xref: /openbmc/linux/drivers/mmc/core/core.c (revision 81d67439)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
31 
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
36 
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
40 
41 static struct workqueue_struct *workqueue;
42 
43 /*
44  * Enabling software CRCs on the data blocks can be a significant (30%)
45  * performance cost, and for other reasons may not always be desired.
46  * So we allow it it to be disabled.
47  */
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
50 
51 /*
52  * We normally treat cards as removed during suspend if they are not
53  * known to be on a non-removable bus, to avoid the risk of writing
54  * back data to a different card after resume.  Allow this to be
55  * overridden if necessary.
56  */
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 	removable,
66 	"MMC/SD cards are removable and may be removed during suspend");
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 /**
86  *	mmc_request_done - finish processing an MMC request
87  *	@host: MMC host which completed request
88  *	@mrq: MMC request which request
89  *
90  *	MMC drivers should call this function when they have completed
91  *	their processing of a request.
92  */
93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	int err = cmd->error;
97 
98 	if (err && cmd->retries && mmc_host_is_spi(host)) {
99 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 			cmd->retries = 0;
101 	}
102 
103 	if (err && cmd->retries) {
104 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 			mmc_hostname(host), cmd->opcode, err);
106 
107 		cmd->retries--;
108 		cmd->error = 0;
109 		host->ops->request(host, mrq);
110 	} else {
111 		led_trigger_event(host->led, LED_OFF);
112 
113 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 			mmc_hostname(host), cmd->opcode, err,
115 			cmd->resp[0], cmd->resp[1],
116 			cmd->resp[2], cmd->resp[3]);
117 
118 		if (mrq->data) {
119 			pr_debug("%s:     %d bytes transferred: %d\n",
120 				mmc_hostname(host),
121 				mrq->data->bytes_xfered, mrq->data->error);
122 		}
123 
124 		if (mrq->stop) {
125 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
126 				mmc_hostname(host), mrq->stop->opcode,
127 				mrq->stop->error,
128 				mrq->stop->resp[0], mrq->stop->resp[1],
129 				mrq->stop->resp[2], mrq->stop->resp[3]);
130 		}
131 
132 		if (mrq->done)
133 			mrq->done(mrq);
134 
135 		mmc_host_clk_gate(host);
136 	}
137 }
138 
139 EXPORT_SYMBOL(mmc_request_done);
140 
141 static void
142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143 {
144 #ifdef CONFIG_MMC_DEBUG
145 	unsigned int i, sz;
146 	struct scatterlist *sg;
147 #endif
148 
149 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 		 mmc_hostname(host), mrq->cmd->opcode,
151 		 mrq->cmd->arg, mrq->cmd->flags);
152 
153 	if (mrq->data) {
154 		pr_debug("%s:     blksz %d blocks %d flags %08x "
155 			"tsac %d ms nsac %d\n",
156 			mmc_hostname(host), mrq->data->blksz,
157 			mrq->data->blocks, mrq->data->flags,
158 			mrq->data->timeout_ns / 1000000,
159 			mrq->data->timeout_clks);
160 	}
161 
162 	if (mrq->stop) {
163 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
164 			 mmc_hostname(host), mrq->stop->opcode,
165 			 mrq->stop->arg, mrq->stop->flags);
166 	}
167 
168 	WARN_ON(!host->claimed);
169 
170 	mrq->cmd->error = 0;
171 	mrq->cmd->mrq = mrq;
172 	if (mrq->data) {
173 		BUG_ON(mrq->data->blksz > host->max_blk_size);
174 		BUG_ON(mrq->data->blocks > host->max_blk_count);
175 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
176 			host->max_req_size);
177 
178 #ifdef CONFIG_MMC_DEBUG
179 		sz = 0;
180 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
181 			sz += sg->length;
182 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
183 #endif
184 
185 		mrq->cmd->data = mrq->data;
186 		mrq->data->error = 0;
187 		mrq->data->mrq = mrq;
188 		if (mrq->stop) {
189 			mrq->data->stop = mrq->stop;
190 			mrq->stop->error = 0;
191 			mrq->stop->mrq = mrq;
192 		}
193 	}
194 	mmc_host_clk_ungate(host);
195 	led_trigger_event(host->led, LED_FULL);
196 	host->ops->request(host, mrq);
197 }
198 
199 static void mmc_wait_done(struct mmc_request *mrq)
200 {
201 	complete(&mrq->completion);
202 }
203 
204 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
205 {
206 	init_completion(&mrq->completion);
207 	mrq->done = mmc_wait_done;
208 	mmc_start_request(host, mrq);
209 }
210 
211 static void mmc_wait_for_req_done(struct mmc_host *host,
212 				  struct mmc_request *mrq)
213 {
214 	wait_for_completion(&mrq->completion);
215 }
216 
217 /**
218  *	mmc_pre_req - Prepare for a new request
219  *	@host: MMC host to prepare command
220  *	@mrq: MMC request to prepare for
221  *	@is_first_req: true if there is no previous started request
222  *                     that may run in parellel to this call, otherwise false
223  *
224  *	mmc_pre_req() is called in prior to mmc_start_req() to let
225  *	host prepare for the new request. Preparation of a request may be
226  *	performed while another request is running on the host.
227  */
228 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
229 		 bool is_first_req)
230 {
231 	if (host->ops->pre_req)
232 		host->ops->pre_req(host, mrq, is_first_req);
233 }
234 
235 /**
236  *	mmc_post_req - Post process a completed request
237  *	@host: MMC host to post process command
238  *	@mrq: MMC request to post process for
239  *	@err: Error, if non zero, clean up any resources made in pre_req
240  *
241  *	Let the host post process a completed request. Post processing of
242  *	a request may be performed while another reuqest is running.
243  */
244 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
245 			 int err)
246 {
247 	if (host->ops->post_req)
248 		host->ops->post_req(host, mrq, err);
249 }
250 
251 /**
252  *	mmc_start_req - start a non-blocking request
253  *	@host: MMC host to start command
254  *	@areq: async request to start
255  *	@error: out parameter returns 0 for success, otherwise non zero
256  *
257  *	Start a new MMC custom command request for a host.
258  *	If there is on ongoing async request wait for completion
259  *	of that request and start the new one and return.
260  *	Does not wait for the new request to complete.
261  *
262  *      Returns the completed request, NULL in case of none completed.
263  *	Wait for the an ongoing request (previoulsy started) to complete and
264  *	return the completed request. If there is no ongoing request, NULL
265  *	is returned without waiting. NULL is not an error condition.
266  */
267 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
268 				    struct mmc_async_req *areq, int *error)
269 {
270 	int err = 0;
271 	struct mmc_async_req *data = host->areq;
272 
273 	/* Prepare a new request */
274 	if (areq)
275 		mmc_pre_req(host, areq->mrq, !host->areq);
276 
277 	if (host->areq) {
278 		mmc_wait_for_req_done(host, host->areq->mrq);
279 		err = host->areq->err_check(host->card, host->areq);
280 		if (err) {
281 			mmc_post_req(host, host->areq->mrq, 0);
282 			if (areq)
283 				mmc_post_req(host, areq->mrq, -EINVAL);
284 
285 			host->areq = NULL;
286 			goto out;
287 		}
288 	}
289 
290 	if (areq)
291 		__mmc_start_req(host, areq->mrq);
292 
293 	if (host->areq)
294 		mmc_post_req(host, host->areq->mrq, 0);
295 
296 	host->areq = areq;
297  out:
298 	if (error)
299 		*error = err;
300 	return data;
301 }
302 EXPORT_SYMBOL(mmc_start_req);
303 
304 /**
305  *	mmc_wait_for_req - start a request and wait for completion
306  *	@host: MMC host to start command
307  *	@mrq: MMC request to start
308  *
309  *	Start a new MMC custom command request for a host, and wait
310  *	for the command to complete. Does not attempt to parse the
311  *	response.
