1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "bus.h" 44 #include "host.h" 45 #include "sdio_bus.h" 46 #include "pwrseq.h" 47 48 #include "mmc_ops.h" 49 #include "sd_ops.h" 50 #include "sdio_ops.h" 51 52 /* If the device is not responding */ 53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 54 55 /* 56 * Background operations can take a long time, depending on the housekeeping 57 * operations the card has to perform. 58 */ 59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 60 61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 62 63 /* 64 * Enabling software CRCs on the data blocks can be a significant (30%) 65 * performance cost, and for other reasons may not always be desired. 66 * So we allow it it to be disabled. 67 */ 68 bool use_spi_crc = 1; 69 module_param(use_spi_crc, bool, 0); 70 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 /* 75 * We use the system_freezable_wq, because of two reasons. 76 * First, it allows several works (not the same work item) to be 77 * executed simultaneously. Second, the queue becomes frozen when 78 * userspace becomes frozen during system PM. 79 */ 80 return queue_delayed_work(system_freezable_wq, work, delay); 81 } 82 83 #ifdef CONFIG_FAIL_MMC_REQUEST 84 85 /* 86 * Internal function. Inject random data errors. 87 * If mmc_data is NULL no errors are injected. 88 */ 89 static void mmc_should_fail_request(struct mmc_host *host, 90 struct mmc_request *mrq) 91 { 92 struct mmc_command *cmd = mrq->cmd; 93 struct mmc_data *data = mrq->data; 94 static const int data_errors[] = { 95 -ETIMEDOUT, 96 -EILSEQ, 97 -EIO, 98 }; 99 100 if (!data) 101 return; 102 103 if (cmd->error || data->error || 104 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 105 return; 106 107 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 108 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 109 } 110 111 #else /* CONFIG_FAIL_MMC_REQUEST */ 112 113 static inline void mmc_should_fail_request(struct mmc_host *host, 114 struct mmc_request *mrq) 115 { 116 } 117 118 #endif /* CONFIG_FAIL_MMC_REQUEST */ 119 120 /** 121 * mmc_request_done - finish processing an MMC request 122 * @host: MMC host which completed request 123 * @mrq: MMC request which request 124 * 125 * MMC drivers should call this function when they have completed 126 * their processing of a request. 127 */ 128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 129 { 130 struct mmc_command *cmd = mrq->cmd; 131 int err = cmd->error; 132 133 /* Flag re-tuning needed on CRC errors */ 134 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 135 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 136 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 137 (mrq->data && mrq->data->error == -EILSEQ) || 138 (mrq->stop && mrq->stop->error == -EILSEQ))) 139 mmc_retune_needed(host); 140 141 if (err && cmd->retries && mmc_host_is_spi(host)) { 142 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 143 cmd->retries = 0; 144 } 145 146 trace_mmc_request_done(host, mrq); 147 148 if (err && cmd->retries && !mmc_card_removed(host->card)) { 149 /* 150 * Request starter must handle retries - see 151 * mmc_wait_for_req_done(). 152 */ 153 if (mrq->done) 154 mrq->done(mrq); 155 } else { 156 mmc_should_fail_request(host, mrq); 157 158 led_trigger_event(host->led, LED_OFF); 159 160 if (mrq->sbc) { 161 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 162 mmc_hostname(host), mrq->sbc->opcode, 163 mrq->sbc->error, 164 mrq->sbc->resp[0], mrq->sbc->resp[1], 165 mrq->sbc->resp[2], mrq->sbc->resp[3]); 166 } 167 168 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 169 mmc_hostname(host), cmd->opcode, err, 170 cmd->resp[0], cmd->resp[1], 171 cmd->resp[2], cmd->resp[3]); 172 173 if (mrq->data) { 174 pr_debug("%s: %d bytes transferred: %d\n", 175 mmc_hostname(host), 176 mrq->data->bytes_xfered, mrq->data->error); 177 } 178 179 if (mrq->stop) { 180 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 181 mmc_hostname(host), mrq->stop->opcode, 182 mrq->stop->error, 183 mrq->stop->resp[0], mrq->stop->resp[1], 184 mrq->stop->resp[2], mrq->stop->resp[3]); 185 } 186 187 if (mrq->done) 188 mrq->done(mrq); 189 } 190 } 191 192 EXPORT_SYMBOL(mmc_request_done); 193 194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 195 { 196 int err; 197 198 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 199 err = mmc_retune(host); 200 if (err) { 201 mrq->cmd->error = err; 202 mmc_request_done(host, mrq); 203 return; 204 } 205 206 /* 207 * For sdio rw commands we must wait for card busy otherwise some 208 * sdio devices won't work properly. 209 */ 210 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 211 int tries = 500; /* Wait aprox 500ms at maximum */ 212 213 while (host->ops->card_busy(host) && --tries) 214 mmc_delay(1); 215 216 if (tries == 0) { 217 mrq->cmd->error = -EBUSY; 218 mmc_request_done(host, mrq); 219 return; 220 } 221 } 222 223 trace_mmc_request_start(host, mrq); 224 225 host->ops->request(host, mrq); 226 } 227 228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 229 { 230 #ifdef CONFIG_MMC_DEBUG 231 unsigned int i, sz; 232 struct scatterlist *sg; 233 #endif 234 mmc_retune_hold(host); 235 236 if (mmc_card_removed(host->card)) 237 return -ENOMEDIUM; 238 239 if (mrq->sbc) { 240 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 241 mmc_hostname(host), mrq->sbc->opcode, 242 mrq->sbc->arg, mrq->sbc->flags); 243 } 244 245 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 246 mmc_hostname(host), mrq->cmd->opcode, 247 mrq->cmd->arg, mrq->cmd->flags); 248 249 if (mrq->data) { 250 pr_debug("%s: blksz %d blocks %d flags %08x " 251 "tsac %d ms nsac %d\n", 252 mmc_hostname(host), mrq->data->blksz, 253 mrq->data->blocks, mrq->data->flags, 254 mrq->data->timeout_ns / 1000000, 255 mrq->data->timeout_clks); 256 } 257 258 if (mrq->stop) { 259 pr_debug("%s: CMD%u arg %08x flags %08x\n", 260 mmc_hostname(host), mrq->stop->opcode, 261 mrq->stop->arg, mrq->stop->flags); 262 } 263 264 WARN_ON(!host->claimed); 265 266 mrq->cmd->error = 0; 267 mrq->cmd->mrq = mrq; 268 if (mrq->sbc) { 269 mrq->sbc->error = 0; 270 mrq->sbc->mrq = mrq; 271 } 272 if (mrq->data) { 273 BUG_ON(mrq->data->blksz > host->max_blk_size); 274 BUG_ON(mrq->data->blocks > host->max_blk_count); 275 BUG_ON(mrq->data->blocks * mrq->data->blksz > 276 host->max_req_size); 277 278 #ifdef CONFIG_MMC_DEBUG 279 sz = 0; 280 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 281 sz += sg->length; 282 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 283 #endif 284 285 mrq->cmd->data = mrq->data; 286 mrq->data->error = 0; 287 mrq->data->mrq = mrq; 288 if (mrq->stop) { 289 mrq->data->stop = mrq->stop; 290 mrq->stop->error = 0; 291 mrq->stop->mrq = mrq; 292 } 293 } 294 led_trigger_event(host->led, LED_FULL); 295 __mmc_start_request(host, mrq); 296 297 return 0; 298 } 299 300 /** 301 * mmc_start_bkops - start BKOPS for supported cards 302 * @card: MMC card to start BKOPS 303 * @form_exception: A flag to indicate if this function was 304 * called due to an exception raised by the card 305 * 306 * Start background operations whenever requested. 307 * When the urgent BKOPS bit is set in a R1 command response 308 * then background operations should be started immediately. 