xref: /openbmc/linux/drivers/mmc/core/core.c (revision 75f25bd3)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 
33 #include "core.h"
34 #include "bus.h"
35 #include "host.h"
36 #include "sdio_bus.h"
37 
38 #include "mmc_ops.h"
39 #include "sd_ops.h"
40 #include "sdio_ops.h"
41 
42 static struct workqueue_struct *workqueue;
43 
44 /*
45  * Enabling software CRCs on the data blocks can be a significant (30%)
46  * performance cost, and for other reasons may not always be desired.
47  * So we allow it it to be disabled.
48  */
49 int use_spi_crc = 1;
50 module_param(use_spi_crc, bool, 0);
51 
52 /*
53  * We normally treat cards as removed during suspend if they are not
54  * known to be on a non-removable bus, to avoid the risk of writing
55  * back data to a different card after resume.  Allow this to be
56  * overridden if necessary.
57  */
58 #ifdef CONFIG_MMC_UNSAFE_RESUME
59 int mmc_assume_removable;
60 #else
61 int mmc_assume_removable = 1;
62 #endif
63 EXPORT_SYMBOL(mmc_assume_removable);
64 module_param_named(removable, mmc_assume_removable, bool, 0644);
65 MODULE_PARM_DESC(
66 	removable,
67 	"MMC/SD cards are removable and may be removed during suspend");
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 /**
87  *	mmc_request_done - finish processing an MMC request
88  *	@host: MMC host which completed request
89  *	@mrq: MMC request which request
90  *
91  *	MMC drivers should call this function when they have completed
92  *	their processing of a request.
93  */
94 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95 {
96 	struct mmc_command *cmd = mrq->cmd;
97 	int err = cmd->error;
98 
99 	if (err && cmd->retries && mmc_host_is_spi(host)) {
100 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 			cmd->retries = 0;
102 	}
103 
104 	if (err && cmd->retries) {
105 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 			mmc_hostname(host), cmd->opcode, err);
107 
108 		cmd->retries--;
109 		cmd->error = 0;
110 		host->ops->request(host, mrq);
111 	} else {
112 		led_trigger_event(host->led, LED_OFF);
113 
114 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 			mmc_hostname(host), cmd->opcode, err,
116 			cmd->resp[0], cmd->resp[1],
117 			cmd->resp[2], cmd->resp[3]);
118 
119 		if (mrq->data) {
120 			pr_debug("%s:     %d bytes transferred: %d\n",
121 				mmc_hostname(host),
122 				mrq->data->bytes_xfered, mrq->data->error);
123 		}
124 
125 		if (mrq->stop) {
126 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
127 				mmc_hostname(host), mrq->stop->opcode,
128 				mrq->stop->error,
129 				mrq->stop->resp[0], mrq->stop->resp[1],
130 				mrq->stop->resp[2], mrq->stop->resp[3]);
131 		}
132 
133 		if (mrq->done)
134 			mrq->done(mrq);
135 
136 		mmc_host_clk_gate(host);
137 	}
138 }
139 
140 EXPORT_SYMBOL(mmc_request_done);
141 
142 static void
143 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144 {
145 #ifdef CONFIG_MMC_DEBUG
146 	unsigned int i, sz;
147 	struct scatterlist *sg;
148 #endif
149 
150 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 		 mmc_hostname(host), mrq->cmd->opcode,
152 		 mrq->cmd->arg, mrq->cmd->flags);
153 
154 	if (mrq->data) {
155 		pr_debug("%s:     blksz %d blocks %d flags %08x "
156 			"tsac %d ms nsac %d\n",
157 			mmc_hostname(host), mrq->data->blksz,
158 			mrq->data->blocks, mrq->data->flags,
159 			mrq->data->timeout_ns / 1000000,
160 			mrq->data->timeout_clks);
161 	}
162 
163 	if (mrq->stop) {
164 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
165 			 mmc_hostname(host), mrq->stop->opcode,
166 			 mrq->stop->arg, mrq->stop->flags);
167 	}
168 
169 	WARN_ON(!host->claimed);
170 
171 	mrq->cmd->error = 0;
172 	mrq->cmd->mrq = mrq;
173 	if (mrq->data) {
174 		BUG_ON(mrq->data->blksz > host->max_blk_size);
175 		BUG_ON(mrq->data->blocks > host->max_blk_count);
176 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 			host->max_req_size);
178 
179 #ifdef CONFIG_MMC_DEBUG
180 		sz = 0;
181 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 			sz += sg->length;
183 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184 #endif
185 
186 		mrq->cmd->data = mrq->data;
187 		mrq->data->error = 0;
188 		mrq->data->mrq = mrq;
189 		if (mrq->stop) {
190 			mrq->data->stop = mrq->stop;
191 			mrq->stop->error = 0;
192 			mrq->stop->mrq = mrq;
193 		}
194 	}
195 	mmc_host_clk_ungate(host);
196 	led_trigger_event(host->led, LED_FULL);
197 	host->ops->request(host, mrq);
198 }
199 
200 static void mmc_wait_done(struct mmc_request *mrq)
201 {
202 	complete(&mrq->completion);
203 }
204 
205 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206 {
207 	init_completion(&mrq->completion);
208 	mrq->done = mmc_wait_done;
209 	mmc_start_request(host, mrq);
210 }
211 
212 static void mmc_wait_for_req_done(struct mmc_host *host,
213 				  struct mmc_request *mrq)
214 {
215 	wait_for_completion(&mrq->completion);
216 }
217 
218 /**
219  *	mmc_pre_req - Prepare for a new request
220  *	@host: MMC host to prepare command
221  *	@mrq: MMC request to prepare for
222  *	@is_first_req: true if there is no previous started request
223  *                     that may run in parellel to this call, otherwise false
224  *
225  *	mmc_pre_req() is called in prior to mmc_start_req() to let
226  *	host prepare for the new request. Preparation of a request may be
227  *	performed while another request is running on the host.
228  */
229 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 		 bool is_first_req)
231 {
232 	if (host->ops->pre_req)
233 		host->ops->pre_req(host, mrq, is_first_req);
234 }
235 
236 /**
237  *	mmc_post_req - Post process a completed request
238  *	@host: MMC host to post process command
239  *	@mrq: MMC request to post process for
240  *	@err: Error, if non zero, clean up any resources made in pre_req
241  *
242  *	Let the host post process a completed request. Post processing of
243  *	a request may be performed while another reuqest is running.
244  */
245 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 			 int err)
247 {
248 	if (host->ops->post_req)
249 		host->ops->post_req(host, mrq, err);
250 }
251 
252 /**
253  *	mmc_start_req - start a non-blocking request
254  *	@host: MMC host to start command
255  *	@areq: async request to start
256  *	@error: out parameter returns 0 for success, otherwise non zero
257  *
258  *	Start a new MMC custom command request for a host.
259  *	If there is on ongoing async request wait for completion
260  *	of that request and start the new one and return.
261  *	Does not wait for the new request to complete.
262  *
263  *      Returns the completed request, NULL in case of none completed.
264  *	Wait for the an ongoing request (previoulsy started) to complete and
265  *	return the completed request. If there is no ongoing request, NULL
266  *	is returned without waiting. NULL is not an error condition.
267  */
268 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 				    struct mmc_async_req *areq, int *error)
270 {
271 	int err = 0;
272 	struct mmc_async_req *data = host->areq;
273 
274 	/* Prepare a new request */
275 	if (areq)
276 		mmc_pre_req(host, areq->mrq, !host->areq);
277 
278 	if (host->areq) {
279 		mmc_wait_for_req_done(host, host->areq->mrq);
280 		err = host->areq->err_check(host->card, host->areq);
281 		if (err) {
282 			mmc_post_req(host, host->areq->mrq, 0);
283 			if (areq)
284 				mmc_post_req(host, areq->mrq, -EINVAL);
285 
286 			host->areq = NULL;
287 			goto out;
288 		}
289 	}
290 
291 	if (areq)
292 		__mmc_start_req(host, areq->mrq);
293 
294 	if (host->areq)
295 		mmc_post_req(host, host->areq->mrq, 0);
296 
297 	host->areq = areq;
298  out:
299 	if (error)
300 		*error = err;
301 	return data;
302 }
303 EXPORT_SYMBOL(mmc_start_req);
304 
305 /**
306  *	mmc_wait_for_req - start a request and wait for completion
307  *	@host: MMC host to start command
308  *	@mrq: MMC request to start
309  *
310  *	Start a new MMC custom command request for a host, and wait
311  *	for the command to complete. Does not attempt to parse the
312  *	response.
