xref: /openbmc/linux/drivers/mmc/core/core.c (revision 78c99ba1)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/host.h>
28 #include <linux/mmc/mmc.h>
29 #include <linux/mmc/sd.h>
30 
31 #include "core.h"
32 #include "bus.h"
33 #include "host.h"
34 #include "sdio_bus.h"
35 
36 #include "mmc_ops.h"
37 #include "sd_ops.h"
38 #include "sdio_ops.h"
39 
40 static struct workqueue_struct *workqueue;
41 
42 /*
43  * Enabling software CRCs on the data blocks can be a significant (30%)
44  * performance cost, and for other reasons may not always be desired.
45  * So we allow it it to be disabled.
46  */
47 int use_spi_crc = 1;
48 module_param(use_spi_crc, bool, 0);
49 
50 /*
51  * Internal function. Schedule delayed work in the MMC work queue.
52  */
53 static int mmc_schedule_delayed_work(struct delayed_work *work,
54 				     unsigned long delay)
55 {
56 	return queue_delayed_work(workqueue, work, delay);
57 }
58 
59 /*
60  * Internal function. Flush all scheduled work from the MMC work queue.
61  */
62 static void mmc_flush_scheduled_work(void)
63 {
64 	flush_workqueue(workqueue);
65 }
66 
67 /**
68  *	mmc_request_done - finish processing an MMC request
69  *	@host: MMC host which completed request
70  *	@mrq: MMC request which request
71  *
72  *	MMC drivers should call this function when they have completed
73  *	their processing of a request.
74  */
75 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
76 {
77 	struct mmc_command *cmd = mrq->cmd;
78 	int err = cmd->error;
79 
80 	if (err && cmd->retries && mmc_host_is_spi(host)) {
81 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
82 			cmd->retries = 0;
83 	}
84 
85 	if (err && cmd->retries) {
86 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
87 			mmc_hostname(host), cmd->opcode, err);
88 
89 		cmd->retries--;
90 		cmd->error = 0;
91 		host->ops->request(host, mrq);
92 	} else {
93 		led_trigger_event(host->led, LED_OFF);
94 
95 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
96 			mmc_hostname(host), cmd->opcode, err,
97 			cmd->resp[0], cmd->resp[1],
98 			cmd->resp[2], cmd->resp[3]);
99 
100 		if (mrq->data) {
101 			pr_debug("%s:     %d bytes transferred: %d\n",
102 				mmc_hostname(host),
103 				mrq->data->bytes_xfered, mrq->data->error);
104 		}
105 
106 		if (mrq->stop) {
107 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
108 				mmc_hostname(host), mrq->stop->opcode,
109 				mrq->stop->error,
110 				mrq->stop->resp[0], mrq->stop->resp[1],
111 				mrq->stop->resp[2], mrq->stop->resp[3]);
112 		}
113 
114 		if (mrq->done)
115 			mrq->done(mrq);
116 	}
117 }
118 
119 EXPORT_SYMBOL(mmc_request_done);
120 
121 static void
122 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
123 {
124 #ifdef CONFIG_MMC_DEBUG
125 	unsigned int i, sz;
126 	struct scatterlist *sg;
127 #endif
128 
129 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
130 		 mmc_hostname(host), mrq->cmd->opcode,
131 		 mrq->cmd->arg, mrq->cmd->flags);
132 
133 	if (mrq->data) {
134 		pr_debug("%s:     blksz %d blocks %d flags %08x "
135 			"tsac %d ms nsac %d\n",
136 			mmc_hostname(host), mrq->data->blksz,
137 			mrq->data->blocks, mrq->data->flags,
138 			mrq->data->timeout_ns / 1000000,
139 			mrq->data->timeout_clks);
140 	}
141 
142 	if (mrq->stop) {
143 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
144 			 mmc_hostname(host), mrq->stop->opcode,
145 			 mrq->stop->arg, mrq->stop->flags);
146 	}
147 
148 	WARN_ON(!host->claimed);
