xref: /openbmc/linux/drivers/mmc/core/core.c (revision 83268fa6)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
55 
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57 
58 /*
59  * Enabling software CRCs on the data blocks can be a significant (30%)
60  * performance cost, and for other reasons may not always be desired.
61  * So we allow it it to be disabled.
62  */
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
65 
66 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 				     unsigned long delay)
68 {
69 	/*
70 	 * We use the system_freezable_wq, because of two reasons.
71 	 * First, it allows several works (not the same work item) to be
72 	 * executed simultaneously. Second, the queue becomes frozen when
73 	 * userspace becomes frozen during system PM.
74 	 */
75 	return queue_delayed_work(system_freezable_wq, work, delay);
76 }
77 
78 #ifdef CONFIG_FAIL_MMC_REQUEST
79 
80 /*
81  * Internal function. Inject random data errors.
82  * If mmc_data is NULL no errors are injected.
83  */
84 static void mmc_should_fail_request(struct mmc_host *host,
85 				    struct mmc_request *mrq)
86 {
87 	struct mmc_command *cmd = mrq->cmd;
88 	struct mmc_data *data = mrq->data;
89 	static const int data_errors[] = {
90 		-ETIMEDOUT,
91 		-EILSEQ,
92 		-EIO,
93 	};
94 
95 	if (!data)
96 		return;
97 
98 	if (cmd->error || data->error ||
99 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 		return;
101 
102 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104 }
105 
106 #else /* CONFIG_FAIL_MMC_REQUEST */
107 
108 static inline void mmc_should_fail_request(struct mmc_host *host,
109 					   struct mmc_request *mrq)
110 {
111 }
112 
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_complete_cmd(struct mmc_request *mrq)
116 {
117 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 		complete_all(&mrq->cmd_completion);
119 }
120 
121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
122 {
123 	if (!mrq->cap_cmd_during_tfr)
124 		return;
125 
126 	mmc_complete_cmd(mrq);
127 
128 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 		 mmc_hostname(host), mrq->cmd->opcode);
130 }
131 EXPORT_SYMBOL(mmc_command_done);
132 
133 /**
134  *	mmc_request_done - finish processing an MMC request
135  *	@host: MMC host which completed request
136  *	@mrq: MMC request which request
137  *
138  *	MMC drivers should call this function when they have completed
139  *	their processing of a request.
140  */
141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142 {
143 	struct mmc_command *cmd = mrq->cmd;
144 	int err = cmd->error;
145 
146 	/* Flag re-tuning needed on CRC errors */
147 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
149 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
150 	    (mrq->data && mrq->data->error == -EILSEQ) ||
151 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
152 		mmc_retune_needed(host);
153 
154 	if (err && cmd->retries && mmc_host_is_spi(host)) {
155 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 			cmd->retries = 0;
157 	}
158 
159 	if (host->ongoing_mrq == mrq)
160 		host->ongoing_mrq = NULL;
161 
162 	mmc_complete_cmd(mrq);
163 
164 	trace_mmc_request_done(host, mrq);
165 
166 	/*
167 	 * We list various conditions for the command to be considered
168 	 * properly done:
169 	 *
170 	 * - There was no error, OK fine then
171 	 * - We are not doing some kind of retry
172 	 * - The card was removed (...so just complete everything no matter
173 	 *   if there are errors or retries)
174 	 */
175 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
176 		mmc_should_fail_request(host, mrq);
177 
178 		if (!host->ongoing_mrq)
179 			led_trigger_event(host->led, LED_OFF);
180 
181 		if (mrq->sbc) {
182 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 				mmc_hostname(host), mrq->sbc->opcode,
184 				mrq->sbc->error,
185 				mrq->sbc->resp[0], mrq->sbc->resp[1],
186 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
187 		}
188 
189 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 			mmc_hostname(host), cmd->opcode, err,
191 			cmd->resp[0], cmd->resp[1],
192 			cmd->resp[2], cmd->resp[3]);
193 
194 		if (mrq->data) {
195 			pr_debug("%s:     %d bytes transferred: %d\n",
196 				mmc_hostname(host),
197 				mrq->data->bytes_xfered, mrq->data->error);
198 		}
199 
200 		if (mrq->stop) {
201 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
202 				mmc_hostname(host), mrq->stop->opcode,
203 				mrq->stop->error,
204 				mrq->stop->resp[0], mrq->stop->resp[1],
205 				mrq->stop->resp[2], mrq->stop->resp[3]);
206 		}
207 	}
208 	/*
209 	 * Request starter must handle retries - see
210 	 * mmc_wait_for_req_done().
211 	 */
212 	if (mrq->done)
213 		mrq->done(mrq);
214 }
215 
216 EXPORT_SYMBOL(mmc_request_done);
217 
218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219 {
220 	int err;
221 
222 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
223 	err = mmc_retune(host);
224 	if (err) {
225 		mrq->cmd->error = err;
226 		mmc_request_done(host, mrq);
227 		return;
228 	}
229 
230 	/*
231 	 * For sdio rw commands we must wait for card busy otherwise some
232 	 * sdio devices won't work properly.
233 	 * And bypass I/O abort, reset and bus suspend operations.
234 	 */
235 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
236 	    host->ops->card_busy) {
237 		int tries = 500; /* Wait aprox 500ms at maximum */
238 
239 		while (host->ops->card_busy(host) && --tries)
240 			mmc_delay(1);
241 
242 		if (tries == 0) {
243 			mrq->cmd->error = -EBUSY;
244 			mmc_request_done(host, mrq);
245 			return;
246 		}
247 	}
248 
249 	if (mrq->cap_cmd_during_tfr) {
250 		host->ongoing_mrq = mrq;
251 		/*
252 		 * Retry path could come through here without having waiting on
253 		 * cmd_completion, so ensure it is reinitialised.
254 		 */
255 		reinit_completion(&mrq->cmd_completion);
256 	}
257 
258 	trace_mmc_request_start(host, mrq);
259 
260 	if (host->cqe_on)
261 		host->cqe_ops->cqe_off(host);
262 
263 	host->ops->request(host, mrq);
264 }
265 
266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 			     bool cqe)
268 {
269 	if (mrq->sbc) {
270 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 			 mmc_hostname(host), mrq->sbc->opcode,
272 			 mrq->sbc->arg, mrq->sbc->flags);
273 	}
274 
275 	if (mrq->cmd) {
276 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 			 mmc_hostname(host), cqe ? "CQE direct " : "",
278 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 	} else if (cqe) {
280 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 	}
283 
284 	if (mrq->data) {
285 		pr_debug("%s:     blksz %d blocks %d flags %08x "
286 			"tsac %d ms nsac %d\n",
287 			mmc_hostname(host), mrq->data->blksz,
288 			mrq->data->blocks, mrq->data->flags,
289 			mrq->data->timeout_ns / 1000000,
290 			mrq->data->timeout_clks);
291 	}
292 
293 	if (mrq->stop) {
294 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
295 			 mmc_hostname(host), mrq->stop->opcode,
296 			 mrq->stop->arg, mrq->stop->flags);
297 	}
298 }
299 
300 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
301 {
302 	unsigned int i, sz = 0;
303 	struct scatterlist *sg;
304 
305 	if (mrq->cmd) {
306 		mrq->cmd->error = 0;
307 		mrq->cmd->mrq = mrq;
308 		mrq->cmd->data = mrq->data;
309 	}
310 	if (mrq->sbc) {
311 		mrq->sbc->error = 0;
312 		mrq->sbc->mrq = mrq;
313 	}
314 	if (mrq->data) {
315 		if (mrq->data->blksz > host->max_blk_size ||
316 		    mrq->data->blocks > host->max_blk_count ||
317 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
318 			return -EINVAL;
319 
320 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 			sz += sg->length;
322 		if (sz != mrq->data->blocks * mrq->data->blksz)
323 			return -EINVAL;
324 
325 		mrq->data->error = 0;
326 		mrq->data->mrq = mrq;
327 		if (mrq->stop) {
328 			mrq->data->stop = mrq->stop;
329 			mrq->stop->error = 0;
330 			mrq->stop->mrq = mrq;
331 		}
332 	}
333 
334 	return 0;
335 }
336 
337 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
338 {
339 	int err;
340 
341 	init_completion(&mrq->cmd_completion);
342 
343 	mmc_retune_hold(host);
344 
345 	if (mmc_card_removed(host->card))
346 		return -ENOMEDIUM;
347 
348 	mmc_mrq_pr_debug(host, mrq, false);
349 
350 	WARN_ON(!host->claimed);
351 
352 	err = mmc_mrq_prep(host, mrq);
353 	if (err)
354 		return err;
355 
356 	led_trigger_event(host->led, LED_FULL);
357 	__mmc_start_request(host, mrq);
358 
359 	return 0;
360 }
361 EXPORT_SYMBOL(mmc_start_request);
362 
363 static void mmc_wait_done(struct mmc_request *mrq)
364 {
365 	complete(&mrq->completion);
366 }
367 
368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
369 {
370 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
371 
372 	/*
373 	 * If there is an ongoing transfer, wait for the command line to become
374 	 * available.
375 	 */
376 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
377 		wait_for_completion(&ongoing_mrq->cmd_completion);
378 }
379 
380 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
381 {
382 	int err;
383 
384 	mmc_wait_ongoing_tfr_cmd(host);
385 
386 	init_completion(&mrq->completion);
387 	mrq->done = mmc_wait_done;
388 
389 	err = mmc_start_request(host, mrq);
390 	if (err) {
391 		mrq->cmd->error = err;
392 		mmc_complete_cmd(mrq);
393 		complete(&mrq->completion);
394 	}
395 
396 	return err;
397 }
398 
399 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
400 {
401 	struct mmc_command *cmd;
402 
403 	while (1) {
404 		wait_for_completion(&mrq->completion);
405 
406 		cmd = mrq->cmd;
407 
408 		/*
409 		 * If host has timed out waiting for the sanitize
410 		 * to complete, card might be still in programming state
411 		 * so let's try to bring the card out of programming
412 		 * state.