313  */
314 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315 {
316 	__mmc_start_req(host, mrq);
317 	mmc_wait_for_req_done(host, mrq);
318 }
319 EXPORT_SYMBOL(mmc_wait_for_req);
320 
321 /**
322  *	mmc_wait_for_cmd - start a command and wait for completion
323  *	@host: MMC host to start command
324  *	@cmd: MMC command to start
325  *	@retries: maximum number of retries
326  *
327  *	Start a new MMC command for a host, and wait for the command
328  *	to complete.  Return any error that occurred while the command
329  *	was executing.  Do not attempt to parse the response.
330  */
331 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332 {
333 	struct mmc_request mrq = {0};
334 
335 	WARN_ON(!host->claimed);
336 
337 	memset(cmd->resp, 0, sizeof(cmd->resp));
338 	cmd->retries = retries;
339 
340 	mrq.cmd = cmd;
341 	cmd->data = NULL;
342 
343 	mmc_wait_for_req(host, &mrq);
344 
345 	return cmd->error;
346 }
347 
348 EXPORT_SYMBOL(mmc_wait_for_cmd);
349 
350 /**
351  *	mmc_set_data_timeout - set the timeout for a data command
352  *	@data: data phase for command
353  *	@card: the MMC card associated with the data transfer
354  *
355  *	Computes the data timeout parameters according to the
356  *	correct algorithm given the card type.
357  */
358 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359 {
360 	unsigned int mult;
361 
362 	/*
363 	 * SDIO cards only define an upper 1 s limit on access.
364 	 */
365 	if (mmc_card_sdio(card)) {
366 		data->timeout_ns = 1000000000;
367 		data->timeout_clks = 0;
368 		return;
369 	}
370 
371 	/*
372 	 * SD cards use a 100 multiplier rather than 10
373 	 */
374 	mult = mmc_card_sd(card) ? 100 : 10;
375 
376 	/*
377 	 * Scale up the multiplier (and therefore the timeout) by
378 	 * the r2w factor for writes.
379 	 */
380 	if (data->flags & MMC_DATA_WRITE)
381 		mult <<= card->csd.r2w_factor;
382 
383 	data->timeout_ns = card->csd.tacc_ns * mult;
384 	data->timeout_clks = card->csd.tacc_clks * mult;
385 
386 	/*
387 	 * SD cards also have an upper limit on the timeout.
388 	 */
389 	if (mmc_card_sd(card)) {
390 		unsigned int timeout_us, limit_us;
391 
392 		timeout_us = data->timeout_ns / 1000;
393 		if (mmc_host_clk_rate(card->host))
394 			timeout_us += data->timeout_clks * 1000 /
395 				(mmc_host_clk_rate(card->host) / 1000);
396 
397 		if (data->flags & MMC_DATA_WRITE)
398 			/*
399 			 * The limit is really 250 ms, but that is
400 			 * insufficient for some crappy cards.
401 			 */
402 			limit_us = 300000;
403 		else
404 			limit_us = 100000;
405 
406 		/*
407 		 * SDHC cards always use these fixed values.
408 		 */
409 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 			data->timeout_ns = limit_us * 1000;
411 			data->timeout_clks = 0;
412 		}
413 	}
414 	/*
415 	 * Some cards need very high timeouts if driven in SPI mode.
416 	 * The worst observed timeout was 900ms after writing a
417 	 * continuous stream of data until the internal logic
418 	 * overflowed.
419 	 */
420 	if (mmc_host_is_spi(card->host)) {
421 		if (data->flags & MMC_DATA_WRITE) {
422 			if (data->timeout_ns < 1000000000)
423 				data->timeout_ns = 1000000000;	/* 1s */
424 		} else {
425 			if (data->timeout_ns < 100000000)
426 				data->timeout_ns =  100000000;	/* 100ms */
427 		}
428 	}
429 }
430 EXPORT_SYMBOL(mmc_set_data_timeout);
431 
432 /**
433  *	mmc_align_data_size - pads a transfer size to a more optimal value
434  *	@card: the MMC card associated with the data transfer
435  *	@sz: original transfer size
436  *
437  *	Pads the original data size with a number of extra bytes in
438  *	order to avoid controller bugs and/or performance hits
439  *	(e.g. some controllers revert to PIO for certain sizes).
440  *
441  *	Returns the improved size, which might be unmodified.
442  *
443  *	Note that this function is only relevant when issuing a
444  *	single scatter gather entry.
445  */
446 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447 {
448 	/*
449 	 * FIXME: We don't have a system for the controller to tell
450 	 * the core about its problems yet, so for now we just 32-bit
451 	 * align the size.
452 	 */
453 	sz = ((sz + 3) / 4) * 4;
454 
455 	return sz;
456 }
457 EXPORT_SYMBOL(mmc_align_data_size);
458 
459 /**
460  *	mmc_host_enable - enable a host.
461  *	@host: mmc host to enable
462  *
463  *	Hosts that support power saving can use the 'enable' and 'disable'
464  *	methods to exit and enter power saving states. For more information
465  *	see comments for struct mmc_host_ops.
466  */
467 int mmc_host_enable(struct mmc_host *host)
468 {
469 	if (!(host->caps & MMC_CAP_DISABLE))
470 		return 0;
471 
472 	if (host->en_dis_recurs)
473 		return 0;
474 
475 	if (host->nesting_cnt++)
476 		return 0;
477 
478 	cancel_delayed_work_sync(&host->disable);
479 
480 	if (host->enabled)
481 		return 0;
482 
483 	if (host->ops->enable) {
484 		int err;
485 
486 		host->en_dis_recurs = 1;
487 		err = host->ops->enable(host);
488 		host->en_dis_recurs = 0;
489 
490 		if (err) {
491 			pr_debug("%s: enable error %d\n",
492 				 mmc_hostname(host), err);
493 			return err;
494 		}
495 	}
496 	host->enabled = 1;
497 	return 0;
498 }
499 EXPORT_SYMBOL(mmc_host_enable);
500 
501 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502 {
503 	if (host->ops->disable) {
504 		int err;
505 
506 		host->en_dis_recurs = 1;
507 		err = host->ops->disable(host, lazy);
508 		host->en_dis_recurs = 0;
509 
510 		if (err < 0) {
511 			pr_debug("%s: disable error %d\n",
512 				 mmc_hostname(host), err);
513 			return err;
514 		}
515 		if (err > 0) {
516 			unsigned long delay = msecs_to_jiffies(err);
517 
518 			mmc_schedule_delayed_work(&host->disable, delay);
519 		}
520 	}
521 	host->enabled = 0;
522 	return 0;
523 }
524 
525 /**
526  *	mmc_host_disable - disable a host.
527  *	@host: mmc host to disable
528  *
529  *	Hosts that support power saving can use the 'enable' and 'disable'
530  *	methods to exit and enter power saving states. For more information
531  *	see comments for struct mmc_host_ops.
532  */
533 int mmc_host_disable(struct mmc_host *host)
534 {
535 	int err;
536 
537 	if (!(host->caps & MMC_CAP_DISABLE))
538 		return 0;
539 
540 	if (host->en_dis_recurs)
541 		return 0;
542 
543 	if (--host->nesting_cnt)
544 		return 0;
545 
546 	if (!host->enabled)
547 		return 0;
548 
549 	err = mmc_host_do_disable(host, 0);
550 	return err;
551 }
552 EXPORT_SYMBOL(mmc_host_disable);
553 
554 /**
555  *	__mmc_claim_host - exclusively claim a host
556  *	@host: mmc host to claim
557  *	@abort: whether or not the operation should be aborted
558  *
559  *	Claim a host for a set of operations.  If @abort is non null and
560  *	dereference a non-zero value then this will return prematurely with
561  *	that non-zero value without acquiring the lock.  Returns zero
562  *	with the lock held otherwise.