149 
150 	led_trigger_event(host->led, LED_FULL);
151 
152 	mrq->cmd->error = 0;
153 	mrq->cmd->mrq = mrq;
154 	if (mrq->data) {
155 		BUG_ON(mrq->data->blksz > host->max_blk_size);
156 		BUG_ON(mrq->data->blocks > host->max_blk_count);
157 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
158 			host->max_req_size);
159 
160 #ifdef CONFIG_MMC_DEBUG
161 		sz = 0;
162 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
163 			sz += sg->length;
164 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
165 #endif
166 
167 		mrq->cmd->data = mrq->data;
168 		mrq->data->error = 0;
169 		mrq->data->mrq = mrq;
170 		if (mrq->stop) {
171 			mrq->data->stop = mrq->stop;
172 			mrq->stop->error = 0;
173 			mrq->stop->mrq = mrq;
174 		}
175 	}
176 	host->ops->request(host, mrq);
177 }
178 
179 static void mmc_wait_done(struct mmc_request *mrq)
180 {
181 	complete(mrq->done_data);
182 }
183 
184 /**
185  *	mmc_wait_for_req - start a request and wait for completion
186  *	@host: MMC host to start command
187  *	@mrq: MMC request to start
188  *
189  *	Start a new MMC custom command request for a host, and wait
190  *	for the command to complete. Does not attempt to parse the
191  *	response.
192  */
193 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
194 {
195 	DECLARE_COMPLETION_ONSTACK(complete);
196 
197 	mrq->done_data = &complete;
198 	mrq->done = mmc_wait_done;
199 
200 	mmc_start_request(host, mrq);
201 
202 	wait_for_completion(&complete);
203 }
204 
205 EXPORT_SYMBOL(mmc_wait_for_req);
206 
207 /**
208  *	mmc_wait_for_cmd - start a command and wait for completion
209  *	@host: MMC host to start command
210  *	@cmd: MMC command to start
211  *	@retries: maximum number of retries
212  *
213  *	Start a new MMC command for a host, and wait for the command
214  *	to complete.  Return any error that occurred while the command
215  *	was executing.  Do not attempt to parse the response.
216  */
217 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
218 {
219 	struct mmc_request mrq;
220 
221 	WARN_ON(!host->claimed);
222 
223 	memset(&mrq, 0, sizeof(struct mmc_request));
224 
225 	memset(cmd->resp, 0, sizeof(cmd->resp));
226 	cmd->retries = retries;
227 
228 	mrq.cmd = cmd;
229 	cmd->data = NULL;
230 
231 	mmc_wait_for_req(host, &mrq);
232 
233 	return cmd->error;
234 }
235 
236 EXPORT_SYMBOL(mmc_wait_for_cmd);
237 
238 /**
239  *	mmc_set_data_timeout - set the timeout for a data command
240  *	@data: data phase for command
241  *	@card: the MMC card associated with the data transfer
242  *
243  *	Computes the data timeout parameters according to the
244  *	correct algorithm given the card type.
245  */
246 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
247 {
248 	unsigned int mult;
249 
250 	/*
251 	 * SDIO cards only define an upper 1 s limit on access.
252 	 */
253 	if (mmc_card_sdio(card)) {
254 		data->timeout_ns = 1000000000;
255 		data->timeout_clks = 0;
256 		return;
257 	}
258 
259 	/*
260 	 * SD cards use a 100 multiplier rather than 10
261 	 */
262 	mult = mmc_card_sd(card) ? 100 : 10;
263 
264 	/*
265 	 * Scale up the multiplier (and therefore the timeout) by
266 	 * the r2w factor for writes.
267 	 */
268 	if (data->flags & MMC_DATA_WRITE)
269 		mult <<= card->csd.r2w_factor;
270 
271 	data->timeout_ns = card->csd.tacc_ns * mult;
272 	data->timeout_clks = card->csd.tacc_clks * mult;
273 
274 	/*
275 	 * SD cards also have an upper limit on the timeout.