413 		 */
414 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
415 			if (!mmc_interrupt_hpi(host->card)) {
416 				pr_warn("%s: %s: Interrupted sanitize\n",
417 					mmc_hostname(host), __func__);
418 				cmd->error = 0;
419 				break;
420 			} else {
421 				pr_err("%s: %s: Failed to interrupt sanitize\n",
422 				       mmc_hostname(host), __func__);
423 			}
424 		}
425 		if (!cmd->error || !cmd->retries ||
426 		    mmc_card_removed(host->card))
427 			break;
428 
429 		mmc_retune_recheck(host);
430 
431 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 			 mmc_hostname(host), cmd->opcode, cmd->error);
433 		cmd->retries--;
434 		cmd->error = 0;
435 		__mmc_start_request(host, mrq);
436 	}
437 
438 	mmc_retune_release(host);
439 }
440 EXPORT_SYMBOL(mmc_wait_for_req_done);
441 
442 /*
443  * mmc_cqe_start_req - Start a CQE request.
444  * @host: MMC host to start the request
445  * @mrq: request to start
446  *
447  * Start the request, re-tuning if needed and it is possible. Returns an error
448  * code if the request fails to start or -EBUSY if CQE is busy.
449  */
450 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
451 {
452 	int err;
453 
454 	/*
455 	 * CQE cannot process re-tuning commands. Caller must hold retuning
456 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
457 	 * active requests i.e. this is the first.  Note, re-tuning will call
458 	 * ->cqe_off().
459 	 */
460 	err = mmc_retune(host);
461 	if (err)
462 		goto out_err;
463 
464 	mrq->host = host;
465 
466 	mmc_mrq_pr_debug(host, mrq, true);
467 
468 	err = mmc_mrq_prep(host, mrq);
469 	if (err)
470 		goto out_err;
471 
472 	err = host->cqe_ops->cqe_request(host, mrq);
473 	if (err)
474 		goto out_err;
475 
476 	trace_mmc_request_start(host, mrq);
477 
478 	return 0;
479 
480 out_err:
481 	if (mrq->cmd) {
482 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 			 mmc_hostname(host), mrq->cmd->opcode, err);
484 	} else {
485 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 			 mmc_hostname(host), mrq->tag, err);
487 	}
488 	return err;
489 }
490 EXPORT_SYMBOL(mmc_cqe_start_req);
491 
492 /**
493  *	mmc_cqe_request_done - CQE has finished processing an MMC request
494  *	@host: MMC host which completed request
495  *	@mrq: MMC request which completed
496  *
497  *	CQE drivers should call this function when they have completed
498  *	their processing of a request.
499  */
500 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
501 {
502 	mmc_should_fail_request(host, mrq);
503 
504 	/* Flag re-tuning needed on CRC errors */
505 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
506 	    (mrq->data && mrq->data->error == -EILSEQ))
507 		mmc_retune_needed(host);
508 
509 	trace_mmc_request_done(host, mrq);
510 
511 	if (mrq->cmd) {
512 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
514 	} else {
515 		pr_debug("%s: CQE transfer done tag %d\n",
516 			 mmc_hostname(host), mrq->tag);
517 	}
518 
519 	if (mrq->data) {
520 		pr_debug("%s:     %d bytes transferred: %d\n",
521 			 mmc_hostname(host),
522 			 mrq->data->bytes_xfered, mrq->data->error);
523 	}
524 
525 	mrq->done(mrq);
526 }
527 EXPORT_SYMBOL(mmc_cqe_request_done);
528 
529 /**
530  *	mmc_cqe_post_req - CQE post process of a completed MMC request
531  *	@host: MMC host
532  *	@mrq: MMC request to be processed
533  */
534 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
535 {
536 	if (host->cqe_ops->cqe_post_req)
537 		host->cqe_ops->cqe_post_req(host, mrq);
538 }
539 EXPORT_SYMBOL(mmc_cqe_post_req);
540 
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT	1000
543 
544 /*
545  * mmc_cqe_recovery - Recover from CQE errors.
546  * @host: MMC host to recover
547  *
548  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549  * in eMMC, and discarding the queue in CQE. CQE must call
550  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551  * fails to discard its queue.
552  */
553 int mmc_cqe_recovery(struct mmc_host *host)
554 {
555 	struct mmc_command cmd;
556 	int err;
557 
558 	mmc_retune_hold_now(host);
559 
560 	/*
561 	 * Recovery is expected seldom, if at all, but it reduces performance,
562 	 * so make sure it is not completely silent.
563 	 */
564 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
565 
566 	host->cqe_ops->cqe_recovery_start(host);
567 
568 	memset(&cmd, 0, sizeof(cmd));
569 	cmd.opcode       = MMC_STOP_TRANSMISSION,
570 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
571 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
572 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
573 	mmc_wait_for_cmd(host, &cmd, 0);
574 
575 	memset(&cmd, 0, sizeof(cmd));
576 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
577 	cmd.arg          = 1; /* Discard entire queue */
578 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
579 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
580 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
581 	err = mmc_wait_for_cmd(host, &cmd, 0);
582 
583 	host->cqe_ops->cqe_recovery_finish(host);
584 
585 	mmc_retune_release(host);
586 
587 	return err;
588 }
589 EXPORT_SYMBOL(mmc_cqe_recovery);
590 
591 /**
592  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
593  *	@host: MMC host
594  *	@mrq: MMC request
595  *
596  *	mmc_is_req_done() is used with requests that have
597  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598  *	starting a request and before waiting for it to complete. That is,
599  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600  *	and before mmc_wait_for_req_done(). If it is called at other times the
601  *	result is not meaningful.
602  */
603 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 	return completion_done(&mrq->completion);
606 }
607 EXPORT_SYMBOL(mmc_is_req_done);
608 
609 /**
610  *	mmc_wait_for_req - start a request and wait for completion
611  *	@host: MMC host to start command
612  *	@mrq: MMC request to start
613  *
614  *	Start a new MMC custom command request for a host, and wait
615  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
616  *	requests, the transfer is ongoing and the caller can issue further
617  *	commands that do not use the data lines, and then wait by calling
618  *	mmc_wait_for_req_done().
619  *	Does not attempt to parse the response.
620  */
621 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
622 {
623 	__mmc_start_req(host, mrq);
624 
625 	if (!mrq->cap_cmd_during_tfr)
626 		mmc_wait_for_req_done(host, mrq);
627 }
628 EXPORT_SYMBOL(mmc_wait_for_req);
629 
630 /**
631  *	mmc_wait_for_cmd - start a command and wait for completion
632  *	@host: MMC host to start command
633  *	@cmd: MMC command to start
634  *	@retries: maximum number of retries
635  *
636  *	Start a new MMC command for a host, and wait for the command
637  *	to complete.  Return any error that occurred while the command
638  *	was executing.  Do not attempt to parse the response.
639  */
640 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
641 {
642 	struct mmc_request mrq = {};
643 
644 	WARN_ON(!host->claimed);
645 
646 	memset(cmd->resp, 0, sizeof(cmd->resp));
647 	cmd->retries = retries;
648 
649 	mrq.cmd = cmd;
650 	cmd->data = NULL;
651 
652 	mmc_wait_for_req(host, &mrq);
653 
654 	return cmd->error;
655 }
656 
657 EXPORT_SYMBOL(mmc_wait_for_cmd);
658 
659 /**
660  *	mmc_set_data_timeout - set the timeout for a data command
661  *	@data: data phase for command
662  *	@card: the MMC card associated with the data transfer
663  *
664  *	Computes the data timeout parameters according to the
665  *	correct algorithm given the card type.
666  */
667 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
668 {
669 	unsigned int mult;
670 
671 	/*
672 	 * SDIO cards only define an upper 1 s limit on access.
673 	 */
674 	if (mmc_card_sdio(card)) {
675 		data->timeout_ns = 1000000000;
676 		data->timeout_clks = 0;
677 		return;
678 	}
679 
680 	/*
681 	 * SD cards use a 100 multiplier rather than 10
682 	 */
683 	mult = mmc_card_sd(card) ? 100 : 10;
684 
685 	/*
686 	 * Scale up the multiplier (and therefore the timeout) by
687 	 * the r2w factor for writes.
688 	 */
689 	if (data->flags & MMC_DATA_WRITE)
690 		mult <<= card->csd.r2w_factor;
691 
692 	data->timeout_ns = card->csd.taac_ns * mult;
693 	data->timeout_clks = card->csd.taac_clks * mult;
694 
695 	/*
696 	 * SD cards also have an upper limit on the timeout.
697 	 */
698 	if (mmc_card_sd(card)) {
699 		unsigned int timeout_us, limit_us;
700 
701 		timeout_us = data->timeout_ns / 1000;
702 		if (card->host->ios.clock)
703 			timeout_us += data->timeout_clks * 1000 /
704 				(card->host->ios.clock / 1000);
705 
706 		if (data->flags & MMC_DATA_WRITE)
707 			/*
708 			 * The MMC spec "It is strongly recommended
709 			 * for hosts to implement more than 500ms
710 			 * timeout value even if the card indicates
711 			 * the 250ms maximum busy length."  Even the
712 			 * previous value of 300ms is known to be
713 			 * insufficient for some cards.
714 			 */
715 			limit_us = 3000000;
716 		else
717 			limit_us = 100000;
718 
719 		/*
720 		 * SDHC cards always use these fixed values.
721 		 */
722 		if (timeout_us > limit_us) {
723 			data->timeout_ns = limit_us * 1000;
724 			data->timeout_clks = 0;
725 		}
726 
727 		/* assign limit value if invalid */
728 		if (timeout_us == 0)
729 			data->timeout_ns = limit_us * 1000;
730 	}
731 
732 	/*
733 	 * Some cards require longer data read timeout than indicated in CSD.
734 	 * Address this by setting the read timeout to a "reasonably high"
735 	 * value. For the cards tested, 600ms has proven enough. If necessary,
736 	 * this value can be increased if other problematic cards require this.
737 	 */
738 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
739 		data->timeout_ns = 600000000;
740 		data->timeout_clks = 0;
741 	}
742 
743 	/*
744 	 * Some cards need very high timeouts if driven in SPI mode.
745 	 * The worst observed timeout was 900ms after writing a
746 	 * continuous stream of data until the internal logic
747 	 * overflowed.
748 	 */
749 	if (mmc_host_is_spi(card->host)) {
750 		if (data->flags & MMC_DATA_WRITE) {
751 			if (data->timeout_ns < 1000000000)
752 				data->timeout_ns = 1000000000;	/* 1s */
753 		} else {
754 			if (data->timeout_ns < 100000000)
755 				data->timeout_ns =  100000000;	/* 100ms */
756 		}
757 	}
758 }
759 EXPORT_SYMBOL(mmc_set_data_timeout);
760 
761 /**
762  *	mmc_align_data_size - pads a transfer size to a more optimal value
763  *	@card: the MMC card associated with the data transfer
764  *	@sz: original transfer size
765  *
766  *	Pads the original data size with a number of extra bytes in
767  *	order to avoid controller bugs and/or performance hits
768  *	(e.g. some controllers revert to PIO for certain sizes).