309 */ 310 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 311 { 312 int err; 313 int timeout; 314 bool use_busy_signal; 315 316 BUG_ON(!card); 317 318 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 319 return; 320 321 err = mmc_read_bkops_status(card); 322 if (err) { 323 pr_err("%s: Failed to read bkops status: %d\n", 324 mmc_hostname(card->host), err); 325 return; 326 } 327 328 if (!card->ext_csd.raw_bkops_status) 329 return; 330 331 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 332 from_exception) 333 return; 334 335 mmc_claim_host(card->host); 336 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 337 timeout = MMC_BKOPS_MAX_TIMEOUT; 338 use_busy_signal = true; 339 } else { 340 timeout = 0; 341 use_busy_signal = false; 342 } 343 344 mmc_retune_hold(card->host); 345 346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 347 EXT_CSD_BKOPS_START, 1, timeout, 348 use_busy_signal, true, false); 349 if (err) { 350 pr_warn("%s: Error %d starting bkops\n", 351 mmc_hostname(card->host), err); 352 mmc_retune_release(card->host); 353 goto out; 354 } 355 356 /* 357 * For urgent bkops status (LEVEL_2 and more) 358 * bkops executed synchronously, otherwise 359 * the operation is in progress 360 */ 361 if (!use_busy_signal) 362 mmc_card_set_doing_bkops(card); 363 else 364 mmc_retune_release(card->host); 365 out: 366 mmc_release_host(card->host); 367 } 368 EXPORT_SYMBOL(mmc_start_bkops); 369 370 /* 371 * mmc_wait_data_done() - done callback for data request 372 * @mrq: done data request 373 * 374 * Wakes up mmc context, passed as a callback to host controller driver 375 */ 376 static void mmc_wait_data_done(struct mmc_request *mrq) 377 { 378 struct mmc_context_info *context_info = &mrq->host->context_info; 379 380 context_info->is_done_rcv = true; 381 wake_up_interruptible(&context_info->wait); 382 } 383 384 static void mmc_wait_done(struct mmc_request *mrq) 385 { 386 complete(&mrq->completion); 387 } 388 389 /* 390 *__mmc_start_data_req() - starts data request 391 * @host: MMC host to start the request 392 * @mrq: data request to start 393 * 394 * Sets the done callback to be called when request is completed by the card. 395 * Starts data mmc request execution 396 */ 397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 398 { 399 int err; 400 401 mrq->done = mmc_wait_data_done; 402 mrq->host = host; 403 404 err = mmc_start_request(host, mrq); 405 if (err) { 406 mrq->cmd->error = err; 407 mmc_wait_data_done(mrq); 408 } 409 410 return err; 411 } 412 413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 414 { 415 int err; 416 417 init_completion(&mrq->completion); 418 mrq->done = mmc_wait_done; 419 420 err = mmc_start_request(host, mrq); 421 if (err) { 422 mrq->cmd->error = err; 423 complete(&mrq->completion); 424 } 425 426 return err; 427 } 428 429 /* 430 * mmc_wait_for_data_req_done() - wait for request completed 431 * @host: MMC host to prepare the command. 432 * @mrq: MMC request to wait for 433 * 434 * Blocks MMC context till host controller will ack end of data request 435 * execution or new request notification arrives from the block layer. 436 * Handles command retries. 437 * 438 * Returns enum mmc_blk_status after checking errors. 439 */ 440 static int mmc_wait_for_data_req_done(struct mmc_host *host, 441 struct mmc_request *mrq, 442 struct mmc_async_req *next_req) 443 { 444 struct mmc_command *cmd; 445 struct mmc_context_info *context_info = &host->context_info; 446 int err; 447 unsigned long flags; 448 449 while (1) { 450 wait_event_interruptible(context_info->wait, 451 (context_info->is_done_rcv || 452 context_info->is_new_req)); 453 spin_lock_irqsave(&context_info->lock, flags); 454 context_info->is_waiting_last_req = false; 455 spin_unlock_irqrestore(&context_info->lock, flags); 456 if (context_info->is_done_rcv) { 457 context_info->is_done_rcv = false; 458 context_info->is_new_req = false; 459 cmd = mrq->cmd; 460 461 if (!cmd->error || !cmd->retries || 462 mmc_card_removed(host->card)) { 463 err = host->areq->err_check(host->card, 464 host->areq); 465 break; /* return err */ 466 } else { 467 mmc_retune_recheck(host); 468 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 469 mmc_hostname(host), 470 cmd->opcode, cmd->error); 471 cmd->retries--; 472 cmd->error = 0; 473 __mmc_start_request(host, mrq); 474 continue; /* wait for done/new event again */ 475 } 476 } else if (context_info->is_new_req) { 477 context_info->is_new_req = false; 478 if (!next_req) 479 return MMC_BLK_NEW_REQUEST; 480 } 481 } 482 mmc_retune_release(host); 483 return err; 484 } 485 486 static void mmc_wait_for_req_done(struct mmc_host *host, 487 struct mmc_request *mrq) 488 { 489 struct mmc_command *cmd; 490 491 while (1) { 492 wait_for_completion(&mrq->completion); 493 494 cmd = mrq->cmd; 495 496 /* 497 * If host has timed out waiting for the sanitize 498 * to complete, card might be still in programming state 499 * so let's try to bring the card out of programming 500 * state. 501 */ 502 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 503 if (!mmc_interrupt_hpi(host->card)) { 504 pr_warn("%s: %s: Interrupted sanitize\n", 505 mmc_hostname(host), __func__); 506 cmd->error = 0; 507 break; 508 } else { 509 pr_err("%s: %s: Failed to interrupt sanitize\n", 510 mmc_hostname(host), __func__); 511 } 512 } 513 if (!cmd->error || !cmd->retries || 514 mmc_card_removed(host->card)) 515 break; 516 517 mmc_retune_recheck(host); 518 519 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 520 mmc_hostname(host), cmd->opcode, cmd->error); 521 cmd->retries--; 522 cmd->error = 0; 523 __mmc_start_request(host, mrq); 524 } 525 526 mmc_retune_release(host); 527 } 528 529 /** 530 * mmc_pre_req - Prepare for a new request 531 * @host: MMC host to prepare command 532 * @mrq: MMC request to prepare for 533 * @is_first_req: true if there is no previous started request 534 * that may run in parellel to this call, otherwise false 535 * 536 * mmc_pre_req() is called in prior to mmc_start_req() to let 537 * host prepare for the new request. Preparation of a request may be 538 * performed while another request is running on the host. 539 */ 540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 541 bool is_first_req) 542 { 543 if (host->ops->pre_req) 544 host->ops->pre_req(host, mrq, is_first_req); 545 } 546 547 /** 548 * mmc_post_req - Post process a completed request 549 * @host: MMC host to post process command 550 * @mrq: MMC request to post process for 551 * @err: Error, if non zero, clean up any resources made in pre_req 552 * 553 * Let the host post process a completed request. Post processing of 554 * a request may be performed while another reuqest is running. 555 */ 556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 557 int err) 558 { 559 if (host->ops->post_req) 560 host->ops->post_req(host, mrq, err); 561 } 562 563 /** 564 * mmc_start_req - start a non-blocking request 565 * @host: MMC host to start command 566 * @areq: async request to start 567 * @error: out parameter returns 0 for success, otherwise non zero 568 * 569 * Start a new MMC custom command request for a host. 570 * If there is on ongoing async request wait for completion 571 * of that request and start the new one and return. 572 * Does not wait for the new request to complete. 573 * 574 * Returns the completed request, NULL in case of none completed. 575 * Wait for the an ongoing request (previoulsy started) to complete and 576 * return the completed request. If there is no ongoing request, NULL 577 * is returned without waiting. NULL is not an error condition. 578 */ 579 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 580 struct mmc_async_req *areq, int *error) 581 { 582 int err = 0; 583 int start_err = 0; 584 struct mmc_async_req *data = host->areq; 585 586 /* Prepare a new request */ 587 if (areq) 588 mmc_pre_req(host, areq->mrq, !host->areq); 589 590 if (host->areq) { 591 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 592 if (err == MMC_BLK_NEW_REQUEST) { 593 if (error) 594 *error = err; 595 /* 596 * The previous request was not completed, 597 * nothing to return 598 */ 599 return NULL; 600 } 601 /* 602 * Check BKOPS urgency for each R1 response 603 */ 604 if (host->card && mmc_card_mmc(host->card) && 605 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 606 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 607 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 608 609 /* Cancel the prepared request */ 610 if (areq) 611 mmc_post_req(host, areq->mrq, -EINVAL); 612 613 mmc_start_bkops(host->card, true); 614 615 /* prepare the request again */ 616 if (areq) 617 mmc_pre_req(host, areq->mrq, !host->areq); 618 } 619 } 620 621 if (!err && areq) 622 start_err = __mmc_start_data_req(host, areq->mrq); 623 624 if (host->areq) 625 mmc_post_req(host, host->areq->mrq, 0); 626 627 /* Cancel a prepared request if it was not started. */ 628 if ((err || start_err) && areq) 629 mmc_post_req(host, areq->mrq, -EINVAL); 630 631 if (err) 632 host->areq = NULL; 633 else 634 host->areq = areq; 635 636 if (error) 637 *error = err; 638 return data; 639 } 640 EXPORT_SYMBOL(mmc_start_req); 641 642 /** 643 * mmc_wait_for_req - start a request and wait for completion 644 * @host: MMC host to start command 645 * @mrq: MMC request to start 646 * 647 * Start a new MMC custom command request for a host, and wait 648 * for the command to complete. Does not attempt to parse the 649 * response. 650 */ 651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 652 { 653 __mmc_start_req(host, mrq); 654 mmc_wait_for_req_done(host, mrq); 655 } 656 EXPORT_SYMBOL(mmc_wait_for_req); 657 658 /** 659 * mmc_interrupt_hpi - Issue for High priority Interrupt 660 * @card: the MMC card associated with the HPI transfer 661 * 662 * Issued High Priority Interrupt, and check for card status 663 * until out-of prg-state. 