312  */
313 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
314 {
315 	__mmc_start_req(host, mrq);
316 	mmc_wait_for_req_done(host, mrq);
317 }
318 EXPORT_SYMBOL(mmc_wait_for_req);
319 
320 /**
321  *	mmc_wait_for_cmd - start a command and wait for completion
322  *	@host: MMC host to start command
323  *	@cmd: MMC command to start
324  *	@retries: maximum number of retries
325  *
326  *	Start a new MMC command for a host, and wait for the command
327  *	to complete.  Return any error that occurred while the command
328  *	was executing.  Do not attempt to parse the response.
329  */
330 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
331 {
332 	struct mmc_request mrq = {0};
333 
334 	WARN_ON(!host->claimed);
335 
336 	memset(cmd->resp, 0, sizeof(cmd->resp));
337 	cmd->retries = retries;
338 
339 	mrq.cmd = cmd;
340 	cmd->data = NULL;
341 
342 	mmc_wait_for_req(host, &mrq);
343 
344 	return cmd->error;
345 }
346 
347 EXPORT_SYMBOL(mmc_wait_for_cmd);
348 
349 /**
350  *	mmc_set_data_timeout - set the timeout for a data command
351  *	@data: data phase for command
352  *	@card: the MMC card associated with the data transfer
353  *
354  *	Computes the data timeout parameters according to the
355  *	correct algorithm given the card type.
356  */
357 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
358 {
359 	unsigned int mult;
360 
361 	/*
362 	 * SDIO cards only define an upper 1 s limit on access.
363 	 */
364 	if (mmc_card_sdio(card)) {
365 		data->timeout_ns = 1000000000;
366 		data->timeout_clks = 0;
367 		return;
368 	}
369 
370 	/*
371 	 * SD cards use a 100 multiplier rather than 10
372 	 */
373 	mult = mmc_card_sd(card) ? 100 : 10;
374 
375 	/*
376 	 * Scale up the multiplier (and therefore the timeout) by
377 	 * the r2w factor for writes.
378 	 */
379 	if (data->flags & MMC_DATA_WRITE)
380 		mult <<= card->csd.r2w_factor;
381 
382 	data->timeout_ns = card->csd.tacc_ns * mult;
383 	data->timeout_clks = card->csd.tacc_clks * mult;
384 
385 	/*
386 	 * SD cards also have an upper limit on the timeout.
387 	 */
388 	if (mmc_card_sd(card)) {
389 		unsigned int timeout_us, limit_us;
390 
391 		timeout_us = data->timeout_ns / 1000;
392 		if (mmc_host_clk_rate(card->host))
393 			timeout_us += data->timeout_clks * 1000 /
394 				(mmc_host_clk_rate(card->host) / 1000);
395 
396 		if (data->flags & MMC_DATA_WRITE)
397 			/*
398 			 * The limit is really 250 ms, but that is
399 			 * insufficient for some crappy cards.
400 			 */
401 			limit_us = 300000;
402 		else
403 			limit_us = 100000;
404 
405 		/*
406 		 * SDHC cards always use these fixed values.
407 		 */
408 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
409 			data->timeout_ns = limit_us * 1000;
410 			data->timeout_clks = 0;
411 		}
412 	}
413 	/*
414 	 * Some cards need very high timeouts if driven in SPI mode.
415 	 * The worst observed timeout was 900ms after writing a
416 	 * continuous stream of data until the internal logic
417 	 * overflowed.
418 	 */
419 	if (mmc_host_is_spi(card->host)) {
420 		if (data->flags & MMC_DATA_WRITE) {
421 			if (data->timeout_ns < 1000000000)
422 				data->timeout_ns = 1000000000;	/* 1s */
423 		} else {
424 			if (data->timeout_ns < 100000000)
425 				data->timeout_ns =  100000000;	/* 100ms */
426 		}
427 	}
428 }
429 EXPORT_SYMBOL(mmc_set_data_timeout);
430 
431 /**
432  *	mmc_align_data_size - pads a transfer size to a more optimal value
433  *	@card: the MMC card associated with the data transfer
434  *	@sz: original transfer size
435  *
436  *	Pads the original data size with a number of extra bytes in
437  *	order to avoid controller bugs and/or performance hits
438  *	(e.g. some controllers revert to PIO for certain sizes).
439  *
440  *	Returns the improved size, which might be unmodified.
441  *
442  *	Note that this function is only relevant when issuing a
443  *	single scatter gather entry.
444  */
445 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
446 {
447 	/*
448 	 * FIXME: We don't have a system for the controller to tell
449 	 * the core about its problems yet, so for now we just 32-bit
450 	 * align the size.
451 	 */
452 	sz = ((sz + 3) / 4) * 4;
453 
454 	return sz;
455 }
456 EXPORT_SYMBOL(mmc_align_data_size);
457 
458 /**
459  *	mmc_host_enable - enable a host.
460  *	@host: mmc host to enable
461  *
462  *	Hosts that support power saving can use the 'enable' and 'disable'
463  *	methods to exit and enter power saving states. For more information
464  *	see comments for struct mmc_host_ops.
465  */
466 int mmc_host_enable(struct mmc_host *host)
467 {
468 	if (!(host->caps & MMC_CAP_DISABLE))
469 		return 0;
470 
471 	if (host->en_dis_recurs)
472 		return 0;
473 
474 	if (host->nesting_cnt++)
475 		return 0;
476 
477 	cancel_delayed_work_sync(&host->disable);
478 
479 	if (host->enabled)
480 		return 0;
481 
482 	if (host->ops->enable) {
483 		int err;
484 
485 		host->en_dis_recurs = 1;
486 		err = host->ops->enable(host);
487 		host->en_dis_recurs = 0;
488 
489 		if (err) {
490 			pr_debug("%s: enable error %d\n",
491 				 mmc_hostname(host), err);
492 			return err;
493 		}
494 	}
495 	host->enabled = 1;
496 	return 0;
497 }
498 EXPORT_SYMBOL(mmc_host_enable);
499 
500 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
501 {
502 	if (host->ops->disable) {
503 		int err;
504 
505 		host->en_dis_recurs = 1;
506 		err = host->ops->disable(host, lazy);
507 		host->en_dis_recurs = 0;
508 
509 		if (err < 0) {
510 			pr_debug("%s: disable error %d\n",
511 				 mmc_hostname(host), err);
512 			return err;
513 		}
514 		if (err > 0) {
515 			unsigned long delay = msecs_to_jiffies(err);
516 
517 			mmc_schedule_delayed_work(&host->disable, delay);
518 		}
519 	}
520 	host->enabled = 0;
521 	return 0;
522 }
523 
524 /**
525  *	mmc_host_disable - disable a host.
526  *	@host: mmc host to disable
527  *
528  *	Hosts that support power saving can use the 'enable' and 'disable'
529  *	methods to exit and enter power saving states. For more information
530  *	see comments for struct mmc_host_ops.
531  */
532 int mmc_host_disable(struct mmc_host *host)
533 {
534 	int err;
535 
536 	if (!(host->caps & MMC_CAP_DISABLE))
537 		return 0;
538 
539 	if (host->en_dis_recurs)
540 		return 0;
541 
542 	if (--host->nesting_cnt)
543 		return 0;
544 
545 	if (!host->enabled)
546 		return 0;
547 
548 	err = mmc_host_do_disable(host, 0);
549 	return err;
550 }
551 EXPORT_SYMBOL(mmc_host_disable);
552 
553 /**
554  *	__mmc_claim_host - exclusively claim a host
555  *	@host: mmc host to claim
556  *	@abort: whether or not the operation should be aborted
557  *
558  *	Claim a host for a set of operations.  If @abort is non null and
559  *	dereference a non-zero value then this will return prematurely with
560  *	that non-zero value without acquiring the lock.  Returns zero
561  *	with the lock held otherwise.