769  *
770  *	Returns the improved size, which might be unmodified.
771  *
772  *	Note that this function is only relevant when issuing a
773  *	single scatter gather entry.
774  */
775 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
776 {
777 	/*
778 	 * FIXME: We don't have a system for the controller to tell
779 	 * the core about its problems yet, so for now we just 32-bit
780 	 * align the size.
781 	 */
782 	sz = ((sz + 3) / 4) * 4;
783 
784 	return sz;
785 }
786 EXPORT_SYMBOL(mmc_align_data_size);
787 
788 /*
789  * Allow claiming an already claimed host if the context is the same or there is
790  * no context but the task is the same.
791  */
792 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
793 				   struct task_struct *task)
794 {
795 	return host->claimer == ctx ||
796 	       (!ctx && task && host->claimer->task == task);
797 }
798 
799 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
800 				       struct mmc_ctx *ctx,
801 				       struct task_struct *task)
802 {
803 	if (!host->claimer) {
804 		if (ctx)
805 			host->claimer = ctx;
806 		else
807 			host->claimer = &host->default_ctx;
808 	}
809 	if (task)
810 		host->claimer->task = task;
811 }
812 
813 /**
814  *	__mmc_claim_host - exclusively claim a host
815  *	@host: mmc host to claim
816  *	@ctx: context that claims the host or NULL in which case the default
817  *	context will be used
818  *	@abort: whether or not the operation should be aborted
819  *
820  *	Claim a host for a set of operations.  If @abort is non null and
821  *	dereference a non-zero value then this will return prematurely with
822  *	that non-zero value without acquiring the lock.  Returns zero
823  *	with the lock held otherwise.
824  */
825 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
826 		     atomic_t *abort)
827 {
828 	struct task_struct *task = ctx ? NULL : current;
829 	DECLARE_WAITQUEUE(wait, current);
830 	unsigned long flags;
831 	int stop;
832 	bool pm = false;
833 
834 	might_sleep();
835 
836 	add_wait_queue(&host->wq, &wait);
837 	spin_lock_irqsave(&host->lock, flags);
838 	while (1) {
839 		set_current_state(TASK_UNINTERRUPTIBLE);
840 		stop = abort ? atomic_read(abort) : 0;
841 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
842 			break;
843 		spin_unlock_irqrestore(&host->lock, flags);
844 		schedule();
845 		spin_lock_irqsave(&host->lock, flags);
846 	}
847 	set_current_state(TASK_RUNNING);
848 	if (!stop) {
849 		host->claimed = 1;
850 		mmc_ctx_set_claimer(host, ctx, task);
851 		host->claim_cnt += 1;
852 		if (host->claim_cnt == 1)
853 			pm = true;
854 	} else
855 		wake_up(&host->wq);
856 	spin_unlock_irqrestore(&host->lock, flags);
857 	remove_wait_queue(&host->wq, &wait);
858 
859 	if (pm)
860 		pm_runtime_get_sync(mmc_dev(host));
861 
862 	return stop;
863 }
864 EXPORT_SYMBOL(__mmc_claim_host);
865 
866 /**
867  *	mmc_release_host - release a host
868  *	@host: mmc host to release
869  *
870  *	Release a MMC host, allowing others to claim the host
871  *	for their operations.
872  */
873 void mmc_release_host(struct mmc_host *host)
874 {
875 	unsigned long flags;
876 
877 	WARN_ON(!host->claimed);
878 
879 	spin_lock_irqsave(&host->lock, flags);
880 	if (--host->claim_cnt) {
881 		/* Release for nested claim */
882 		spin_unlock_irqrestore(&host->lock, flags);
883 	} else {
884 		host->claimed = 0;
885 		host->claimer->task = NULL;
886 		host->claimer = NULL;
887 		spin_unlock_irqrestore(&host->lock, flags);
888 		wake_up(&host->wq);
889 		pm_runtime_mark_last_busy(mmc_dev(host));
890 		pm_runtime_put_autosuspend(mmc_dev(host));
891 	}
892 }
893 EXPORT_SYMBOL(mmc_release_host);
894 
895 /*
896  * This is a helper function, which fetches a runtime pm reference for the
897  * card device and also claims the host.
898  */
899 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
900 {
901 	pm_runtime_get_sync(&card->dev);
902 	__mmc_claim_host(card->host, ctx, NULL);
903 }
904 EXPORT_SYMBOL(mmc_get_card);
905 
906 /*
907  * This is a helper function, which releases the host and drops the runtime
908  * pm reference for the card device.
909  */
910 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
911 {
912 	struct mmc_host *host = card->host;
913 
914 	WARN_ON(ctx && host->claimer != ctx);
915 
916 	mmc_release_host(host);
917 	pm_runtime_mark_last_busy(&card->dev);
918 	pm_runtime_put_autosuspend(&card->dev);
919 }
920 EXPORT_SYMBOL(mmc_put_card);
921 
922 /*
923  * Internal function that does the actual ios call to the host driver,
924  * optionally printing some debug output.
925  */
926 static inline void mmc_set_ios(struct mmc_host *host)
927 {
928 	struct mmc_ios *ios = &host->ios;
929 
930 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
931 		"width %u timing %u\n",
932 		 mmc_hostname(host), ios->clock, ios->bus_mode,
933 		 ios->power_mode, ios->chip_select, ios->vdd,
934 		 1 << ios->bus_width, ios->timing);
935 
936 	host->ops->set_ios(host, ios);
937 }
938 
939 /*
940  * Control chip select pin on a host.
941  */
942 void mmc_set_chip_select(struct mmc_host *host, int mode)
943 {
944 	host->ios.chip_select = mode;
945 	mmc_set_ios(host);
946 }
947 
948 /*
949  * Sets the host clock to the highest possible frequency that
950  * is below "hz".
951  */
952 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
953 {
954 	WARN_ON(hz && hz < host->f_min);
955 
956 	if (hz > host->f_max)
957 		hz = host->f_max;
958 
959 	host->ios.clock = hz;
960 	mmc_set_ios(host);
961 }
962 
963 int mmc_execute_tuning(struct mmc_card *card)
964 {
965 	struct mmc_host *host = card->host;
966 	u32 opcode;
967 	int err;
968 
969 	if (!host->ops->execute_tuning)
970 		return 0;
971 
972 	if (host->cqe_on)
973 		host->cqe_ops->cqe_off(host);
974 
975 	if (mmc_card_mmc(card))
976 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
977 	else
978 		opcode = MMC_SEND_TUNING_BLOCK;
979 
980 	err = host->ops->execute_tuning(host, opcode);
981 
982 	if (err)
983 		pr_err("%s: tuning execution failed: %d\n",
984 			mmc_hostname(host), err);
985 	else
986 		mmc_retune_enable(host);
987 
988 	return err;
989 }
990 
991 /*
992  * Change the bus mode (open drain/push-pull) of a host.
993  */
994 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
995 {
996 	host->ios.bus_mode = mode;
997 	mmc_set_ios(host);
998 }
999 
1000 /*
1001  * Change data bus width of a host.
1002  */
1003 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1004 {
1005 	host->ios.bus_width = width;
1006 	mmc_set_ios(host);
1007 }
1008 
1009 /*
1010  * Set initial state after a power cycle or a hw_reset.
1011  */
1012 void mmc_set_initial_state(struct mmc_host *host)
1013 {
1014 	if (host->cqe_on)
1015 		host->cqe_ops->cqe_off(host);
1016 
1017 	mmc_retune_disable(host);
1018 
1019 	if (mmc_host_is_spi(host))
1020 		host->ios.chip_select = MMC_CS_HIGH;
1021 	else
1022 		host->ios.chip_select = MMC_CS_DONTCARE;
1023 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1024 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1025 	host->ios.timing = MMC_TIMING_LEGACY;
1026 	host->ios.drv_type = 0;
1027 	host->ios.enhanced_strobe = false;
1028 
1029 	/*
1030 	 * Make sure we are in non-enhanced strobe mode before we
1031 	 * actually enable it in ext_csd.
1032 	 */
1033 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1034 	     host->ops->hs400_enhanced_strobe)
1035 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1036 
1037 	mmc_set_ios(host);
1038 }
1039 
1040 /**
1041  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1042  * @vdd:	voltage (mV)
1043  * @low_bits:	prefer low bits in boundary cases
1044  *
1045  * This function returns the OCR bit number according to the provided @vdd
1046  * value. If conversion is not possible a negative errno value returned.
1047  *
1048  * Depending on the @low_bits flag the function prefers low or high OCR bits
1049  * on boundary voltages. For example,
1050  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1051  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1052  *
1053  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1054  */
1055 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1056 {
1057 	const int max_bit = ilog2(MMC_VDD_35_36);
1058 	int bit;
1059 
1060 	if (vdd < 1650 || vdd > 3600)
1061 		return -EINVAL;
1062 
1063 	if (vdd >= 1650 && vdd <= 1950)
1064 		return ilog2(MMC_VDD_165_195);
1065 
1066 	if (low_bits)
1067 		vdd -= 1;
1068 
1069 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1070 	bit = (vdd - 2000) / 100 + 8;
1071 	if (bit > max_bit)
1072 		return max_bit;
1073 	return bit;
1074 }
1075 
1076 /**
1077  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1078  * @vdd_min:	minimum voltage value (mV)
1079  * @vdd_max:	maximum voltage value (mV)
1080  *
1081  * This function returns the OCR mask bits according to the provided @vdd_min
1082  * and @vdd_max values. If conversion is not possible the function returns 0.
1083  *
1084  * Notes wrt boundary cases:
1085  * This function sets the OCR bits for all boundary voltages, for example
1086  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1087  * MMC_VDD_34_35 mask.
1088  */
1089 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1090 {
1091 	u32 mask = 0;
1092 
1093 	if (vdd_max < vdd_min)
1094 		return 0;
1095 
1096 	/* Prefer high bits for the boundary vdd_max values. */
1097 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1098 	if (vdd_max < 0)
1099 		return 0;
1100 
1101 	/* Prefer low bits for the boundary vdd_min values. */
1102 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1103 	if (vdd_min < 0)
1104 		return 0;
1105 
1106 	/* Fill the mask, from max bit to min bit. */
1107 	while (vdd_max >= vdd_min)
1108 		mask |= 1 << vdd_max--;
1109 
1110 	return mask;
1111 }
1112 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1113 
1114 #ifdef CONFIG_OF
1115 
1116 /**
1117  * mmc_of_parse_voltage - return mask of supported voltages
1118  * @np: The device node need to be parsed.