276 	 */
277 	if (mmc_card_sd(card)) {
278 		unsigned int timeout_us, limit_us;
279 
280 		timeout_us = data->timeout_ns / 1000;
281 		timeout_us += data->timeout_clks * 1000 /
282 			(card->host->ios.clock / 1000);
283 
284 		if (data->flags & MMC_DATA_WRITE)
285 			/*
286 			 * The limit is really 250 ms, but that is
287 			 * insufficient for some crappy cards.
288 			 */
289 			limit_us = 300000;
290 		else
291 			limit_us = 100000;
292 
293 		/*
294 		 * SDHC cards always use these fixed values.
295 		 */
296 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
297 			data->timeout_ns = limit_us * 1000;
298 			data->timeout_clks = 0;
299 		}
300 	}
301 	/*
302 	 * Some cards need very high timeouts if driven in SPI mode.
303 	 * The worst observed timeout was 900ms after writing a
304 	 * continuous stream of data until the internal logic
305 	 * overflowed.
306 	 */
307 	if (mmc_host_is_spi(card->host)) {
308 		if (data->flags & MMC_DATA_WRITE) {
309 			if (data->timeout_ns < 1000000000)
310 				data->timeout_ns = 1000000000;	/* 1s */
311 		} else {
312 			if (data->timeout_ns < 100000000)
313 				data->timeout_ns =  100000000;	/* 100ms */
314 		}
315 	}
316 }
317 EXPORT_SYMBOL(mmc_set_data_timeout);
318 
319 /**
320  *	mmc_align_data_size - pads a transfer size to a more optimal value
321  *	@card: the MMC card associated with the data transfer
322  *	@sz: original transfer size
323  *
324  *	Pads the original data size with a number of extra bytes in
325  *	order to avoid controller bugs and/or performance hits
326  *	(e.g. some controllers revert to PIO for certain sizes).
327  *
328  *	Returns the improved size, which might be unmodified.
329  *
330  *	Note that this function is only relevant when issuing a
331  *	single scatter gather entry.
332  */
333 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
334 {
335 	/*
336 	 * FIXME: We don't have a system for the controller to tell
337 	 * the core about its problems yet, so for now we just 32-bit
338 	 * align the size.
339 	 */
340 	sz = ((sz + 3) / 4) * 4;
341 
342 	return sz;
343 }
344 EXPORT_SYMBOL(mmc_align_data_size);
345 
346 /**
347  *	__mmc_claim_host - exclusively claim a host
348  *	@host: mmc host to claim
349  *	@abort: whether or not the operation should be aborted
350  *
351  *	Claim a host for a set of operations.  If @abort is non null and
352  *	dereference a non-zero value then this will return prematurely with
353  *	that non-zero value without acquiring the lock.  Returns zero
354  *	with the lock held otherwise.
355  */
356 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
357 {
358 	DECLARE_WAITQUEUE(wait, current);
359 	unsigned long flags;
360 	int stop;
361 
362 	might_sleep();
363 
364 	add_wait_queue(&host->wq, &wait);
365 	spin_lock_irqsave(&host->lock, flags);
366 	while (1) {
367 		set_current_state(TASK_UNINTERRUPTIBLE);
368 		stop = abort ? atomic_read(abort) : 0;
369 		if (stop || !host->claimed)
370 			break;
371 		spin_unlock_irqrestore(&host->lock, flags);
372 		schedule();
373 		spin_lock_irqsave(&host->lock, flags);
374 	}
375 	set_current_state(TASK_RUNNING);
376 	if (!stop)
377 		host->claimed = 1;
378 	else
379 		wake_up(&host->wq);
380 	spin_unlock_irqrestore(&host->lock, flags);
381 	remove_wait_queue(&host->wq, &wait);
382 	return stop;
383 }
384 
385 EXPORT_SYMBOL(__mmc_claim_host);
386 
387 /**
388  *	mmc_release_host - release a host
389  *	@host: mmc host to release
390  *
391  *	Release a MMC host, allowing others to claim the host
392  *	for their operations.