563  */
564 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565 {
566 	DECLARE_WAITQUEUE(wait, current);
567 	unsigned long flags;
568 	int stop;
569 
570 	might_sleep();
571 
572 	add_wait_queue(&host->wq, &wait);
573 	spin_lock_irqsave(&host->lock, flags);
574 	while (1) {
575 		set_current_state(TASK_UNINTERRUPTIBLE);
576 		stop = abort ? atomic_read(abort) : 0;
577 		if (stop || !host->claimed || host->claimer == current)
578 			break;
579 		spin_unlock_irqrestore(&host->lock, flags);
580 		schedule();
581 		spin_lock_irqsave(&host->lock, flags);
582 	}
583 	set_current_state(TASK_RUNNING);
584 	if (!stop) {
585 		host->claimed = 1;
586 		host->claimer = current;
587 		host->claim_cnt += 1;
588 	} else
589 		wake_up(&host->wq);
590 	spin_unlock_irqrestore(&host->lock, flags);
591 	remove_wait_queue(&host->wq, &wait);
592 	if (!stop)
593 		mmc_host_enable(host);
594 	return stop;
595 }
596 
597 EXPORT_SYMBOL(__mmc_claim_host);
598 
599 /**
600  *	mmc_try_claim_host - try exclusively to claim a host
601  *	@host: mmc host to claim
602  *
603  *	Returns %1 if the host is claimed, %0 otherwise.
604  */
605 int mmc_try_claim_host(struct mmc_host *host)
606 {
607 	int claimed_host = 0;
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&host->lock, flags);
611 	if (!host->claimed || host->claimer == current) {
612 		host->claimed = 1;
613 		host->claimer = current;
614 		host->claim_cnt += 1;
615 		claimed_host = 1;
616 	}
617 	spin_unlock_irqrestore(&host->lock, flags);
618 	return claimed_host;
619 }
620 EXPORT_SYMBOL(mmc_try_claim_host);
621 
622 /**
623  *	mmc_do_release_host - release a claimed host
624  *	@host: mmc host to release
625  *
626  *	If you successfully claimed a host, this function will
627  *	release it again.
628  */
629 void mmc_do_release_host(struct mmc_host *host)
630 {
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&host->lock, flags);
634 	if (--host->claim_cnt) {
635 		/* Release for nested claim */
636 		spin_unlock_irqrestore(&host->lock, flags);
637 	} else {
638 		host->claimed = 0;
639 		host->claimer = NULL;
640 		spin_unlock_irqrestore(&host->lock, flags);
641 		wake_up(&host->wq);
642 	}
643 }
644 EXPORT_SYMBOL(mmc_do_release_host);
645 
646 void mmc_host_deeper_disable(struct work_struct *work)
647 {
648 	struct mmc_host *host =
649 		container_of(work, struct mmc_host, disable.work);
650 
651 	/* If the host is claimed then we do not want to disable it anymore */
652 	if (!mmc_try_claim_host(host))
653 		return;
654 	mmc_host_do_disable(host, 1);
655 	mmc_do_release_host(host);
656 }
657 
658 /**
659  *	mmc_host_lazy_disable - lazily disable a host.
660  *	@host: mmc host to disable
661  *
662  *	Hosts that support power saving can use the 'enable' and 'disable'
663  *	methods to exit and enter power saving states. For more information
664  *	see comments for struct mmc_host_ops.
665  */
666 int mmc_host_lazy_disable(struct mmc_host *host)
667 {
668 	if (!(host->caps & MMC_CAP_DISABLE))
669 		return 0;
670 
671 	if (host->en_dis_recurs)
672 		return 0;
673 
674 	if (--host->nesting_cnt)
675 		return 0;
676 
677 	if (!host->enabled)
678 		return 0;
679 
680 	if (host->disable_delay) {
681 		mmc_schedule_delayed_work(&host->disable,
682 				msecs_to_jiffies(host->disable_delay));
683 		return 0;
684 	} else
685 		return mmc_host_do_disable(host, 1);
686 }
687 EXPORT_SYMBOL(mmc_host_lazy_disable);
688 
689 /**
690  *	mmc_release_host - release a host
691  *	@host: mmc host to release
692  *
693  *	Release a MMC host, allowing others to claim the host
694  *	for their operations.
695  */
696 void mmc_release_host(struct mmc_host *host)
697 {
698 	WARN_ON(!host->claimed);
699 
700 	mmc_host_lazy_disable(host);
701 
702 	mmc_do_release_host(host);
703 }
704 
705 EXPORT_SYMBOL(mmc_release_host);
706 
707 /*
708  * Internal function that does the actual ios call to the host driver,
709  * optionally printing some debug output.
710  */
711 static inline void mmc_set_ios(struct mmc_host *host)
712 {
713 	struct mmc_ios *ios = &host->ios;
714 
715 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 		"width %u timing %u\n",
717 		 mmc_hostname(host), ios->clock, ios->bus_mode,
718 		 ios->power_mode, ios->chip_select, ios->vdd,
719 		 ios->bus_width, ios->timing);
720 
721 	if (ios->clock > 0)
722 		mmc_set_ungated(host);
723 	host->ops->set_ios(host, ios);
724 }
725 
726 /*
727  * Control chip select pin on a host.
728  */
729 void mmc_set_chip_select(struct mmc_host *host, int mode)
730 {
731 	host->ios.chip_select = mode;
732 	mmc_set_ios(host);
733 }
734 
735 /*
736  * Sets the host clock to the highest possible frequency that
737  * is below "hz".
738  */
739 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
740 {
741 	WARN_ON(hz < host->f_min);
742 
743 	if (hz > host->f_max)
744 		hz = host->f_max;
745 
746 	host->ios.clock = hz;
747 	mmc_set_ios(host);
748 }
749 
750 #ifdef CONFIG_MMC_CLKGATE
751 /*
752  * This gates the clock by setting it to 0 Hz.
753  */
754 void mmc_gate_clock(struct mmc_host *host)
755 {
756 	unsigned long flags;
757 
758 	spin_lock_irqsave(&host->clk_lock, flags);
759 	host->clk_old = host->ios.clock;
760 	host->ios.clock = 0;
761 	host->clk_gated = true;
762 	spin_unlock_irqrestore(&host->clk_lock, flags);
763 	mmc_set_ios(host);
764 }
765 
766 /*
767  * This restores the clock from gating by using the cached
768  * clock value.
769  */
770 void mmc_ungate_clock(struct mmc_host *host)
771 {
772 	/*
773 	 * We should previously have gated the clock, so the clock shall
774 	 * be 0 here! The clock may however be 0 during initialization,
775 	 * when some request operations are performed before setting
776 	 * the frequency. When ungate is requested in that situation
777 	 * we just ignore the call.
778 	 */
779 	if (host->clk_old) {
780 		BUG_ON(host->ios.clock);
781 		/* This call will also set host->clk_gated to false */
782 		mmc_set_clock(host, host->clk_old);
783 	}
784 }
785 
786 void mmc_set_ungated(struct mmc_host *host)
787 {
788 	unsigned long flags;
789 
790 	/*
791 	 * We've been given a new frequency while the clock is gated,
792 	 * so make sure we regard this as ungating it.
793 	 */
794 	spin_lock_irqsave(&host->clk_lock, flags);
795 	host->clk_gated = false;
796 	spin_unlock_irqrestore(&host->clk_lock, flags);
797 }
798 
799 #else
800 void mmc_set_ungated(struct mmc_host *host)
801 {
802 }
803 #endif
804 
805 /*
806  * Change the bus mode (open drain/push-pull) of a host.