1119  * @mask: mask of voltages available for MMC/SD/SDIO
1120  *
1121  * Parse the "voltage-ranges" DT property, returning zero if it is not
1122  * found, negative errno if the voltage-range specification is invalid,
1123  * or one if the voltage-range is specified and successfully parsed.
1124  */
1125 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1126 {
1127 	const u32 *voltage_ranges;
1128 	int num_ranges, i;
1129 
1130 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1131 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1132 	if (!voltage_ranges) {
1133 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1134 		return 0;
1135 	}
1136 	if (!num_ranges) {
1137 		pr_err("%pOF: voltage-ranges empty\n", np);
1138 		return -EINVAL;
1139 	}
1140 
1141 	for (i = 0; i < num_ranges; i++) {
1142 		const int j = i * 2;
1143 		u32 ocr_mask;
1144 
1145 		ocr_mask = mmc_vddrange_to_ocrmask(
1146 				be32_to_cpu(voltage_ranges[j]),
1147 				be32_to_cpu(voltage_ranges[j + 1]));
1148 		if (!ocr_mask) {
1149 			pr_err("%pOF: voltage-range #%d is invalid\n",
1150 				np, i);
1151 			return -EINVAL;
1152 		}
1153 		*mask |= ocr_mask;
1154 	}
1155 
1156 	return 1;
1157 }
1158 EXPORT_SYMBOL(mmc_of_parse_voltage);
1159 
1160 #endif /* CONFIG_OF */
1161 
1162 static int mmc_of_get_func_num(struct device_node *node)
1163 {
1164 	u32 reg;
1165 	int ret;
1166 
1167 	ret = of_property_read_u32(node, "reg", &reg);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	return reg;
1172 }
1173 
1174 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1175 		unsigned func_num)
1176 {
1177 	struct device_node *node;
1178 
1179 	if (!host->parent || !host->parent->of_node)
1180 		return NULL;
1181 
1182 	for_each_child_of_node(host->parent->of_node, node) {
1183 		if (mmc_of_get_func_num(node) == func_num)
1184 			return node;
1185 	}
1186 
1187 	return NULL;
1188 }
1189 
1190 #ifdef CONFIG_REGULATOR
1191 
1192 /**
1193  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1194  * @vdd_bit:	OCR bit number
1195  * @min_uV:	minimum voltage value (mV)
1196  * @max_uV:	maximum voltage value (mV)
1197  *
1198  * This function returns the voltage range according to the provided OCR
1199  * bit number. If conversion is not possible a negative errno value returned.
1200  */
1201 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1202 {
1203 	int		tmp;
1204 
1205 	if (!vdd_bit)
1206 		return -EINVAL;
1207 
1208 	/*
1209 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1210 	 * bits this regulator doesn't quite support ... don't
1211 	 * be too picky, most cards and regulators are OK with
1212 	 * a 0.1V range goof (it's a small error percentage).
1213 	 */
1214 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1215 	if (tmp == 0) {
1216 		*min_uV = 1650 * 1000;
1217 		*max_uV = 1950 * 1000;
1218 	} else {
1219 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1220 		*max_uV = *min_uV + 100 * 1000;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * mmc_regulator_get_ocrmask - return mask of supported voltages
1228  * @supply: regulator to use
1229  *
1230  * This returns either a negative errno, or a mask of voltages that
1231  * can be provided to MMC/SD/SDIO devices using the specified voltage
1232  * regulator.  This would normally be called before registering the
1233  * MMC host adapter.
1234  */
1235 int mmc_regulator_get_ocrmask(struct regulator *supply)
1236 {
1237 	int			result = 0;
1238 	int			count;
1239 	int			i;
1240 	int			vdd_uV;
1241 	int			vdd_mV;
1242 
1243 	count = regulator_count_voltages(supply);
1244 	if (count < 0)
1245 		return count;
1246 
1247 	for (i = 0; i < count; i++) {
1248 		vdd_uV = regulator_list_voltage(supply, i);
1249 		if (vdd_uV <= 0)
1250 			continue;
1251 
1252 		vdd_mV = vdd_uV / 1000;
1253 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1254 	}
1255 
1256 	if (!result) {
1257 		vdd_uV = regulator_get_voltage(supply);
1258 		if (vdd_uV <= 0)
1259 			return vdd_uV;
1260 
1261 		vdd_mV = vdd_uV / 1000;
1262 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1263 	}
1264 
1265 	return result;
1266 }
1267 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1268 
1269 /**
1270  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1271  * @mmc: the host to regulate
1272  * @supply: regulator to use
1273  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1274  *
1275  * Returns zero on success, else negative errno.
1276  *
1277  * MMC host drivers may use this to enable or disable a regulator using
1278  * a particular supply voltage.  This would normally be called from the
1279  * set_ios() method.
1280  */
1281 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1282 			struct regulator *supply,
1283 			unsigned short vdd_bit)
1284 {
1285 	int			result = 0;
1286 	int			min_uV, max_uV;
1287 
1288 	if (vdd_bit) {
1289 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1290 
1291 		result = regulator_set_voltage(supply, min_uV, max_uV);
1292 		if (result == 0 && !mmc->regulator_enabled) {
1293 			result = regulator_enable(supply);
1294 			if (!result)
1295 				mmc->regulator_enabled = true;
1296 		}
1297 	} else if (mmc->regulator_enabled) {
1298 		result = regulator_disable(supply);
1299 		if (result == 0)
1300 			mmc->regulator_enabled = false;
1301 	}
1302 
1303 	if (result)
1304 		dev_err(mmc_dev(mmc),
1305 			"could not set regulator OCR (%d)\n", result);
1306 	return result;
1307 }
1308 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1309 
1310 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1311 						  int min_uV, int target_uV,
1312 						  int max_uV)
1313 {
1314 	/*
1315 	 * Check if supported first to avoid errors since we may try several
1316 	 * signal levels during power up and don't want to show errors.
1317 	 */
1318 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1319 		return -EINVAL;
1320 
1321 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1322 					     max_uV);
1323 }
1324 
1325 /**
1326  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1327  *
1328  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1329  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1330  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1331  * SD card spec also define VQMMC in terms of VMMC.
1332  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1333  *
1334  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1335  * requested voltage.  This is definitely a good idea for UHS where there's a
1336  * separate regulator on the card that's trying to make 1.8V and it's best if
1337  * we match.
1338  *
1339  * This function is expected to be used by a controller's
1340  * start_signal_voltage_switch() function.
1341  */
1342 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1343 {
1344 	struct device *dev = mmc_dev(mmc);
1345 	int ret, volt, min_uV, max_uV;
1346 
1347 	/* If no vqmmc supply then we can't change the voltage */
1348 	if (IS_ERR(mmc->supply.vqmmc))
1349 		return -EINVAL;
1350 
1351 	switch (ios->signal_voltage) {
1352 	case MMC_SIGNAL_VOLTAGE_120:
1353 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1354 						1100000, 1200000, 1300000);
1355 	case MMC_SIGNAL_VOLTAGE_180:
1356 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 						1700000, 1800000, 1950000);
1358 	case MMC_SIGNAL_VOLTAGE_330:
1359 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1360 		if (ret < 0)
1361 			return ret;
1362 
1363 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1364 			__func__, volt, max_uV);
1365 
1366 		min_uV = max(volt - 300000, 2700000);
1367 		max_uV = min(max_uV + 200000, 3600000);
1368 
1369 		/*
1370 		 * Due to a limitation in the current implementation of
1371 		 * regulator_set_voltage_triplet() which is taking the lowest
1372 		 * voltage possible if below the target, search for a suitable
1373 		 * voltage in two steps and try to stay close to vmmc
1374 		 * with a 0.3V tolerance at first.
1375 		 */
1376 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1377 						min_uV, volt, max_uV))
1378 			return 0;
1379 
1380 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1381 						2700000, volt, 3600000);
1382 	default:
1383 		return -EINVAL;
1384 	}
1385 }
1386 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1387 
1388 #endif /* CONFIG_REGULATOR */
1389 
1390 /**
1391  * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1392  * @mmc: the host to regulate
1393  *
1394  * Returns 0 or errno. errno should be handled, it is either a critical error
1395  * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1396  * regulators have been found because they all are optional. If you require
1397  * certain regulators, you need to check separately in your driver if they got
1398  * populated after calling this function.
1399  */
1400 int mmc_regulator_get_supply(struct mmc_host *mmc)
1401 {
1402 	struct device *dev = mmc_dev(mmc);
1403 	int ret;
1404 
1405 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1406 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1407 
1408 	if (IS_ERR(mmc->supply.vmmc)) {
1409 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1410 			return -EPROBE_DEFER;
1411 		dev_dbg(dev, "No vmmc regulator found\n");
1412 	} else {
1413 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1414 		if (ret > 0)
1415 			mmc->ocr_avail = ret;
1416 		else
1417 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1418 	}
1419 
1420 	if (IS_ERR(mmc->supply.vqmmc)) {
1421 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1422 			return -EPROBE_DEFER;
1423 		dev_dbg(dev, "No vqmmc regulator found\n");
1424 	}
1425 
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1429 
1430 /*
1431  * Mask off any voltages we don't support and select
1432  * the lowest voltage
1433  */
1434 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1435 {
1436 	int bit;
1437 
1438 	/*
1439 	 * Sanity check the voltages that the card claims to
1440 	 * support.