393  */
394 void mmc_release_host(struct mmc_host *host)
395 {
396 	unsigned long flags;
397 
398 	WARN_ON(!host->claimed);
399 
400 	spin_lock_irqsave(&host->lock, flags);
401 	host->claimed = 0;
402 	spin_unlock_irqrestore(&host->lock, flags);
403 
404 	wake_up(&host->wq);
405 }
406 
407 EXPORT_SYMBOL(mmc_release_host);
408 
409 /*
410  * Internal function that does the actual ios call to the host driver,
411  * optionally printing some debug output.
412  */
413 static inline void mmc_set_ios(struct mmc_host *host)
414 {
415 	struct mmc_ios *ios = &host->ios;
416 
417 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
418 		"width %u timing %u\n",
419 		 mmc_hostname(host), ios->clock, ios->bus_mode,
420 		 ios->power_mode, ios->chip_select, ios->vdd,
421 		 ios->bus_width, ios->timing);
422 
423 	host->ops->set_ios(host, ios);
424 }
425 
426 /*
427  * Control chip select pin on a host.
428  */
429 void mmc_set_chip_select(struct mmc_host *host, int mode)
430 {
431 	host->ios.chip_select = mode;
432 	mmc_set_ios(host);
433 }
434 
435 /*
436  * Sets the host clock to the highest possible frequency that
437  * is below "hz".
438  */
439 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
440 {
441 	WARN_ON(hz < host->f_min);
442 
443 	if (hz > host->f_max)
444 		hz = host->f_max;
445 
446 	host->ios.clock = hz;
447 	mmc_set_ios(host);
448 }
449 
450 /*
451  * Change the bus mode (open drain/push-pull) of a host.
452  */
453 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
454 {
455 	host->ios.bus_mode = mode;
456 	mmc_set_ios(host);
457 }
458 
459 /*
460  * Change data bus width of a host.
461  */
462 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
463 {
464 	host->ios.bus_width = width;
465 	mmc_set_ios(host);
466 }
467 
468 /**
469  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
470  * @vdd:	voltage (mV)
471  * @low_bits:	prefer low bits in boundary cases
472  *
473  * This function returns the OCR bit number according to the provided @vdd
474  * value. If conversion is not possible a negative errno value returned.
475  *
476  * Depending on the @low_bits flag the function prefers low or high OCR bits
477  * on boundary voltages. For example,
478  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
479  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
480  *
481  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
482  */
483 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
484 {
485 	const int max_bit = ilog2(MMC_VDD_35_36);
486 	int bit;
487 
488 	if (vdd < 1650 || vdd > 3600)
489 		return -EINVAL;
490 
491 	if (vdd >= 1650 && vdd <= 1950)
492 		return ilog2(MMC_VDD_165_195);
493 
494 	if (low_bits)
495 		vdd -= 1;
496 
497 	/* Base 2000 mV, step 100 mV, bit's base 8. */
498 	bit = (vdd - 2000) / 100 + 8;
499 	if (bit > max_bit)
500 		return max_bit;
501 	return bit;
502 }
503 
504 /**
505  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
506  * @vdd_min:	minimum voltage value (mV)
507  * @vdd_max:	maximum voltage value (mV)
508  *
509  * This function returns the OCR mask bits according to the provided @vdd_min
510  * and @vdd_max values. If conversion is not possible the function returns 0.
511  *
512  * Notes wrt boundary cases:
513  * This function sets the OCR bits for all boundary voltages, for example
514  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
515  * MMC_VDD_34_35 mask.