562  */
563 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
564 {
565 	DECLARE_WAITQUEUE(wait, current);
566 	unsigned long flags;
567 	int stop;
568 
569 	might_sleep();
570 
571 	add_wait_queue(&host->wq, &wait);
572 	spin_lock_irqsave(&host->lock, flags);
573 	while (1) {
574 		set_current_state(TASK_UNINTERRUPTIBLE);
575 		stop = abort ? atomic_read(abort) : 0;
576 		if (stop || !host->claimed || host->claimer == current)
577 			break;
578 		spin_unlock_irqrestore(&host->lock, flags);
579 		schedule();
580 		spin_lock_irqsave(&host->lock, flags);
581 	}
582 	set_current_state(TASK_RUNNING);
583 	if (!stop) {
584 		host->claimed = 1;
585 		host->claimer = current;
586 		host->claim_cnt += 1;
587 	} else
588 		wake_up(&host->wq);
589 	spin_unlock_irqrestore(&host->lock, flags);
590 	remove_wait_queue(&host->wq, &wait);
591 	if (!stop)
592 		mmc_host_enable(host);
593 	return stop;
594 }
595 
596 EXPORT_SYMBOL(__mmc_claim_host);
597 
598 /**
599  *	mmc_try_claim_host - try exclusively to claim a host
600  *	@host: mmc host to claim
601  *
602  *	Returns %1 if the host is claimed, %0 otherwise.
603  */
604 int mmc_try_claim_host(struct mmc_host *host)
605 {
606 	int claimed_host = 0;
607 	unsigned long flags;
608 
609 	spin_lock_irqsave(&host->lock, flags);
610 	if (!host->claimed || host->claimer == current) {
611 		host->claimed = 1;
612 		host->claimer = current;
613 		host->claim_cnt += 1;
614 		claimed_host = 1;
615 	}
616 	spin_unlock_irqrestore(&host->lock, flags);
617 	return claimed_host;
618 }
619 EXPORT_SYMBOL(mmc_try_claim_host);
620 
621 /**
622  *	mmc_do_release_host - release a claimed host
623  *	@host: mmc host to release
624  *
625  *	If you successfully claimed a host, this function will
626  *	release it again.
627  */
628 void mmc_do_release_host(struct mmc_host *host)
629 {
630 	unsigned long flags;
631 
632 	spin_lock_irqsave(&host->lock, flags);
633 	if (--host->claim_cnt) {
634 		/* Release for nested claim */
635 		spin_unlock_irqrestore(&host->lock, flags);
636 	} else {
637 		host->claimed = 0;
638 		host->claimer = NULL;
639 		spin_unlock_irqrestore(&host->lock, flags);
640 		wake_up(&host->wq);
641 	}
642 }
643 EXPORT_SYMBOL(mmc_do_release_host);
644 
645 void mmc_host_deeper_disable(struct work_struct *work)
646 {
647 	struct mmc_host *host =
648 		container_of(work, struct mmc_host, disable.work);
649 
650 	/* If the host is claimed then we do not want to disable it anymore */
651 	if (!mmc_try_claim_host(host))
652 		return;
653 	mmc_host_do_disable(host, 1);
654 	mmc_do_release_host(host);
655 }
656 
657 /**
658  *	mmc_host_lazy_disable - lazily disable a host.
659  *	@host: mmc host to disable
660  *
661  *	Hosts that support power saving can use the 'enable' and 'disable'
662  *	methods to exit and enter power saving states. For more information
663  *	see comments for struct mmc_host_ops.
664  */
665 int mmc_host_lazy_disable(struct mmc_host *host)
666 {
667 	if (!(host->caps & MMC_CAP_DISABLE))
668 		return 0;
669 
670 	if (host->en_dis_recurs)
671 		return 0;
672 
673 	if (--host->nesting_cnt)
674 		return 0;
675 
676 	if (!host->enabled)
677 		return 0;
678 
679 	if (host->disable_delay) {
680 		mmc_schedule_delayed_work(&host->disable,
681 				msecs_to_jiffies(host->disable_delay));
682 		return 0;
683 	} else
684 		return mmc_host_do_disable(host, 1);
685 }
686 EXPORT_SYMBOL(mmc_host_lazy_disable);
687 
688 /**
689  *	mmc_release_host - release a host
690  *	@host: mmc host to release
691  *
692  *	Release a MMC host, allowing others to claim the host
693  *	for their operations.
694  */
695 void mmc_release_host(struct mmc_host *host)
696 {
697 	WARN_ON(!host->claimed);
698 
699 	mmc_host_lazy_disable(host);
700 
701 	mmc_do_release_host(host);
702 }
703 
704 EXPORT_SYMBOL(mmc_release_host);
705 
706 /*
707  * Internal function that does the actual ios call to the host driver,
708  * optionally printing some debug output.
709  */
710 static inline void mmc_set_ios(struct mmc_host *host)
711 {
712 	struct mmc_ios *ios = &host->ios;
713 
714 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
715 		"width %u timing %u\n",
716 		 mmc_hostname(host), ios->clock, ios->bus_mode,
717 		 ios->power_mode, ios->chip_select, ios->vdd,
718 		 ios->bus_width, ios->timing);
719 
720 	if (ios->clock > 0)
721 		mmc_set_ungated(host);
722 	host->ops->set_ios(host, ios);
723 }
724 
725 /*
726  * Control chip select pin on a host.
727  */
728 void mmc_set_chip_select(struct mmc_host *host, int mode)
729 {
730 	host->ios.chip_select = mode;
731 	mmc_set_ios(host);
732 }
733 
734 /*
735  * Sets the host clock to the highest possible frequency that
736  * is below "hz".
737  */
738 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
739 {
740 	WARN_ON(hz < host->f_min);
741 
742 	if (hz > host->f_max)
743 		hz = host->f_max;
744 
745 	host->ios.clock = hz;
746 	mmc_set_ios(host);
747 }
748 
749 #ifdef CONFIG_MMC_CLKGATE
750 /*
751  * This gates the clock by setting it to 0 Hz.
752  */
753 void mmc_gate_clock(struct mmc_host *host)
754 {
755 	unsigned long flags;
756 
757 	spin_lock_irqsave(&host->clk_lock, flags);
758 	host->clk_old = host->ios.clock;
759 	host->ios.clock = 0;
760 	host->clk_gated = true;
761 	spin_unlock_irqrestore(&host->clk_lock, flags);
762 	mmc_set_ios(host);
763 }
764 
765 /*
766  * This restores the clock from gating by using the cached
767  * clock value.
768  */
769 void mmc_ungate_clock(struct mmc_host *host)
770 {
771 	/*
772 	 * We should previously have gated the clock, so the clock shall
773 	 * be 0 here! The clock may however be 0 during initialization,
774 	 * when some request operations are performed before setting
775 	 * the frequency. When ungate is requested in that situation
776 	 * we just ignore the call.
777 	 */
778 	if (host->clk_old) {
779 		BUG_ON(host->ios.clock);
780 		/* This call will also set host->clk_gated to false */
781 		mmc_set_clock(host, host->clk_old);
782 	}
783 }
784 
785 void mmc_set_ungated(struct mmc_host *host)
786 {
787 	unsigned long flags;
788 
789 	/*
790 	 * We've been given a new frequency while the clock is gated,
791 	 * so make sure we regard this as ungating it.
792 	 */
793 	spin_lock_irqsave(&host->clk_lock, flags);
794 	host->clk_gated = false;
795 	spin_unlock_irqrestore(&host->clk_lock, flags);
796 }
797 
798 #else
799 void mmc_set_ungated(struct mmc_host *host)
800 {
801 }
802 #endif
803 
804 /*
805  * Change the bus mode (open drain/push-pull) of a host.
806  */
807 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
808 {
809 	host->ios.bus_mode = mode;
810 	mmc_set_ios(host);
811 }
812 
813 /*
814  * Change data bus width of a host.