1441 	 */
1442 	if (ocr & 0x7F) {
1443 		dev_warn(mmc_dev(host),
1444 		"card claims to support voltages below defined range\n");
1445 		ocr &= ~0x7F;
1446 	}
1447 
1448 	ocr &= host->ocr_avail;
1449 	if (!ocr) {
1450 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1451 		return 0;
1452 	}
1453 
1454 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1455 		bit = ffs(ocr) - 1;
1456 		ocr &= 3 << bit;
1457 		mmc_power_cycle(host, ocr);
1458 	} else {
1459 		bit = fls(ocr) - 1;
1460 		ocr &= 3 << bit;
1461 		if (bit != host->ios.vdd)
1462 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1463 	}
1464 
1465 	return ocr;
1466 }
1467 
1468 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1469 {
1470 	int err = 0;
1471 	int old_signal_voltage = host->ios.signal_voltage;
1472 
1473 	host->ios.signal_voltage = signal_voltage;
1474 	if (host->ops->start_signal_voltage_switch)
1475 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1476 
1477 	if (err)
1478 		host->ios.signal_voltage = old_signal_voltage;
1479 
1480 	return err;
1481 
1482 }
1483 
1484 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1485 {
1486 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1487 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1488 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1489 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1490 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1491 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1492 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1493 }
1494 
1495 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1496 {
1497 	u32 clock;
1498 
1499 	/*
1500 	 * During a signal voltage level switch, the clock must be gated
1501 	 * for 5 ms according to the SD spec
1502 	 */
1503 	clock = host->ios.clock;
1504 	host->ios.clock = 0;
1505 	mmc_set_ios(host);
1506 
1507 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1508 		return -EAGAIN;
1509 
1510 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1511 	mmc_delay(10);
1512 	host->ios.clock = clock;
1513 	mmc_set_ios(host);
1514 
1515 	return 0;
1516 }
1517 
1518 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1519 {
1520 	struct mmc_command cmd = {};
1521 	int err = 0;
1522 
1523 	/*
1524 	 * If we cannot switch voltages, return failure so the caller
1525 	 * can continue without UHS mode
1526 	 */
1527 	if (!host->ops->start_signal_voltage_switch)
1528 		return -EPERM;
1529 	if (!host->ops->card_busy)
1530 		pr_warn("%s: cannot verify signal voltage switch\n",
1531 			mmc_hostname(host));
1532 
1533 	cmd.opcode = SD_SWITCH_VOLTAGE;
1534 	cmd.arg = 0;
1535 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1536 
1537 	err = mmc_wait_for_cmd(host, &cmd, 0);
1538 	if (err)
1539 		return err;
1540 
1541 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1542 		return -EIO;
1543 
1544 	/*
1545 	 * The card should drive cmd and dat[0:3] low immediately
1546 	 * after the response of cmd11, but wait 1 ms to be sure
1547 	 */
1548 	mmc_delay(1);
1549 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1550 		err = -EAGAIN;
1551 		goto power_cycle;
1552 	}
1553 
1554 	if (mmc_host_set_uhs_voltage(host)) {
1555 		/*
1556 		 * Voltages may not have been switched, but we've already
1557 		 * sent CMD11, so a power cycle is required anyway
1558 		 */
1559 		err = -EAGAIN;
1560 		goto power_cycle;
1561 	}
1562 
1563 	/* Wait for at least 1 ms according to spec */
1564 	mmc_delay(1);
1565 
1566 	/*
1567 	 * Failure to switch is indicated by the card holding
1568 	 * dat[0:3] low
1569 	 */
1570 	if (host->ops->card_busy && host->ops->card_busy(host))
1571 		err = -EAGAIN;
1572 
1573 power_cycle:
1574 	if (err) {
1575 		pr_debug("%s: Signal voltage switch failed, "
1576 			"power cycling card\n", mmc_hostname(host));
1577 		mmc_power_cycle(host, ocr);
1578 	}
1579 
1580 	return err;
1581 }
1582 
1583 /*
1584  * Select timing parameters for host.
1585  */
1586 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1587 {
1588 	host->ios.timing = timing;
1589 	mmc_set_ios(host);
1590 }
1591 
1592 /*
1593  * Select appropriate driver type for host.
1594  */
1595 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1596 {
1597 	host->ios.drv_type = drv_type;
1598 	mmc_set_ios(host);
1599 }
1600 
1601 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1602 			      int card_drv_type, int *drv_type)
1603 {
1604 	struct mmc_host *host = card->host;
1605 	int host_drv_type = SD_DRIVER_TYPE_B;
1606 
1607 	*drv_type = 0;
1608 
1609 	if (!host->ops->select_drive_strength)
1610 		return 0;
1611 
1612 	/* Use SD definition of driver strength for hosts */
1613 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1614 		host_drv_type |= SD_DRIVER_TYPE_A;
1615 
1616 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1617 		host_drv_type |= SD_DRIVER_TYPE_C;
1618 
1619 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1620 		host_drv_type |= SD_DRIVER_TYPE_D;
1621 
1622 	/*
1623 	 * The drive strength that the hardware can support
1624 	 * depends on the board design.  Pass the appropriate
1625 	 * information and let the hardware specific code
1626 	 * return what is possible given the options
1627 	 */
1628 	return host->ops->select_drive_strength(card, max_dtr,
1629 						host_drv_type,
1630 						card_drv_type,
1631 						drv_type);
1632 }
1633 
1634 /*
1635  * Apply power to the MMC stack.  This is a two-stage process.
1636  * First, we enable power to the card without the clock running.
1637  * We then wait a bit for the power to stabilise.  Finally,
1638  * enable the bus drivers and clock to the card.
1639  *
1640  * We must _NOT_ enable the clock prior to power stablising.
1641  *
1642  * If a host does all the power sequencing itself, ignore the
1643  * initial MMC_POWER_UP stage.
1644  */
1645 void mmc_power_up(struct mmc_host *host, u32 ocr)
1646 {
1647 	if (host->ios.power_mode == MMC_POWER_ON)
1648 		return;
1649 
1650 	mmc_pwrseq_pre_power_on(host);
1651 
1652 	host->ios.vdd = fls(ocr) - 1;
1653 	host->ios.power_mode = MMC_POWER_UP;
1654 	/* Set initial state and call mmc_set_ios */
1655 	mmc_set_initial_state(host);
1656 
1657 	mmc_set_initial_signal_voltage(host);
1658 
1659 	/*
1660 	 * This delay should be sufficient to allow the power supply
1661 	 * to reach the minimum voltage.
1662 	 */
1663 	mmc_delay(host->ios.power_delay_ms);
1664 
1665 	mmc_pwrseq_post_power_on(host);
1666 
1667 	host->ios.clock = host->f_init;
1668 
1669 	host->ios.power_mode = MMC_POWER_ON;
1670 	mmc_set_ios(host);
1671 
1672 	/*
1673 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1674 	 * time required to reach a stable voltage.
1675 	 */
1676 	mmc_delay(host->ios.power_delay_ms);
1677 }
1678 
1679 void mmc_power_off(struct mmc_host *host)
1680 {
1681 	if (host->ios.power_mode == MMC_POWER_OFF)
1682 		return;
1683 
1684 	mmc_pwrseq_power_off(host);
1685 
1686 	host->ios.clock = 0;
1687 	host->ios.vdd = 0;
1688 
1689 	host->ios.power_mode = MMC_POWER_OFF;
1690 	/* Set initial state and call mmc_set_ios */
1691 	mmc_set_initial_state(host);
1692 
1693 	/*
1694 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1695 	 * XO-1.5, require a short delay after poweroff before the card
1696 	 * can be successfully turned on again.
1697 	 */
1698 	mmc_delay(1);
1699 }
1700 
1701 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1702 {
1703 	mmc_power_off(host);
1704 	/* Wait at least 1 ms according to SD spec */
1705 	mmc_delay(1);
1706 	mmc_power_up(host, ocr);
1707 }
1708 
1709 /*
1710  * Cleanup when the last reference to the bus operator is dropped.
1711  */
1712 static void __mmc_release_bus(struct mmc_host *host)
1713 {
1714 	WARN_ON(!host->bus_dead);
1715 
1716 	host->bus_ops = NULL;
1717 }
1718 
1719 /*
1720  * Increase reference count of bus operator
1721  */
1722 static inline void mmc_bus_get(struct mmc_host *host)
1723 {
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&host->lock, flags);
1727 	host->bus_refs++;
1728 	spin_unlock_irqrestore(&host->lock, flags);
1729 }
1730 
1731 /*
1732  * Decrease reference count of bus operator and free it if
1733  * it is the last reference.
1734  */
1735 static inline void mmc_bus_put(struct mmc_host *host)
1736 {
1737 	unsigned long flags;
1738 
1739 	spin_lock_irqsave(&host->lock, flags);
1740 	host->bus_refs--;
1741 	if ((host->bus_refs == 0) && host->bus_ops)
1742 		__mmc_release_bus(host);
1743 	spin_unlock_irqrestore(&host->lock, flags);
1744 }
1745 
1746 /*
1747  * Assign a mmc bus handler to a host. Only one bus handler may control a
1748  * host at any given time.
1749  */
1750 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1751 {
1752 	unsigned long flags;
1753 
1754 	WARN_ON(!host->claimed);
1755 
1756 	spin_lock_irqsave(&host->lock, flags);
1757 
1758 	WARN_ON(host->bus_ops);
1759 	WARN_ON(host->bus_refs);
1760 
1761 	host->bus_ops = ops;
1762 	host->bus_refs = 1;
1763 	host->bus_dead = 0;
1764 
1765 	spin_unlock_irqrestore(&host->lock, flags);
1766 }
1767 
1768 /*
1769  * Remove the current bus handler from a host.
1770  */
1771 void mmc_detach_bus(struct mmc_host *host)
1772 {
1773 	unsigned long flags;
1774 
1775 	WARN_ON(!host->claimed);
1776 	WARN_ON(!host->bus_ops);
1777 
1778 	spin_lock_irqsave(&host->lock, flags);
1779 
1780 	host->bus_dead = 1;
1781 
1782 	spin_unlock_irqrestore(&host->lock, flags);
1783 
1784 	mmc_bus_put(host);
1785 }
1786 
1787 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1788 				bool cd_irq)
1789 {
1790 	/*
1791 	 * If the device is configured as wakeup, we prevent a new sleep for
1792 	 * 5 s to give provision for user space to consume the event.
1793 	 */
1794 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1795 		device_can_wakeup(mmc_dev(host)))
1796 		pm_wakeup_event(mmc_dev(host), 5000);
1797 
1798 	host->detect_change = 1;
1799 	mmc_schedule_delayed_work(&host->detect, delay);
1800 }
1801 
1802 /**
1803  *	mmc_detect_change - process change of state on a MMC socket
1804  *	@host: host which changed state.
1805  *	@delay: optional delay to wait before detection (jiffies)
1806  *
1807  *	MMC drivers should call this when they detect a card has been
1808  *	inserted or removed. The MMC layer will confirm that any
1809  *	present card is still functional, and initialize any newly
1810  *	inserted.