807  */
808 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
809 {
810 	host->ios.bus_mode = mode;
811 	mmc_set_ios(host);
812 }
813 
814 /*
815  * Change data bus width of a host.
816  */
817 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
818 {
819 	host->ios.bus_width = width;
820 	mmc_set_ios(host);
821 }
822 
823 /**
824  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
825  * @vdd:	voltage (mV)
826  * @low_bits:	prefer low bits in boundary cases
827  *
828  * This function returns the OCR bit number according to the provided @vdd
829  * value. If conversion is not possible a negative errno value returned.
830  *
831  * Depending on the @low_bits flag the function prefers low or high OCR bits
832  * on boundary voltages. For example,
833  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
834  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
835  *
836  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
837  */
838 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
839 {
840 	const int max_bit = ilog2(MMC_VDD_35_36);
841 	int bit;
842 
843 	if (vdd < 1650 || vdd > 3600)
844 		return -EINVAL;
845 
846 	if (vdd >= 1650 && vdd <= 1950)
847 		return ilog2(MMC_VDD_165_195);
848 
849 	if (low_bits)
850 		vdd -= 1;
851 
852 	/* Base 2000 mV, step 100 mV, bit's base 8. */
853 	bit = (vdd - 2000) / 100 + 8;
854 	if (bit > max_bit)
855 		return max_bit;
856 	return bit;
857 }
858 
859 /**
860  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
861  * @vdd_min:	minimum voltage value (mV)
862  * @vdd_max:	maximum voltage value (mV)
863  *
864  * This function returns the OCR mask bits according to the provided @vdd_min
865  * and @vdd_max values. If conversion is not possible the function returns 0.
866  *
867  * Notes wrt boundary cases:
868  * This function sets the OCR bits for all boundary voltages, for example
869  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
870  * MMC_VDD_34_35 mask.
871  */
872 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
873 {
874 	u32 mask = 0;
875 
876 	if (vdd_max < vdd_min)
877 		return 0;
878 
879 	/* Prefer high bits for the boundary vdd_max values. */
880 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
881 	if (vdd_max < 0)
882 		return 0;
883 
884 	/* Prefer low bits for the boundary vdd_min values. */
885 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
886 	if (vdd_min < 0)
887 		return 0;
888 
889 	/* Fill the mask, from max bit to min bit. */
890 	while (vdd_max >= vdd_min)
891 		mask |= 1 << vdd_max--;
892 
893 	return mask;
894 }
895 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
896 
897 #ifdef CONFIG_REGULATOR
898 
899 /**
900  * mmc_regulator_get_ocrmask - return mask of supported voltages
901  * @supply: regulator to use
902  *
903  * This returns either a negative errno, or a mask of voltages that
904  * can be provided to MMC/SD/SDIO devices using the specified voltage
905  * regulator.  This would normally be called before registering the
906  * MMC host adapter.
907  */
908 int mmc_regulator_get_ocrmask(struct regulator *supply)
909 {
910 	int			result = 0;
911 	int			count;
912 	int			i;
913 
914 	count = regulator_count_voltages(supply);
915 	if (count < 0)
916 		return count;
917 
918 	for (i = 0; i < count; i++) {
919 		int		vdd_uV;
920 		int		vdd_mV;
921 
922 		vdd_uV = regulator_list_voltage(supply, i);
923 		if (vdd_uV <= 0)
924 			continue;
925 
926 		vdd_mV = vdd_uV / 1000;
927 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
928 	}
929 
930 	return result;
931 }
932 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
933 
934 /**
935  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
936  * @mmc: the host to regulate
937  * @supply: regulator to use
938  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
939  *
940  * Returns zero on success, else negative errno.
941  *
942  * MMC host drivers may use this to enable or disable a regulator using
943  * a particular supply voltage.  This would normally be called from the
944  * set_ios() method.
945  */
946 int mmc_regulator_set_ocr(struct mmc_host *mmc,
947 			struct regulator *supply,
948 			unsigned short vdd_bit)
949 {
950 	int			result = 0;
951 	int			min_uV, max_uV;
952 
953 	if (vdd_bit) {
954 		int		tmp;
955 		int		voltage;
956 
957 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
958 		 * bits this regulator doesn't quite support ... don't
959 		 * be too picky, most cards and regulators are OK with
960 		 * a 0.1V range goof (it's a small error percentage).
961 		 */
962 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
963 		if (tmp == 0) {
964 			min_uV = 1650 * 1000;
965 			max_uV = 1950 * 1000;
966 		} else {
967 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
968 			max_uV = min_uV + 100 * 1000;
969 		}
970 
971 		/* avoid needless changes to this voltage; the regulator
972 		 * might not allow this operation
973 		 */
974 		voltage = regulator_get_voltage(supply);
975 		if (voltage < 0)
976 			result = voltage;
977 		else if (voltage < min_uV || voltage > max_uV)
978 			result = regulator_set_voltage(supply, min_uV, max_uV);
979 		else
980 			result = 0;
981 
982 		if (result == 0 && !mmc->regulator_enabled) {
983 			result = regulator_enable(supply);
984 			if (!result)
985 				mmc->regulator_enabled = true;
986 		}
987 	} else if (mmc->regulator_enabled) {
988 		result = regulator_disable(supply);
989 		if (result == 0)
990 			mmc->regulator_enabled = false;
991 	}
992 
993 	if (result)
994 		dev_err(mmc_dev(mmc),
995 			"could not set regulator OCR (%d)\n", result);
996 	return result;
997 }
998 EXPORT_SYMBOL(mmc_regulator_set_ocr);
999 
1000 #endif /* CONFIG_REGULATOR */
1001 
1002 /*
1003  * Mask off any voltages we don't support and select
1004  * the lowest voltage
1005  */
1006 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1007 {
1008 	int bit;
1009 
1010 	ocr &= host->ocr_avail;
1011 
1012 	bit = ffs(ocr);
1013 	if (bit) {
1014 		bit -= 1;
1015 
1016 		ocr &= 3 << bit;
1017 
1018 		host->ios.vdd = bit;
1019 		mmc_set_ios(host);
1020 	} else {
1021 		pr_warning("%s: host doesn't support card's voltages\n",
1022 				mmc_hostname(host));
1023 		ocr = 0;
1024 	}
1025 
1026 	return ocr;
1027 }
1028 
1029 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1030 {
1031 	struct mmc_command cmd = {0};
1032 	int err = 0;
1033 
1034 	BUG_ON(!host);
1035 
1036 	/*
1037 	 * Send CMD11 only if the request is to switch the card to
1038 	 * 1.8V signalling.
1039 	 */
1040 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1041 		cmd.opcode = SD_SWITCH_VOLTAGE;
1042 		cmd.arg = 0;
1043 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1044 
1045 		err = mmc_wait_for_cmd(host, &cmd, 0);
1046 		if (err)
1047 			return err;
1048 
1049 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1050 			return -EIO;
1051 	}
1052 
1053 	host->ios.signal_voltage = signal_voltage;
1054 
1055 	if (host->ops->start_signal_voltage_switch)
1056 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1057 
1058 	return err;
1059 }
1060 
1061 /*
1062  * Select timing parameters for host.
1063  */
1064 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1065 {
1066 	host->ios.timing = timing;
1067 	mmc_set_ios(host);
1068 }
1069 
1070 /*
1071  * Select appropriate driver type for host.
1072  */
1073 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1074 {
1075 	host->ios.drv_type = drv_type;
1076 	mmc_set_ios(host);
1077 }
1078 
1079 /*
1080  * Apply power to the MMC stack.  This is a two-stage process.
1081  * First, we enable power to the card without the clock running.
1082  * We then wait a bit for the power to stabilise.  Finally,
1083  * enable the bus drivers and clock to the card.
1084  *
1085  * We must _NOT_ enable the clock prior to power stablising.
1086  *
1087  * If a host does all the power sequencing itself, ignore the
1088  * initial MMC_POWER_UP stage.
