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
649 	do {
650 		err = mmc_send_status(card, &status);
651 
652 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
653 			break;
654 		if (time_after(jiffies, prg_wait))
655 			err = -ETIMEDOUT;
656 	} while (!err);
657 
658 out:
659 	mmc_release_host(card->host);
660 	return err;
661 }
662 EXPORT_SYMBOL(mmc_interrupt_hpi);
663 
664 /**
665  *	mmc_wait_for_cmd - start a command and wait for completion
666  *	@host: MMC host to start command
667  *	@cmd: MMC command to start
668  *	@retries: maximum number of retries
669  *
670  *	Start a new MMC command for a host, and wait for the command
671  *	to complete.  Return any error that occurred while the command
672  *	was executing.  Do not attempt to parse the response.
673  */
674 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
675 {
676 	struct mmc_request mrq = {NULL};
677 
678 	WARN_ON(!host->claimed);
679 
680 	memset(cmd->resp, 0, sizeof(cmd->resp));
681 	cmd->retries = retries;
682 
683 	mrq.cmd = cmd;
684 	cmd->data = NULL;
685 
686 	mmc_wait_for_req(host, &mrq);
687 
688 	return cmd->error;
689 }
690 
691 EXPORT_SYMBOL(mmc_wait_for_cmd);
692 
693 /**
694  *	mmc_stop_bkops - stop ongoing BKOPS
695  *	@card: MMC card to check BKOPS
696  *
697  *	Send HPI command to stop ongoing background operations to
698  *	allow rapid servicing of foreground operations, e.g. read/
699  *	writes. Wait until the card comes out of the programming state
700  *	to avoid errors in servicing read/write requests.
701  */
702 int mmc_stop_bkops(struct mmc_card *card)
703 {
704 	int err = 0;
705 
706 	BUG_ON(!card);
707 	err = mmc_interrupt_hpi(card);
708 
709 	/*
710 	 * If err is EINVAL, we can't issue an HPI.
711 	 * It should complete the BKOPS.
712 	 */
713 	if (!err || (err == -EINVAL)) {
714 		mmc_card_clr_doing_bkops(card);
715 		err = 0;
716 	}
717 
718 	return err;
719 }
720 EXPORT_SYMBOL(mmc_stop_bkops);
721 
722 int mmc_read_bkops_status(struct mmc_card *card)
723 {
724 	int err;
725 	u8 *ext_csd;
726 
727 	/*
728 	 * In future work, we should consider storing the entire ext_csd.
729 	 */
730 	ext_csd = kmalloc(512, GFP_KERNEL);
731 	if (!ext_csd) {
732 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
733 		       mmc_hostname(card->host));
734 		return -ENOMEM;
735 	}
736 
737 	mmc_claim_host(card->host);
738 	err = mmc_send_ext_csd(card, ext_csd);
739 	mmc_release_host(card->host);
740 	if (err)
741 		goto out;
742 
743 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
744 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
745 out:
746 	kfree(ext_csd);
747 	return err;
748 }
749 EXPORT_SYMBOL(mmc_read_bkops_status);
750 
751 /**
752  *	mmc_set_data_timeout - set the timeout for a data command
753  *	@data: data phase for command
754  *	@card: the MMC card associated with the data transfer
755  *
756  *	Computes the data timeout parameters according to the
757  *	correct algorithm given the card type.
758  */
759 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
760 {
761 	unsigned int mult;
762 
763 	/*
764 	 * SDIO cards only define an upper 1 s limit on access.
765 	 */
766 	if (mmc_card_sdio(card)) {
767 		data->timeout_ns = 1000000000;
768 		data->timeout_clks = 0;
769 		return;
770 	}
771 
772 	/*
773 	 * SD cards use a 100 multiplier rather than 10
774 	 */
775 	mult = mmc_card_sd(card) ? 100 : 10;
776 
777 	/*
778 	 * Scale up the multiplier (and therefore the timeout) by
779 	 * the r2w factor for writes.
780 	 */
781 	if (data->flags & MMC_DATA_WRITE)
782 		mult <<= card->csd.r2w_factor;
783 
784 	data->timeout_ns = card->csd.tacc_ns * mult;
785 	data->timeout_clks = card->csd.tacc_clks * mult;
786 
787 	/*
788 	 * SD cards also have an upper limit on the timeout.
789 	 */
790 	if (mmc_card_sd(card)) {
791 		unsigned int timeout_us, limit_us;
792 
793 		timeout_us = data->timeout_ns / 1000;
794 		if (mmc_host_clk_rate(card->host))
795 			timeout_us += data->timeout_clks * 1000 /
796 				(mmc_host_clk_rate(card->host) / 1000);
797 
798 		if (data->flags & MMC_DATA_WRITE)
799 			/*
800 			 * The MMC spec "It is strongly recommended
801 			 * for hosts to implement more than 500ms
802 			 * timeout value even if the card indicates
803 			 * the 250ms maximum busy length."  Even the
804 			 * previous value of 300ms is known to be
805 			 * insufficient for some cards.
806 			 */
807 			limit_us = 3000000;
808 		else
809 			limit_us = 100000;
810 
811 		/*
812 		 * SDHC cards always use these fixed values.
813 		 */
814 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
815 			data->timeout_ns = limit_us * 1000;
816 			data->timeout_clks = 0;
817 		}
818 	}
819 
820 	/*
821 	 * Some cards require longer data read timeout than indicated in CSD.
822 	 * Address this by setting the read timeout to a "reasonably high"
823 	 * value. For the cards tested, 300ms has proven enough. If necessary,
824 	 * this value can be increased if other problematic cards require this.
825 	 */
826 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
827 		data->timeout_ns = 300000000;
828 		data->timeout_clks = 0;
829 	}
830 
831 	/*
832 	 * Some cards need very high timeouts if driven in SPI mode.
833 	 * The worst observed timeout was 900ms after writing a
834 	 * continuous stream of data until the internal logic
835 	 * overflowed.
836 	 */
837 	if (mmc_host_is_spi(card->host)) {
838 		if (data->flags & MMC_DATA_WRITE) {
839 			if (data->timeout_ns < 1000000000)
840 				data->timeout_ns = 1000000000;	/* 1s */
841 		} else {
842 			if (data->timeout_ns < 100000000)
843 				data->timeout_ns =  100000000;	/* 100ms */
844 		}
845 	}
846 }
847 EXPORT_SYMBOL(mmc_set_data_timeout);
848 
849 /**
850  *	mmc_align_data_size - pads a transfer size to a more optimal value
851  *	@card: the MMC card associated with the data transfer
852  *	@sz: original transfer size
853  *
854  *	Pads the original data size with a number of extra bytes in
855  *	order to avoid controller bugs and/or performance hits
856  *	(e.g. some controllers revert to PIO for certain sizes).
857  *
858  *	Returns the improved size, which might be unmodified.
859  *
860  *	Note that this function is only relevant when issuing a
861  *	single scatter gather entry.
862  */
863 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
864 {
865 	/*
866 	 * FIXME: We don't have a system for the controller to tell
867 	 * the core about its problems yet, so for now we just 32-bit
868 	 * align the size.
869 	 */
870 	sz = ((sz + 3) / 4) * 4;
871 
872 	return sz;
873 }
874 EXPORT_SYMBOL(mmc_align_data_size);
875 
876 /**
877  *	__mmc_claim_host - exclusively claim a host
878  *	@host: mmc host to claim
879  *	@abort: whether or not the operation should be aborted
880  *
881  *	Claim a host for a set of operations.  If @abort is non null and
882  *	dereference a non-zero value then this will return prematurely with
883  *	that non-zero value without acquiring the lock.  Returns zero
884  *	with the lock held otherwise.