664 */ 665 int mmc_interrupt_hpi(struct mmc_card *card) 666 { 667 int err; 668 u32 status; 669 unsigned long prg_wait; 670 671 BUG_ON(!card); 672 673 if (!card->ext_csd.hpi_en) { 674 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 675 return 1; 676 } 677 678 mmc_claim_host(card->host); 679 err = mmc_send_status(card, &status); 680 if (err) { 681 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 682 goto out; 683 } 684 685 switch (R1_CURRENT_STATE(status)) { 686 case R1_STATE_IDLE: 687 case R1_STATE_READY: 688 case R1_STATE_STBY: 689 case R1_STATE_TRAN: 690 /* 691 * In idle and transfer states, HPI is not needed and the caller 692 * can issue the next intended command immediately 693 */ 694 goto out; 695 case R1_STATE_PRG: 696 break; 697 default: 698 /* In all other states, it's illegal to issue HPI */ 699 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 700 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 701 err = -EINVAL; 702 goto out; 703 } 704 705 err = mmc_send_hpi_cmd(card, &status); 706 if (err) 707 goto out; 708 709 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 710 do { 711 err = mmc_send_status(card, &status); 712 713 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 714 break; 715 if (time_after(jiffies, prg_wait)) 716 err = -ETIMEDOUT; 717 } while (!err); 718 719 out: 720 mmc_release_host(card->host); 721 return err; 722 } 723 EXPORT_SYMBOL(mmc_interrupt_hpi); 724 725 /** 726 * mmc_wait_for_cmd - start a command and wait for completion 727 * @host: MMC host to start command 728 * @cmd: MMC command to start 729 * @retries: maximum number of retries 730 * 731 * Start a new MMC command for a host, and wait for the command 732 * to complete. Return any error that occurred while the command 733 * was executing. Do not attempt to parse the response. 734 */ 735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 736 { 737 struct mmc_request mrq = {NULL}; 738 739 WARN_ON(!host->claimed); 740 741 memset(cmd->resp, 0, sizeof(cmd->resp)); 742 cmd->retries = retries; 743 744 mrq.cmd = cmd; 745 cmd->data = NULL; 746 747 mmc_wait_for_req(host, &mrq); 748 749 return cmd->error; 750 } 751 752 EXPORT_SYMBOL(mmc_wait_for_cmd); 753 754 /** 755 * mmc_stop_bkops - stop ongoing BKOPS 756 * @card: MMC card to check BKOPS 757 * 758 * Send HPI command to stop ongoing background operations to 759 * allow rapid servicing of foreground operations, e.g. read/ 760 * writes. Wait until the card comes out of the programming state 761 * to avoid errors in servicing read/write requests. 762 */ 763 int mmc_stop_bkops(struct mmc_card *card) 764 { 765 int err = 0; 766 767 BUG_ON(!card); 768 err = mmc_interrupt_hpi(card); 769 770 /* 771 * If err is EINVAL, we can't issue an HPI. 772 * It should complete the BKOPS. 773 */ 774 if (!err || (err == -EINVAL)) { 775 mmc_card_clr_doing_bkops(card); 776 mmc_retune_release(card->host); 777 err = 0; 778 } 779 780 return err; 781 } 782 EXPORT_SYMBOL(mmc_stop_bkops); 783 784 int mmc_read_bkops_status(struct mmc_card *card) 785 { 786 int err; 787 u8 *ext_csd; 788 789 mmc_claim_host(card->host); 790 err = mmc_get_ext_csd(card, &ext_csd); 791 mmc_release_host(card->host); 792 if (err) 793 return err; 794 795 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 796 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 797 kfree(ext_csd); 798 return 0; 799 } 800 EXPORT_SYMBOL(mmc_read_bkops_status); 801 802 /** 803 * mmc_set_data_timeout - set the timeout for a data command 804 * @data: data phase for command 805 * @card: the MMC card associated with the data transfer 806 * 807 * Computes the data timeout parameters according to the 808 * correct algorithm given the card type. 809 */ 810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 811 { 812 unsigned int mult; 813 814 /* 815 * SDIO cards only define an upper 1 s limit on access. 816 */ 817 if (mmc_card_sdio(card)) { 818 data->timeout_ns = 1000000000; 819 data->timeout_clks = 0; 820 return; 821 } 822 823 /* 824 * SD cards use a 100 multiplier rather than 10 825 */ 826 mult = mmc_card_sd(card) ? 100 : 10; 827 828 /* 829 * Scale up the multiplier (and therefore the timeout) by 830 * the r2w factor for writes. 831 */ 832 if (data->flags & MMC_DATA_WRITE) 833 mult <<= card->csd.r2w_factor; 834 835 data->timeout_ns = card->csd.tacc_ns * mult; 836 data->timeout_clks = card->csd.tacc_clks * mult; 837 838 /* 839 * SD cards also have an upper limit on the timeout. 840 */ 841 if (mmc_card_sd(card)) { 842 unsigned int timeout_us, limit_us; 843 844 timeout_us = data->timeout_ns / 1000; 845 if (card->host->ios.clock) 846 timeout_us += data->timeout_clks * 1000 / 847 (card->host->ios.clock / 1000); 848 849 if (data->flags & MMC_DATA_WRITE) 850 /* 851 * The MMC spec "It is strongly recommended 852 * for hosts to implement more than 500ms 853 * timeout value even if the card indicates 854 * the 250ms maximum busy length." Even the 855 * previous value of 300ms is known to be 856 * insufficient for some cards. 857 */ 858 limit_us = 3000000; 859 else 860 limit_us = 100000; 861 862 /* 863 * SDHC cards always use these fixed values. 864 */ 865 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 866 data->timeout_ns = limit_us * 1000; 867 data->timeout_clks = 0; 868 } 869 870 /* assign limit value if invalid */ 871 if (timeout_us == 0) 872 data->timeout_ns = limit_us * 1000; 873 } 874 875 /* 876 * Some cards require longer data read timeout than indicated in CSD. 877 * Address this by setting the read timeout to a "reasonably high" 878 * value. For the cards tested, 600ms has proven enough. If necessary, 879 * this value can be increased if other problematic cards require this. 880 */ 881 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 882 data->timeout_ns = 600000000; 883 data->timeout_clks = 0; 884 } 885 886 /* 887 * Some cards need very high timeouts if driven in SPI mode. 888 * The worst observed timeout was 900ms after writing a 889 * continuous stream of data until the internal logic 890 * overflowed. 891 */ 892 if (mmc_host_is_spi(card->host)) { 893 if (data->flags & MMC_DATA_WRITE) { 894 if (data->timeout_ns < 1000000000) 895 data->timeout_ns = 1000000000; /* 1s */ 896 } else { 897 if (data->timeout_ns < 100000000) 898 data->timeout_ns = 100000000; /* 100ms */ 899 } 900 } 901 } 902 EXPORT_SYMBOL(mmc_set_data_timeout); 903 904 /** 905 * mmc_align_data_size - pads a transfer size to a more optimal value 906 * @card: the MMC card associated with the data transfer 907 * @sz: original transfer size 908 * 909 * Pads the original data size with a number of extra bytes in 910 * order to avoid controller bugs and/or performance hits 911 * (e.g. some controllers revert to PIO for certain sizes). 912 * 913 * Returns the improved size, which might be unmodified. 914 * 915 * Note that this function is only relevant when issuing a 916 * single scatter gather entry. 917 */ 918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 919 { 920 /* 921 * FIXME: We don't have a system for the controller to tell 922 * the core about its problems yet, so for now we just 32-bit 923 * align the size. 924 */ 925 sz = ((sz + 3) / 4) * 4; 926 927 return sz; 928 } 929 EXPORT_SYMBOL(mmc_align_data_size); 930 931 /** 932 * __mmc_claim_host - exclusively claim a host 933 * @host: mmc host to claim 934 * @abort: whether or not the operation should be aborted 935 * 936 * Claim a host for a set of operations. If @abort is non null and 937 * dereference a non-zero value then this will return prematurely with 938 * that non-zero value without acquiring the lock. Returns zero 939 * with the lock held otherwise. 940 */ 941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 942 { 943 DECLARE_WAITQUEUE(wait, current); 944 unsigned long flags; 945 int stop; 946 bool pm = false; 947 948 might_sleep(); 949 950 add_wait_queue(&host->wq, &wait); 951 spin_lock_irqsave(&host->lock, flags); 952 while (1) { 953 set_current_state(TASK_UNINTERRUPTIBLE); 954 stop = abort ? atomic_read(abort) : 0; 955 if (stop || !host->claimed || host->claimer == current) 956 break; 957 spin_unlock_irqrestore(&host->lock, flags); 958 schedule(); 959 spin_lock_irqsave(&host->lock, flags); 960 } 961 set_current_state(TASK_RUNNING); 962 if (!stop) { 963 host->claimed = 1; 964 host->claimer = current; 965 host->claim_cnt += 1; 966 if (host->claim_cnt == 1) 967 pm = true; 968 } else 969 wake_up(&host->wq); 970 spin_unlock_irqrestore(&host->lock, flags); 971 remove_wait_queue(&host->wq, &wait); 972 973 if (pm) 974 pm_runtime_get_sync(mmc_dev(host)); 975 976 return stop; 977 } 978 EXPORT_SYMBOL(__mmc_claim_host); 979 980 /** 981 * mmc_release_host - release a host 982 * @host: mmc host to release 983 * 984 * Release a MMC host, allowing others to claim the host 985 * for their operations. 