815  */
816 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
817 {
818 	host->ios.bus_width = width;
819 	mmc_set_ios(host);
820 }
821 
822 /**
823  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
824  * @vdd:	voltage (mV)
825  * @low_bits:	prefer low bits in boundary cases
826  *
827  * This function returns the OCR bit number according to the provided @vdd
828  * value. If conversion is not possible a negative errno value returned.
829  *
830  * Depending on the @low_bits flag the function prefers low or high OCR bits
831  * on boundary voltages. For example,
832  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
833  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
834  *
835  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
836  */
837 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
838 {
839 	const int max_bit = ilog2(MMC_VDD_35_36);
840 	int bit;
841 
842 	if (vdd < 1650 || vdd > 3600)
843 		return -EINVAL;
844 
845 	if (vdd >= 1650 && vdd <= 1950)
846 		return ilog2(MMC_VDD_165_195);
847 
848 	if (low_bits)
849 		vdd -= 1;
850 
851 	/* Base 2000 mV, step 100 mV, bit's base 8. */
852 	bit = (vdd - 2000) / 100 + 8;
853 	if (bit > max_bit)
854 		return max_bit;
855 	return bit;
856 }
857 
858 /**
859  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
860  * @vdd_min:	minimum voltage value (mV)
861  * @vdd_max:	maximum voltage value (mV)
862  *
863  * This function returns the OCR mask bits according to the provided @vdd_min
864  * and @vdd_max values. If conversion is not possible the function returns 0.
865  *
866  * Notes wrt boundary cases:
867  * This function sets the OCR bits for all boundary voltages, for example
868  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
869  * MMC_VDD_34_35 mask.
870  */
871 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
872 {
873 	u32 mask = 0;
874 
875 	if (vdd_max < vdd_min)
876 		return 0;
877 
878 	/* Prefer high bits for the boundary vdd_max values. */
879 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
880 	if (vdd_max < 0)
881 		return 0;
882 
883 	/* Prefer low bits for the boundary vdd_min values. */
884 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
885 	if (vdd_min < 0)
886 		return 0;
887 
888 	/* Fill the mask, from max bit to min bit. */
889 	while (vdd_max >= vdd_min)
890 		mask |= 1 << vdd_max--;
891 
892 	return mask;
893 }
894 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
895 
896 #ifdef CONFIG_REGULATOR
897 
898 /**
899  * mmc_regulator_get_ocrmask - return mask of supported voltages
900  * @supply: regulator to use
901  *
902  * This returns either a negative errno, or a mask of voltages that
903  * can be provided to MMC/SD/SDIO devices using the specified voltage
904  * regulator.  This would normally be called before registering the
905  * MMC host adapter.
906  */
907 int mmc_regulator_get_ocrmask(struct regulator *supply)
908 {
909 	int			result = 0;
910 	int			count;
911 	int			i;
912 
913 	count = regulator_count_voltages(supply);
914 	if (count < 0)
915 		return count;
916 
917 	for (i = 0; i < count; i++) {
918 		int		vdd_uV;
919 		int		vdd_mV;
920 
921 		vdd_uV = regulator_list_voltage(supply, i);
922 		if (vdd_uV <= 0)
923 			continue;
924 
925 		vdd_mV = vdd_uV / 1000;
926 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
927 	}
928 
929 	return result;
930 }
931 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
932 
933 /**
934  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
935  * @mmc: the host to regulate
936  * @supply: regulator to use
937  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
938  *
939  * Returns zero on success, else negative errno.
940  *
941  * MMC host drivers may use this to enable or disable a regulator using
942  * a particular supply voltage.  This would normally be called from the
943  * set_ios() method.
944  */
945 int mmc_regulator_set_ocr(struct mmc_host *mmc,
946 			struct regulator *supply,
947 			unsigned short vdd_bit)
948 {
949 	int			result = 0;
950 	int			min_uV, max_uV;
951 
952 	if (vdd_bit) {
953 		int		tmp;
954 		int		voltage;
955 
956 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
957 		 * bits this regulator doesn't quite support ... don't
958 		 * be too picky, most cards and regulators are OK with
959 		 * a 0.1V range goof (it's a small error percentage).
960 		 */
961 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
962 		if (tmp == 0) {
963 			min_uV = 1650 * 1000;
964 			max_uV = 1950 * 1000;
965 		} else {
966 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
967 			max_uV = min_uV + 100 * 1000;
968 		}
969 
970 		/* avoid needless changes to this voltage; the regulator
971 		 * might not allow this operation
972 		 */
973 		voltage = regulator_get_voltage(supply);
974 		if (voltage < 0)
975 			result = voltage;
976 		else if (voltage < min_uV || voltage > max_uV)
977 			result = regulator_set_voltage(supply, min_uV, max_uV);
978 		else
979 			result = 0;
980 
981 		if (result == 0 && !mmc->regulator_enabled) {
982 			result = regulator_enable(supply);
983 			if (!result)
984 				mmc->regulator_enabled = true;
985 		}
986 	} else if (mmc->regulator_enabled) {
987 		result = regulator_disable(supply);
988 		if (result == 0)
989 			mmc->regulator_enabled = false;
990 	}
991 
992 	if (result)
993 		dev_err(mmc_dev(mmc),
994 			"could not set regulator OCR (%d)\n", result);
995 	return result;
996 }
997 EXPORT_SYMBOL(mmc_regulator_set_ocr);
998 
999 #endif /* CONFIG_REGULATOR */
1000 
1001 /*
1002  * Mask off any voltages we don't support and select
1003  * the lowest voltage
1004  */
1005 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1006 {
1007 	int bit;
1008 
1009 	ocr &= host->ocr_avail;
1010 
1011 	bit = ffs(ocr);
1012 	if (bit) {
1013 		bit -= 1;
1014 
1015 		ocr &= 3 << bit;
1016 
1017 		host->ios.vdd = bit;
1018 		mmc_set_ios(host);
1019 	} else {
1020 		pr_warning("%s: host doesn't support card's voltages\n",
1021 				mmc_hostname(host));
1022 		ocr = 0;
1023 	}
1024 
1025 	return ocr;
1026 }
1027 
1028 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1029 {
1030 	struct mmc_command cmd = {0};
1031 	int err = 0;
1032 
1033 	BUG_ON(!host);
1034 
1035 	/*
1036 	 * Send CMD11 only if the request is to switch the card to
1037 	 * 1.8V signalling.
1038 	 */
1039 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1040 		cmd.opcode = SD_SWITCH_VOLTAGE;
1041 		cmd.arg = 0;
1042 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1043 
1044 		err = mmc_wait_for_cmd(host, &cmd, 0);
1045 		if (err)
1046 			return err;
1047 
1048 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1049 			return -EIO;
1050 	}
1051 
1052 	host->ios.signal_voltage = signal_voltage;
1053 
1054 	if (host->ops->start_signal_voltage_switch)
1055 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1056 
1057 	return err;
1058 }
1059 
1060 /*
1061  * Select timing parameters for host.
1062  */
1063 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1064 {
1065 	host->ios.timing = timing;
1066 	mmc_set_ios(host);
1067 }
1068 
1069 /*
1070  * Select appropriate driver type for host.
1071  */
1072 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1073 {
1074 	host->ios.drv_type = drv_type;
1075 	mmc_set_ios(host);
1076 }
1077 
1078 /*
1079  * Apply power to the MMC stack.  This is a two-stage process.
1080  * First, we enable power to the card without the clock running.
1081  * We then wait a bit for the power to stabilise.  Finally,
1082  * enable the bus drivers and clock to the card.
1083  *
1084  * We must _NOT_ enable the clock prior to power stablising.
1085  *
1086  * If a host does all the power sequencing itself, ignore the
1087  * initial MMC_POWER_UP stage.