885  */
886 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
887 {
888 	DECLARE_WAITQUEUE(wait, current);
889 	unsigned long flags;
890 	int stop;
891 
892 	might_sleep();
893 
894 	add_wait_queue(&host->wq, &wait);
895 	spin_lock_irqsave(&host->lock, flags);
896 	while (1) {
897 		set_current_state(TASK_UNINTERRUPTIBLE);
898 		stop = abort ? atomic_read(abort) : 0;
899 		if (stop || !host->claimed || host->claimer == current)
900 			break;
901 		spin_unlock_irqrestore(&host->lock, flags);
902 		schedule();
903 		spin_lock_irqsave(&host->lock, flags);
904 	}
905 	set_current_state(TASK_RUNNING);
906 	if (!stop) {
907 		host->claimed = 1;
908 		host->claimer = current;
909 		host->claim_cnt += 1;
910 	} else
911 		wake_up(&host->wq);
912 	spin_unlock_irqrestore(&host->lock, flags);
913 	remove_wait_queue(&host->wq, &wait);
914 	if (host->ops->enable && !stop && host->claim_cnt == 1)
915 		host->ops->enable(host);
916 	return stop;
917 }
918 
919 EXPORT_SYMBOL(__mmc_claim_host);
920 
921 /**
922  *	mmc_release_host - release a host
923  *	@host: mmc host to release
924  *
925  *	Release a MMC host, allowing others to claim the host
926  *	for their operations.
927  */
928 void mmc_release_host(struct mmc_host *host)
929 {
930 	unsigned long flags;
931 
932 	WARN_ON(!host->claimed);
933 
934 	if (host->ops->disable && host->claim_cnt == 1)
935 		host->ops->disable(host);
936 
937 	spin_lock_irqsave(&host->lock, flags);
938 	if (--host->claim_cnt) {
939 		/* Release for nested claim */
940 		spin_unlock_irqrestore(&host->lock, flags);
941 	} else {
942 		host->claimed = 0;
943 		host->claimer = NULL;
944 		spin_unlock_irqrestore(&host->lock, flags);
945 		wake_up(&host->wq);
946 	}
947 }
948 EXPORT_SYMBOL(mmc_release_host);
949 
950 /*
951  * This is a helper function, which fetches a runtime pm reference for the
952  * card device and also claims the host.
953  */
954 void mmc_get_card(struct mmc_card *card)
955 {
956 	pm_runtime_get_sync(&card->dev);
957 	mmc_claim_host(card->host);
958 }
959 EXPORT_SYMBOL(mmc_get_card);
960 
961 /*
962  * This is a helper function, which releases the host and drops the runtime
963  * pm reference for the card device.
964  */
965 void mmc_put_card(struct mmc_card *card)
966 {
967 	mmc_release_host(card->host);
968 	pm_runtime_mark_last_busy(&card->dev);
969 	pm_runtime_put_autosuspend(&card->dev);
970 }
971 EXPORT_SYMBOL(mmc_put_card);
972 
973 /*
974  * Internal function that does the actual ios call to the host driver,
975  * optionally printing some debug output.
976  */
977 static inline void mmc_set_ios(struct mmc_host *host)
978 {
979 	struct mmc_ios *ios = &host->ios;
980 
981 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
982 		"width %u timing %u\n",
983 		 mmc_hostname(host), ios->clock, ios->bus_mode,
984 		 ios->power_mode, ios->chip_select, ios->vdd,
985 		 ios->bus_width, ios->timing);
986 
987 	if (ios->clock > 0)
988 		mmc_set_ungated(host);
989 	host->ops->set_ios(host, ios);
990 }
991 
992 /*
993  * Control chip select pin on a host.
994  */
995 void mmc_set_chip_select(struct mmc_host *host, int mode)
996 {
997 	mmc_host_clk_hold(host);
998 	host->ios.chip_select = mode;
999 	mmc_set_ios(host);
1000 	mmc_host_clk_release(host);
1001 }
1002 
1003 /*
1004  * Sets the host clock to the highest possible frequency that
1005  * is below "hz".
1006  */
1007 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008 {
1009 	WARN_ON(hz < host->f_min);
1010 
1011 	if (hz > host->f_max)
1012 		hz = host->f_max;
1013 
1014 	host->ios.clock = hz;
1015 	mmc_set_ios(host);
1016 }
1017 
1018 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1019 {
1020 	mmc_host_clk_hold(host);
1021 	__mmc_set_clock(host, hz);
1022 	mmc_host_clk_release(host);
1023 }
1024 
1025 #ifdef CONFIG_MMC_CLKGATE
1026 /*
1027  * This gates the clock by setting it to 0 Hz.
1028  */
1029 void mmc_gate_clock(struct mmc_host *host)
1030 {
1031 	unsigned long flags;
1032 
1033 	spin_lock_irqsave(&host->clk_lock, flags);
1034 	host->clk_old = host->ios.clock;
1035 	host->ios.clock = 0;
1036 	host->clk_gated = true;
1037 	spin_unlock_irqrestore(&host->clk_lock, flags);
1038 	mmc_set_ios(host);
1039 }
1040 
1041 /*
1042  * This restores the clock from gating by using the cached
1043  * clock value.
1044  */
1045 void mmc_ungate_clock(struct mmc_host *host)
1046 {
1047 	/*
1048 	 * We should previously have gated the clock, so the clock shall
1049 	 * be 0 here! The clock may however be 0 during initialization,
1050 	 * when some request operations are performed before setting
1051 	 * the frequency. When ungate is requested in that situation
1052 	 * we just ignore the call.
1053 	 */
1054 	if (host->clk_old) {
1055 		BUG_ON(host->ios.clock);
1056 		/* This call will also set host->clk_gated to false */
1057 		__mmc_set_clock(host, host->clk_old);
1058 	}
1059 }
1060 
1061 void mmc_set_ungated(struct mmc_host *host)
1062 {
1063 	unsigned long flags;
1064 
1065 	/*
1066 	 * We've been given a new frequency while the clock is gated,
1067 	 * so make sure we regard this as ungating it.
1068 	 */
1069 	spin_lock_irqsave(&host->clk_lock, flags);
1070 	host->clk_gated = false;
1071 	spin_unlock_irqrestore(&host->clk_lock, flags);
1072 }
1073 
1074 #else
1075 void mmc_set_ungated(struct mmc_host *host)
1076 {
1077 }
1078 #endif
1079 
1080 /*
1081  * Change the bus mode (open drain/push-pull) of a host.
1082  */
1083 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1084 {
1085 	mmc_host_clk_hold(host);
1086 	host->ios.bus_mode = mode;
1087 	mmc_set_ios(host);
1088 	mmc_host_clk_release(host);
1089 }
1090 
1091 /*
1092  * Change data bus width of a host.
1093  */
1094 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1095 {
1096 	mmc_host_clk_hold(host);
1097 	host->ios.bus_width = width;
1098 	mmc_set_ios(host);
1099 	mmc_host_clk_release(host);
1100 }
1101 
1102 /**
1103  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1104  * @vdd:	voltage (mV)
1105  * @low_bits:	prefer low bits in boundary cases
1106  *
1107  * This function returns the OCR bit number according to the provided @vdd
1108  * value. If conversion is not possible a negative errno value returned.
1109  *
1110  * Depending on the @low_bits flag the function prefers low or high OCR bits
1111  * on boundary voltages. For example,
1112  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1113  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1114  *
1115  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1116  */
1117 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1118 {
1119 	const int max_bit = ilog2(MMC_VDD_35_36);
1120 	int bit;
1121 
1122 	if (vdd < 1650 || vdd > 3600)
1123 		return -EINVAL;
1124 
1125 	if (vdd >= 1650 && vdd <= 1950)
1126 		return ilog2(MMC_VDD_165_195);
1127 
1128 	if (low_bits)
1129 		vdd -= 1;
1130 
1131 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1132 	bit = (vdd - 2000) / 100 + 8;
1133 	if (bit > max_bit)
1134 		return max_bit;
1135 	return bit;
1136 }
1137 
1138 /**
1139  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1140  * @vdd_min:	minimum voltage value (mV)
1141  * @vdd_max:	maximum voltage value (mV)
1142  *
1143  * This function returns the OCR mask bits according to the provided @vdd_min
1144  * and @vdd_max values. If conversion is not possible the function returns 0.
1145  *
1146  * Notes wrt boundary cases:
1147  * This function sets the OCR bits for all boundary voltages, for example
1148  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1149  * MMC_VDD_34_35 mask.