986 */ 987 void mmc_release_host(struct mmc_host *host) 988 { 989 unsigned long flags; 990 991 WARN_ON(!host->claimed); 992 993 spin_lock_irqsave(&host->lock, flags); 994 if (--host->claim_cnt) { 995 /* Release for nested claim */ 996 spin_unlock_irqrestore(&host->lock, flags); 997 } else { 998 host->claimed = 0; 999 host->claimer = NULL; 1000 spin_unlock_irqrestore(&host->lock, flags); 1001 wake_up(&host->wq); 1002 pm_runtime_mark_last_busy(mmc_dev(host)); 1003 pm_runtime_put_autosuspend(mmc_dev(host)); 1004 } 1005 } 1006 EXPORT_SYMBOL(mmc_release_host); 1007 1008 /* 1009 * This is a helper function, which fetches a runtime pm reference for the 1010 * card device and also claims the host. 1011 */ 1012 void mmc_get_card(struct mmc_card *card) 1013 { 1014 pm_runtime_get_sync(&card->dev); 1015 mmc_claim_host(card->host); 1016 } 1017 EXPORT_SYMBOL(mmc_get_card); 1018 1019 /* 1020 * This is a helper function, which releases the host and drops the runtime 1021 * pm reference for the card device. 1022 */ 1023 void mmc_put_card(struct mmc_card *card) 1024 { 1025 mmc_release_host(card->host); 1026 pm_runtime_mark_last_busy(&card->dev); 1027 pm_runtime_put_autosuspend(&card->dev); 1028 } 1029 EXPORT_SYMBOL(mmc_put_card); 1030 1031 /* 1032 * Internal function that does the actual ios call to the host driver, 1033 * optionally printing some debug output. 1034 */ 1035 static inline void mmc_set_ios(struct mmc_host *host) 1036 { 1037 struct mmc_ios *ios = &host->ios; 1038 1039 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1040 "width %u timing %u\n", 1041 mmc_hostname(host), ios->clock, ios->bus_mode, 1042 ios->power_mode, ios->chip_select, ios->vdd, 1043 1 << ios->bus_width, ios->timing); 1044 1045 host->ops->set_ios(host, ios); 1046 } 1047 1048 /* 1049 * Control chip select pin on a host. 1050 */ 1051 void mmc_set_chip_select(struct mmc_host *host, int mode) 1052 { 1053 host->ios.chip_select = mode; 1054 mmc_set_ios(host); 1055 } 1056 1057 /* 1058 * Sets the host clock to the highest possible frequency that 1059 * is below "hz". 1060 */ 1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1062 { 1063 WARN_ON(hz && hz < host->f_min); 1064 1065 if (hz > host->f_max) 1066 hz = host->f_max; 1067 1068 host->ios.clock = hz; 1069 mmc_set_ios(host); 1070 } 1071 1072 int mmc_execute_tuning(struct mmc_card *card) 1073 { 1074 struct mmc_host *host = card->host; 1075 u32 opcode; 1076 int err; 1077 1078 if (!host->ops->execute_tuning) 1079 return 0; 1080 1081 if (mmc_card_mmc(card)) 1082 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1083 else 1084 opcode = MMC_SEND_TUNING_BLOCK; 1085 1086 err = host->ops->execute_tuning(host, opcode); 1087 1088 if (err) 1089 pr_err("%s: tuning execution failed: %d\n", 1090 mmc_hostname(host), err); 1091 else 1092 mmc_retune_enable(host); 1093 1094 return err; 1095 } 1096 1097 /* 1098 * Change the bus mode (open drain/push-pull) of a host. 1099 */ 1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1101 { 1102 host->ios.bus_mode = mode; 1103 mmc_set_ios(host); 1104 } 1105 1106 /* 1107 * Change data bus width of a host. 1108 */ 1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1110 { 1111 host->ios.bus_width = width; 1112 mmc_set_ios(host); 1113 } 1114 1115 /* 1116 * Set initial state after a power cycle or a hw_reset. 1117 */ 1118 void mmc_set_initial_state(struct mmc_host *host) 1119 { 1120 mmc_retune_disable(host); 1121 1122 if (mmc_host_is_spi(host)) 1123 host->ios.chip_select = MMC_CS_HIGH; 1124 else 1125 host->ios.chip_select = MMC_CS_DONTCARE; 1126 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1127 host->ios.bus_width = MMC_BUS_WIDTH_1; 1128 host->ios.timing = MMC_TIMING_LEGACY; 1129 host->ios.drv_type = 0; 1130 1131 mmc_set_ios(host); 1132 } 1133 1134 /** 1135 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1136 * @vdd: voltage (mV) 1137 * @low_bits: prefer low bits in boundary cases 1138 * 1139 * This function returns the OCR bit number according to the provided @vdd 1140 * value. If conversion is not possible a negative errno value returned. 1141 * 1142 * Depending on the @low_bits flag the function prefers low or high OCR bits 1143 * on boundary voltages. For example, 1144 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1145 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1146 * 1147 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1148 */ 1149 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1150 { 1151 const int max_bit = ilog2(MMC_VDD_35_36); 1152 int bit; 1153 1154 if (vdd < 1650 || vdd > 3600) 1155 return -EINVAL; 1156 1157 if (vdd >= 1650 && vdd <= 1950) 1158 return ilog2(MMC_VDD_165_195); 1159 1160 if (low_bits) 1161 vdd -= 1; 1162 1163 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1164 bit = (vdd - 2000) / 100 + 8; 1165 if (bit > max_bit) 1166 return max_bit; 1167 return bit; 1168 } 1169 1170 /** 1171 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1172 * @vdd_min: minimum voltage value (mV) 1173 * @vdd_max: maximum voltage value (mV) 1174 * 1175 * This function returns the OCR mask bits according to the provided @vdd_min 1176 * and @vdd_max values. If conversion is not possible the function returns 0. 1177 * 1178 * Notes wrt boundary cases: 1179 * This function sets the OCR bits for all boundary voltages, for example 1180 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1181 * MMC_VDD_34_35 mask. 1182 */ 1183 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1184 { 1185 u32 mask = 0; 1186 1187 if (vdd_max < vdd_min) 1188 return 0; 1189 1190 /* Prefer high bits for the boundary vdd_max values. */ 1191 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1192 if (vdd_max < 0) 1193 return 0; 1194 1195 /* Prefer low bits for the boundary vdd_min values. */ 1196 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1197 if (vdd_min < 0) 1198 return 0; 1199 1200 /* Fill the mask, from max bit to min bit. */ 1201 while (vdd_max >= vdd_min) 1202 mask |= 1 << vdd_max--; 1203 1204 return mask; 1205 } 1206 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1207 1208 #ifdef CONFIG_OF 1209 1210 /** 1211 * mmc_of_parse_voltage - return mask of supported voltages 1212 * @np: The device node need to be parsed. 1213 * @mask: mask of voltages available for MMC/SD/SDIO 1214 * 1215 * Parse the "voltage-ranges" DT property, returning zero if it is not 1216 * found, negative errno if the voltage-range specification is invalid, 1217 * or one if the voltage-range is specified and successfully parsed. 1218 */ 1219 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1220 { 1221 const u32 *voltage_ranges; 1222 int num_ranges, i; 1223 1224 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1225 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1226 if (!voltage_ranges) { 1227 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1228 return 0; 1229 } 1230 if (!num_ranges) { 1231 pr_err("%s: voltage-ranges empty\n", np->full_name); 1232 return -EINVAL; 1233 } 1234 1235 for (i = 0; i < num_ranges; i++) { 1236 const int j = i * 2; 1237 u32 ocr_mask; 1238 1239 ocr_mask = mmc_vddrange_to_ocrmask( 1240 be32_to_cpu(voltage_ranges[j]), 1241 be32_to_cpu(voltage_ranges[j + 1])); 1242 if (!ocr_mask) { 1243 pr_err("%s: voltage-range #%d is invalid\n", 1244 np->full_name, i); 1245 return -EINVAL; 1246 } 1247 *mask |= ocr_mask; 1248 } 1249 1250 return 1; 1251 } 1252 EXPORT_SYMBOL(mmc_of_parse_voltage); 1253 1254 #endif /* CONFIG_OF */ 1255 1256 static int mmc_of_get_func_num(struct device_node *node) 1257 { 1258 u32 reg; 1259 int ret; 1260 1261 ret = of_property_read_u32(node, "reg", ®); 1262 if (ret < 0) 1263 return ret; 1264 1265 return reg; 1266 } 1267 1268 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1269 unsigned func_num) 1270 { 1271 struct device_node *node; 1272 1273 if (!host->parent || !host->parent->of_node) 1274 return NULL; 1275 1276 for_each_child_of_node(host->parent->of_node, node) { 1277 if (mmc_of_get_func_num(node) == func_num) 1278 return node; 1279 } 1280 1281 return NULL; 1282 } 1283 1284 #ifdef CONFIG_REGULATOR 1285 1286 /** 1287 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1288 * @vdd_bit: OCR bit number 1289 * @min_uV: minimum voltage value (mV) 1290 * @max_uV: maximum voltage value (mV) 1291 * 1292 * This function returns the voltage range according to the provided OCR 1293 * bit number. If conversion is not possible a negative errno value returned. 