516  */
517 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
518 {
519 	u32 mask = 0;
520 
521 	if (vdd_max < vdd_min)
522 		return 0;
523 
524 	/* Prefer high bits for the boundary vdd_max values. */
525 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
526 	if (vdd_max < 0)
527 		return 0;
528 
529 	/* Prefer low bits for the boundary vdd_min values. */
530 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
531 	if (vdd_min < 0)
532 		return 0;
533 
534 	/* Fill the mask, from max bit to min bit. */
535 	while (vdd_max >= vdd_min)
536 		mask |= 1 << vdd_max--;
537 
538 	return mask;
539 }
540 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
541 
542 #ifdef CONFIG_REGULATOR
543 
544 /**
545  * mmc_regulator_get_ocrmask - return mask of supported voltages
546  * @supply: regulator to use
547  *
548  * This returns either a negative errno, or a mask of voltages that
549  * can be provided to MMC/SD/SDIO devices using the specified voltage
550  * regulator.  This would normally be called before registering the
551  * MMC host adapter.
552  */
553 int mmc_regulator_get_ocrmask(struct regulator *supply)
554 {
555 	int			result = 0;
556 	int			count;
557 	int			i;
558 
559 	count = regulator_count_voltages(supply);
560 	if (count < 0)
561 		return count;
562 
563 	for (i = 0; i < count; i++) {
564 		int		vdd_uV;
565 		int		vdd_mV;
566 
567 		vdd_uV = regulator_list_voltage(supply, i);
568 		if (vdd_uV <= 0)
569 			continue;
570 
571 		vdd_mV = vdd_uV / 1000;
572 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
573 	}
574 
575 	return result;
576 }
577 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
578 
579 /**
580  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
581  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
582  * @supply: regulator to use
583  *
584  * Returns zero on success, else negative errno.
585  *
586  * MMC host drivers may use this to enable or disable a regulator using
587  * a particular supply voltage.  This would normally be called from the
588  * set_ios() method.
589  */
590 int mmc_regulator_set_ocr(struct regulator *supply, unsigned short vdd_bit)
591 {
592 	int			result = 0;
593 	int			min_uV, max_uV;
594 	int			enabled;
595 
596 	enabled = regulator_is_enabled(supply);
597 	if (enabled < 0)
598 		return enabled;
599 
600 	if (vdd_bit) {
601 		int		tmp;
602 		int		voltage;
603 
604 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
605 		 * bits this regulator doesn't quite support ... don't
606 		 * be too picky, most cards and regulators are OK with
607 		 * a 0.1V range goof (it's a small error percentage).
608 		 */
609 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
610 		if (tmp == 0) {
611 			min_uV = 1650 * 1000;
612 			max_uV = 1950 * 1000;
613 		} else {
614 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
615 			max_uV = min_uV + 100 * 1000;
616 		}
617 
618 		/* avoid needless changes to this voltage; the regulator
619 		 * might not allow this operation
620 		 */
621 		voltage = regulator_get_voltage(supply);
622 		if (voltage < 0)
623 			result = voltage;
624 		else if (voltage < min_uV || voltage > max_uV)
625 			result = regulator_set_voltage(supply, min_uV, max_uV);
626 		else
627 			result = 0;
628 
629 		if (result == 0 && !enabled)
630 			result = regulator_enable(supply);
631 	} else if (enabled) {
632 		result = regulator_disable(supply);
633 	}
634 
635 	return result;
636 }
637 EXPORT_SYMBOL(mmc_regulator_set_ocr);
638 
639 #endif
640 
641 /*
642  * Mask off any voltages we don't support and select
643  * the lowest voltage
644  */
645 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
646 {
647 	int bit;
648 
649 	ocr &= host->ocr_avail;
650 
651 	bit = ffs(ocr);
652 	if (bit) {
653 		bit -= 1;
654 
655 		ocr &= 3 << bit;
656 
657 		host->ios.vdd = bit;
658 		mmc_set_ios(host);
659 	} else {
660 		pr_warning("%s: host doesn't support card's voltages\n",
661 				mmc_hostname(host));
662 		ocr = 0;
663 	}
664 
665 	return ocr;
666 }
667 
668 /*
669  * Select timing parameters for host.
670  */
671 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
672 {
673 	host->ios.timing = timing;
674 	mmc_set_ios(host);
675 }
676 
677 /*
678  * Apply power to the MMC stack.  This is a two-stage process.