1150  */
1151 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1152 {
1153 	u32 mask = 0;
1154 
1155 	if (vdd_max < vdd_min)
1156 		return 0;
1157 
1158 	/* Prefer high bits for the boundary vdd_max values. */
1159 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1160 	if (vdd_max < 0)
1161 		return 0;
1162 
1163 	/* Prefer low bits for the boundary vdd_min values. */
1164 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1165 	if (vdd_min < 0)
1166 		return 0;
1167 
1168 	/* Fill the mask, from max bit to min bit. */
1169 	while (vdd_max >= vdd_min)
1170 		mask |= 1 << vdd_max--;
1171 
1172 	return mask;
1173 }
1174 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1175 
1176 #ifdef CONFIG_OF
1177 
1178 /**
1179  * mmc_of_parse_voltage - return mask of supported voltages
1180  * @np: The device node need to be parsed.
1181  * @mask: mask of voltages available for MMC/SD/SDIO
1182  *
1183  * 1. Return zero on success.
1184  * 2. Return negative errno: voltage-range is invalid.
1185  */
1186 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1187 {
1188 	const u32 *voltage_ranges;
1189 	int num_ranges, i;
1190 
1191 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1192 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1193 	if (!voltage_ranges || !num_ranges) {
1194 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1195 		return -EINVAL;
1196 	}
1197 
1198 	for (i = 0; i < num_ranges; i++) {
1199 		const int j = i * 2;
1200 		u32 ocr_mask;
1201 
1202 		ocr_mask = mmc_vddrange_to_ocrmask(
1203 				be32_to_cpu(voltage_ranges[j]),
1204 				be32_to_cpu(voltage_ranges[j + 1]));
1205 		if (!ocr_mask) {
1206 			pr_err("%s: voltage-range #%d is invalid\n",
1207 				np->full_name, i);
1208 			return -EINVAL;
1209 		}
1210 		*mask |= ocr_mask;
1211 	}
1212 
1213 	return 0;
1214 }
1215 EXPORT_SYMBOL(mmc_of_parse_voltage);
1216 
1217 #endif /* CONFIG_OF */
1218 
1219 #ifdef CONFIG_REGULATOR
1220 
1221 /**
1222  * mmc_regulator_get_ocrmask - return mask of supported voltages
1223  * @supply: regulator to use
1224  *
1225  * This returns either a negative errno, or a mask of voltages that
1226  * can be provided to MMC/SD/SDIO devices using the specified voltage
1227  * regulator.  This would normally be called before registering the
1228  * MMC host adapter.
1229  */
1230 int mmc_regulator_get_ocrmask(struct regulator *supply)
1231 {
1232 	int			result = 0;
1233 	int			count;
1234 	int			i;
1235 
1236 	count = regulator_count_voltages(supply);
1237 	if (count < 0)
1238 		return count;
1239 
1240 	for (i = 0; i < count; i++) {
1241 		int		vdd_uV;
1242 		int		vdd_mV;
1243 
1244 		vdd_uV = regulator_list_voltage(supply, i);
1245 		if (vdd_uV <= 0)
1246 			continue;
1247 
1248 		vdd_mV = vdd_uV / 1000;
1249 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1250 	}
1251 
1252 	return result;
1253 }
1254 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1255 
1256 /**
1257  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1258  * @mmc: the host to regulate
1259  * @supply: regulator to use
1260  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1261  *
1262  * Returns zero on success, else negative errno.
1263  *
1264  * MMC host drivers may use this to enable or disable a regulator using
1265  * a particular supply voltage.  This would normally be called from the
1266  * set_ios() method.
1267  */
1268 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1269 			struct regulator *supply,
1270 			unsigned short vdd_bit)
1271 {
1272 	int			result = 0;
1273 	int			min_uV, max_uV;
1274 
1275 	if (vdd_bit) {
1276 		int		tmp;
1277 		int		voltage;
1278 
1279 		/*
1280 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1281 		 * bits this regulator doesn't quite support ... don't
1282 		 * be too picky, most cards and regulators are OK with
1283 		 * a 0.1V range goof (it's a small error percentage).
1284 		 */
1285 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1286 		if (tmp == 0) {
1287 			min_uV = 1650 * 1000;
1288 			max_uV = 1950 * 1000;
1289 		} else {
1290 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1291 			max_uV = min_uV + 100 * 1000;
1292 		}
1293 
1294 		/*
1295 		 * If we're using a fixed/static regulator, don't call
1296 		 * regulator_set_voltage; it would fail.
1297 		 */
1298 		voltage = regulator_get_voltage(supply);
1299 
1300 		if (!regulator_can_change_voltage(supply))
1301 			min_uV = max_uV = voltage;
1302 
1303 		if (voltage < 0)
1304 			result = voltage;
1305 		else if (voltage < min_uV || voltage > max_uV)
1306 			result = regulator_set_voltage(supply, min_uV, max_uV);
1307 		else
1308 			result = 0;
1309 
1310 		if (result == 0 && !mmc->regulator_enabled) {
1311 			result = regulator_enable(supply);
1312 			if (!result)
1313 				mmc->regulator_enabled = true;
1314 		}
1315 	} else if (mmc->regulator_enabled) {
1316 		result = regulator_disable(supply);
1317 		if (result == 0)
1318 			mmc->regulator_enabled = false;
1319 	}
1320 
1321 	if (result)
1322 		dev_err(mmc_dev(mmc),
1323 			"could not set regulator OCR (%d)\n", result);
1324 	return result;
1325 }
1326 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1327 
1328 int mmc_regulator_get_supply(struct mmc_host *mmc)
1329 {
1330 	struct device *dev = mmc_dev(mmc);
1331 	struct regulator *supply;
1332 	int ret;
1333 
1334 	supply = devm_regulator_get(dev, "vmmc");
1335 	mmc->supply.vmmc = supply;
1336 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1337 
1338 	if (IS_ERR(supply))
1339 		return PTR_ERR(supply);
1340 
1341 	ret = mmc_regulator_get_ocrmask(supply);
1342 	if (ret > 0)
1343 		mmc->ocr_avail = ret;
1344 	else
1345 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1346 
1347 	return 0;
1348 }
1349 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1350 
1351 #endif /* CONFIG_REGULATOR */
1352 
1353 /*
1354  * Mask off any voltages we don't support and select
1355  * the lowest voltage
1356  */
1357 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1358 {
1359 	int bit;
1360 
1361 	/*
1362 	 * Sanity check the voltages that the card claims to
1363 	 * support.
1364 	 */
1365 	if (ocr & 0x7F) {
1366 		dev_warn(mmc_dev(host),
1367 		"card claims to support voltages below defined range\n");
1368 		ocr &= ~0x7F;
1369 	}
1370 
1371 	ocr &= host->ocr_avail;
1372 	if (!ocr) {
1373 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1374 		return 0;
1375 	}
1376 
1377 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1378 		bit = ffs(ocr) - 1;
1379 		ocr &= 3 << bit;
1380 		mmc_power_cycle(host, ocr);
1381 	} else {
1382 		bit = fls(ocr) - 1;
1383 		ocr &= 3 << bit;
1384 		if (bit != host->ios.vdd)
1385 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1386 	}
1387 
1388 	return ocr;
1389 }
1390 
1391 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1392 {
1393 	int err = 0;
1394 	int old_signal_voltage = host->ios.signal_voltage;
1395 
1396 	host->ios.signal_voltage = signal_voltage;
1397 	if (host->ops->start_signal_voltage_switch) {
1398 		mmc_host_clk_hold(host);
1399 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1400 		mmc_host_clk_release(host);
1401 	}
1402 
1403 	if (err)
1404 		host->ios.signal_voltage = old_signal_voltage;
1405 
1406 	return err;
1407 
1408 }
1409 
1410 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1411 {
1412 	struct mmc_command cmd = {0};
1413 	int err = 0;
1414 	u32 clock;
1415 
1416 	BUG_ON(!host);
1417 
1418 	/*
1419 	 * Send CMD11 only if the request is to switch the card to
1420 	 * 1.8V signalling.