1294 */ 1295 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1296 { 1297 int tmp; 1298 1299 if (!vdd_bit) 1300 return -EINVAL; 1301 1302 /* 1303 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1304 * bits this regulator doesn't quite support ... don't 1305 * be too picky, most cards and regulators are OK with 1306 * a 0.1V range goof (it's a small error percentage). 1307 */ 1308 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1309 if (tmp == 0) { 1310 *min_uV = 1650 * 1000; 1311 *max_uV = 1950 * 1000; 1312 } else { 1313 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1314 *max_uV = *min_uV + 100 * 1000; 1315 } 1316 1317 return 0; 1318 } 1319 1320 /** 1321 * mmc_regulator_get_ocrmask - return mask of supported voltages 1322 * @supply: regulator to use 1323 * 1324 * This returns either a negative errno, or a mask of voltages that 1325 * can be provided to MMC/SD/SDIO devices using the specified voltage 1326 * regulator. This would normally be called before registering the 1327 * MMC host adapter. 1328 */ 1329 int mmc_regulator_get_ocrmask(struct regulator *supply) 1330 { 1331 int result = 0; 1332 int count; 1333 int i; 1334 int vdd_uV; 1335 int vdd_mV; 1336 1337 count = regulator_count_voltages(supply); 1338 if (count < 0) 1339 return count; 1340 1341 for (i = 0; i < count; i++) { 1342 vdd_uV = regulator_list_voltage(supply, i); 1343 if (vdd_uV <= 0) 1344 continue; 1345 1346 vdd_mV = vdd_uV / 1000; 1347 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1348 } 1349 1350 if (!result) { 1351 vdd_uV = regulator_get_voltage(supply); 1352 if (vdd_uV <= 0) 1353 return vdd_uV; 1354 1355 vdd_mV = vdd_uV / 1000; 1356 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1357 } 1358 1359 return result; 1360 } 1361 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1362 1363 /** 1364 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1365 * @mmc: the host to regulate 1366 * @supply: regulator to use 1367 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1368 * 1369 * Returns zero on success, else negative errno. 1370 * 1371 * MMC host drivers may use this to enable or disable a regulator using 1372 * a particular supply voltage. This would normally be called from the 1373 * set_ios() method. 1374 */ 1375 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1376 struct regulator *supply, 1377 unsigned short vdd_bit) 1378 { 1379 int result = 0; 1380 int min_uV, max_uV; 1381 1382 if (vdd_bit) { 1383 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1384 1385 result = regulator_set_voltage(supply, min_uV, max_uV); 1386 if (result == 0 && !mmc->regulator_enabled) { 1387 result = regulator_enable(supply); 1388 if (!result) 1389 mmc->regulator_enabled = true; 1390 } 1391 } else if (mmc->regulator_enabled) { 1392 result = regulator_disable(supply); 1393 if (result == 0) 1394 mmc->regulator_enabled = false; 1395 } 1396 1397 if (result) 1398 dev_err(mmc_dev(mmc), 1399 "could not set regulator OCR (%d)\n", result); 1400 return result; 1401 } 1402 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1403 1404 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1405 int min_uV, int target_uV, 1406 int max_uV) 1407 { 1408 /* 1409 * Check if supported first to avoid errors since we may try several 1410 * signal levels during power up and don't want to show errors. 1411 */ 1412 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1413 return -EINVAL; 1414 1415 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1416 max_uV); 1417 } 1418 1419 /** 1420 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1421 * 1422 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1423 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1424 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1425 * SD card spec also define VQMMC in terms of VMMC. 1426 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1427 * 1428 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1429 * requested voltage. This is definitely a good idea for UHS where there's a 1430 * separate regulator on the card that's trying to make 1.8V and it's best if 1431 * we match. 1432 * 1433 * This function is expected to be used by a controller's 1434 * start_signal_voltage_switch() function. 1435 */ 1436 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1437 { 1438 struct device *dev = mmc_dev(mmc); 1439 int ret, volt, min_uV, max_uV; 1440 1441 /* If no vqmmc supply then we can't change the voltage */ 1442 if (IS_ERR(mmc->supply.vqmmc)) 1443 return -EINVAL; 1444 1445 switch (ios->signal_voltage) { 1446 case MMC_SIGNAL_VOLTAGE_120: 1447 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1448 1100000, 1200000, 1300000); 1449 case MMC_SIGNAL_VOLTAGE_180: 1450 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1451 1700000, 1800000, 1950000); 1452 case MMC_SIGNAL_VOLTAGE_330: 1453 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1454 if (ret < 0) 1455 return ret; 1456 1457 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1458 __func__, volt, max_uV); 1459 1460 min_uV = max(volt - 300000, 2700000); 1461 max_uV = min(max_uV + 200000, 3600000); 1462 1463 /* 1464 * Due to a limitation in the current implementation of 1465 * regulator_set_voltage_triplet() which is taking the lowest 1466 * voltage possible if below the target, search for a suitable 1467 * voltage in two steps and try to stay close to vmmc 1468 * with a 0.3V tolerance at first. 1469 */ 1470 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1471 min_uV, volt, max_uV)) 1472 return 0; 1473 1474 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1475 2700000, volt, 3600000); 1476 default: 1477 return -EINVAL; 1478 } 1479 } 1480 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1481 1482 #endif /* CONFIG_REGULATOR */ 1483 1484 int mmc_regulator_get_supply(struct mmc_host *mmc) 1485 { 1486 struct device *dev = mmc_dev(mmc); 1487 int ret; 1488 1489 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1490 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1491 1492 if (IS_ERR(mmc->supply.vmmc)) { 1493 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1494 return -EPROBE_DEFER; 1495 dev_dbg(dev, "No vmmc regulator found\n"); 1496 } else { 1497 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1498 if (ret > 0) 1499 mmc->ocr_avail = ret; 1500 else 1501 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1502 } 1503 1504 if (IS_ERR(mmc->supply.vqmmc)) { 1505 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1506 return -EPROBE_DEFER; 1507 dev_dbg(dev, "No vqmmc regulator found\n"); 1508 } 1509 1510 return 0; 1511 } 1512 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1513 1514 /* 1515 * Mask off any voltages we don't support and select 1516 * the lowest voltage 1517 */ 1518 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1519 { 1520 int bit; 1521 1522 /* 1523 * Sanity check the voltages that the card claims to 1524 * support. 1525 */ 1526 if (ocr & 0x7F) { 1527 dev_warn(mmc_dev(host), 1528 "card claims to support voltages below defined range\n"); 1529 ocr &= ~0x7F; 1530 } 1531 1532 ocr &= host->ocr_avail; 1533 if (!ocr) { 1534 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1535 return 0; 1536 } 1537 1538 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1539 bit = ffs(ocr) - 1; 1540 ocr &= 3 << bit; 1541 mmc_power_cycle(host, ocr); 1542 } else { 1543 bit = fls(ocr) - 1; 1544 ocr &= 3 << bit; 1545 if (bit != host->ios.vdd) 1546 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1547 } 1548 1549 return ocr; 1550 } 1551 1552 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1553 { 1554 int err = 0; 1555 int old_signal_voltage = host->ios.signal_voltage; 1556 1557 host->ios.signal_voltage = signal_voltage; 1558 if (host->ops->start_signal_voltage_switch) 1559 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1560 1561 if (err) 1562 host->ios.signal_voltage = old_signal_voltage; 1563 1564 return err; 1565 1566 } 1567 1568 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1569 { 1570 struct mmc_command cmd = {0}; 1571 int err = 0; 1572 u32 clock; 1573 1574 BUG_ON(!host); 1575 1576 /* 1577 * Send CMD11 only if the request is to switch the card to 1578 * 1.8V signalling. 