679  * First, we enable power to the card without the clock running.
680  * We then wait a bit for the power to stabilise.  Finally,
681  * enable the bus drivers and clock to the card.
682  *
683  * We must _NOT_ enable the clock prior to power stablising.
684  *
685  * If a host does all the power sequencing itself, ignore the
686  * initial MMC_POWER_UP stage.
687  */
688 static void mmc_power_up(struct mmc_host *host)
689 {
690 	int bit = fls(host->ocr_avail) - 1;
691 
692 	host->ios.vdd = bit;
693 	if (mmc_host_is_spi(host)) {
694 		host->ios.chip_select = MMC_CS_HIGH;
695 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
696 	} else {
697 		host->ios.chip_select = MMC_CS_DONTCARE;
698 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
699 	}
700 	host->ios.power_mode = MMC_POWER_UP;
701 	host->ios.bus_width = MMC_BUS_WIDTH_1;
702 	host->ios.timing = MMC_TIMING_LEGACY;
703 	mmc_set_ios(host);
704 
705 	/*
706 	 * This delay should be sufficient to allow the power supply
707 	 * to reach the minimum voltage.
708 	 */
709 	mmc_delay(10);
710 
711 	host->ios.clock = host->f_min;
712 	host->ios.power_mode = MMC_POWER_ON;
713 	mmc_set_ios(host);
714 
715 	/*
716 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
717 	 * time required to reach a stable voltage.
718 	 */
719 	mmc_delay(10);
720 }
721 
722 static void mmc_power_off(struct mmc_host *host)
723 {
724 	host->ios.clock = 0;
725 	host->ios.vdd = 0;
726 	if (!mmc_host_is_spi(host)) {
727 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
728 		host->ios.chip_select = MMC_CS_DONTCARE;
729 	}
730 	host->ios.power_mode = MMC_POWER_OFF;
731 	host->ios.bus_width = MMC_BUS_WIDTH_1;
732 	host->ios.timing = MMC_TIMING_LEGACY;
733 	mmc_set_ios(host);
734 }
735 
736 /*
737  * Cleanup when the last reference to the bus operator is dropped.
738  */
739 static void __mmc_release_bus(struct mmc_host *host)
740 {
741 	BUG_ON(!host);
742 	BUG_ON(host->bus_refs);
743 	BUG_ON(!host->bus_dead);
744 
745 	host->bus_ops = NULL;
746 }
747 
748 /*
749  * Increase reference count of bus operator
750  */
751 static inline void mmc_bus_get(struct mmc_host *host)
752 {
753 	unsigned long flags;
754 
755 	spin_lock_irqsave(&host->lock, flags);
756 	host->bus_refs++;
757 	spin_unlock_irqrestore(&host->lock, flags);
758 }
759 
760 /*
761  * Decrease reference count of bus operator and free it if
762  * it is the last reference.
763  */
764 static inline void mmc_bus_put(struct mmc_host *host)
765 {
766 	unsigned long flags;
767 
768 	spin_lock_irqsave(&host->lock, flags);
769 	host->bus_refs--;
770 	if ((host->bus_refs == 0) && host->bus_ops)
771 		__mmc_release_bus(host);
772 	spin_unlock_irqrestore(&host->lock, flags);
773 }
774 
775 /*
776  * Assign a mmc bus handler to a host. Only one bus handler may control a
777  * host at any given time.
778  */
779 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
780 {
781 	unsigned long flags;
782 
783 	BUG_ON(!host);
784 	BUG_ON(!ops);
785 
786 	WARN_ON(!host->claimed);
787 
788 	spin_lock_irqsave(&host->lock, flags);
789 
790 	BUG_ON(host->bus_ops);
791 	BUG_ON(host->bus_refs);
792 
793 	host->bus_ops = ops;
794 	host->bus_refs = 1;
795 	host->bus_dead = 0;
796 
797 	spin_unlock_irqrestore(&host->lock, flags);
798 }
799 
800 /*
801  * Remove the current bus handler from a host. Assumes that there are
802  * no interesting cards left, so the bus is powered down.