1089  */
1090 static void mmc_power_up(struct mmc_host *host)
1091 {
1092 	int bit;
1093 
1094 	/* If ocr is set, we use it */
1095 	if (host->ocr)
1096 		bit = ffs(host->ocr) - 1;
1097 	else
1098 		bit = fls(host->ocr_avail) - 1;
1099 
1100 	host->ios.vdd = bit;
1101 	if (mmc_host_is_spi(host)) {
1102 		host->ios.chip_select = MMC_CS_HIGH;
1103 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1104 	} else {
1105 		host->ios.chip_select = MMC_CS_DONTCARE;
1106 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1107 	}
1108 	host->ios.power_mode = MMC_POWER_UP;
1109 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1110 	host->ios.timing = MMC_TIMING_LEGACY;
1111 	mmc_set_ios(host);
1112 
1113 	/*
1114 	 * This delay should be sufficient to allow the power supply
1115 	 * to reach the minimum voltage.
1116 	 */
1117 	mmc_delay(10);
1118 
1119 	host->ios.clock = host->f_init;
1120 
1121 	host->ios.power_mode = MMC_POWER_ON;
1122 	mmc_set_ios(host);
1123 
1124 	/*
1125 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1126 	 * time required to reach a stable voltage.
1127 	 */
1128 	mmc_delay(10);
1129 }
1130 
1131 static void mmc_power_off(struct mmc_host *host)
1132 {
1133 	host->ios.clock = 0;
1134 	host->ios.vdd = 0;
1135 
1136 	/*
1137 	 * Reset ocr mask to be the highest possible voltage supported for
1138 	 * this mmc host. This value will be used at next power up.
1139 	 */
1140 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1141 
1142 	if (!mmc_host_is_spi(host)) {
1143 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1144 		host->ios.chip_select = MMC_CS_DONTCARE;
1145 	}
1146 	host->ios.power_mode = MMC_POWER_OFF;
1147 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1148 	host->ios.timing = MMC_TIMING_LEGACY;
1149 	mmc_set_ios(host);
1150 }
1151 
1152 /*
1153  * Cleanup when the last reference to the bus operator is dropped.
1154  */
1155 static void __mmc_release_bus(struct mmc_host *host)
1156 {
1157 	BUG_ON(!host);
1158 	BUG_ON(host->bus_refs);
1159 	BUG_ON(!host->bus_dead);
1160 
1161 	host->bus_ops = NULL;
1162 }
1163 
1164 /*
1165  * Increase reference count of bus operator
1166  */
1167 static inline void mmc_bus_get(struct mmc_host *host)
1168 {
1169 	unsigned long flags;
1170 
1171 	spin_lock_irqsave(&host->lock, flags);
1172 	host->bus_refs++;
1173 	spin_unlock_irqrestore(&host->lock, flags);
1174 }
1175 
1176 /*
1177  * Decrease reference count of bus operator and free it if
1178  * it is the last reference.
1179  */
1180 static inline void mmc_bus_put(struct mmc_host *host)
1181 {
1182 	unsigned long flags;
1183 
1184 	spin_lock_irqsave(&host->lock, flags);
1185 	host->bus_refs--;
1186 	if ((host->bus_refs == 0) && host->bus_ops)
1187 		__mmc_release_bus(host);
1188 	spin_unlock_irqrestore(&host->lock, flags);
1189 }
1190 
1191 /*
1192  * Assign a mmc bus handler to a host. Only one bus handler may control a
1193  * host at any given time.
1194  */
1195 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1196 {
1197 	unsigned long flags;
1198 
1199 	BUG_ON(!host);
1200 	BUG_ON(!ops);
1201 
1202 	WARN_ON(!host->claimed);
1203 
1204 	spin_lock_irqsave(&host->lock, flags);
1205 
1206 	BUG_ON(host->bus_ops);
1207 	BUG_ON(host->bus_refs);
1208 
1209 	host->bus_ops = ops;
1210 	host->bus_refs = 1;
1211 	host->bus_dead = 0;
1212 
1213 	spin_unlock_irqrestore(&host->lock, flags);
1214 }
1215 
1216 /*
1217  * Remove the current bus handler from a host. Assumes that there are
1218  * no interesting cards left, so the bus is powered down.
1219  */
1220 void mmc_detach_bus(struct mmc_host *host)
1221 {
1222 	unsigned long flags;
1223 
1224 	BUG_ON(!host);
1225 
1226 	WARN_ON(!host->claimed);
1227 	WARN_ON(!host->bus_ops);
1228 
1229 	spin_lock_irqsave(&host->lock, flags);
1230 
1231 	host->bus_dead = 1;
1232 
1233 	spin_unlock_irqrestore(&host->lock, flags);
1234 
1235 	mmc_power_off(host);
1236 
1237 	mmc_bus_put(host);
1238 }
1239 
1240 /**
1241  *	mmc_detect_change - process change of state on a MMC socket
1242  *	@host: host which changed state.
1243  *	@delay: optional delay to wait before detection (jiffies)
1244  *
1245  *	MMC drivers should call this when they detect a card has been
1246  *	inserted or removed. The MMC layer will confirm that any
1247  *	present card is still functional, and initialize any newly
1248  *	inserted.
1249  */
1250 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1251 {
1252 #ifdef CONFIG_MMC_DEBUG
1253 	unsigned long flags;
1254 	spin_lock_irqsave(&host->lock, flags);
1255 	WARN_ON(host->removed);
1256 	spin_unlock_irqrestore(&host->lock, flags);
1257 #endif
1258 
1259 	mmc_schedule_delayed_work(&host->detect, delay);
1260 }
1261 
1262 EXPORT_SYMBOL(mmc_detect_change);
1263 
1264 void mmc_init_erase(struct mmc_card *card)
1265 {
1266 	unsigned int sz;
1267 
1268 	if (is_power_of_2(card->erase_size))
1269 		card->erase_shift = ffs(card->erase_size) - 1;
1270 	else
1271 		card->erase_shift = 0;
1272 
1273 	/*
1274 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1275 	 * card.  That is not desirable because it can take a long time
1276 	 * (minutes) potentially delaying more important I/O, and also the
1277 	 * timeout calculations become increasingly hugely over-estimated.
1278 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1279 	 * to that size and alignment.
1280 	 *
1281 	 * For SD cards that define Allocation Unit size, limit erases to one
1282 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1283 	 * Erase Size, whether it is switched on or not, limit to that size.
1284 	 * Otherwise just have a stab at a good value.  For modern cards it
1285 	 * will end up being 4MiB.  Note that if the value is too small, it
1286 	 * can end up taking longer to erase.
1287 	 */
1288 	if (mmc_card_sd(card) && card->ssr.au) {
1289 		card->pref_erase = card->ssr.au;
1290 		card->erase_shift = ffs(card->ssr.au) - 1;
1291 	} else if (card->ext_csd.hc_erase_size) {
1292 		card->pref_erase = card->ext_csd.hc_erase_size;
1293 	} else {
1294 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1295 		if (sz < 128)
1296 			card->pref_erase = 512 * 1024 / 512;
1297 		else if (sz < 512)
1298 			card->pref_erase = 1024 * 1024 / 512;
1299 		else if (sz < 1024)
1300 			card->pref_erase = 2 * 1024 * 1024 / 512;
1301 		else
1302 			card->pref_erase = 4 * 1024 * 1024 / 512;
1303 		if (card->pref_erase < card->erase_size)
1304 			card->pref_erase = card->erase_size;
1305 		else {
1306 			sz = card->pref_erase % card->erase_size;
1307 			if (sz)
1308 				card->pref_erase += card->erase_size - sz;
1309 		}
1310 	}
1311 }
1312 
1313 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1314 				          unsigned int arg, unsigned int qty)
1315 {
1316 	unsigned int erase_timeout;
1317 
1318 	if (card->ext_csd.erase_group_def & 1) {
1319 		/* High Capacity Erase Group Size uses HC timeouts */
1320 		if (arg == MMC_TRIM_ARG)
1321 			erase_timeout = card->ext_csd.trim_timeout;
1322 		else
1323 			erase_timeout = card->ext_csd.hc_erase_timeout;
1324 	} else {
1325 		/* CSD Erase Group Size uses write timeout */
1326 		unsigned int mult = (10 << card->csd.r2w_factor);
1327 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1328 		unsigned int timeout_us;
1329 
1330 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1331 		if (card->csd.tacc_ns < 1000000)
1332 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1333 		else
1334 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1335 
1336 		/*
1337 		 * ios.clock is only a target.  The real clock rate might be
1338 		 * less but not that much less, so fudge it by multiplying by 2.