1811  */
1812 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1813 {
1814 	_mmc_detect_change(host, delay, true);
1815 }
1816 EXPORT_SYMBOL(mmc_detect_change);
1817 
1818 void mmc_init_erase(struct mmc_card *card)
1819 {
1820 	unsigned int sz;
1821 
1822 	if (is_power_of_2(card->erase_size))
1823 		card->erase_shift = ffs(card->erase_size) - 1;
1824 	else
1825 		card->erase_shift = 0;
1826 
1827 	/*
1828 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1829 	 * card.  That is not desirable because it can take a long time
1830 	 * (minutes) potentially delaying more important I/O, and also the
1831 	 * timeout calculations become increasingly hugely over-estimated.
1832 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1833 	 * to that size and alignment.
1834 	 *
1835 	 * For SD cards that define Allocation Unit size, limit erases to one
1836 	 * Allocation Unit at a time.
1837 	 * For MMC, have a stab at ai good value and for modern cards it will
1838 	 * end up being 4MiB. Note that if the value is too small, it can end
1839 	 * up taking longer to erase. Also note, erase_size is already set to
1840 	 * High Capacity Erase Size if available when this function is called.
1841 	 */
1842 	if (mmc_card_sd(card) && card->ssr.au) {
1843 		card->pref_erase = card->ssr.au;
1844 		card->erase_shift = ffs(card->ssr.au) - 1;
1845 	} else if (card->erase_size) {
1846 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1847 		if (sz < 128)
1848 			card->pref_erase = 512 * 1024 / 512;
1849 		else if (sz < 512)
1850 			card->pref_erase = 1024 * 1024 / 512;
1851 		else if (sz < 1024)
1852 			card->pref_erase = 2 * 1024 * 1024 / 512;
1853 		else
1854 			card->pref_erase = 4 * 1024 * 1024 / 512;
1855 		if (card->pref_erase < card->erase_size)
1856 			card->pref_erase = card->erase_size;
1857 		else {
1858 			sz = card->pref_erase % card->erase_size;
1859 			if (sz)
1860 				card->pref_erase += card->erase_size - sz;
1861 		}
1862 	} else
1863 		card->pref_erase = 0;
1864 }
1865 
1866 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1867 				          unsigned int arg, unsigned int qty)
1868 {
1869 	unsigned int erase_timeout;
1870 
1871 	if (arg == MMC_DISCARD_ARG ||
1872 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1873 		erase_timeout = card->ext_csd.trim_timeout;
1874 	} else if (card->ext_csd.erase_group_def & 1) {
1875 		/* High Capacity Erase Group Size uses HC timeouts */
1876 		if (arg == MMC_TRIM_ARG)
1877 			erase_timeout = card->ext_csd.trim_timeout;
1878 		else
1879 			erase_timeout = card->ext_csd.hc_erase_timeout;
1880 	} else {
1881 		/* CSD Erase Group Size uses write timeout */
1882 		unsigned int mult = (10 << card->csd.r2w_factor);
1883 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1884 		unsigned int timeout_us;
1885 
1886 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1887 		if (card->csd.taac_ns < 1000000)
1888 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1889 		else
1890 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1891 
1892 		/*
1893 		 * ios.clock is only a target.  The real clock rate might be
1894 		 * less but not that much less, so fudge it by multiplying by 2.
1895 		 */
1896 		timeout_clks <<= 1;
1897 		timeout_us += (timeout_clks * 1000) /
1898 			      (card->host->ios.clock / 1000);
1899 
1900 		erase_timeout = timeout_us / 1000;
1901 
1902 		/*
1903 		 * Theoretically, the calculation could underflow so round up
1904 		 * to 1ms in that case.
1905 		 */
1906 		if (!erase_timeout)
1907 			erase_timeout = 1;
1908 	}
1909 
1910 	/* Multiplier for secure operations */
1911 	if (arg & MMC_SECURE_ARGS) {
1912 		if (arg == MMC_SECURE_ERASE_ARG)
1913 			erase_timeout *= card->ext_csd.sec_erase_mult;
1914 		else
1915 			erase_timeout *= card->ext_csd.sec_trim_mult;
1916 	}
1917 
1918 	erase_timeout *= qty;
1919 
1920 	/*
1921 	 * Ensure at least a 1 second timeout for SPI as per
1922 	 * 'mmc_set_data_timeout()'
1923 	 */
1924 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1925 		erase_timeout = 1000;
1926 
1927 	return erase_timeout;
1928 }
1929 
1930 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1931 					 unsigned int arg,
1932 					 unsigned int qty)
1933 {
1934 	unsigned int erase_timeout;
1935 
1936 	if (card->ssr.erase_timeout) {
1937 		/* Erase timeout specified in SD Status Register (SSR) */
1938 		erase_timeout = card->ssr.erase_timeout * qty +
1939 				card->ssr.erase_offset;
1940 	} else {
1941 		/*
1942 		 * Erase timeout not specified in SD Status Register (SSR) so
1943 		 * use 250ms per write block.
1944 		 */
1945 		erase_timeout = 250 * qty;
1946 	}
1947 
1948 	/* Must not be less than 1 second */
1949 	if (erase_timeout < 1000)
1950 		erase_timeout = 1000;
1951 
1952 	return erase_timeout;
1953 }
1954 
1955 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1956 				      unsigned int arg,
1957 				      unsigned int qty)
1958 {
1959 	if (mmc_card_sd(card))
1960 		return mmc_sd_erase_timeout(card, arg, qty);
1961 	else
1962 		return mmc_mmc_erase_timeout(card, arg, qty);
1963 }
1964 
1965 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1966 			unsigned int to, unsigned int arg)
1967 {
1968 	struct mmc_command cmd = {};
1969 	unsigned int qty = 0, busy_timeout = 0;
1970 	bool use_r1b_resp = false;
1971 	unsigned long timeout;
1972 	int loop_udelay=64, udelay_max=32768;
1973 	int err;
1974 
1975 	mmc_retune_hold(card->host);
1976 
1977 	/*
1978 	 * qty is used to calculate the erase timeout which depends on how many
1979 	 * erase groups (or allocation units in SD terminology) are affected.
1980 	 * We count erasing part of an erase group as one erase group.
1981 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1982 	 * erase group size is almost certainly also power of 2, but it does not
1983 	 * seem to insist on that in the JEDEC standard, so we fall back to
1984 	 * division in that case.  SD may not specify an allocation unit size,
1985 	 * in which case the timeout is based on the number of write blocks.
1986 	 *
1987 	 * Note that the timeout for secure trim 2 will only be correct if the
1988 	 * number of erase groups specified is the same as the total of all
1989 	 * preceding secure trim 1 commands.  Since the power may have been
1990 	 * lost since the secure trim 1 commands occurred, it is generally
1991 	 * impossible to calculate the secure trim 2 timeout correctly.
1992 	 */
1993 	if (card->erase_shift)
1994 		qty += ((to >> card->erase_shift) -
1995 			(from >> card->erase_shift)) + 1;
1996 	else if (mmc_card_sd(card))
1997 		qty += to - from + 1;
1998 	else
1999 		qty += ((to / card->erase_size) -
2000 			(from / card->erase_size)) + 1;
2001 
2002 	if (!mmc_card_blockaddr(card)) {
2003 		from <<= 9;
2004 		to <<= 9;
2005 	}
2006 
2007 	if (mmc_card_sd(card))
2008 		cmd.opcode = SD_ERASE_WR_BLK_START;
2009 	else
2010 		cmd.opcode = MMC_ERASE_GROUP_START;
2011 	cmd.arg = from;
2012 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2013 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2014 	if (err) {
2015 		pr_err("mmc_erase: group start error %d, "
2016 		       "status %#x\n", err, cmd.resp[0]);
2017 		err = -EIO;
2018 		goto out;
2019 	}
2020 
2021 	memset(&cmd, 0, sizeof(struct mmc_command));
2022 	if (mmc_card_sd(card))
2023 		cmd.opcode = SD_ERASE_WR_BLK_END;
2024 	else
2025 		cmd.opcode = MMC_ERASE_GROUP_END;
2026 	cmd.arg = to;
2027 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2028 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2029 	if (err) {
2030 		pr_err("mmc_erase: group end error %d, status %#x\n",
2031 		       err, cmd.resp[0]);
2032 		err = -EIO;
2033 		goto out;
2034 	}
2035 
2036 	memset(&cmd, 0, sizeof(struct mmc_command));
2037 	cmd.opcode = MMC_ERASE;
2038 	cmd.arg = arg;
2039 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2040 	/*
2041 	 * If the host controller supports busy signalling and the timeout for
2042 	 * the erase operation does not exceed the max_busy_timeout, we should
2043 	 * use R1B response. Or we need to prevent the host from doing hw busy
2044 	 * detection, which is done by converting to a R1 response instead.
2045 	 */
2046 	if (card->host->max_busy_timeout &&
2047 	    busy_timeout > card->host->max_busy_timeout) {
2048 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2049 	} else {
2050 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2051 		cmd.busy_timeout = busy_timeout;
2052 		use_r1b_resp = true;
2053 	}
2054 
2055 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2056 	if (err) {
2057 		pr_err("mmc_erase: erase error %d, status %#x\n",
2058 		       err, cmd.resp[0]);
2059 		err = -EIO;
2060 		goto out;
2061 	}
2062 
2063 	if (mmc_host_is_spi(card->host))
2064 		goto out;
2065 
2066 	/*
2067 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2068 	 * shall be avoided.
2069 	 */
2070 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2071 		goto out;
2072 
2073 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2074 	do {
2075 		memset(&cmd, 0, sizeof(struct mmc_command));
2076 		cmd.opcode = MMC_SEND_STATUS;
2077 		cmd.arg = card->rca << 16;
2078 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2079 		/* Do not retry else we can't see errors */
2080 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2081 		if (err || R1_STATUS(cmd.resp[0])) {
2082 			pr_err("error %d requesting status %#x\n",
2083 				err, cmd.resp[0]);
2084 			err = -EIO;
2085 			goto out;
2086 		}
2087 
2088 		/* Timeout if the device never becomes ready for data and
2089 		 * never leaves the program state.
2090 		 */
2091 		if (time_after(jiffies, timeout)) {
2092 			pr_err("%s: Card stuck in programming state! %s\n",
2093 				mmc_hostname(card->host), __func__);
2094 			err =  -EIO;
2095 			goto out;
2096 		}
2097 		if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2098 		    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2099 			break;
2100 
2101 		usleep_range(loop_udelay, loop_udelay*2);
2102 		if (loop_udelay < udelay_max)
2103 			loop_udelay *= 2;
2104 	} while (1);
2105 
2106 out:
2107 	mmc_retune_release(card->host);
2108 	return err;
2109 }
2110 
2111 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2112 					 unsigned int *from,
2113 					 unsigned int *to,
2114 					 unsigned int nr)
2115 {
2116 	unsigned int from_new = *from, nr_new = nr, rem;
2117 
2118 	/*
2119 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2120 	 * to align the erase size efficiently.