1088  */
1089 static void mmc_power_up(struct mmc_host *host)
1090 {
1091 	int bit;
1092 
1093 	/* If ocr is set, we use it */
1094 	if (host->ocr)
1095 		bit = ffs(host->ocr) - 1;
1096 	else
1097 		bit = fls(host->ocr_avail) - 1;
1098 
1099 	host->ios.vdd = bit;
1100 	if (mmc_host_is_spi(host)) {
1101 		host->ios.chip_select = MMC_CS_HIGH;
1102 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1103 	} else {
1104 		host->ios.chip_select = MMC_CS_DONTCARE;
1105 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1106 	}
1107 	host->ios.power_mode = MMC_POWER_UP;
1108 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1109 	host->ios.timing = MMC_TIMING_LEGACY;
1110 	mmc_set_ios(host);
1111 
1112 	/*
1113 	 * This delay should be sufficient to allow the power supply
1114 	 * to reach the minimum voltage.
1115 	 */
1116 	mmc_delay(10);
1117 
1118 	host->ios.clock = host->f_init;
1119 
1120 	host->ios.power_mode = MMC_POWER_ON;
1121 	mmc_set_ios(host);
1122 
1123 	/*
1124 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1125 	 * time required to reach a stable voltage.
1126 	 */
1127 	mmc_delay(10);
1128 }
1129 
1130 static void mmc_power_off(struct mmc_host *host)
1131 {
1132 	host->ios.clock = 0;
1133 	host->ios.vdd = 0;
1134 
1135 	/*
1136 	 * Reset ocr mask to be the highest possible voltage supported for
1137 	 * this mmc host. This value will be used at next power up.
1138 	 */
1139 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1140 
1141 	if (!mmc_host_is_spi(host)) {
1142 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1143 		host->ios.chip_select = MMC_CS_DONTCARE;
1144 	}
1145 	host->ios.power_mode = MMC_POWER_OFF;
1146 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1147 	host->ios.timing = MMC_TIMING_LEGACY;
1148 	mmc_set_ios(host);
1149 }
1150 
1151 /*
1152  * Cleanup when the last reference to the bus operator is dropped.
1153  */
1154 static void __mmc_release_bus(struct mmc_host *host)
1155 {
1156 	BUG_ON(!host);
1157 	BUG_ON(host->bus_refs);
1158 	BUG_ON(!host->bus_dead);
1159 
1160 	host->bus_ops = NULL;
1161 }
1162 
1163 /*
1164  * Increase reference count of bus operator
1165  */
1166 static inline void mmc_bus_get(struct mmc_host *host)
1167 {
1168 	unsigned long flags;
1169 
1170 	spin_lock_irqsave(&host->lock, flags);
1171 	host->bus_refs++;
1172 	spin_unlock_irqrestore(&host->lock, flags);
1173 }
1174 
1175 /*
1176  * Decrease reference count of bus operator and free it if
1177  * it is the last reference.
1178  */
1179 static inline void mmc_bus_put(struct mmc_host *host)
1180 {
1181 	unsigned long flags;
1182 
1183 	spin_lock_irqsave(&host->lock, flags);
1184 	host->bus_refs--;
1185 	if ((host->bus_refs == 0) && host->bus_ops)
1186 		__mmc_release_bus(host);
1187 	spin_unlock_irqrestore(&host->lock, flags);
1188 }
1189 
1190 /*
1191  * Assign a mmc bus handler to a host. Only one bus handler may control a
1192  * host at any given time.
1193  */
1194 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1195 {
1196 	unsigned long flags;
1197 
1198 	BUG_ON(!host);
1199 	BUG_ON(!ops);
1200 
1201 	WARN_ON(!host->claimed);
1202 
1203 	spin_lock_irqsave(&host->lock, flags);
1204 
1205 	BUG_ON(host->bus_ops);
1206 	BUG_ON(host->bus_refs);
1207 
1208 	host->bus_ops = ops;
1209 	host->bus_refs = 1;
1210 	host->bus_dead = 0;
1211 
1212 	spin_unlock_irqrestore(&host->lock, flags);
1213 }
1214 
1215 /*
1216  * Remove the current bus handler from a host. Assumes that there are
1217  * no interesting cards left, so the bus is powered down.
1218  */
1219 void mmc_detach_bus(struct mmc_host *host)
1220 {
1221 	unsigned long flags;
1222 
1223 	BUG_ON(!host);
1224 
1225 	WARN_ON(!host->claimed);
1226 	WARN_ON(!host->bus_ops);
1227 
1228 	spin_lock_irqsave(&host->lock, flags);
1229 
1230 	host->bus_dead = 1;
1231 
1232 	spin_unlock_irqrestore(&host->lock, flags);
1233 
1234 	mmc_power_off(host);
1235 
1236 	mmc_bus_put(host);
1237 }
1238 
1239 /**
1240  *	mmc_detect_change - process change of state on a MMC socket
1241  *	@host: host which changed state.
1242  *	@delay: optional delay to wait before detection (jiffies)
1243  *
1244  *	MMC drivers should call this when they detect a card has been
1245  *	inserted or removed. The MMC layer will confirm that any
1246  *	present card is still functional, and initialize any newly
1247  *	inserted.
1248  */
1249 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1250 {
1251 #ifdef CONFIG_MMC_DEBUG
1252 	unsigned long flags;
1253 	spin_lock_irqsave(&host->lock, flags);
1254 	WARN_ON(host->removed);
1255 	spin_unlock_irqrestore(&host->lock, flags);
1256 #endif
1257 
1258 	mmc_schedule_delayed_work(&host->detect, delay);
1259 }
1260 
1261 EXPORT_SYMBOL(mmc_detect_change);
1262 
1263 void mmc_init_erase(struct mmc_card *card)
1264 {
1265 	unsigned int sz;
1266 
1267 	if (is_power_of_2(card->erase_size))
1268 		card->erase_shift = ffs(card->erase_size) - 1;
1269 	else
1270 		card->erase_shift = 0;
1271 
1272 	/*
1273 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1274 	 * card.  That is not desirable because it can take a long time
1275 	 * (minutes) potentially delaying more important I/O, and also the
1276 	 * timeout calculations become increasingly hugely over-estimated.
1277 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1278 	 * to that size and alignment.
1279 	 *
1280 	 * For SD cards that define Allocation Unit size, limit erases to one
1281 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1282 	 * Erase Size, whether it is switched on or not, limit to that size.
1283 	 * Otherwise just have a stab at a good value.  For modern cards it
1284 	 * will end up being 4MiB.  Note that if the value is too small, it
1285 	 * can end up taking longer to erase.
1286 	 */
1287 	if (mmc_card_sd(card) && card->ssr.au) {
1288 		card->pref_erase = card->ssr.au;
1289 		card->erase_shift = ffs(card->ssr.au) - 1;
1290 	} else if (card->ext_csd.hc_erase_size) {
1291 		card->pref_erase = card->ext_csd.hc_erase_size;
1292 	} else {
1293 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1294 		if (sz < 128)
1295 			card->pref_erase = 512 * 1024 / 512;
1296 		else if (sz < 512)
1297 			card->pref_erase = 1024 * 1024 / 512;
1298 		else if (sz < 1024)
1299 			card->pref_erase = 2 * 1024 * 1024 / 512;
1300 		else
1301 			card->pref_erase = 4 * 1024 * 1024 / 512;
1302 		if (card->pref_erase < card->erase_size)
1303 			card->pref_erase = card->erase_size;
1304 		else {
1305 			sz = card->pref_erase % card->erase_size;
1306 			if (sz)
1307 				card->pref_erase += card->erase_size - sz;
1308 		}
1309 	}
1310 }
1311 
1312 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1313 				          unsigned int arg, unsigned int qty)
1314 {
1315 	unsigned int erase_timeout;
1316 
1317 	if (card->ext_csd.erase_group_def & 1) {
1318 		/* High Capacity Erase Group Size uses HC timeouts */
1319 		if (arg == MMC_TRIM_ARG)
1320 			erase_timeout = card->ext_csd.trim_timeout;
1321 		else
1322 			erase_timeout = card->ext_csd.hc_erase_timeout;
1323 	} else {
1324 		/* CSD Erase Group Size uses write timeout */
1325 		unsigned int mult = (10 << card->csd.r2w_factor);
1326 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1327 		unsigned int timeout_us;
1328 
1329 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1330 		if (card->csd.tacc_ns < 1000000)
1331 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1332 		else
1333 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1334 
1335 		/*
1336 		 * ios.clock is only a target.  The real clock rate might be
1337 		 * less but not that much less, so fudge it by multiplying by 2.