1339 		 */
1340 		timeout_clks <<= 1;
1341 		timeout_us += (timeout_clks * 1000) /
1342 			      (mmc_host_clk_rate(card->host) / 1000);
1343 
1344 		erase_timeout = timeout_us / 1000;
1345 
1346 		/*
1347 		 * Theoretically, the calculation could underflow so round up
1348 		 * to 1ms in that case.
1349 		 */
1350 		if (!erase_timeout)
1351 			erase_timeout = 1;
1352 	}
1353 
1354 	/* Multiplier for secure operations */
1355 	if (arg & MMC_SECURE_ARGS) {
1356 		if (arg == MMC_SECURE_ERASE_ARG)
1357 			erase_timeout *= card->ext_csd.sec_erase_mult;
1358 		else
1359 			erase_timeout *= card->ext_csd.sec_trim_mult;
1360 	}
1361 
1362 	erase_timeout *= qty;
1363 
1364 	/*
1365 	 * Ensure at least a 1 second timeout for SPI as per
1366 	 * 'mmc_set_data_timeout()'
1367 	 */
1368 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1369 		erase_timeout = 1000;
1370 
1371 	return erase_timeout;
1372 }
1373 
1374 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1375 					 unsigned int arg,
1376 					 unsigned int qty)
1377 {
1378 	unsigned int erase_timeout;
1379 
1380 	if (card->ssr.erase_timeout) {
1381 		/* Erase timeout specified in SD Status Register (SSR) */
1382 		erase_timeout = card->ssr.erase_timeout * qty +
1383 				card->ssr.erase_offset;
1384 	} else {
1385 		/*
1386 		 * Erase timeout not specified in SD Status Register (SSR) so
1387 		 * use 250ms per write block.
1388 		 */
1389 		erase_timeout = 250 * qty;
1390 	}
1391 
1392 	/* Must not be less than 1 second */
1393 	if (erase_timeout < 1000)
1394 		erase_timeout = 1000;
1395 
1396 	return erase_timeout;
1397 }
1398 
1399 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1400 				      unsigned int arg,
1401 				      unsigned int qty)
1402 {
1403 	if (mmc_card_sd(card))
1404 		return mmc_sd_erase_timeout(card, arg, qty);
1405 	else
1406 		return mmc_mmc_erase_timeout(card, arg, qty);
1407 }
1408 
1409 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1410 			unsigned int to, unsigned int arg)
1411 {
1412 	struct mmc_command cmd = {0};
1413 	unsigned int qty = 0;
1414 	int err;
1415 
1416 	/*
1417 	 * qty is used to calculate the erase timeout which depends on how many
1418 	 * erase groups (or allocation units in SD terminology) are affected.
1419 	 * We count erasing part of an erase group as one erase group.
1420 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1421 	 * erase group size is almost certainly also power of 2, but it does not
1422 	 * seem to insist on that in the JEDEC standard, so we fall back to
1423 	 * division in that case.  SD may not specify an allocation unit size,
1424 	 * in which case the timeout is based on the number of write blocks.
1425 	 *
1426 	 * Note that the timeout for secure trim 2 will only be correct if the
1427 	 * number of erase groups specified is the same as the total of all
1428 	 * preceding secure trim 1 commands.  Since the power may have been
1429 	 * lost since the secure trim 1 commands occurred, it is generally
1430 	 * impossible to calculate the secure trim 2 timeout correctly.
1431 	 */
1432 	if (card->erase_shift)
1433 		qty += ((to >> card->erase_shift) -
1434 			(from >> card->erase_shift)) + 1;
1435 	else if (mmc_card_sd(card))
1436 		qty += to - from + 1;
1437 	else
1438 		qty += ((to / card->erase_size) -
1439 			(from / card->erase_size)) + 1;
1440 
1441 	if (!mmc_card_blockaddr(card)) {
1442 		from <<= 9;
1443 		to <<= 9;
1444 	}
1445 
1446 	if (mmc_card_sd(card))
1447 		cmd.opcode = SD_ERASE_WR_BLK_START;
1448 	else
1449 		cmd.opcode = MMC_ERASE_GROUP_START;
1450 	cmd.arg = from;
1451 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1452 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1453 	if (err) {
1454 		printk(KERN_ERR "mmc_erase: group start error %d, "
1455 		       "status %#x\n", err, cmd.resp[0]);
1456 		err = -EINVAL;
1457 		goto out;
1458 	}
1459 
1460 	memset(&cmd, 0, sizeof(struct mmc_command));
1461 	if (mmc_card_sd(card))
1462 		cmd.opcode = SD_ERASE_WR_BLK_END;
1463 	else
1464 		cmd.opcode = MMC_ERASE_GROUP_END;
1465 	cmd.arg = to;
1466 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1467 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1468 	if (err) {
1469 		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1470 		       err, cmd.resp[0]);
1471 		err = -EINVAL;
1472 		goto out;
1473 	}
1474 
1475 	memset(&cmd, 0, sizeof(struct mmc_command));
1476 	cmd.opcode = MMC_ERASE;
1477 	cmd.arg = arg;
1478 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1479 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1480 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1481 	if (err) {
1482 		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1483 		       err, cmd.resp[0]);
1484 		err = -EIO;
1485 		goto out;
1486 	}
1487 
1488 	if (mmc_host_is_spi(card->host))
1489 		goto out;
1490 
1491 	do {
1492 		memset(&cmd, 0, sizeof(struct mmc_command));
1493 		cmd.opcode = MMC_SEND_STATUS;
1494 		cmd.arg = card->rca << 16;
1495 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1496 		/* Do not retry else we can't see errors */
1497 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1498 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1499 			printk(KERN_ERR "error %d requesting status %#x\n",
1500 				err, cmd.resp[0]);
1501 			err = -EIO;
1502 			goto out;
1503 		}
1504 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1505 		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1506 out:
1507 	return err;
1508 }
1509 
1510 /**
1511  * mmc_erase - erase sectors.
1512  * @card: card to erase
1513  * @from: first sector to erase
1514  * @nr: number of sectors to erase
1515  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1516  *
1517  * Caller must claim host before calling this function.