2121 	 */
2122 	if (is_power_of_2(card->erase_size)) {
2123 		unsigned int temp = from_new;
2124 
2125 		from_new = round_up(temp, card->erase_size);
2126 		rem = from_new - temp;
2127 
2128 		if (nr_new > rem)
2129 			nr_new -= rem;
2130 		else
2131 			return 0;
2132 
2133 		nr_new = round_down(nr_new, card->erase_size);
2134 	} else {
2135 		rem = from_new % card->erase_size;
2136 		if (rem) {
2137 			rem = card->erase_size - rem;
2138 			from_new += rem;
2139 			if (nr_new > rem)
2140 				nr_new -= rem;
2141 			else
2142 				return 0;
2143 		}
2144 
2145 		rem = nr_new % card->erase_size;
2146 		if (rem)
2147 			nr_new -= rem;
2148 	}
2149 
2150 	if (nr_new == 0)
2151 		return 0;
2152 
2153 	*to = from_new + nr_new;
2154 	*from = from_new;
2155 
2156 	return nr_new;
2157 }
2158 
2159 /**
2160  * mmc_erase - erase sectors.
2161  * @card: card to erase
2162  * @from: first sector to erase
2163  * @nr: number of sectors to erase
2164  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2165  *
2166  * Caller must claim host before calling this function.
2167  */
2168 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2169 	      unsigned int arg)
2170 {
2171 	unsigned int rem, to = from + nr;
2172 	int err;
2173 
2174 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2175 	    !(card->csd.cmdclass & CCC_ERASE))
2176 		return -EOPNOTSUPP;
2177 
2178 	if (!card->erase_size)
2179 		return -EOPNOTSUPP;
2180 
2181 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2182 		return -EOPNOTSUPP;
2183 
2184 	if ((arg & MMC_SECURE_ARGS) &&
2185 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2186 		return -EOPNOTSUPP;
2187 
2188 	if ((arg & MMC_TRIM_ARGS) &&
2189 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2190 		return -EOPNOTSUPP;
2191 
2192 	if (arg == MMC_SECURE_ERASE_ARG) {
2193 		if (from % card->erase_size || nr % card->erase_size)
2194 			return -EINVAL;
2195 	}
2196 
2197 	if (arg == MMC_ERASE_ARG)
2198 		nr = mmc_align_erase_size(card, &from, &to, nr);
2199 
2200 	if (nr == 0)
2201 		return 0;
2202 
2203 	if (to <= from)
2204 		return -EINVAL;
2205 
2206 	/* 'from' and 'to' are inclusive */
2207 	to -= 1;
2208 
2209 	/*
2210 	 * Special case where only one erase-group fits in the timeout budget:
2211 	 * If the region crosses an erase-group boundary on this particular
2212 	 * case, we will be trimming more than one erase-group which, does not
2213 	 * fit in the timeout budget of the controller, so we need to split it
2214 	 * and call mmc_do_erase() twice if necessary. This special case is
2215 	 * identified by the card->eg_boundary flag.
2216 	 */
2217 	rem = card->erase_size - (from % card->erase_size);
2218 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2219 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2220 		from += rem;
2221 		if ((err) || (to <= from))
2222 			return err;
2223 	}
2224 
2225 	return mmc_do_erase(card, from, to, arg);
2226 }
2227 EXPORT_SYMBOL(mmc_erase);
2228 
2229 int mmc_can_erase(struct mmc_card *card)
2230 {
2231 	if ((card->host->caps & MMC_CAP_ERASE) &&
2232 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2233 		return 1;
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL(mmc_can_erase);
2237 
2238 int mmc_can_trim(struct mmc_card *card)
2239 {
2240 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2241 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2242 		return 1;
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL(mmc_can_trim);
2246 
2247 int mmc_can_discard(struct mmc_card *card)
2248 {
2249 	/*
2250 	 * As there's no way to detect the discard support bit at v4.5
2251 	 * use the s/w feature support filed.
2252 	 */
2253 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2254 		return 1;
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(mmc_can_discard);
2258 
2259 int mmc_can_sanitize(struct mmc_card *card)
2260 {
2261 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2262 		return 0;
2263 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2264 		return 1;
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL(mmc_can_sanitize);
2268 
2269 int mmc_can_secure_erase_trim(struct mmc_card *card)
2270 {
2271 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2272 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2273 		return 1;
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2277 
2278 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2279 			    unsigned int nr)
2280 {
2281 	if (!card->erase_size)
2282 		return 0;
2283 	if (from % card->erase_size || nr % card->erase_size)
2284 		return 0;
2285 	return 1;
2286 }
2287 EXPORT_SYMBOL(mmc_erase_group_aligned);
2288 
2289 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2290 					    unsigned int arg)
2291 {
2292 	struct mmc_host *host = card->host;
2293 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2294 	unsigned int last_timeout = 0;
2295 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2296 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2297 
2298 	if (card->erase_shift) {
2299 		max_qty = UINT_MAX >> card->erase_shift;
2300 		min_qty = card->pref_erase >> card->erase_shift;
2301 	} else if (mmc_card_sd(card)) {
2302 		max_qty = UINT_MAX;
2303 		min_qty = card->pref_erase;
2304 	} else {
2305 		max_qty = UINT_MAX / card->erase_size;
2306 		min_qty = card->pref_erase / card->erase_size;
2307 	}
2308 
2309 	/*
2310 	 * We should not only use 'host->max_busy_timeout' as the limitation
2311 	 * when deciding the max discard sectors. We should set a balance value
2312 	 * to improve the erase speed, and it can not get too long timeout at
2313 	 * the same time.
2314 	 *
2315 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2316 	 * matter what size of 'host->max_busy_timeout', but if the
2317 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2318 	 * then we can continue to increase the max discard sectors until we
2319 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2320 	 * isn't specified, use the default max erase timeout.
2321 	 */
2322 	do {
2323 		y = 0;
2324 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2325 			timeout = mmc_erase_timeout(card, arg, qty + x);
2326 
2327 			if (qty + x > min_qty && timeout > max_busy_timeout)
2328 				break;
2329 
2330 			if (timeout < last_timeout)
2331 				break;
2332 			last_timeout = timeout;
2333 			y = x;
2334 		}
2335 		qty += y;
2336 	} while (y);
2337 
2338 	if (!qty)
2339 		return 0;
2340 
2341 	/*
2342 	 * When specifying a sector range to trim, chances are we might cross
2343 	 * an erase-group boundary even if the amount of sectors is less than
2344 	 * one erase-group.
2345 	 * If we can only fit one erase-group in the controller timeout budget,
2346 	 * we have to care that erase-group boundaries are not crossed by a
2347 	 * single trim operation. We flag that special case with "eg_boundary".
2348 	 * In all other cases we can just decrement qty and pretend that we
2349 	 * always touch (qty + 1) erase-groups as a simple optimization.
2350 	 */
2351 	if (qty == 1)
2352 		card->eg_boundary = 1;
2353 	else
2354 		qty--;
2355 
2356 	/* Convert qty to sectors */
2357 	if (card->erase_shift)
2358 		max_discard = qty << card->erase_shift;
2359 	else if (mmc_card_sd(card))
2360 		max_discard = qty + 1;
2361 	else
2362 		max_discard = qty * card->erase_size;
2363 
2364 	return max_discard;
2365 }
2366 
2367 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2368 {
2369 	struct mmc_host *host = card->host;
2370 	unsigned int max_discard, max_trim;
2371 
2372 	/*
2373 	 * Without erase_group_def set, MMC erase timeout depends on clock
2374 	 * frequence which can change.  In that case, the best choice is
2375 	 * just the preferred erase size.
2376 	 */
2377 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2378 		return card->pref_erase;
2379 
2380 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2381 	if (max_discard && mmc_can_trim(card)) {
2382 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2383 		if (max_trim < max_discard)
2384 			max_discard = max_trim;
2385 	} else if (max_discard < card->erase_size) {
2386 		max_discard = 0;
2387 	}
2388 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2389 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2390 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2391 	return max_discard;
2392 }
2393 EXPORT_SYMBOL(mmc_calc_max_discard);
2394 
2395 bool mmc_card_is_blockaddr(struct mmc_card *card)
2396 {
2397 	return card ? mmc_card_blockaddr(card) : false;
2398 }
2399 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2400 
2401 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402 {
2403 	struct mmc_command cmd = {};
2404 
2405 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2406 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2407 		return 0;
2408 
2409 	cmd.opcode = MMC_SET_BLOCKLEN;
2410 	cmd.arg = blocklen;
2411 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2412 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2413 }
2414 EXPORT_SYMBOL(mmc_set_blocklen);
2415 
2416 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2417 			bool is_rel_write)
2418 {
2419 	struct mmc_command cmd = {};
2420 
2421 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2422 	cmd.arg = blockcount & 0x0000FFFF;
2423 	if (is_rel_write)
2424 		cmd.arg |= 1 << 31;
2425 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2426 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2427 }
2428 EXPORT_SYMBOL(mmc_set_blockcount);
2429 
2430 static void mmc_hw_reset_for_init(struct mmc_host *host)
2431 {
2432 	mmc_pwrseq_reset(host);
2433 
2434 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2435 		return;
2436 	host->ops->hw_reset(host);
2437 }
2438 
2439 int mmc_hw_reset(struct mmc_host *host)
2440 {
2441 	int ret;
2442 
2443 	if (!host->card)
2444 		return -EINVAL;
2445 
2446 	mmc_bus_get(host);
2447 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2448 		mmc_bus_put(host);
2449 		return -EOPNOTSUPP;
2450 	}
2451 
2452 	ret = host->bus_ops->hw_reset(host);
2453 	mmc_bus_put(host);
2454 
2455 	if (ret)
2456 		pr_warn("%s: tried to HW reset card, got error %d\n",
2457 			mmc_hostname(host), ret);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL(mmc_hw_reset);
2462 
2463 int mmc_sw_reset(struct mmc_host *host)
2464 {
2465 	int ret;
2466 
2467 	if (!host->card)
2468 		return -EINVAL;
2469 
2470 	mmc_bus_get(host);
2471 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2472 		mmc_bus_put(host);
2473 		return -EOPNOTSUPP;
2474 	}
2475 
2476 	ret = host->bus_ops->sw_reset(host);
2477 	mmc_bus_put(host);
2478 
2479 	if (ret)
2480 		pr_warn("%s: tried to SW reset card, got error %d\n",
2481 			mmc_hostname(host), ret);
2482 
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL(mmc_sw_reset);
2486 
2487 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2488 {
2489 	host->f_init = freq;
2490 
2491 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2492 		mmc_hostname(host), __func__, host->f_init);
2493 
2494 	mmc_power_up(host, host->ocr_avail);
2495 
2496 	/*
2497 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2498 	 * do a hardware reset if possible.