1338 		 */
1339 		timeout_clks <<= 1;
1340 		timeout_us += (timeout_clks * 1000) /
1341 			      (mmc_host_clk_rate(card->host) / 1000);
1342 
1343 		erase_timeout = timeout_us / 1000;
1344 
1345 		/*
1346 		 * Theoretically, the calculation could underflow so round up
1347 		 * to 1ms in that case.
1348 		 */
1349 		if (!erase_timeout)
1350 			erase_timeout = 1;
1351 	}
1352 
1353 	/* Multiplier for secure operations */
1354 	if (arg & MMC_SECURE_ARGS) {
1355 		if (arg == MMC_SECURE_ERASE_ARG)
1356 			erase_timeout *= card->ext_csd.sec_erase_mult;
1357 		else
1358 			erase_timeout *= card->ext_csd.sec_trim_mult;
1359 	}
1360 
1361 	erase_timeout *= qty;
1362 
1363 	/*
1364 	 * Ensure at least a 1 second timeout for SPI as per
1365 	 * 'mmc_set_data_timeout()'
1366 	 */
1367 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1368 		erase_timeout = 1000;
1369 
1370 	return erase_timeout;
1371 }
1372 
1373 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1374 					 unsigned int arg,
1375 					 unsigned int qty)
1376 {
1377 	unsigned int erase_timeout;
1378 
1379 	if (card->ssr.erase_timeout) {
1380 		/* Erase timeout specified in SD Status Register (SSR) */
1381 		erase_timeout = card->ssr.erase_timeout * qty +
1382 				card->ssr.erase_offset;
1383 	} else {
1384 		/*
1385 		 * Erase timeout not specified in SD Status Register (SSR) so
1386 		 * use 250ms per write block.
1387 		 */
1388 		erase_timeout = 250 * qty;
1389 	}
1390 
1391 	/* Must not be less than 1 second */
1392 	if (erase_timeout < 1000)
1393 		erase_timeout = 1000;
1394 
1395 	return erase_timeout;
1396 }
1397 
1398 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1399 				      unsigned int arg,
1400 				      unsigned int qty)
1401 {
1402 	if (mmc_card_sd(card))
1403 		return mmc_sd_erase_timeout(card, arg, qty);
1404 	else
1405 		return mmc_mmc_erase_timeout(card, arg, qty);
1406 }
1407 
1408 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1409 			unsigned int to, unsigned int arg)
1410 {
1411 	struct mmc_command cmd = {0};
1412 	unsigned int qty = 0;
1413 	int err;
1414 
1415 	/*
1416 	 * qty is used to calculate the erase timeout which depends on how many
1417 	 * erase groups (or allocation units in SD terminology) are affected.
1418 	 * We count erasing part of an erase group as one erase group.
1419 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1420 	 * erase group size is almost certainly also power of 2, but it does not
1421 	 * seem to insist on that in the JEDEC standard, so we fall back to
1422 	 * division in that case.  SD may not specify an allocation unit size,
1423 	 * in which case the timeout is based on the number of write blocks.
1424 	 *
1425 	 * Note that the timeout for secure trim 2 will only be correct if the
1426 	 * number of erase groups specified is the same as the total of all
1427 	 * preceding secure trim 1 commands.  Since the power may have been
1428 	 * lost since the secure trim 1 commands occurred, it is generally
1429 	 * impossible to calculate the secure trim 2 timeout correctly.
1430 	 */
1431 	if (card->erase_shift)
1432 		qty += ((to >> card->erase_shift) -
1433 			(from >> card->erase_shift)) + 1;
1434 	else if (mmc_card_sd(card))
1435 		qty += to - from + 1;
1436 	else
1437 		qty += ((to / card->erase_size) -
1438 			(from / card->erase_size)) + 1;
1439 
1440 	if (!mmc_card_blockaddr(card)) {
1441 		from <<= 9;
1442 		to <<= 9;
1443 	}
1444 
1445 	if (mmc_card_sd(card))
1446 		cmd.opcode = SD_ERASE_WR_BLK_START;
1447 	else
1448 		cmd.opcode = MMC_ERASE_GROUP_START;
1449 	cmd.arg = from;
1450 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1451 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1452 	if (err) {
1453 		printk(KERN_ERR "mmc_erase: group start error %d, "
1454 		       "status %#x\n", err, cmd.resp[0]);
1455 		err = -EINVAL;
1456 		goto out;
1457 	}
1458 
1459 	memset(&cmd, 0, sizeof(struct mmc_command));
1460 	if (mmc_card_sd(card))
1461 		cmd.opcode = SD_ERASE_WR_BLK_END;
1462 	else
1463 		cmd.opcode = MMC_ERASE_GROUP_END;
1464 	cmd.arg = to;
1465 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1466 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1467 	if (err) {
1468 		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1469 		       err, cmd.resp[0]);
1470 		err = -EINVAL;
1471 		goto out;
1472 	}
1473 
1474 	memset(&cmd, 0, sizeof(struct mmc_command));
1475 	cmd.opcode = MMC_ERASE;
1476 	cmd.arg = arg;
1477 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1478 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1479 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480 	if (err) {
1481 		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1482 		       err, cmd.resp[0]);
1483 		err = -EIO;
1484 		goto out;
1485 	}
1486 
1487 	if (mmc_host_is_spi(card->host))
1488 		goto out;
1489 
1490 	do {
1491 		memset(&cmd, 0, sizeof(struct mmc_command));
1492 		cmd.opcode = MMC_SEND_STATUS;
1493 		cmd.arg = card->rca << 16;
1494 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1495 		/* Do not retry else we can't see errors */
1496 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1497 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1498 			printk(KERN_ERR "error %d requesting status %#x\n",
1499 				err, cmd.resp[0]);
1500 			err = -EIO;
1501 			goto out;
1502 		}
1503 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1504 		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1505 out:
1506 	return err;
1507 }
1508 
1509 /**
1510  * mmc_erase - erase sectors.
1511  * @card: card to erase
1512  * @from: first sector to erase
1513  * @nr: number of sectors to erase
1514  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1515  *
1516  * Caller must claim host before calling this function.