1421 	 */
1422 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1423 		return __mmc_set_signal_voltage(host, signal_voltage);
1424 
1425 	/*
1426 	 * If we cannot switch voltages, return failure so the caller
1427 	 * can continue without UHS mode
1428 	 */
1429 	if (!host->ops->start_signal_voltage_switch)
1430 		return -EPERM;
1431 	if (!host->ops->card_busy)
1432 		pr_warning("%s: cannot verify signal voltage switch\n",
1433 				mmc_hostname(host));
1434 
1435 	cmd.opcode = SD_SWITCH_VOLTAGE;
1436 	cmd.arg = 0;
1437 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1438 
1439 	err = mmc_wait_for_cmd(host, &cmd, 0);
1440 	if (err)
1441 		return err;
1442 
1443 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1444 		return -EIO;
1445 
1446 	mmc_host_clk_hold(host);
1447 	/*
1448 	 * The card should drive cmd and dat[0:3] low immediately
1449 	 * after the response of cmd11, but wait 1 ms to be sure
1450 	 */
1451 	mmc_delay(1);
1452 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1453 		err = -EAGAIN;
1454 		goto power_cycle;
1455 	}
1456 	/*
1457 	 * During a signal voltage level switch, the clock must be gated
1458 	 * for 5 ms according to the SD spec
1459 	 */
1460 	clock = host->ios.clock;
1461 	host->ios.clock = 0;
1462 	mmc_set_ios(host);
1463 
1464 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1465 		/*
1466 		 * Voltages may not have been switched, but we've already
1467 		 * sent CMD11, so a power cycle is required anyway
1468 		 */
1469 		err = -EAGAIN;
1470 		goto power_cycle;
1471 	}
1472 
1473 	/* Keep clock gated for at least 5 ms */
1474 	mmc_delay(5);
1475 	host->ios.clock = clock;
1476 	mmc_set_ios(host);
1477 
1478 	/* Wait for at least 1 ms according to spec */
1479 	mmc_delay(1);
1480 
1481 	/*
1482 	 * Failure to switch is indicated by the card holding
1483 	 * dat[0:3] low
1484 	 */
1485 	if (host->ops->card_busy && host->ops->card_busy(host))
1486 		err = -EAGAIN;
1487 
1488 power_cycle:
1489 	if (err) {
1490 		pr_debug("%s: Signal voltage switch failed, "
1491 			"power cycling card\n", mmc_hostname(host));
1492 		mmc_power_cycle(host, ocr);
1493 	}
1494 
1495 	mmc_host_clk_release(host);
1496 
1497 	return err;
1498 }
1499 
1500 /*
1501  * Select timing parameters for host.
1502  */
1503 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1504 {
1505 	mmc_host_clk_hold(host);
1506 	host->ios.timing = timing;
1507 	mmc_set_ios(host);
1508 	mmc_host_clk_release(host);
1509 }
1510 
1511 /*
1512  * Select appropriate driver type for host.
1513  */
1514 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1515 {
1516 	mmc_host_clk_hold(host);
1517 	host->ios.drv_type = drv_type;
1518 	mmc_set_ios(host);
1519 	mmc_host_clk_release(host);
1520 }
1521 
1522 /*
1523  * Apply power to the MMC stack.  This is a two-stage process.
1524  * First, we enable power to the card without the clock running.
1525  * We then wait a bit for the power to stabilise.  Finally,
1526  * enable the bus drivers and clock to the card.
1527  *
1528  * We must _NOT_ enable the clock prior to power stablising.
1529  *
1530  * If a host does all the power sequencing itself, ignore the
1531  * initial MMC_POWER_UP stage.
1532  */
1533 void mmc_power_up(struct mmc_host *host, u32 ocr)
1534 {
1535 	if (host->ios.power_mode == MMC_POWER_ON)
1536 		return;
1537 
1538 	mmc_host_clk_hold(host);
1539 
1540 	host->ios.vdd = fls(ocr) - 1;
1541 	if (mmc_host_is_spi(host))
1542 		host->ios.chip_select = MMC_CS_HIGH;
1543 	else
1544 		host->ios.chip_select = MMC_CS_DONTCARE;
1545 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1546 	host->ios.power_mode = MMC_POWER_UP;
1547 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1548 	host->ios.timing = MMC_TIMING_LEGACY;
1549 	mmc_set_ios(host);
1550 
1551 	/* Set signal voltage to 3.3V */
1552 	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1553 
1554 	/*
1555 	 * This delay should be sufficient to allow the power supply
1556 	 * to reach the minimum voltage.
1557 	 */
1558 	mmc_delay(10);
1559 
1560 	host->ios.clock = host->f_init;
1561 
1562 	host->ios.power_mode = MMC_POWER_ON;
1563 	mmc_set_ios(host);
1564 
1565 	/*
1566 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1567 	 * time required to reach a stable voltage.
1568 	 */
1569 	mmc_delay(10);
1570 
1571 	mmc_host_clk_release(host);
1572 }
1573 
1574 void mmc_power_off(struct mmc_host *host)
1575 {
1576 	if (host->ios.power_mode == MMC_POWER_OFF)
1577 		return;
1578 
1579 	mmc_host_clk_hold(host);
1580 
1581 	host->ios.clock = 0;
1582 	host->ios.vdd = 0;
1583 
1584 	if (!mmc_host_is_spi(host)) {
1585 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1586 		host->ios.chip_select = MMC_CS_DONTCARE;
1587 	}
1588 	host->ios.power_mode = MMC_POWER_OFF;
1589 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1590 	host->ios.timing = MMC_TIMING_LEGACY;
1591 	mmc_set_ios(host);
1592 
1593 	/*
1594 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1595 	 * XO-1.5, require a short delay after poweroff before the card
1596 	 * can be successfully turned on again.
1597 	 */
1598 	mmc_delay(1);
1599 
1600 	mmc_host_clk_release(host);
1601 }
1602 
1603 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1604 {
1605 	mmc_power_off(host);
1606 	/* Wait at least 1 ms according to SD spec */
1607 	mmc_delay(1);
1608 	mmc_power_up(host, ocr);
1609 }
1610 
1611 /*
1612  * Cleanup when the last reference to the bus operator is dropped.
1613  */
1614 static void __mmc_release_bus(struct mmc_host *host)
1615 {
1616 	BUG_ON(!host);
1617 	BUG_ON(host->bus_refs);
1618 	BUG_ON(!host->bus_dead);
1619 
1620 	host->bus_ops = NULL;
1621 }
1622 
1623 /*
1624  * Increase reference count of bus operator
1625  */
1626 static inline void mmc_bus_get(struct mmc_host *host)
1627 {
1628 	unsigned long flags;
1629 
1630 	spin_lock_irqsave(&host->lock, flags);
1631 	host->bus_refs++;
1632 	spin_unlock_irqrestore(&host->lock, flags);
1633 }
1634 
1635 /*
1636  * Decrease reference count of bus operator and free it if
1637  * it is the last reference.
1638  */
1639 static inline void mmc_bus_put(struct mmc_host *host)
1640 {
1641 	unsigned long flags;
1642 
1643 	spin_lock_irqsave(&host->lock, flags);
1644 	host->bus_refs--;
1645 	if ((host->bus_refs == 0) && host->bus_ops)
1646 		__mmc_release_bus(host);
1647 	spin_unlock_irqrestore(&host->lock, flags);
1648 }
1649 
1650 /*
1651  * Assign a mmc bus handler to a host. Only one bus handler may control a
1652  * host at any given time.
1653  */
1654 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1655 {
1656 	unsigned long flags;
1657 
1658 	BUG_ON(!host);
1659 	BUG_ON(!ops);
1660 
1661 	WARN_ON(!host->claimed);
1662 
1663 	spin_lock_irqsave(&host->lock, flags);
1664 
1665 	BUG_ON(host->bus_ops);
1666 	BUG_ON(host->bus_refs);
1667 
1668 	host->bus_ops = ops;
1669 	host->bus_refs = 1;
1670 	host->bus_dead = 0;
1671 
1672 	spin_unlock_irqrestore(&host->lock, flags);
1673 }
1674 
1675 /*
1676  * Remove the current bus handler from a host.
1677  */
1678 void mmc_detach_bus(struct mmc_host *host)
1679 {
1680 	unsigned long flags;
1681 
1682 	BUG_ON(!host);
1683 
1684 	WARN_ON(!host->claimed);
1685 	WARN_ON(!host->bus_ops);
1686 
1687 	spin_lock_irqsave(&host->lock, flags);
1688 
1689 	host->bus_dead = 1;
1690 
1691 	spin_unlock_irqrestore(&host->lock, flags);
1692 
1693 	mmc_bus_put(host);
1694 }
1695 
1696 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1697 				bool cd_irq)
1698 {
1699 #ifdef CONFIG_MMC_DEBUG
1700 	unsigned long flags;
1701 	spin_lock_irqsave(&host->lock, flags);
1702 	WARN_ON(host->removed);
1703 	spin_unlock_irqrestore(&host->lock, flags);
1704 #endif
1705 
1706 	/*
1707 	 * If the device is configured as wakeup, we prevent a new sleep for
1708 	 * 5 s to give provision for user space to consume the event.