2499 	 */
2500 	mmc_hw_reset_for_init(host);
2501 
2502 	/*
2503 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2504 	 * if the card is being re-initialized, just send it.  CMD52
2505 	 * should be ignored by SD/eMMC cards.
2506 	 * Skip it if we already know that we do not support SDIO commands
2507 	 */
2508 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2509 		sdio_reset(host);
2510 
2511 	mmc_go_idle(host);
2512 
2513 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2514 		mmc_send_if_cond(host, host->ocr_avail);
2515 
2516 	/* Order's important: probe SDIO, then SD, then MMC */
2517 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2518 		if (!mmc_attach_sdio(host))
2519 			return 0;
2520 
2521 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2522 		if (!mmc_attach_sd(host))
2523 			return 0;
2524 
2525 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2526 		if (!mmc_attach_mmc(host))
2527 			return 0;
2528 
2529 	mmc_power_off(host);
2530 	return -EIO;
2531 }
2532 
2533 int _mmc_detect_card_removed(struct mmc_host *host)
2534 {
2535 	int ret;
2536 
2537 	if (!host->card || mmc_card_removed(host->card))
2538 		return 1;
2539 
2540 	ret = host->bus_ops->alive(host);
2541 
2542 	/*
2543 	 * Card detect status and alive check may be out of sync if card is
2544 	 * removed slowly, when card detect switch changes while card/slot
2545 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2546 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2547 	 * detect work 200ms later for this case.
2548 	 */
2549 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2550 		mmc_detect_change(host, msecs_to_jiffies(200));
2551 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2552 	}
2553 
2554 	if (ret) {
2555 		mmc_card_set_removed(host->card);
2556 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2557 	}
2558 
2559 	return ret;
2560 }
2561 
2562 int mmc_detect_card_removed(struct mmc_host *host)
2563 {
2564 	struct mmc_card *card = host->card;
2565 	int ret;
2566 
2567 	WARN_ON(!host->claimed);
2568 
2569 	if (!card)
2570 		return 1;
2571 
2572 	if (!mmc_card_is_removable(host))
2573 		return 0;
2574 
2575 	ret = mmc_card_removed(card);
2576 	/*
2577 	 * The card will be considered unchanged unless we have been asked to
2578 	 * detect a change or host requires polling to provide card detection.
2579 	 */
2580 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2581 		return ret;
2582 
2583 	host->detect_change = 0;
2584 	if (!ret) {
2585 		ret = _mmc_detect_card_removed(host);
2586 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2587 			/*
2588 			 * Schedule a detect work as soon as possible to let a
2589 			 * rescan handle the card removal.
2590 			 */
2591 			cancel_delayed_work(&host->detect);
2592 			_mmc_detect_change(host, 0, false);
2593 		}
2594 	}
2595 
2596 	return ret;
2597 }
2598 EXPORT_SYMBOL(mmc_detect_card_removed);
2599 
2600 void mmc_rescan(struct work_struct *work)
2601 {
2602 	struct mmc_host *host =
2603 		container_of(work, struct mmc_host, detect.work);
2604 	int i;
2605 
2606 	if (host->rescan_disable)
2607 		return;
2608 
2609 	/* If there is a non-removable card registered, only scan once */
2610 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2611 		return;
2612 	host->rescan_entered = 1;
2613 
2614 	if (host->trigger_card_event && host->ops->card_event) {
2615 		mmc_claim_host(host);
2616 		host->ops->card_event(host);
2617 		mmc_release_host(host);
2618 		host->trigger_card_event = false;
2619 	}
2620 
2621 	mmc_bus_get(host);
2622 
2623 	/*
2624 	 * if there is a _removable_ card registered, check whether it is
2625 	 * still present
2626 	 */
2627 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2628 		host->bus_ops->detect(host);
2629 
2630 	host->detect_change = 0;
2631 
2632 	/*
2633 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2634 	 * the card is no longer present.
2635 	 */
2636 	mmc_bus_put(host);
2637 	mmc_bus_get(host);
2638 
2639 	/* if there still is a card present, stop here */
2640 	if (host->bus_ops != NULL) {
2641 		mmc_bus_put(host);
2642 		goto out;
2643 	}
2644 
2645 	/*
2646 	 * Only we can add a new handler, so it's safe to
2647 	 * release the lock here.
2648 	 */
2649 	mmc_bus_put(host);
2650 
2651 	mmc_claim_host(host);
2652 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2653 			host->ops->get_cd(host) == 0) {
2654 		mmc_power_off(host);
2655 		mmc_release_host(host);
2656 		goto out;
2657 	}
2658 
2659 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2660 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2661 			break;
2662 		if (freqs[i] <= host->f_min)
2663 			break;
2664 	}
2665 	mmc_release_host(host);
2666 
2667  out:
2668 	if (host->caps & MMC_CAP_NEEDS_POLL)
2669 		mmc_schedule_delayed_work(&host->detect, HZ);
2670 }
2671 
2672 void mmc_start_host(struct mmc_host *host)
2673 {
2674 	host->f_init = max(freqs[0], host->f_min);
2675 	host->rescan_disable = 0;
2676 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2677 
2678 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2679 		mmc_claim_host(host);
2680 		mmc_power_up(host, host->ocr_avail);
2681 		mmc_release_host(host);
2682 	}
2683 
2684 	mmc_gpiod_request_cd_irq(host);
2685 	_mmc_detect_change(host, 0, false);
2686 }
2687 
2688 void mmc_stop_host(struct mmc_host *host)
2689 {
2690 	if (host->slot.cd_irq >= 0) {
2691 		mmc_gpio_set_cd_wake(host, false);
2692 		disable_irq(host->slot.cd_irq);
2693 	}
2694 
2695 	host->rescan_disable = 1;
2696 	cancel_delayed_work_sync(&host->detect);
2697 
2698 	/* clear pm flags now and let card drivers set them as needed */
2699 	host->pm_flags = 0;
2700 
2701 	mmc_bus_get(host);
2702 	if (host->bus_ops && !host->bus_dead) {
2703 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2704 		host->bus_ops->remove(host);
2705 		mmc_claim_host(host);
2706 		mmc_detach_bus(host);
2707 		mmc_power_off(host);
2708 		mmc_release_host(host);
2709 		mmc_bus_put(host);
2710 		return;
2711 	}
2712 	mmc_bus_put(host);
2713 
2714 	mmc_claim_host(host);
2715 	mmc_power_off(host);
2716 	mmc_release_host(host);
2717 }
2718 
2719 #ifdef CONFIG_PM_SLEEP
2720 /* Do the card removal on suspend if card is assumed removeable
2721  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2722    to sync the card.
2723 */
2724 static int mmc_pm_notify(struct notifier_block *notify_block,
2725 			unsigned long mode, void *unused)
2726 {
2727 	struct mmc_host *host = container_of(
2728 		notify_block, struct mmc_host, pm_notify);
2729 	unsigned long flags;
2730 	int err = 0;
2731 
2732 	switch (mode) {
2733 	case PM_HIBERNATION_PREPARE:
2734 	case PM_SUSPEND_PREPARE:
2735 	case PM_RESTORE_PREPARE:
2736 		spin_lock_irqsave(&host->lock, flags);
2737 		host->rescan_disable = 1;
2738 		spin_unlock_irqrestore(&host->lock, flags);
2739 		cancel_delayed_work_sync(&host->detect);
2740 
2741 		if (!host->bus_ops)
2742 			break;
2743 
2744 		/* Validate prerequisites for suspend */
2745 		if (host->bus_ops->pre_suspend)
2746 			err = host->bus_ops->pre_suspend(host);
2747 		if (!err)
2748 			break;
2749 
2750 		if (!mmc_card_is_removable(host)) {
2751 			dev_warn(mmc_dev(host),
2752 				 "pre_suspend failed for non-removable host: "
2753 				 "%d\n", err);
2754 			/* Avoid removing non-removable hosts */
2755 			break;
2756 		}
2757 
2758 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2759 		host->bus_ops->remove(host);
2760 		mmc_claim_host(host);
2761 		mmc_detach_bus(host);
2762 		mmc_power_off(host);
2763 		mmc_release_host(host);
2764 		host->pm_flags = 0;
2765 		break;
2766 
2767 	case PM_POST_SUSPEND:
2768 	case PM_POST_HIBERNATION:
2769 	case PM_POST_RESTORE:
2770 
2771 		spin_lock_irqsave(&host->lock, flags);
2772 		host->rescan_disable = 0;
2773 		spin_unlock_irqrestore(&host->lock, flags);
2774 		_mmc_detect_change(host, 0, false);
2775 
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 void mmc_register_pm_notifier(struct mmc_host *host)
2782 {
2783 	host->pm_notify.notifier_call = mmc_pm_notify;
2784 	register_pm_notifier(&host->pm_notify);
2785 }
2786 
2787 void mmc_unregister_pm_notifier(struct mmc_host *host)
2788 {
2789 	unregister_pm_notifier(&host->pm_notify);
2790 }
2791 #endif
2792 
2793 static int __init mmc_init(void)
2794 {
2795 	int ret;
2796 
2797 	ret = mmc_register_bus();
2798 	if (ret)
2799 		return ret;
2800 
2801 	ret = mmc_register_host_class();
2802 	if (ret)
2803 		goto unregister_bus;
2804 
2805 	ret = sdio_register_bus();
2806 	if (ret)
2807 		goto unregister_host_class;
2808 
2809 	return 0;
2810 
2811 unregister_host_class:
2812 	mmc_unregister_host_class();
2813 unregister_bus:
2814 	mmc_unregister_bus();
2815 	return ret;
2816 }
2817 
2818 static void __exit mmc_exit(void)
2819 {
2820 	sdio_unregister_bus();
2821 	mmc_unregister_host_class();
2822 	mmc_unregister_bus();
2823 }
2824 
2825 subsys_initcall(mmc_init);
2826 module_exit(mmc_exit);
2827 
2828 MODULE_LICENSE("GPL");
2829