1579 */ 1580 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1581 return __mmc_set_signal_voltage(host, signal_voltage); 1582 1583 /* 1584 * If we cannot switch voltages, return failure so the caller 1585 * can continue without UHS mode 1586 */ 1587 if (!host->ops->start_signal_voltage_switch) 1588 return -EPERM; 1589 if (!host->ops->card_busy) 1590 pr_warn("%s: cannot verify signal voltage switch\n", 1591 mmc_hostname(host)); 1592 1593 cmd.opcode = SD_SWITCH_VOLTAGE; 1594 cmd.arg = 0; 1595 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1596 1597 err = mmc_wait_for_cmd(host, &cmd, 0); 1598 if (err) 1599 return err; 1600 1601 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1602 return -EIO; 1603 1604 /* 1605 * The card should drive cmd and dat[0:3] low immediately 1606 * after the response of cmd11, but wait 1 ms to be sure 1607 */ 1608 mmc_delay(1); 1609 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1610 err = -EAGAIN; 1611 goto power_cycle; 1612 } 1613 /* 1614 * During a signal voltage level switch, the clock must be gated 1615 * for 5 ms according to the SD spec 1616 */ 1617 clock = host->ios.clock; 1618 host->ios.clock = 0; 1619 mmc_set_ios(host); 1620 1621 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1622 /* 1623 * Voltages may not have been switched, but we've already 1624 * sent CMD11, so a power cycle is required anyway 1625 */ 1626 err = -EAGAIN; 1627 goto power_cycle; 1628 } 1629 1630 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1631 mmc_delay(10); 1632 host->ios.clock = clock; 1633 mmc_set_ios(host); 1634 1635 /* Wait for at least 1 ms according to spec */ 1636 mmc_delay(1); 1637 1638 /* 1639 * Failure to switch is indicated by the card holding 1640 * dat[0:3] low 1641 */ 1642 if (host->ops->card_busy && host->ops->card_busy(host)) 1643 err = -EAGAIN; 1644 1645 power_cycle: 1646 if (err) { 1647 pr_debug("%s: Signal voltage switch failed, " 1648 "power cycling card\n", mmc_hostname(host)); 1649 mmc_power_cycle(host, ocr); 1650 } 1651 1652 return err; 1653 } 1654 1655 /* 1656 * Select timing parameters for host. 1657 */ 1658 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1659 { 1660 host->ios.timing = timing; 1661 mmc_set_ios(host); 1662 } 1663 1664 /* 1665 * Select appropriate driver type for host. 1666 */ 1667 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1668 { 1669 host->ios.drv_type = drv_type; 1670 mmc_set_ios(host); 1671 } 1672 1673 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1674 int card_drv_type, int *drv_type) 1675 { 1676 struct mmc_host *host = card->host; 1677 int host_drv_type = SD_DRIVER_TYPE_B; 1678 1679 *drv_type = 0; 1680 1681 if (!host->ops->select_drive_strength) 1682 return 0; 1683 1684 /* Use SD definition of driver strength for hosts */ 1685 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1686 host_drv_type |= SD_DRIVER_TYPE_A; 1687 1688 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1689 host_drv_type |= SD_DRIVER_TYPE_C; 1690 1691 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1692 host_drv_type |= SD_DRIVER_TYPE_D; 1693 1694 /* 1695 * The drive strength that the hardware can support 1696 * depends on the board design. Pass the appropriate 1697 * information and let the hardware specific code 1698 * return what is possible given the options 1699 */ 1700 return host->ops->select_drive_strength(card, max_dtr, 1701 host_drv_type, 1702 card_drv_type, 1703 drv_type); 1704 } 1705 1706 /* 1707 * Apply power to the MMC stack. This is a two-stage process. 1708 * First, we enable power to the card without the clock running. 1709 * We then wait a bit for the power to stabilise. Finally, 1710 * enable the bus drivers and clock to the card. 1711 * 1712 * We must _NOT_ enable the clock prior to power stablising. 1713 * 1714 * If a host does all the power sequencing itself, ignore the 1715 * initial MMC_POWER_UP stage. 1716 */ 1717 void mmc_power_up(struct mmc_host *host, u32 ocr) 1718 { 1719 if (host->ios.power_mode == MMC_POWER_ON) 1720 return; 1721 1722 mmc_pwrseq_pre_power_on(host); 1723 1724 host->ios.vdd = fls(ocr) - 1; 1725 host->ios.power_mode = MMC_POWER_UP; 1726 /* Set initial state and call mmc_set_ios */ 1727 mmc_set_initial_state(host); 1728 1729 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1730 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1731 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1732 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1733 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1734 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1735 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1736 1737 /* 1738 * This delay should be sufficient to allow the power supply 1739 * to reach the minimum voltage. 1740 */ 1741 mmc_delay(10); 1742 1743 mmc_pwrseq_post_power_on(host); 1744 1745 host->ios.clock = host->f_init; 1746 1747 host->ios.power_mode = MMC_POWER_ON; 1748 mmc_set_ios(host); 1749 1750 /* 1751 * This delay must be at least 74 clock sizes, or 1 ms, or the 1752 * time required to reach a stable voltage. 1753 */ 1754 mmc_delay(10); 1755 } 1756 1757 void mmc_power_off(struct mmc_host *host) 1758 { 1759 if (host->ios.power_mode == MMC_POWER_OFF) 1760 return; 1761 1762 mmc_pwrseq_power_off(host); 1763 1764 host->ios.clock = 0; 1765 host->ios.vdd = 0; 1766 1767 host->ios.power_mode = MMC_POWER_OFF; 1768 /* Set initial state and call mmc_set_ios */ 1769 mmc_set_initial_state(host); 1770 1771 /* 1772 * Some configurations, such as the 802.11 SDIO card in the OLPC 1773 * XO-1.5, require a short delay after poweroff before the card 1774 * can be successfully turned on again. 1775 */ 1776 mmc_delay(1); 1777 } 1778 1779 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1780 { 1781 mmc_power_off(host); 1782 /* Wait at least 1 ms according to SD spec */ 1783 mmc_delay(1); 1784 mmc_power_up(host, ocr); 1785 } 1786 1787 /* 1788 * Cleanup when the last reference to the bus operator is dropped. 1789 */ 1790 static void __mmc_release_bus(struct mmc_host *host) 1791 { 1792 BUG_ON(!host); 1793 BUG_ON(host->bus_refs); 1794 BUG_ON(!host->bus_dead); 1795 1796 host->bus_ops = NULL; 1797 } 1798 1799 /* 1800 * Increase reference count of bus operator 1801 */ 1802 static inline void mmc_bus_get(struct mmc_host *host) 1803 { 1804 unsigned long flags; 1805 1806 spin_lock_irqsave(&host->lock, flags); 1807 host->bus_refs++; 1808 spin_unlock_irqrestore(&host->lock, flags); 1809 } 1810 1811 /* 1812 * Decrease reference count of bus operator and free it if 1813 * it is the last reference. 1814 */ 1815 static inline void mmc_bus_put(struct mmc_host *host) 1816 { 1817 unsigned long flags; 1818 1819 spin_lock_irqsave(&host->lock, flags); 1820 host->bus_refs--; 1821 if ((host->bus_refs == 0) && host->bus_ops) 1822 __mmc_release_bus(host); 1823 spin_unlock_irqrestore(&host->lock, flags); 1824 } 1825 1826 /* 1827 * Assign a mmc bus handler to a host. Only one bus handler may control a 1828 * host at any given time. 1829 */ 1830 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1831 { 1832 unsigned long flags; 1833 1834 BUG_ON(!host); 1835 BUG_ON(!ops); 1836 1837 WARN_ON(!host->claimed); 1838 1839 spin_lock_irqsave(&host->lock, flags); 1840 1841 BUG_ON(host->bus_ops); 1842 BUG_ON(host->bus_refs); 1843 1844 host->bus_ops = ops; 1845 host->bus_refs = 1; 1846 host->bus_dead = 0; 1847 1848 spin_unlock_irqrestore(&host->lock, flags); 1849 } 1850 1851 /* 1852 * Remove the current bus handler from a host. 1853 */ 1854 void mmc_detach_bus(struct mmc_host *host) 1855 { 1856 unsigned long flags; 1857 1858 BUG_ON(!host); 1859 1860 WARN_ON(!host->claimed); 1861 WARN_ON(!host->bus_ops); 1862 1863 spin_lock_irqsave(&host->lock, flags); 1864 1865 host->bus_dead = 1; 1866 1867 spin_unlock_irqrestore(&host->lock, flags); 1868 1869 mmc_bus_put(host); 1870 } 1871 1872 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1873 bool cd_irq) 1874 { 1875 #ifdef CONFIG_MMC_DEBUG 1876 unsigned long flags; 1877 spin_lock_irqsave(&host->lock, flags); 1878 WARN_ON(host->removed); 1879 spin_unlock_irqrestore(&host->lock, flags); 1880 #endif 1881 1882 /* 1883 * If the device is configured as wakeup, we prevent a new sleep for 1884 * 5 s to give provision for user space to consume the event. 1885 */ 1886 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1887 device_can_wakeup(mmc_dev(host))) 1888 pm_wakeup_event(mmc_dev(host), 5000); 1889 1890 host->detect_change = 1; 1891 mmc_schedule_delayed_work(&host->detect, delay); 1892 } 1893 1894 /** 1895 * mmc_detect_change - process change of state on a MMC socket 1896 * @host: host which changed state. 