1517  */
1518 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1519 	      unsigned int arg)
1520 {
1521 	unsigned int rem, to = from + nr;
1522 
1523 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1524 	    !(card->csd.cmdclass & CCC_ERASE))
1525 		return -EOPNOTSUPP;
1526 
1527 	if (!card->erase_size)
1528 		return -EOPNOTSUPP;
1529 
1530 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1531 		return -EOPNOTSUPP;
1532 
1533 	if ((arg & MMC_SECURE_ARGS) &&
1534 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1535 		return -EOPNOTSUPP;
1536 
1537 	if ((arg & MMC_TRIM_ARGS) &&
1538 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1539 		return -EOPNOTSUPP;
1540 
1541 	if (arg == MMC_SECURE_ERASE_ARG) {
1542 		if (from % card->erase_size || nr % card->erase_size)
1543 			return -EINVAL;
1544 	}
1545 
1546 	if (arg == MMC_ERASE_ARG) {
1547 		rem = from % card->erase_size;
1548 		if (rem) {
1549 			rem = card->erase_size - rem;
1550 			from += rem;
1551 			if (nr > rem)
1552 				nr -= rem;
1553 			else
1554 				return 0;
1555 		}
1556 		rem = nr % card->erase_size;
1557 		if (rem)
1558 			nr -= rem;
1559 	}
1560 
1561 	if (nr == 0)
1562 		return 0;
1563 
1564 	to = from + nr;
1565 
1566 	if (to <= from)
1567 		return -EINVAL;
1568 
1569 	/* 'from' and 'to' are inclusive */
1570 	to -= 1;
1571 
1572 	return mmc_do_erase(card, from, to, arg);
1573 }
1574 EXPORT_SYMBOL(mmc_erase);
1575 
1576 int mmc_can_erase(struct mmc_card *card)
1577 {
1578 	if ((card->host->caps & MMC_CAP_ERASE) &&
1579 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1580 		return 1;
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL(mmc_can_erase);
1584 
1585 int mmc_can_trim(struct mmc_card *card)
1586 {
1587 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1588 		return 1;
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL(mmc_can_trim);
1592 
1593 int mmc_can_secure_erase_trim(struct mmc_card *card)
1594 {
1595 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1596 		return 1;
1597 	return 0;
1598 }
1599 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1600 
1601 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1602 			    unsigned int nr)
1603 {
1604 	if (!card->erase_size)
1605 		return 0;
1606 	if (from % card->erase_size || nr % card->erase_size)
1607 		return 0;
1608 	return 1;
1609 }
1610 EXPORT_SYMBOL(mmc_erase_group_aligned);
1611 
1612 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1613 					    unsigned int arg)
1614 {
1615 	struct mmc_host *host = card->host;
1616 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1617 	unsigned int last_timeout = 0;
1618 
1619 	if (card->erase_shift)
1620 		max_qty = UINT_MAX >> card->erase_shift;
1621 	else if (mmc_card_sd(card))
1622 		max_qty = UINT_MAX;
1623 	else
1624 		max_qty = UINT_MAX / card->erase_size;
1625 
1626 	/* Find the largest qty with an OK timeout */
1627 	do {
1628 		y = 0;
1629 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1630 			timeout = mmc_erase_timeout(card, arg, qty + x);
1631 			if (timeout > host->max_discard_to)
1632 				break;
1633 			if (timeout < last_timeout)
1634 				break;
1635 			last_timeout = timeout;
1636 			y = x;
1637 		}
1638 		qty += y;
1639 	} while (y);
1640 
1641 	if (!qty)
1642 		return 0;
1643 
1644 	if (qty == 1)
1645 		return 1;
1646 
1647 	/* Convert qty to sectors */
1648 	if (card->erase_shift)
1649 		max_discard = --qty << card->erase_shift;
1650 	else if (mmc_card_sd(card))
1651 		max_discard = qty;
1652 	else
1653 		max_discard = --qty * card->erase_size;
1654 
1655 	return max_discard;
1656 }
1657 
1658 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1659 {
1660 	struct mmc_host *host = card->host;
1661 	unsigned int max_discard, max_trim;
1662 
1663 	if (!host->max_discard_to)
1664 		return UINT_MAX;
1665 
1666 	/*
1667 	 * Without erase_group_def set, MMC erase timeout depends on clock
1668 	 * frequence which can change.  In that case, the best choice is
1669 	 * just the preferred erase size.
1670 	 */
1671 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1672 		return card->pref_erase;
1673 
1674 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1675 	if (mmc_can_trim(card)) {
1676 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1677 		if (max_trim < max_discard)
1678 			max_discard = max_trim;
1679 	} else if (max_discard < card->erase_size) {
1680 		max_discard = 0;
1681 	}
1682 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1683 		 mmc_hostname(host), max_discard, host->max_discard_to);
1684 	return max_discard;
1685 }
1686 EXPORT_SYMBOL(mmc_calc_max_discard);
1687 
1688 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1689 {
1690 	struct mmc_command cmd = {0};
1691 
1692 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1693 		return 0;
1694 
1695 	cmd.opcode = MMC_SET_BLOCKLEN;
1696 	cmd.arg = blocklen;
1697 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1698 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1699 }
1700 EXPORT_SYMBOL(mmc_set_blocklen);
1701 
1702 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1703 {
1704 	host->f_init = freq;
1705 
1706 #ifdef CONFIG_MMC_DEBUG
1707 	pr_info("%s: %s: trying to init card at %u Hz\n",
1708 		mmc_hostname(host), __func__, host->f_init);
1709 #endif
1710 	mmc_power_up(host);
1711 
1712 	/*
1713 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1714 	 * if the card is being re-initialized, just send it.  CMD52
1715 	 * should be ignored by SD/eMMC cards.
1716 	 */
1717 	sdio_reset(host);
1718 	mmc_go_idle(host);
1719 
1720 	mmc_send_if_cond(host, host->ocr_avail);
1721 
1722 	/* Order's important: probe SDIO, then SD, then MMC */
1723 	if (!mmc_attach_sdio(host))
1724 		return 0;
1725 	if (!mmc_attach_sd(host))
1726 		return 0;
1727 	if (!mmc_attach_mmc(host))
1728 		return 0;
1729 
1730 	mmc_power_off(host);
1731 	return -EIO;
1732 }
1733 
1734 void mmc_rescan(struct work_struct *work)
1735 {
1736 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1737 	struct mmc_host *host =
1738 		container_of(work, struct mmc_host, detect.work);
1739 	int i;
1740 
1741 	if (host->rescan_disable)
1742 		return;
1743 
1744 	mmc_bus_get(host);
1745 
1746 	/*
1747 	 * if there is a _removable_ card registered, check whether it is
1748 	 * still present
1749 	 */
1750 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1751 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1752 		host->bus_ops->detect(host);
1753 
1754 	/*
1755 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1756 	 * the card is no longer present.
1757 	 */
1758 	mmc_bus_put(host);
1759 	mmc_bus_get(host);
1760 
1761 	/* if there still is a card present, stop here */
1762 	if (host->bus_ops != NULL) {
1763 		mmc_bus_put(host);
1764 		goto out;
1765 	}
1766 
1767 	/*
1768 	 * Only we can add a new handler, so it's safe to
1769 	 * release the lock here.