1709 	 */
1710 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1711 		device_can_wakeup(mmc_dev(host)))
1712 		pm_wakeup_event(mmc_dev(host), 5000);
1713 
1714 	host->detect_change = 1;
1715 	mmc_schedule_delayed_work(&host->detect, delay);
1716 }
1717 
1718 /**
1719  *	mmc_detect_change - process change of state on a MMC socket
1720  *	@host: host which changed state.
1721  *	@delay: optional delay to wait before detection (jiffies)
1722  *
1723  *	MMC drivers should call this when they detect a card has been
1724  *	inserted or removed. The MMC layer will confirm that any
1725  *	present card is still functional, and initialize any newly
1726  *	inserted.
1727  */
1728 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1729 {
1730 	_mmc_detect_change(host, delay, true);
1731 }
1732 EXPORT_SYMBOL(mmc_detect_change);
1733 
1734 void mmc_init_erase(struct mmc_card *card)
1735 {
1736 	unsigned int sz;
1737 
1738 	if (is_power_of_2(card->erase_size))
1739 		card->erase_shift = ffs(card->erase_size) - 1;
1740 	else
1741 		card->erase_shift = 0;
1742 
1743 	/*
1744 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1745 	 * card.  That is not desirable because it can take a long time
1746 	 * (minutes) potentially delaying more important I/O, and also the
1747 	 * timeout calculations become increasingly hugely over-estimated.
1748 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1749 	 * to that size and alignment.
1750 	 *
1751 	 * For SD cards that define Allocation Unit size, limit erases to one
1752 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1753 	 * Erase Size, whether it is switched on or not, limit to that size.
1754 	 * Otherwise just have a stab at a good value.  For modern cards it
1755 	 * will end up being 4MiB.  Note that if the value is too small, it
1756 	 * can end up taking longer to erase.
1757 	 */
1758 	if (mmc_card_sd(card) && card->ssr.au) {
1759 		card->pref_erase = card->ssr.au;
1760 		card->erase_shift = ffs(card->ssr.au) - 1;
1761 	} else if (card->ext_csd.hc_erase_size) {
1762 		card->pref_erase = card->ext_csd.hc_erase_size;
1763 	} else {
1764 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1765 		if (sz < 128)
1766 			card->pref_erase = 512 * 1024 / 512;
1767 		else if (sz < 512)
1768 			card->pref_erase = 1024 * 1024 / 512;
1769 		else if (sz < 1024)
1770 			card->pref_erase = 2 * 1024 * 1024 / 512;
1771 		else
1772 			card->pref_erase = 4 * 1024 * 1024 / 512;
1773 		if (card->pref_erase < card->erase_size)
1774 			card->pref_erase = card->erase_size;
1775 		else {
1776 			sz = card->pref_erase % card->erase_size;
1777 			if (sz)
1778 				card->pref_erase += card->erase_size - sz;
1779 		}
1780 	}
1781 }
1782 
1783 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1784 				          unsigned int arg, unsigned int qty)
1785 {
1786 	unsigned int erase_timeout;
1787 
1788 	if (arg == MMC_DISCARD_ARG ||
1789 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1790 		erase_timeout = card->ext_csd.trim_timeout;
1791 	} else if (card->ext_csd.erase_group_def & 1) {
1792 		/* High Capacity Erase Group Size uses HC timeouts */
1793 		if (arg == MMC_TRIM_ARG)
1794 			erase_timeout = card->ext_csd.trim_timeout;
1795 		else
1796 			erase_timeout = card->ext_csd.hc_erase_timeout;
1797 	} else {
1798 		/* CSD Erase Group Size uses write timeout */
1799 		unsigned int mult = (10 << card->csd.r2w_factor);
1800 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1801 		unsigned int timeout_us;
1802 
1803 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1804 		if (card->csd.tacc_ns < 1000000)
1805 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1806 		else
1807 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1808 
1809 		/*
1810 		 * ios.clock is only a target.  The real clock rate might be
1811 		 * less but not that much less, so fudge it by multiplying by 2.
1812 		 */
1813 		timeout_clks <<= 1;
1814 		timeout_us += (timeout_clks * 1000) /
1815 			      (mmc_host_clk_rate(card->host) / 1000);
1816 
1817 		erase_timeout = timeout_us / 1000;
1818 
1819 		/*
1820 		 * Theoretically, the calculation could underflow so round up
1821 		 * to 1ms in that case.
1822 		 */
1823 		if (!erase_timeout)
1824 			erase_timeout = 1;
1825 	}
1826 
1827 	/* Multiplier for secure operations */
1828 	if (arg & MMC_SECURE_ARGS) {
1829 		if (arg == MMC_SECURE_ERASE_ARG)
1830 			erase_timeout *= card->ext_csd.sec_erase_mult;
1831 		else
1832 			erase_timeout *= card->ext_csd.sec_trim_mult;
1833 	}
1834 
1835 	erase_timeout *= qty;
1836 
1837 	/*
1838 	 * Ensure at least a 1 second timeout for SPI as per
1839 	 * 'mmc_set_data_timeout()'
1840 	 */
1841 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1842 		erase_timeout = 1000;
1843 
1844 	return erase_timeout;
1845 }
1846 
1847 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1848 					 unsigned int arg,
1849 					 unsigned int qty)
1850 {
1851 	unsigned int erase_timeout;
1852 
1853 	if (card->ssr.erase_timeout) {
1854 		/* Erase timeout specified in SD Status Register (SSR) */
1855 		erase_timeout = card->ssr.erase_timeout * qty +
1856 				card->ssr.erase_offset;
1857 	} else {
1858 		/*
1859 		 * Erase timeout not specified in SD Status Register (SSR) so
1860 		 * use 250ms per write block.
1861 		 */
1862 		erase_timeout = 250 * qty;
1863 	}
1864 
1865 	/* Must not be less than 1 second */
1866 	if (erase_timeout < 1000)
1867 		erase_timeout = 1000;
1868 
1869 	return erase_timeout;
1870 }
1871 
1872 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1873 				      unsigned int arg,
1874 				      unsigned int qty)
1875 {
1876 	if (mmc_card_sd(card))
1877 		return mmc_sd_erase_timeout(card, arg, qty);
1878 	else
1879 		return mmc_mmc_erase_timeout(card, arg, qty);
1880 }
1881 
1882 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1883 			unsigned int to, unsigned int arg)
1884 {
1885 	struct mmc_command cmd = {0};
1886 	unsigned int qty = 0;
1887 	unsigned long timeout;
1888 	int err;
1889 
1890 	/*
1891 	 * qty is used to calculate the erase timeout which depends on how many
1892 	 * erase groups (or allocation units in SD terminology) are affected.
1893 	 * We count erasing part of an erase group as one erase group.
1894 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1895 	 * erase group size is almost certainly also power of 2, but it does not
1896 	 * seem to insist on that in the JEDEC standard, so we fall back to
1897 	 * division in that case.  SD may not specify an allocation unit size,
1898 	 * in which case the timeout is based on the number of write blocks.
1899 	 *
1900 	 * Note that the timeout for secure trim 2 will only be correct if the
1901 	 * number of erase groups specified is the same as the total of all
1902 	 * preceding secure trim 1 commands.  Since the power may have been
1903 	 * lost since the secure trim 1 commands occurred, it is generally
1904 	 * impossible to calculate the secure trim 2 timeout correctly.