1897 * @delay: optional delay to wait before detection (jiffies) 1898 * 1899 * MMC drivers should call this when they detect a card has been 1900 * inserted or removed. The MMC layer will confirm that any 1901 * present card is still functional, and initialize any newly 1902 * inserted. 1903 */ 1904 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1905 { 1906 _mmc_detect_change(host, delay, true); 1907 } 1908 EXPORT_SYMBOL(mmc_detect_change); 1909 1910 void mmc_init_erase(struct mmc_card *card) 1911 { 1912 unsigned int sz; 1913 1914 if (is_power_of_2(card->erase_size)) 1915 card->erase_shift = ffs(card->erase_size) - 1; 1916 else 1917 card->erase_shift = 0; 1918 1919 /* 1920 * It is possible to erase an arbitrarily large area of an SD or MMC 1921 * card. That is not desirable because it can take a long time 1922 * (minutes) potentially delaying more important I/O, and also the 1923 * timeout calculations become increasingly hugely over-estimated. 1924 * Consequently, 'pref_erase' is defined as a guide to limit erases 1925 * to that size and alignment. 1926 * 1927 * For SD cards that define Allocation Unit size, limit erases to one 1928 * Allocation Unit at a time. For MMC cards that define High Capacity 1929 * Erase Size, whether it is switched on or not, limit to that size. 1930 * Otherwise just have a stab at a good value. For modern cards it 1931 * will end up being 4MiB. Note that if the value is too small, it 1932 * can end up taking longer to erase. 1933 */ 1934 if (mmc_card_sd(card) && card->ssr.au) { 1935 card->pref_erase = card->ssr.au; 1936 card->erase_shift = ffs(card->ssr.au) - 1; 1937 } else if (card->ext_csd.hc_erase_size) { 1938 card->pref_erase = card->ext_csd.hc_erase_size; 1939 } else if (card->erase_size) { 1940 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1941 if (sz < 128) 1942 card->pref_erase = 512 * 1024 / 512; 1943 else if (sz < 512) 1944 card->pref_erase = 1024 * 1024 / 512; 1945 else if (sz < 1024) 1946 card->pref_erase = 2 * 1024 * 1024 / 512; 1947 else 1948 card->pref_erase = 4 * 1024 * 1024 / 512; 1949 if (card->pref_erase < card->erase_size) 1950 card->pref_erase = card->erase_size; 1951 else { 1952 sz = card->pref_erase % card->erase_size; 1953 if (sz) 1954 card->pref_erase += card->erase_size - sz; 1955 } 1956 } else 1957 card->pref_erase = 0; 1958 } 1959 1960 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1961 unsigned int arg, unsigned int qty) 1962 { 1963 unsigned int erase_timeout; 1964 1965 if (arg == MMC_DISCARD_ARG || 1966 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1967 erase_timeout = card->ext_csd.trim_timeout; 1968 } else if (card->ext_csd.erase_group_def & 1) { 1969 /* High Capacity Erase Group Size uses HC timeouts */ 1970 if (arg == MMC_TRIM_ARG) 1971 erase_timeout = card->ext_csd.trim_timeout; 1972 else 1973 erase_timeout = card->ext_csd.hc_erase_timeout; 1974 } else { 1975 /* CSD Erase Group Size uses write timeout */ 1976 unsigned int mult = (10 << card->csd.r2w_factor); 1977 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1978 unsigned int timeout_us; 1979 1980 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1981 if (card->csd.tacc_ns < 1000000) 1982 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1983 else 1984 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1985 1986 /* 1987 * ios.clock is only a target. The real clock rate might be 1988 * less but not that much less, so fudge it by multiplying by 2. 1989 */ 1990 timeout_clks <<= 1; 1991 timeout_us += (timeout_clks * 1000) / 1992 (card->host->ios.clock / 1000); 1993 1994 erase_timeout = timeout_us / 1000; 1995 1996 /* 1997 * Theoretically, the calculation could underflow so round up 1998 * to 1ms in that case. 1999 */ 2000 if (!erase_timeout) 2001 erase_timeout = 1; 2002 } 2003 2004 /* Multiplier for secure operations */ 2005 if (arg & MMC_SECURE_ARGS) { 2006 if (arg == MMC_SECURE_ERASE_ARG) 2007 erase_timeout *= card->ext_csd.sec_erase_mult; 2008 else 2009 erase_timeout *= card->ext_csd.sec_trim_mult; 2010 } 2011 2012 erase_timeout *= qty; 2013 2014 /* 2015 * Ensure at least a 1 second timeout for SPI as per 2016 * 'mmc_set_data_timeout()' 2017 */ 2018 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2019 erase_timeout = 1000; 2020 2021 return erase_timeout; 2022 } 2023 2024 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2025 unsigned int arg, 2026 unsigned int qty) 2027 { 2028 unsigned int erase_timeout; 2029 2030 if (card->ssr.erase_timeout) { 2031 /* Erase timeout specified in SD Status Register (SSR) */ 2032 erase_timeout = card->ssr.erase_timeout * qty + 2033 card->ssr.erase_offset; 2034 } else { 2035 /* 2036 * Erase timeout not specified in SD Status Register (SSR) so 2037 * use 250ms per write block. 2038 */ 2039 erase_timeout = 250 * qty; 2040 } 2041 2042 /* Must not be less than 1 second */ 2043 if (erase_timeout < 1000) 2044 erase_timeout = 1000; 2045 2046 return erase_timeout; 2047 } 2048 2049 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2050 unsigned int arg, 2051 unsigned int qty) 2052 { 2053 if (mmc_card_sd(card)) 2054 return mmc_sd_erase_timeout(card, arg, qty); 2055 else 2056 return mmc_mmc_erase_timeout(card, arg, qty); 2057 } 2058 2059 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2060 unsigned int to, unsigned int arg) 2061 { 2062 struct mmc_command cmd = {0}; 2063 unsigned int qty = 0; 2064 unsigned long timeout; 2065 int err; 2066 2067 mmc_retune_hold(card->host); 2068 2069 /* 2070 * qty is used to calculate the erase timeout which depends on how many 2071 * erase groups (or allocation units in SD terminology) are affected. 2072 * We count erasing part of an erase group as one erase group. 2073 * For SD, the allocation units are always a power of 2. For MMC, the 2074 * erase group size is almost certainly also power of 2, but it does not 2075 * seem to insist on that in the JEDEC standard, so we fall back to 2076 * division in that case. SD may not specify an allocation unit size, 2077 * in which case the timeout is based on the number of write blocks. 2078 * 2079 * Note that the timeout for secure trim 2 will only be correct if the 2080 * number of erase groups specified is the same as the total of all 2081 * preceding secure trim 1 commands. Since the power may have been 2082 * lost since the secure trim 1 commands occurred, it is generally 2083 * impossible to calculate the secure trim 2 timeout correctly. 2084 */ 2085 if (card->erase_shift) 2086 qty += ((to >> card->erase_shift) - 2087 (from >> card->erase_shift)) + 1; 2088 else if (mmc_card_sd(card)) 2089 qty += to - from + 1; 2090 else 2091 qty += ((to / card->erase_size) - 2092 (from / card->erase_size)) + 1; 2093 2094 if (!mmc_card_blockaddr(card)) { 2095 from <<= 9; 2096 to <<= 9; 2097 } 2098 2099 if (mmc_card_sd(card)) 2100 cmd.opcode = SD_ERASE_WR_BLK_START; 2101 else 2102 cmd.opcode = MMC_ERASE_GROUP_START; 2103 cmd.arg = from; 2104 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2105 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2106 if (err) { 2107 pr_err("mmc_erase: group start error %d, " 2108 "status %#x\n", err, cmd.resp[0]); 2109 err = -EIO; 2110 goto out; 2111 } 2112 2113 memset(&cmd, 0, sizeof(struct mmc_command)); 2114 if (mmc_card_sd(card)) 2115 cmd.opcode = SD_ERASE_WR_BLK_END; 2116 else 2117 cmd.opcode = MMC_ERASE_GROUP_END; 2118 cmd.arg = to; 2119 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2120 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2121 if (err) { 2122 pr_err("mmc_erase: group end error %d, status %#x\n", 2123 err, cmd.resp[0]); 2124 err = -EIO; 2125 goto out; 2126 } 2127 2128 memset(&cmd, 0, sizeof(struct mmc_command)); 2129 cmd.opcode = MMC_ERASE; 2130 cmd.arg = arg; 2131 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2132 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 2133 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2134 if (err) { 2135 pr_err("mmc_erase: erase error %d, status %#x\n", 2136 err, cmd.resp[0]); 2137 err = -EIO; 2138 goto out; 2139 } 2140 2141 if (mmc_host_is_spi(card->host)) 2142 goto out; 2143 2144 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 2145 do { 2146 memset(&cmd, 0, sizeof(struct mmc_command)); 2147 cmd.opcode = MMC_SEND_STATUS; 2148 cmd.arg = card->rca << 16; 2149 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2150 /* Do not retry else we can't see errors */ 2151 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2152 if (err || (cmd.resp[0] & 0xFDF92000)) { 2153 pr_err("error %d requesting status %#x\n", 2154 err, cmd.resp[0]); 2155 err = -EIO; 2156 goto out; 2157 } 2158 2159 /* Timeout if the device never becomes ready for data and 2160 * never leaves the program state. 