803  */
804 void mmc_detach_bus(struct mmc_host *host)
805 {
806 	unsigned long flags;
807 
808 	BUG_ON(!host);
809 
810 	WARN_ON(!host->claimed);
811 	WARN_ON(!host->bus_ops);
812 
813 	spin_lock_irqsave(&host->lock, flags);
814 
815 	host->bus_dead = 1;
816 
817 	spin_unlock_irqrestore(&host->lock, flags);
818 
819 	mmc_power_off(host);
820 
821 	mmc_bus_put(host);
822 }
823 
824 /**
825  *	mmc_detect_change - process change of state on a MMC socket
826  *	@host: host which changed state.
827  *	@delay: optional delay to wait before detection (jiffies)
828  *
829  *	MMC drivers should call this when they detect a card has been
830  *	inserted or removed. The MMC layer will confirm that any
831  *	present card is still functional, and initialize any newly
832  *	inserted.
833  */
834 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
835 {
836 #ifdef CONFIG_MMC_DEBUG
837 	unsigned long flags;
838 	spin_lock_irqsave(&host->lock, flags);
839 	WARN_ON(host->removed);
840 	spin_unlock_irqrestore(&host->lock, flags);
841 #endif
842 
843 	mmc_schedule_delayed_work(&host->detect, delay);
844 }
845 
846 EXPORT_SYMBOL(mmc_detect_change);
847 
848 
849 void mmc_rescan(struct work_struct *work)
850 {
851 	struct mmc_host *host =
852 		container_of(work, struct mmc_host, detect.work);
853 	u32 ocr;
854 	int err;
855 
856 	mmc_bus_get(host);
857 
858 	if (host->bus_ops == NULL) {
859 		/*
860 		 * Only we can add a new handler, so it's safe to
861 		 * release the lock here.
862 		 */
863 		mmc_bus_put(host);
864 
865 		if (host->ops->get_cd && host->ops->get_cd(host) == 0)
866 			goto out;
867 
868 		mmc_claim_host(host);
869 
870 		mmc_power_up(host);
871 		mmc_go_idle(host);
872 
873 		mmc_send_if_cond(host, host->ocr_avail);
874 
875 		/*
876 		 * First we search for SDIO...
877 		 */
878 		err = mmc_send_io_op_cond(host, 0, &ocr);
879 		if (!err) {
880 			if (mmc_attach_sdio(host, ocr))
881 				mmc_power_off(host);
882 			goto out;
883 		}
884 
885 		/*
886 		 * ...then normal SD...
887 		 */
888 		err = mmc_send_app_op_cond(host, 0, &ocr);
889 		if (!err) {
890 			if (mmc_attach_sd(host, ocr))
891 				mmc_power_off(host);
892 			goto out;
893 		}
894 
895 		/*
896 		 * ...and finally MMC.