1905 	 */
1906 	if (card->erase_shift)
1907 		qty += ((to >> card->erase_shift) -
1908 			(from >> card->erase_shift)) + 1;
1909 	else if (mmc_card_sd(card))
1910 		qty += to - from + 1;
1911 	else
1912 		qty += ((to / card->erase_size) -
1913 			(from / card->erase_size)) + 1;
1914 
1915 	if (!mmc_card_blockaddr(card)) {
1916 		from <<= 9;
1917 		to <<= 9;
1918 	}
1919 
1920 	if (mmc_card_sd(card))
1921 		cmd.opcode = SD_ERASE_WR_BLK_START;
1922 	else
1923 		cmd.opcode = MMC_ERASE_GROUP_START;
1924 	cmd.arg = from;
1925 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 	if (err) {
1928 		pr_err("mmc_erase: group start error %d, "
1929 		       "status %#x\n", err, cmd.resp[0]);
1930 		err = -EIO;
1931 		goto out;
1932 	}
1933 
1934 	memset(&cmd, 0, sizeof(struct mmc_command));
1935 	if (mmc_card_sd(card))
1936 		cmd.opcode = SD_ERASE_WR_BLK_END;
1937 	else
1938 		cmd.opcode = MMC_ERASE_GROUP_END;
1939 	cmd.arg = to;
1940 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1941 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1942 	if (err) {
1943 		pr_err("mmc_erase: group end error %d, status %#x\n",
1944 		       err, cmd.resp[0]);
1945 		err = -EIO;
1946 		goto out;
1947 	}
1948 
1949 	memset(&cmd, 0, sizeof(struct mmc_command));
1950 	cmd.opcode = MMC_ERASE;
1951 	cmd.arg = arg;
1952 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1953 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1954 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1955 	if (err) {
1956 		pr_err("mmc_erase: erase error %d, status %#x\n",
1957 		       err, cmd.resp[0]);
1958 		err = -EIO;
1959 		goto out;
1960 	}
1961 
1962 	if (mmc_host_is_spi(card->host))
1963 		goto out;
1964 
1965 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1966 	do {
1967 		memset(&cmd, 0, sizeof(struct mmc_command));
1968 		cmd.opcode = MMC_SEND_STATUS;
1969 		cmd.arg = card->rca << 16;
1970 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1971 		/* Do not retry else we can't see errors */
1972 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1973 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1974 			pr_err("error %d requesting status %#x\n",
1975 				err, cmd.resp[0]);
1976 			err = -EIO;
1977 			goto out;
1978 		}
1979 
1980 		/* Timeout if the device never becomes ready for data and
1981 		 * never leaves the program state.
1982 		 */
1983 		if (time_after(jiffies, timeout)) {
1984 			pr_err("%s: Card stuck in programming state! %s\n",
1985 				mmc_hostname(card->host), __func__);
1986 			err =  -EIO;
1987 			goto out;
1988 		}
1989 
1990 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1991 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1992 out:
1993 	return err;
1994 }
1995 
1996 /**
1997  * mmc_erase - erase sectors.
1998  * @card: card to erase
1999  * @from: first sector to erase
2000  * @nr: number of sectors to erase
2001  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2002  *
2003  * Caller must claim host before calling this function.
2004  */
2005 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2006 	      unsigned int arg)
2007 {
2008 	unsigned int rem, to = from + nr;
2009 
2010 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2011 	    !(card->csd.cmdclass & CCC_ERASE))
2012 		return -EOPNOTSUPP;
2013 
2014 	if (!card->erase_size)
2015 		return -EOPNOTSUPP;
2016 
2017 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2018 		return -EOPNOTSUPP;
2019 
2020 	if ((arg & MMC_SECURE_ARGS) &&
2021 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2022 		return -EOPNOTSUPP;
2023 
2024 	if ((arg & MMC_TRIM_ARGS) &&
2025 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2026 		return -EOPNOTSUPP;
2027 
2028 	if (arg == MMC_SECURE_ERASE_ARG) {
2029 		if (from % card->erase_size || nr % card->erase_size)
2030 			return -EINVAL;
2031 	}
2032 
2033 	if (arg == MMC_ERASE_ARG) {
2034 		rem = from % card->erase_size;
2035 		if (rem) {
2036 			rem = card->erase_size - rem;
2037 			from += rem;
2038 			if (nr > rem)
2039 				nr -= rem;
2040 			else
2041 				return 0;
2042 		}
2043 		rem = nr % card->erase_size;
2044 		if (rem)
2045 			nr -= rem;
2046 	}
2047 
2048 	if (nr == 0)
2049 		return 0;
2050 
2051 	to = from + nr;
2052 
2053 	if (to <= from)
2054 		return -EINVAL;
2055 
2056 	/* 'from' and 'to' are inclusive */
2057 	to -= 1;
2058 
2059 	return mmc_do_erase(card, from, to, arg);
2060 }
2061 EXPORT_SYMBOL(mmc_erase);
2062 
2063 int mmc_can_erase(struct mmc_card *card)
2064 {
2065 	if ((card->host->caps & MMC_CAP_ERASE) &&
2066 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2067 		return 1;
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL(mmc_can_erase);
2071 
2072 int mmc_can_trim(struct mmc_card *card)
2073 {
2074 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2075 		return 1;
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL(mmc_can_trim);
2079 
2080 int mmc_can_discard(struct mmc_card *card)
2081 {
2082 	/*
2083 	 * As there's no way to detect the discard support bit at v4.5
2084 	 * use the s/w feature support filed.
2085 	 */
2086 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2087 		return 1;
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL(mmc_can_discard);
2091 
2092 int mmc_can_sanitize(struct mmc_card *card)
2093 {
2094 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2095 		return 0;
2096 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2097 		return 1;
2098 	return 0;
2099 }
2100 EXPORT_SYMBOL(mmc_can_sanitize);
2101 
2102 int mmc_can_secure_erase_trim(struct mmc_card *card)
2103 {
2104 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2105 		return 1;
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2109 
2110 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2111 			    unsigned int nr)
2112 {
2113 	if (!card->erase_size)
2114 		return 0;
2115 	if (from % card->erase_size || nr % card->erase_size)
2116 		return 0;
2117 	return 1;
2118 }
2119 EXPORT_SYMBOL(mmc_erase_group_aligned);
2120 
2121 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2122 					    unsigned int arg)
2123 {
2124 	struct mmc_host *host = card->host;
2125 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2126 	unsigned int last_timeout = 0;
2127 
2128 	if (card->erase_shift)
2129 		max_qty = UINT_MAX >> card->erase_shift;
2130 	else if (mmc_card_sd(card))
2131 		max_qty = UINT_MAX;
2132 	else
2133 		max_qty = UINT_MAX / card->erase_size;
2134 
2135 	/* Find the largest qty with an OK timeout */
2136 	do {
2137 		y = 0;
2138 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2139 			timeout = mmc_erase_timeout(card, arg, qty + x);
2140 			if (timeout > host->max_discard_to)
2141 				break;
2142 			if (timeout < last_timeout)
2143 				break;
2144 			last_timeout = timeout;
2145 			y = x;
2146 		}
2147 		qty += y;
2148 	} while (y);
2149 
2150 	if (!qty)
2151 		return 0;
2152 
2153 	if (qty == 1)
2154 		return 1;
2155 
2156 	/* Convert qty to sectors */
2157 	if (card->erase_shift)
2158 		max_discard = --qty << card->erase_shift;
2159 	else if (mmc_card_sd(card))
2160 		max_discard = qty;
2161 	else
2162 		max_discard = --qty * card->erase_size;
2163 
2164 	return max_discard;
2165 }
2166 
2167 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2168 {
2169 	struct mmc_host *host = card->host;
2170 	unsigned int max_discard, max_trim;
2171 
2172 	if (!host->max_discard_to)
2173 		return UINT_MAX;
2174 
2175 	/*
2176 	 * Without erase_group_def set, MMC erase timeout depends on clock
2177 	 * frequence which can change.  In that case, the best choice is
2178 	 * just the preferred erase size.