1770 	 */
1771 	mmc_bus_put(host);
1772 
1773 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1774 		goto out;
1775 
1776 	mmc_claim_host(host);
1777 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1778 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1779 			break;
1780 		if (freqs[i] <= host->f_min)
1781 			break;
1782 	}
1783 	mmc_release_host(host);
1784 
1785  out:
1786 	if (host->caps & MMC_CAP_NEEDS_POLL)
1787 		mmc_schedule_delayed_work(&host->detect, HZ);
1788 }
1789 
1790 void mmc_start_host(struct mmc_host *host)
1791 {
1792 	mmc_power_off(host);
1793 	mmc_detect_change(host, 0);
1794 }
1795 
1796 void mmc_stop_host(struct mmc_host *host)
1797 {
1798 #ifdef CONFIG_MMC_DEBUG
1799 	unsigned long flags;
1800 	spin_lock_irqsave(&host->lock, flags);
1801 	host->removed = 1;
1802 	spin_unlock_irqrestore(&host->lock, flags);
1803 #endif
1804 
1805 	if (host->caps & MMC_CAP_DISABLE)
1806 		cancel_delayed_work(&host->disable);
1807 	cancel_delayed_work_sync(&host->detect);
1808 	mmc_flush_scheduled_work();
1809 
1810 	/* clear pm flags now and let card drivers set them as needed */
1811 	host->pm_flags = 0;
1812 
1813 	mmc_bus_get(host);
1814 	if (host->bus_ops && !host->bus_dead) {
1815 		if (host->bus_ops->remove)
1816 			host->bus_ops->remove(host);
1817 
1818 		mmc_claim_host(host);
1819 		mmc_detach_bus(host);
1820 		mmc_release_host(host);
1821 		mmc_bus_put(host);
1822 		return;
1823 	}
1824 	mmc_bus_put(host);
1825 
1826 	BUG_ON(host->card);
1827 
1828 	mmc_power_off(host);
1829 }
1830 
1831 int mmc_power_save_host(struct mmc_host *host)
1832 {
1833 	int ret = 0;
1834 
1835 #ifdef CONFIG_MMC_DEBUG
1836 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1837 #endif
1838 
1839 	mmc_bus_get(host);
1840 
1841 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1842 		mmc_bus_put(host);
1843 		return -EINVAL;
1844 	}
1845 
1846 	if (host->bus_ops->power_save)
1847 		ret = host->bus_ops->power_save(host);
1848 
1849 	mmc_bus_put(host);
1850 
1851 	mmc_power_off(host);
1852 
1853 	return ret;
1854 }
1855 EXPORT_SYMBOL(mmc_power_save_host);
1856 
1857 int mmc_power_restore_host(struct mmc_host *host)
1858 {
1859 	int ret;
1860 
1861 #ifdef CONFIG_MMC_DEBUG
1862 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1863 #endif
1864 
1865 	mmc_bus_get(host);
1866 
1867 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1868 		mmc_bus_put(host);
1869 		return -EINVAL;
1870 	}
1871 
1872 	mmc_power_up(host);
1873 	ret = host->bus_ops->power_restore(host);
1874 
1875 	mmc_bus_put(host);
1876 
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL(mmc_power_restore_host);
1880 
1881 int mmc_card_awake(struct mmc_host *host)
1882 {
1883 	int err = -ENOSYS;
1884 
1885 	mmc_bus_get(host);
1886 
1887 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1888 		err = host->bus_ops->awake(host);
1889 
1890 	mmc_bus_put(host);
1891 
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(mmc_card_awake);
1895 
1896 int mmc_card_sleep(struct mmc_host *host)
1897 {
1898 	int err = -ENOSYS;
1899 
1900 	mmc_bus_get(host);
1901 
1902 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1903 		err = host->bus_ops->sleep(host);
1904 
1905 	mmc_bus_put(host);
1906 
1907 	return err;
1908 }
1909 EXPORT_SYMBOL(mmc_card_sleep);
1910 
1911 int mmc_card_can_sleep(struct mmc_host *host)
1912 {
1913 	struct mmc_card *card = host->card;
1914 
1915 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1916 		return 1;
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL(mmc_card_can_sleep);
1920 
1921 #ifdef CONFIG_PM
1922 
1923 /**
1924  *	mmc_suspend_host - suspend a host
1925  *	@host: mmc host
1926  */
1927 int mmc_suspend_host(struct mmc_host *host)
1928 {
1929 	int err = 0;
1930 
1931 	if (host->caps & MMC_CAP_DISABLE)
1932 		cancel_delayed_work(&host->disable);
1933 	cancel_delayed_work(&host->detect);
1934 	mmc_flush_scheduled_work();
1935 
1936 	mmc_bus_get(host);
1937 	if (host->bus_ops && !host->bus_dead) {
1938 		if (host->bus_ops->suspend)
1939 			err = host->bus_ops->suspend(host);
1940 		if (err == -ENOSYS || !host->bus_ops->resume) {
1941 			/*
1942 			 * We simply "remove" the card in this case.
1943 			 * It will be redetected on resume.
1944 			 */
1945 			if (host->bus_ops->remove)
1946 				host->bus_ops->remove(host);
1947 			mmc_claim_host(host);
1948 			mmc_detach_bus(host);
1949 			mmc_release_host(host);
1950 			host->pm_flags = 0;
1951 			err = 0;
1952 		}
1953 	}
1954 	mmc_bus_put(host);
1955 
1956 	if (!err && !mmc_card_keep_power(host))
1957 		mmc_power_off(host);
1958 
1959 	return err;
1960 }
1961 
1962 EXPORT_SYMBOL(mmc_suspend_host);
1963 
1964 /**
1965  *	mmc_resume_host - resume a previously suspended host
1966  *	@host: mmc host
1967  */
1968 int mmc_resume_host(struct mmc_host *host)
1969 {
1970 	int err = 0;
1971 
1972 	mmc_bus_get(host);
1973 	if (host->bus_ops && !host->bus_dead) {
1974 		if (!mmc_card_keep_power(host)) {
1975 			mmc_power_up(host);
1976 			mmc_select_voltage(host, host->ocr);
1977 			/*
1978 			 * Tell runtime PM core we just powered up the card,
1979 			 * since it still believes the card is powered off.
1980 			 * Note that currently runtime PM is only enabled
1981 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1982 			 */
1983 			if (mmc_card_sdio(host->card) &&
1984 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1985 				pm_runtime_disable(&host->card->dev);
1986 				pm_runtime_set_active(&host->card->dev);
1987 				pm_runtime_enable(&host->card->dev);
1988 			}
1989 		}
1990 		BUG_ON(!host->bus_ops->resume);
1991 		err = host->bus_ops->resume(host);
1992 		if (err) {
1993 			printk(KERN_WARNING "%s: error %d during resume "
1994 					    "(card was removed?)\n",
1995 					    mmc_hostname(host), err);
1996 			err = 0;
1997 		}
1998 	}
1999 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2000 	mmc_bus_put(host);
2001 
2002 	return err;
2003 }
2004 EXPORT_SYMBOL(mmc_resume_host);
2005 
2006 /* Do the card removal on suspend if card is assumed removeable
2007  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2008    to sync the card.
2009 */
2010 int mmc_pm_notify(struct notifier_block *notify_block,
2011 					unsigned long mode, void *unused)
2012 {
2013 	struct mmc_host *host = container_of(
2014 		notify_block, struct mmc_host, pm_notify);
2015 	unsigned long flags;
2016 
2017 
2018 	switch (mode) {
2019 	case PM_HIBERNATION_PREPARE:
2020 	case PM_SUSPEND_PREPARE:
2021 
2022 		spin_lock_irqsave(&host->lock, flags);
2023 		host->rescan_disable = 1;
2024 		spin_unlock_irqrestore(&host->lock, flags);
2025 		cancel_delayed_work_sync(&host->detect);
2026 
2027 		if (!host->bus_ops || host->bus_ops->suspend)
2028 			break;
2029 
2030 		mmc_claim_host(host);
2031 
2032 		if (host->bus_ops->remove)
2033 			host->bus_ops->remove(host);
2034 
2035 		mmc_detach_bus(host);
2036 		mmc_release_host(host);
2037 		host->pm_flags = 0;
2038 		break;
2039 
2040 	case PM_POST_SUSPEND:
2041 	case PM_POST_HIBERNATION:
2042 	case PM_POST_RESTORE:
2043 
2044 		spin_lock_irqsave(&host->lock, flags);
2045 		host->rescan_disable = 0;
2046 		spin_unlock_irqrestore(&host->lock, flags);
2047 		mmc_detect_change(host, 0);
2048 
2049 	}
2050 
2051 	return 0;
2052 }
2053 #endif
2054 
2055 static int __init mmc_init(void)
2056 {
2057 	int ret;
2058 
2059 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2060 	if (!workqueue)
2061 		return -ENOMEM;
2062 
2063 	ret = mmc_register_bus();
2064 	if (ret)
2065 		goto destroy_workqueue;
2066 
2067 	ret = mmc_register_host_class();
2068 	if (ret)
2069 		goto unregister_bus;
2070 
2071 	ret = sdio_register_bus();
2072 	if (ret)
2073 		goto unregister_host_class;
2074 
2075 	return 0;
2076 
2077 unregister_host_class:
2078 	mmc_unregister_host_class();
2079 unregister_bus:
2080 	mmc_unregister_bus();
2081 destroy_workqueue:
2082 	destroy_workqueue(workqueue);
2083 
2084 	return ret;
2085 }
2086 
2087 static void __exit mmc_exit(void)
2088 {
2089 	sdio_unregister_bus();
2090 	mmc_unregister_host_class();
2091 	mmc_unregister_bus();
2092 	destroy_workqueue(workqueue);
2093 }
2094 
2095 subsys_initcall(mmc_init);
2096 module_exit(mmc_exit);
2097 
2098 MODULE_LICENSE("GPL");
2099