897 		 */
898 		err = mmc_send_op_cond(host, 0, &ocr);
899 		if (!err) {
900 			if (mmc_attach_mmc(host, ocr))
901 				mmc_power_off(host);
902 			goto out;
903 		}
904 
905 		mmc_release_host(host);
906 		mmc_power_off(host);
907 	} else {
908 		if (host->bus_ops->detect && !host->bus_dead)
909 			host->bus_ops->detect(host);
910 
911 		mmc_bus_put(host);
912 	}
913 out:
914 	if (host->caps & MMC_CAP_NEEDS_POLL)
915 		mmc_schedule_delayed_work(&host->detect, HZ);
916 }
917 
918 void mmc_start_host(struct mmc_host *host)
919 {
920 	mmc_power_off(host);
921 	mmc_detect_change(host, 0);
922 }
923 
924 void mmc_stop_host(struct mmc_host *host)
925 {
926 #ifdef CONFIG_MMC_DEBUG
927 	unsigned long flags;
928 	spin_lock_irqsave(&host->lock, flags);
929 	host->removed = 1;
930 	spin_unlock_irqrestore(&host->lock, flags);
931 #endif
932 
933 	cancel_delayed_work(&host->detect);
934 	mmc_flush_scheduled_work();
935 
936 	mmc_bus_get(host);
937 	if (host->bus_ops && !host->bus_dead) {
938 		if (host->bus_ops->remove)
939 			host->bus_ops->remove(host);
940 
941 		mmc_claim_host(host);
942 		mmc_detach_bus(host);
943 		mmc_release_host(host);
944 	}
945 	mmc_bus_put(host);
946 
947 	BUG_ON(host->card);
948 
949 	mmc_power_off(host);
950 }
951 
952 #ifdef CONFIG_PM
953 
954 /**
955  *	mmc_suspend_host - suspend a host
956  *	@host: mmc host
957  *	@state: suspend mode (PM_SUSPEND_xxx)
958  */
959 int mmc_suspend_host(struct mmc_host *host, pm_message_t state)
960 {
961 	cancel_delayed_work(&host->detect);
962 	mmc_flush_scheduled_work();
963 
964 	mmc_bus_get(host);
965 	if (host->bus_ops && !host->bus_dead) {
966 		if (host->bus_ops->suspend)
967 			host->bus_ops->suspend(host);
968 		if (!host->bus_ops->resume) {
969 			if (host->bus_ops->remove)
970 				host->bus_ops->remove(host);
971 
972 			mmc_claim_host(host);
973 			mmc_detach_bus(host);
974 			mmc_release_host(host);
975 		}
976 	}
977 	mmc_bus_put(host);
978 
979 	mmc_power_off(host);
980 
981 	return 0;
982 }
983 
984 EXPORT_SYMBOL(mmc_suspend_host);
985 
986 /**
987  *	mmc_resume_host - resume a previously suspended host
988  *	@host: mmc host
989  */
990 int mmc_resume_host(struct mmc_host *host)
991 {
992 	mmc_bus_get(host);
993 	if (host->bus_ops && !host->bus_dead) {
994 		mmc_power_up(host);
995 		mmc_select_voltage(host, host->ocr);
996 		BUG_ON(!host->bus_ops->resume);
997 		host->bus_ops->resume(host);
998 	}
999 	mmc_bus_put(host);
1000 
1001 	/*
1002 	 * We add a slight delay here so that resume can progress
1003 	 * in parallel.
1004 	 */
1005 	mmc_detect_change(host, 1);
1006 
1007 	return 0;
1008 }
1009 
1010 EXPORT_SYMBOL(mmc_resume_host);
1011 
1012 #endif
1013 
1014 static int __init mmc_init(void)
1015 {
1016 	int ret;
1017 
1018 	workqueue = create_singlethread_workqueue("kmmcd");
1019 	if (!workqueue)
1020 		return -ENOMEM;
1021 
1022 	ret = mmc_register_bus();
1023 	if (ret)
1024 		goto destroy_workqueue;
1025 
1026 	ret = mmc_register_host_class();
1027 	if (ret)
1028 		goto unregister_bus;
1029 
1030 	ret = sdio_register_bus();
1031 	if (ret)
1032 		goto unregister_host_class;
1033 
1034 	return 0;
1035 
1036 unregister_host_class:
1037 	mmc_unregister_host_class();
1038 unregister_bus:
1039 	mmc_unregister_bus();
1040 destroy_workqueue:
1041 	destroy_workqueue(workqueue);
1042 
1043 	return ret;
1044 }
1045 
1046 static void __exit mmc_exit(void)
1047 {
1048 	sdio_unregister_bus();
1049 	mmc_unregister_host_class();
1050 	mmc_unregister_bus();
1051 	destroy_workqueue(workqueue);
1052 }
1053 
1054 subsys_initcall(mmc_init);
1055 module_exit(mmc_exit);
1056 
1057 MODULE_LICENSE("GPL");
1058