2179 	 */
2180 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2181 		return card->pref_erase;
2182 
2183 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2184 	if (mmc_can_trim(card)) {
2185 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2186 		if (max_trim < max_discard)
2187 			max_discard = max_trim;
2188 	} else if (max_discard < card->erase_size) {
2189 		max_discard = 0;
2190 	}
2191 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2192 		 mmc_hostname(host), max_discard, host->max_discard_to);
2193 	return max_discard;
2194 }
2195 EXPORT_SYMBOL(mmc_calc_max_discard);
2196 
2197 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2198 {
2199 	struct mmc_command cmd = {0};
2200 
2201 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2202 		return 0;
2203 
2204 	cmd.opcode = MMC_SET_BLOCKLEN;
2205 	cmd.arg = blocklen;
2206 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2207 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2208 }
2209 EXPORT_SYMBOL(mmc_set_blocklen);
2210 
2211 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2212 			bool is_rel_write)
2213 {
2214 	struct mmc_command cmd = {0};
2215 
2216 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2217 	cmd.arg = blockcount & 0x0000FFFF;
2218 	if (is_rel_write)
2219 		cmd.arg |= 1 << 31;
2220 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2221 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2222 }
2223 EXPORT_SYMBOL(mmc_set_blockcount);
2224 
2225 static void mmc_hw_reset_for_init(struct mmc_host *host)
2226 {
2227 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2228 		return;
2229 	mmc_host_clk_hold(host);
2230 	host->ops->hw_reset(host);
2231 	mmc_host_clk_release(host);
2232 }
2233 
2234 int mmc_can_reset(struct mmc_card *card)
2235 {
2236 	u8 rst_n_function;
2237 
2238 	if (!mmc_card_mmc(card))
2239 		return 0;
2240 	rst_n_function = card->ext_csd.rst_n_function;
2241 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2242 		return 0;
2243 	return 1;
2244 }
2245 EXPORT_SYMBOL(mmc_can_reset);
2246 
2247 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2248 {
2249 	struct mmc_card *card = host->card;
2250 
2251 	if (!host->bus_ops->power_restore)
2252 		return -EOPNOTSUPP;
2253 
2254 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2255 		return -EOPNOTSUPP;
2256 
2257 	if (!card)
2258 		return -EINVAL;
2259 
2260 	if (!mmc_can_reset(card))
2261 		return -EOPNOTSUPP;
2262 
2263 	mmc_host_clk_hold(host);
2264 	mmc_set_clock(host, host->f_init);
2265 
2266 	host->ops->hw_reset(host);
2267 
2268 	/* If the reset has happened, then a status command will fail */
2269 	if (check) {
2270 		struct mmc_command cmd = {0};
2271 		int err;
2272 
2273 		cmd.opcode = MMC_SEND_STATUS;
2274 		if (!mmc_host_is_spi(card->host))
2275 			cmd.arg = card->rca << 16;
2276 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2277 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2278 		if (!err) {
2279 			mmc_host_clk_release(host);
2280 			return -ENOSYS;
2281 		}
2282 	}
2283 
2284 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2285 	if (mmc_host_is_spi(host)) {
2286 		host->ios.chip_select = MMC_CS_HIGH;
2287 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2288 	} else {
2289 		host->ios.chip_select = MMC_CS_DONTCARE;
2290 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2291 	}
2292 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2293 	host->ios.timing = MMC_TIMING_LEGACY;
2294 	mmc_set_ios(host);
2295 
2296 	mmc_host_clk_release(host);
2297 
2298 	return host->bus_ops->power_restore(host);
2299 }
2300 
2301 int mmc_hw_reset(struct mmc_host *host)
2302 {
2303 	return mmc_do_hw_reset(host, 0);
2304 }
2305 EXPORT_SYMBOL(mmc_hw_reset);
2306 
2307 int mmc_hw_reset_check(struct mmc_host *host)
2308 {
2309 	return mmc_do_hw_reset(host, 1);
2310 }
2311 EXPORT_SYMBOL(mmc_hw_reset_check);
2312 
2313 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2314 {
2315 	host->f_init = freq;
2316 
2317 #ifdef CONFIG_MMC_DEBUG
2318 	pr_info("%s: %s: trying to init card at %u Hz\n",
2319 		mmc_hostname(host), __func__, host->f_init);
2320 #endif
2321 	mmc_power_up(host, host->ocr_avail);
2322 
2323 	/*
2324 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2325 	 * do a hardware reset if possible.
2326 	 */
2327 	mmc_hw_reset_for_init(host);
2328 
2329 	/*
2330 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2331 	 * if the card is being re-initialized, just send it.  CMD52
2332 	 * should be ignored by SD/eMMC cards.
2333 	 */
2334 	sdio_reset(host);
2335 	mmc_go_idle(host);
2336 
2337 	mmc_send_if_cond(host, host->ocr_avail);
2338 
2339 	/* Order's important: probe SDIO, then SD, then MMC */
2340 	if (!mmc_attach_sdio(host))
2341 		return 0;
2342 	if (!mmc_attach_sd(host))
2343 		return 0;
2344 	if (!mmc_attach_mmc(host))
2345 		return 0;
2346 
2347 	mmc_power_off(host);
2348 	return -EIO;
2349 }
2350 
2351 int _mmc_detect_card_removed(struct mmc_host *host)
2352 {
2353 	int ret;
2354 
2355 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2356 		return 0;
2357 
2358 	if (!host->card || mmc_card_removed(host->card))
2359 		return 1;
2360 
2361 	ret = host->bus_ops->alive(host);
2362 
2363 	/*
2364 	 * Card detect status and alive check may be out of sync if card is
2365 	 * removed slowly, when card detect switch changes while card/slot
2366 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2367 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2368 	 * detect work 200ms later for this case.
2369 	 */
2370 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2371 		mmc_detect_change(host, msecs_to_jiffies(200));
2372 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2373 	}
2374 
2375 	if (ret) {
2376 		mmc_card_set_removed(host->card);
2377 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2378 	}
2379 
2380 	return ret;
2381 }
2382 
2383 int mmc_detect_card_removed(struct mmc_host *host)
2384 {
2385 	struct mmc_card *card = host->card;
2386 	int ret;
2387 
2388 	WARN_ON(!host->claimed);
2389 
2390 	if (!card)
2391 		return 1;
2392 
2393 	ret = mmc_card_removed(card);
2394 	/*
2395 	 * The card will be considered unchanged unless we have been asked to
2396 	 * detect a change or host requires polling to provide card detection.
2397 	 */
2398 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2399 		return ret;
2400 
2401 	host->detect_change = 0;
2402 	if (!ret) {
2403 		ret = _mmc_detect_card_removed(host);
2404 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2405 			/*
2406 			 * Schedule a detect work as soon as possible to let a
2407 			 * rescan handle the card removal.
2408 			 */
2409 			cancel_delayed_work(&host->detect);
2410 			_mmc_detect_change(host, 0, false);
2411 		}
2412 	}
2413 
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL(mmc_detect_card_removed);
2417 
2418 void mmc_rescan(struct work_struct *work)
2419 {
2420 	struct mmc_host *host =
2421 		container_of(work, struct mmc_host, detect.work);
2422 	int i;
2423 
2424 	if (host->rescan_disable)
2425 		return;
2426 
2427 	/* If there is a non-removable card registered, only scan once */
2428 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2429 		return;
2430 	host->rescan_entered = 1;
2431 
2432 	mmc_bus_get(host);
2433 
2434 	/*
2435 	 * if there is a _removable_ card registered, check whether it is
2436 	 * still present
2437 	 */
2438 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2439 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2440 		host->bus_ops->detect(host);
2441 
2442 	host->detect_change = 0;
2443 
2444 	/*
2445 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2446 	 * the card is no longer present.
2447 	 */
2448 	mmc_bus_put(host);
2449 	mmc_bus_get(host);
2450 
2451 	/* if there still is a card present, stop here */
2452 	if (host->bus_ops != NULL) {
2453 		mmc_bus_put(host);
2454 		goto out;
2455 	}
2456 
2457 	/*
2458 	 * Only we can add a new handler, so it's safe to
2459 	 * release the lock here.