1518  */
1519 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1520 	      unsigned int arg)
1521 {
1522 	unsigned int rem, to = from + nr;
1523 
1524 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1525 	    !(card->csd.cmdclass & CCC_ERASE))
1526 		return -EOPNOTSUPP;
1527 
1528 	if (!card->erase_size)
1529 		return -EOPNOTSUPP;
1530 
1531 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1532 		return -EOPNOTSUPP;
1533 
1534 	if ((arg & MMC_SECURE_ARGS) &&
1535 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1536 		return -EOPNOTSUPP;
1537 
1538 	if ((arg & MMC_TRIM_ARGS) &&
1539 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1540 		return -EOPNOTSUPP;
1541 
1542 	if (arg == MMC_SECURE_ERASE_ARG) {
1543 		if (from % card->erase_size || nr % card->erase_size)
1544 			return -EINVAL;
1545 	}
1546 
1547 	if (arg == MMC_ERASE_ARG) {
1548 		rem = from % card->erase_size;
1549 		if (rem) {
1550 			rem = card->erase_size - rem;
1551 			from += rem;
1552 			if (nr > rem)
1553 				nr -= rem;
1554 			else
1555 				return 0;
1556 		}
1557 		rem = nr % card->erase_size;
1558 		if (rem)
1559 			nr -= rem;
1560 	}
1561 
1562 	if (nr == 0)
1563 		return 0;
1564 
1565 	to = from + nr;
1566 
1567 	if (to <= from)
1568 		return -EINVAL;
1569 
1570 	/* 'from' and 'to' are inclusive */
1571 	to -= 1;
1572 
1573 	return mmc_do_erase(card, from, to, arg);
1574 }
1575 EXPORT_SYMBOL(mmc_erase);
1576 
1577 int mmc_can_erase(struct mmc_card *card)
1578 {
1579 	if ((card->host->caps & MMC_CAP_ERASE) &&
1580 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1581 		return 1;
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL(mmc_can_erase);
1585 
1586 int mmc_can_trim(struct mmc_card *card)
1587 {
1588 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1589 		return 1;
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL(mmc_can_trim);
1593 
1594 int mmc_can_secure_erase_trim(struct mmc_card *card)
1595 {
1596 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1597 		return 1;
1598 	return 0;
1599 }
1600 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1601 
1602 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1603 			    unsigned int nr)
1604 {
1605 	if (!card->erase_size)
1606 		return 0;
1607 	if (from % card->erase_size || nr % card->erase_size)
1608 		return 0;
1609 	return 1;
1610 }
1611 EXPORT_SYMBOL(mmc_erase_group_aligned);
1612 
1613 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1614 					    unsigned int arg)
1615 {
1616 	struct mmc_host *host = card->host;
1617 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1618 	unsigned int last_timeout = 0;
1619 
1620 	if (card->erase_shift)
1621 		max_qty = UINT_MAX >> card->erase_shift;
1622 	else if (mmc_card_sd(card))
1623 		max_qty = UINT_MAX;
1624 	else
1625 		max_qty = UINT_MAX / card->erase_size;
1626 
1627 	/* Find the largest qty with an OK timeout */
1628 	do {
1629 		y = 0;
1630 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1631 			timeout = mmc_erase_timeout(card, arg, qty + x);
1632 			if (timeout > host->max_discard_to)
1633 				break;
1634 			if (timeout < last_timeout)
1635 				break;
1636 			last_timeout = timeout;
1637 			y = x;
1638 		}
1639 		qty += y;
1640 	} while (y);
1641 
1642 	if (!qty)
1643 		return 0;
1644 
1645 	if (qty == 1)
1646 		return 1;
1647 
1648 	/* Convert qty to sectors */
1649 	if (card->erase_shift)
1650 		max_discard = --qty << card->erase_shift;
1651 	else if (mmc_card_sd(card))
1652 		max_discard = qty;
1653 	else
1654 		max_discard = --qty * card->erase_size;
1655 
1656 	return max_discard;
1657 }
1658 
1659 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1660 {
1661 	struct mmc_host *host = card->host;
1662 	unsigned int max_discard, max_trim;
1663 
1664 	if (!host->max_discard_to)
1665 		return UINT_MAX;
1666 
1667 	/*
1668 	 * Without erase_group_def set, MMC erase timeout depends on clock
1669 	 * frequence which can change.  In that case, the best choice is
1670 	 * just the preferred erase size.
1671 	 */
1672 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1673 		return card->pref_erase;
1674 
1675 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1676 	if (mmc_can_trim(card)) {
1677 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1678 		if (max_trim < max_discard)
1679 			max_discard = max_trim;
1680 	} else if (max_discard < card->erase_size) {
1681 		max_discard = 0;
1682 	}
1683 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1684 		 mmc_hostname(host), max_discard, host->max_discard_to);
1685 	return max_discard;
1686 }
1687 EXPORT_SYMBOL(mmc_calc_max_discard);
1688 
1689 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1690 {
1691 	struct mmc_command cmd = {0};
1692 
1693 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1694 		return 0;
1695 
1696 	cmd.opcode = MMC_SET_BLOCKLEN;
1697 	cmd.arg = blocklen;
1698 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1700 }
1701 EXPORT_SYMBOL(mmc_set_blocklen);
1702 
1703 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1704 {
1705 	host->f_init = freq;
1706 
1707 #ifdef CONFIG_MMC_DEBUG
1708 	pr_info("%s: %s: trying to init card at %u Hz\n",
1709 		mmc_hostname(host), __func__, host->f_init);
1710 #endif
1711 	mmc_power_up(host);
1712 
1713 	/*
1714 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1715 	 * if the card is being re-initialized, just send it.  CMD52
1716 	 * should be ignored by SD/eMMC cards.
1717 	 */
1718 	sdio_reset(host);
1719 	mmc_go_idle(host);
1720 
1721 	mmc_send_if_cond(host, host->ocr_avail);
1722 
1723 	/* Order's important: probe SDIO, then SD, then MMC */
1724 	if (!mmc_attach_sdio(host))
1725 		return 0;
1726 	if (!mmc_attach_sd(host))
1727 		return 0;
1728 	if (!mmc_attach_mmc(host))
1729 		return 0;
1730 
1731 	mmc_power_off(host);
1732 	return -EIO;
1733 }
1734 
1735 void mmc_rescan(struct work_struct *work)
1736 {
1737 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1738 	struct mmc_host *host =
1739 		container_of(work, struct mmc_host, detect.work);
1740 	int i;
1741 
1742 	if (host->rescan_disable)
1743 		return;
1744 
1745 	mmc_bus_get(host);
1746 
1747 	/*
1748 	 * if there is a _removable_ card registered, check whether it is
1749 	 * still present
1750 	 */
1751 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1752 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1753 		host->bus_ops->detect(host);
1754 
1755 	/*
1756 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1757 	 * the card is no longer present.
1758 	 */
1759 	mmc_bus_put(host);
1760 	mmc_bus_get(host);
1761 
1762 	/* if there still is a card present, stop here */
1763 	if (host->bus_ops != NULL) {
1764 		mmc_bus_put(host);
1765 		goto out;
1766 	}
1767 
1768 	/*
1769 	 * Only we can add a new handler, so it's safe to
1770 	 * release the lock here.