2460 	 */
2461 	mmc_bus_put(host);
2462 
2463 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2464 			host->ops->get_cd(host) == 0) {
2465 		mmc_claim_host(host);
2466 		mmc_power_off(host);
2467 		mmc_release_host(host);
2468 		goto out;
2469 	}
2470 
2471 	mmc_claim_host(host);
2472 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2473 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2474 			break;
2475 		if (freqs[i] <= host->f_min)
2476 			break;
2477 	}
2478 	mmc_release_host(host);
2479 
2480  out:
2481 	if (host->caps & MMC_CAP_NEEDS_POLL)
2482 		mmc_schedule_delayed_work(&host->detect, HZ);
2483 }
2484 
2485 void mmc_start_host(struct mmc_host *host)
2486 {
2487 	host->f_init = max(freqs[0], host->f_min);
2488 	host->rescan_disable = 0;
2489 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2490 		mmc_power_off(host);
2491 	else
2492 		mmc_power_up(host, host->ocr_avail);
2493 	_mmc_detect_change(host, 0, false);
2494 }
2495 
2496 void mmc_stop_host(struct mmc_host *host)
2497 {
2498 #ifdef CONFIG_MMC_DEBUG
2499 	unsigned long flags;
2500 	spin_lock_irqsave(&host->lock, flags);
2501 	host->removed = 1;
2502 	spin_unlock_irqrestore(&host->lock, flags);
2503 #endif
2504 
2505 	host->rescan_disable = 1;
2506 	cancel_delayed_work_sync(&host->detect);
2507 	mmc_flush_scheduled_work();
2508 
2509 	/* clear pm flags now and let card drivers set them as needed */
2510 	host->pm_flags = 0;
2511 
2512 	mmc_bus_get(host);
2513 	if (host->bus_ops && !host->bus_dead) {
2514 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2515 		host->bus_ops->remove(host);
2516 		mmc_claim_host(host);
2517 		mmc_detach_bus(host);
2518 		mmc_power_off(host);
2519 		mmc_release_host(host);
2520 		mmc_bus_put(host);
2521 		return;
2522 	}
2523 	mmc_bus_put(host);
2524 
2525 	BUG_ON(host->card);
2526 
2527 	mmc_power_off(host);
2528 }
2529 
2530 int mmc_power_save_host(struct mmc_host *host)
2531 {
2532 	int ret = 0;
2533 
2534 #ifdef CONFIG_MMC_DEBUG
2535 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2536 #endif
2537 
2538 	mmc_bus_get(host);
2539 
2540 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2541 		mmc_bus_put(host);
2542 		return -EINVAL;
2543 	}
2544 
2545 	if (host->bus_ops->power_save)
2546 		ret = host->bus_ops->power_save(host);
2547 
2548 	mmc_bus_put(host);
2549 
2550 	mmc_power_off(host);
2551 
2552 	return ret;
2553 }
2554 EXPORT_SYMBOL(mmc_power_save_host);
2555 
2556 int mmc_power_restore_host(struct mmc_host *host)
2557 {
2558 	int ret;
2559 
2560 #ifdef CONFIG_MMC_DEBUG
2561 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2562 #endif
2563 
2564 	mmc_bus_get(host);
2565 
2566 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2567 		mmc_bus_put(host);
2568 		return -EINVAL;
2569 	}
2570 
2571 	mmc_power_up(host, host->card->ocr);
2572 	ret = host->bus_ops->power_restore(host);
2573 
2574 	mmc_bus_put(host);
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL(mmc_power_restore_host);
2579 
2580 /*
2581  * Flush the cache to the non-volatile storage.
2582  */
2583 int mmc_flush_cache(struct mmc_card *card)
2584 {
2585 	struct mmc_host *host = card->host;
2586 	int err = 0;
2587 
2588 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2589 		return err;
2590 
2591 	if (mmc_card_mmc(card) &&
2592 			(card->ext_csd.cache_size > 0) &&
2593 			(card->ext_csd.cache_ctrl & 1)) {
2594 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2595 				EXT_CSD_FLUSH_CACHE, 1, 0);
2596 		if (err)
2597 			pr_err("%s: cache flush error %d\n",
2598 					mmc_hostname(card->host), err);
2599 	}
2600 
2601 	return err;
2602 }
2603 EXPORT_SYMBOL(mmc_flush_cache);
2604 
2605 /*
2606  * Turn the cache ON/OFF.
2607  * Turning the cache OFF shall trigger flushing of the data
2608  * to the non-volatile storage.
2609  * This function should be called with host claimed
2610  */
2611 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2612 {
2613 	struct mmc_card *card = host->card;
2614 	unsigned int timeout;
2615 	int err = 0;
2616 
2617 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2618 			mmc_card_is_removable(host))
2619 		return err;
2620 
2621 	if (card && mmc_card_mmc(card) &&
2622 			(card->ext_csd.cache_size > 0)) {
2623 		enable = !!enable;
2624 
2625 		if (card->ext_csd.cache_ctrl ^ enable) {
2626 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2627 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2628 					EXT_CSD_CACHE_CTRL, enable, timeout);
2629 			if (err)
2630 				pr_err("%s: cache %s error %d\n",
2631 						mmc_hostname(card->host),
2632 						enable ? "on" : "off",
2633 						err);
2634 			else
2635 				card->ext_csd.cache_ctrl = enable;
2636 		}
2637 	}
2638 
2639 	return err;
2640 }
2641 EXPORT_SYMBOL(mmc_cache_ctrl);
2642 
2643 #ifdef CONFIG_PM
2644 
2645 /* Do the card removal on suspend if card is assumed removeable
2646  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2647    to sync the card.
2648 */
2649 int mmc_pm_notify(struct notifier_block *notify_block,
2650 					unsigned long mode, void *unused)
2651 {
2652 	struct mmc_host *host = container_of(
2653 		notify_block, struct mmc_host, pm_notify);
2654 	unsigned long flags;
2655 	int err = 0;
2656 
2657 	switch (mode) {
2658 	case PM_HIBERNATION_PREPARE:
2659 	case PM_SUSPEND_PREPARE:
2660 		spin_lock_irqsave(&host->lock, flags);
2661 		host->rescan_disable = 1;
2662 		spin_unlock_irqrestore(&host->lock, flags);
2663 		cancel_delayed_work_sync(&host->detect);
2664 
2665 		if (!host->bus_ops)
2666 			break;
2667 
2668 		/* Validate prerequisites for suspend */
2669 		if (host->bus_ops->pre_suspend)
2670 			err = host->bus_ops->pre_suspend(host);
2671 		if (!err && host->bus_ops->suspend)
2672 			break;
2673 
2674 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2675 		host->bus_ops->remove(host);
2676 		mmc_claim_host(host);
2677 		mmc_detach_bus(host);
2678 		mmc_power_off(host);
2679 		mmc_release_host(host);
2680 		host->pm_flags = 0;
2681 		break;
2682 
2683 	case PM_POST_SUSPEND:
2684 	case PM_POST_HIBERNATION:
2685 	case PM_POST_RESTORE:
2686 
2687 		spin_lock_irqsave(&host->lock, flags);
2688 		host->rescan_disable = 0;
2689 		spin_unlock_irqrestore(&host->lock, flags);
2690 		_mmc_detect_change(host, 0, false);
2691 
2692 	}
2693 
2694 	return 0;
2695 }
2696 #endif
2697 
2698 /**
2699  * mmc_init_context_info() - init synchronization context
2700  * @host: mmc host
2701  *
2702  * Init struct context_info needed to implement asynchronous
2703  * request mechanism, used by mmc core, host driver and mmc requests
2704  * supplier.
2705  */
2706 void mmc_init_context_info(struct mmc_host *host)
2707 {
2708 	spin_lock_init(&host->context_info.lock);
2709 	host->context_info.is_new_req = false;
2710 	host->context_info.is_done_rcv = false;
2711 	host->context_info.is_waiting_last_req = false;
2712 	init_waitqueue_head(&host->context_info.wait);
2713 }
2714 
2715 static int __init mmc_init(void)
2716 {
2717 	int ret;
2718 
2719 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2720 	if (!workqueue)
2721 		return -ENOMEM;
2722 
2723 	ret = mmc_register_bus();
2724 	if (ret)
2725 		goto destroy_workqueue;
2726 
2727 	ret = mmc_register_host_class();
2728 	if (ret)
2729 		goto unregister_bus;
2730 
2731 	ret = sdio_register_bus();
2732 	if (ret)
2733 		goto unregister_host_class;
2734 
2735 	return 0;
2736 
2737 unregister_host_class:
2738 	mmc_unregister_host_class();
2739 unregister_bus:
2740 	mmc_unregister_bus();
2741 destroy_workqueue:
2742 	destroy_workqueue(workqueue);
2743 
2744 	return ret;
2745 }
2746 
2747 static void __exit mmc_exit(void)
2748 {
2749 	sdio_unregister_bus();
2750 	mmc_unregister_host_class();
2751 	mmc_unregister_bus();
2752 	destroy_workqueue(workqueue);
2753 }
2754 
2755 subsys_initcall(mmc_init);
2756 module_exit(mmc_exit);
2757 
2758 MODULE_LICENSE("GPL");
2759