1771 	 */
1772 	mmc_bus_put(host);
1773 
1774 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1775 		goto out;
1776 
1777 	mmc_claim_host(host);
1778 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1779 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1780 			break;
1781 		if (freqs[i] <= host->f_min)
1782 			break;
1783 	}
1784 	mmc_release_host(host);
1785 
1786  out:
1787 	if (host->caps & MMC_CAP_NEEDS_POLL)
1788 		mmc_schedule_delayed_work(&host->detect, HZ);
1789 }
1790 
1791 void mmc_start_host(struct mmc_host *host)
1792 {
1793 	mmc_power_off(host);
1794 	mmc_detect_change(host, 0);
1795 }
1796 
1797 void mmc_stop_host(struct mmc_host *host)
1798 {
1799 #ifdef CONFIG_MMC_DEBUG
1800 	unsigned long flags;
1801 	spin_lock_irqsave(&host->lock, flags);
1802 	host->removed = 1;
1803 	spin_unlock_irqrestore(&host->lock, flags);
1804 #endif
1805 
1806 	if (host->caps & MMC_CAP_DISABLE)
1807 		cancel_delayed_work(&host->disable);
1808 	cancel_delayed_work_sync(&host->detect);
1809 	mmc_flush_scheduled_work();
1810 
1811 	/* clear pm flags now and let card drivers set them as needed */
1812 	host->pm_flags = 0;
1813 
1814 	mmc_bus_get(host);
1815 	if (host->bus_ops && !host->bus_dead) {
1816 		if (host->bus_ops->remove)
1817 			host->bus_ops->remove(host);
1818 
1819 		mmc_claim_host(host);
1820 		mmc_detach_bus(host);
1821 		mmc_release_host(host);
1822 		mmc_bus_put(host);
1823 		return;
1824 	}
1825 	mmc_bus_put(host);
1826 
1827 	BUG_ON(host->card);
1828 
1829 	mmc_power_off(host);
1830 }
1831 
1832 int mmc_power_save_host(struct mmc_host *host)
1833 {
1834 	int ret = 0;
1835 
1836 #ifdef CONFIG_MMC_DEBUG
1837 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1838 #endif
1839 
1840 	mmc_bus_get(host);
1841 
1842 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1843 		mmc_bus_put(host);
1844 		return -EINVAL;
1845 	}
1846 
1847 	if (host->bus_ops->power_save)
1848 		ret = host->bus_ops->power_save(host);
1849 
1850 	mmc_bus_put(host);
1851 
1852 	mmc_power_off(host);
1853 
1854 	return ret;
1855 }
1856 EXPORT_SYMBOL(mmc_power_save_host);
1857 
1858 int mmc_power_restore_host(struct mmc_host *host)
1859 {
1860 	int ret;
1861 
1862 #ifdef CONFIG_MMC_DEBUG
1863 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1864 #endif
1865 
1866 	mmc_bus_get(host);
1867 
1868 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1869 		mmc_bus_put(host);
1870 		return -EINVAL;
1871 	}
1872 
1873 	mmc_power_up(host);
1874 	ret = host->bus_ops->power_restore(host);
1875 
1876 	mmc_bus_put(host);
1877 
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(mmc_power_restore_host);
1881 
1882 int mmc_card_awake(struct mmc_host *host)
1883 {
1884 	int err = -ENOSYS;
1885 
1886 	mmc_bus_get(host);
1887 
1888 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1889 		err = host->bus_ops->awake(host);
1890 
1891 	mmc_bus_put(host);
1892 
1893 	return err;
1894 }
1895 EXPORT_SYMBOL(mmc_card_awake);
1896 
1897 int mmc_card_sleep(struct mmc_host *host)
1898 {
1899 	int err = -ENOSYS;
1900 
1901 	mmc_bus_get(host);
1902 
1903 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1904 		err = host->bus_ops->sleep(host);
1905 
1906 	mmc_bus_put(host);
1907 
1908 	return err;
1909 }
1910 EXPORT_SYMBOL(mmc_card_sleep);
1911 
1912 int mmc_card_can_sleep(struct mmc_host *host)
1913 {
1914 	struct mmc_card *card = host->card;
1915 
1916 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1917 		return 1;
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL(mmc_card_can_sleep);
1921 
1922 #ifdef CONFIG_PM
1923 
1924 /**
1925  *	mmc_suspend_host - suspend a host
1926  *	@host: mmc host
1927  */
1928 int mmc_suspend_host(struct mmc_host *host)
1929 {
1930 	int err = 0;
1931 
1932 	if (host->caps & MMC_CAP_DISABLE)
1933 		cancel_delayed_work(&host->disable);
1934 	cancel_delayed_work(&host->detect);
1935 	mmc_flush_scheduled_work();
1936 
1937 	mmc_bus_get(host);
1938 	if (host->bus_ops && !host->bus_dead) {
1939 		if (host->bus_ops->suspend)
1940 			err = host->bus_ops->suspend(host);
1941 		if (err == -ENOSYS || !host->bus_ops->resume) {
1942 			/*
1943 			 * We simply "remove" the card in this case.
1944 			 * It will be redetected on resume.
1945 			 */
1946 			if (host->bus_ops->remove)
1947 				host->bus_ops->remove(host);
1948 			mmc_claim_host(host);
1949 			mmc_detach_bus(host);
1950 			mmc_release_host(host);
1951 			host->pm_flags = 0;
1952 			err = 0;
1953 		}
1954 	}
1955 	mmc_bus_put(host);
1956 
1957 	if (!err && !mmc_card_keep_power(host))
1958 		mmc_power_off(host);
1959 
1960 	return err;
1961 }
1962 
1963 EXPORT_SYMBOL(mmc_suspend_host);
1964 
1965 /**
1966  *	mmc_resume_host - resume a previously suspended host
1967  *	@host: mmc host
1968  */
1969 int mmc_resume_host(struct mmc_host *host)
1970 {
1971 	int err = 0;
1972 
1973 	mmc_bus_get(host);
1974 	if (host->bus_ops && !host->bus_dead) {
1975 		if (!mmc_card_keep_power(host)) {
1976 			mmc_power_up(host);
1977 			mmc_select_voltage(host, host->ocr);
1978 			/*
1979 			 * Tell runtime PM core we just powered up the card,
1980 			 * since it still believes the card is powered off.
1981 			 * Note that currently runtime PM is only enabled
1982 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1983 			 */
1984 			if (mmc_card_sdio(host->card) &&
1985 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1986 				pm_runtime_disable(&host->card->dev);
1987 				pm_runtime_set_active(&host->card->dev);
1988 				pm_runtime_enable(&host->card->dev);
1989 			}
1990 		}
1991 		BUG_ON(!host->bus_ops->resume);
1992 		err = host->bus_ops->resume(host);
1993 		if (err) {
1994 			printk(KERN_WARNING "%s: error %d during resume "
1995 					    "(card was removed?)\n",
1996 					    mmc_hostname(host), err);
1997 			err = 0;
1998 		}
1999 	}
2000 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2001 	mmc_bus_put(host);
2002 
2003 	return err;
2004 }
2005 EXPORT_SYMBOL(mmc_resume_host);
2006 
2007 /* Do the card removal on suspend if card is assumed removeable
2008  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2009    to sync the card.
2010 */
2011 int mmc_pm_notify(struct notifier_block *notify_block,
2012 					unsigned long mode, void *unused)
2013 {
2014 	struct mmc_host *host = container_of(
2015 		notify_block, struct mmc_host, pm_notify);
2016 	unsigned long flags;
2017 
2018 
2019 	switch (mode) {
2020 	case PM_HIBERNATION_PREPARE:
2021 	case PM_SUSPEND_PREPARE:
2022 
2023 		spin_lock_irqsave(&host->lock, flags);
2024 		host->rescan_disable = 1;
2025 		spin_unlock_irqrestore(&host->lock, flags);
2026 		cancel_delayed_work_sync(&host->detect);
2027 
2028 		if (!host->bus_ops || host->bus_ops->suspend)
2029 			break;
2030 
2031 		mmc_claim_host(host);
2032 
2033 		if (host->bus_ops->remove)
2034 			host->bus_ops->remove(host);
2035 
2036 		mmc_detach_bus(host);
2037 		mmc_release_host(host);
2038 		host->pm_flags = 0;
2039 		break;
2040 
2041 	case PM_POST_SUSPEND:
2042 	case PM_POST_HIBERNATION:
2043 	case PM_POST_RESTORE:
2044 
2045 		spin_lock_irqsave(&host->lock, flags);
2046 		host->rescan_disable = 0;
2047 		spin_unlock_irqrestore(&host->lock, flags);
2048 		mmc_detect_change(host, 0);
2049 
2050 	}
2051 
2052 	return 0;
2053 }
2054 #endif
2055 
2056 static int __init mmc_init(void)
2057 {
2058 	int ret;
2059 
2060 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2061 	if (!workqueue)
2062 		return -ENOMEM;
2063 
2064 	ret = mmc_register_bus();
2065 	if (ret)
2066 		goto destroy_workqueue;
2067 
2068 	ret = mmc_register_host_class();
2069 	if (ret)
2070 		goto unregister_bus;
2071 
2072 	ret = sdio_register_bus();
2073 	if (ret)
2074 		goto unregister_host_class;
2075 
2076 	return 0;
2077 
2078 unregister_host_class:
2079 	mmc_unregister_host_class();
2080 unregister_bus:
2081 	mmc_unregister_bus();
2082 destroy_workqueue:
2083 	destroy_workqueue(workqueue);
2084 
2085 	return ret;
2086 }
2087 
2088 static void __exit mmc_exit(void)
2089 {
2090 	sdio_unregister_bus();
2091 	mmc_unregister_host_class();
2092 	mmc_unregister_bus();
2093 	destroy_workqueue(workqueue);
2094 }
2095 
2096 subsys_initcall(mmc_init);
2097 module_exit(mmc_exit);
2098 
2099 MODULE_LICENSE("GPL");
2100