2161 */ 2162 if (time_after(jiffies, timeout)) { 2163 pr_err("%s: Card stuck in programming state! %s\n", 2164 mmc_hostname(card->host), __func__); 2165 err = -EIO; 2166 goto out; 2167 } 2168 2169 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2170 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2171 out: 2172 mmc_retune_release(card->host); 2173 return err; 2174 } 2175 2176 /** 2177 * mmc_erase - erase sectors. 2178 * @card: card to erase 2179 * @from: first sector to erase 2180 * @nr: number of sectors to erase 2181 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2182 * 2183 * Caller must claim host before calling this function. 2184 */ 2185 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2186 unsigned int arg) 2187 { 2188 unsigned int rem, to = from + nr; 2189 int err; 2190 2191 if (!(card->host->caps & MMC_CAP_ERASE) || 2192 !(card->csd.cmdclass & CCC_ERASE)) 2193 return -EOPNOTSUPP; 2194 2195 if (!card->erase_size) 2196 return -EOPNOTSUPP; 2197 2198 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2199 return -EOPNOTSUPP; 2200 2201 if ((arg & MMC_SECURE_ARGS) && 2202 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2203 return -EOPNOTSUPP; 2204 2205 if ((arg & MMC_TRIM_ARGS) && 2206 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2207 return -EOPNOTSUPP; 2208 2209 if (arg == MMC_SECURE_ERASE_ARG) { 2210 if (from % card->erase_size || nr % card->erase_size) 2211 return -EINVAL; 2212 } 2213 2214 if (arg == MMC_ERASE_ARG) { 2215 rem = from % card->erase_size; 2216 if (rem) { 2217 rem = card->erase_size - rem; 2218 from += rem; 2219 if (nr > rem) 2220 nr -= rem; 2221 else 2222 return 0; 2223 } 2224 rem = nr % card->erase_size; 2225 if (rem) 2226 nr -= rem; 2227 } 2228 2229 if (nr == 0) 2230 return 0; 2231 2232 to = from + nr; 2233 2234 if (to <= from) 2235 return -EINVAL; 2236 2237 /* 'from' and 'to' are inclusive */ 2238 to -= 1; 2239 2240 /* 2241 * Special case where only one erase-group fits in the timeout budget: 2242 * If the region crosses an erase-group boundary on this particular 2243 * case, we will be trimming more than one erase-group which, does not 2244 * fit in the timeout budget of the controller, so we need to split it 2245 * and call mmc_do_erase() twice if necessary. This special case is 2246 * identified by the card->eg_boundary flag. 2247 */ 2248 rem = card->erase_size - (from % card->erase_size); 2249 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2250 err = mmc_do_erase(card, from, from + rem - 1, arg); 2251 from += rem; 2252 if ((err) || (to <= from)) 2253 return err; 2254 } 2255 2256 return mmc_do_erase(card, from, to, arg); 2257 } 2258 EXPORT_SYMBOL(mmc_erase); 2259 2260 int mmc_can_erase(struct mmc_card *card) 2261 { 2262 if ((card->host->caps & MMC_CAP_ERASE) && 2263 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2264 return 1; 2265 return 0; 2266 } 2267 EXPORT_SYMBOL(mmc_can_erase); 2268 2269 int mmc_can_trim(struct mmc_card *card) 2270 { 2271 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2272 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2273 return 1; 2274 return 0; 2275 } 2276 EXPORT_SYMBOL(mmc_can_trim); 2277 2278 int mmc_can_discard(struct mmc_card *card) 2279 { 2280 /* 2281 * As there's no way to detect the discard support bit at v4.5 2282 * use the s/w feature support filed. 2283 */ 2284 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2285 return 1; 2286 return 0; 2287 } 2288 EXPORT_SYMBOL(mmc_can_discard); 2289 2290 int mmc_can_sanitize(struct mmc_card *card) 2291 { 2292 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2293 return 0; 2294 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2295 return 1; 2296 return 0; 2297 } 2298 EXPORT_SYMBOL(mmc_can_sanitize); 2299 2300 int mmc_can_secure_erase_trim(struct mmc_card *card) 2301 { 2302 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2303 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2304 return 1; 2305 return 0; 2306 } 2307 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2308 2309 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2310 unsigned int nr) 2311 { 2312 if (!card->erase_size) 2313 return 0; 2314 if (from % card->erase_size || nr % card->erase_size) 2315 return 0; 2316 return 1; 2317 } 2318 EXPORT_SYMBOL(mmc_erase_group_aligned); 2319 2320 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2321 unsigned int arg) 2322 { 2323 struct mmc_host *host = card->host; 2324 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2325 unsigned int last_timeout = 0; 2326 2327 if (card->erase_shift) 2328 max_qty = UINT_MAX >> card->erase_shift; 2329 else if (mmc_card_sd(card)) 2330 max_qty = UINT_MAX; 2331 else 2332 max_qty = UINT_MAX / card->erase_size; 2333 2334 /* Find the largest qty with an OK timeout */ 2335 do { 2336 y = 0; 2337 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2338 timeout = mmc_erase_timeout(card, arg, qty + x); 2339 if (timeout > host->max_busy_timeout) 2340 break; 2341 if (timeout < last_timeout) 2342 break; 2343 last_timeout = timeout; 2344 y = x; 2345 } 2346 qty += y; 2347 } while (y); 2348 2349 if (!qty) 2350 return 0; 2351 2352 /* 2353 * When specifying a sector range to trim, chances are we might cross 2354 * an erase-group boundary even if the amount of sectors is less than 2355 * one erase-group. 2356 * If we can only fit one erase-group in the controller timeout budget, 2357 * we have to care that erase-group boundaries are not crossed by a 2358 * single trim operation. We flag that special case with "eg_boundary". 2359 * In all other cases we can just decrement qty and pretend that we 2360 * always touch (qty + 1) erase-groups as a simple optimization. 2361 */ 2362 if (qty == 1) 2363 card->eg_boundary = 1; 2364 else 2365 qty--; 2366 2367 /* Convert qty to sectors */ 2368 if (card->erase_shift) 2369 max_discard = qty << card->erase_shift; 2370 else if (mmc_card_sd(card)) 2371 max_discard = qty + 1; 2372 else 2373 max_discard = qty * card->erase_size; 2374 2375 return max_discard; 2376 } 2377 2378 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2379 { 2380 struct mmc_host *host = card->host; 2381 unsigned int max_discard, max_trim; 2382 2383 if (!host->max_busy_timeout) 2384 return UINT_MAX; 2385 2386 /* 2387 * Without erase_group_def set, MMC erase timeout depends on clock 2388 * frequence which can change. In that case, the best choice is 2389 * just the preferred erase size. 2390 */ 2391 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2392 return card->pref_erase; 2393 2394 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2395 if (mmc_can_trim(card)) { 2396 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2397 if (max_trim < max_discard) 2398 max_discard = max_trim; 2399 } else if (max_discard < card->erase_size) { 2400 max_discard = 0; 2401 } 2402 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2403 mmc_hostname(host), max_discard, host->max_busy_timeout); 2404 return max_discard; 2405 } 2406 EXPORT_SYMBOL(mmc_calc_max_discard); 2407 2408 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2409 { 2410 struct mmc_command cmd = {0}; 2411 2412 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2413 return 0; 2414 2415 cmd.opcode = MMC_SET_BLOCKLEN; 2416 cmd.arg = blocklen; 2417 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2418 return mmc_wait_for_cmd(card->host, &cmd, 5); 2419 } 2420 EXPORT_SYMBOL(mmc_set_blocklen); 2421 2422 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2423 bool is_rel_write) 2424 { 2425 struct mmc_command cmd = {0}; 2426 2427 cmd.opcode = MMC_SET_BLOCK_COUNT; 2428 cmd.arg = blockcount & 0x0000FFFF; 2429 if (is_rel_write) 2430 cmd.arg |= 1 << 31; 2431 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2432 return mmc_wait_for_cmd(card->host, &cmd, 5); 2433 } 2434 EXPORT_SYMBOL(mmc_set_blockcount); 2435 2436 static void mmc_hw_reset_for_init(struct mmc_host *host) 2437 { 2438 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2439 return; 2440 host->ops->hw_reset(host); 2441 } 2442 2443 int mmc_hw_reset(struct mmc_host *host) 2444 { 2445 int ret; 2446 2447 if (!host->card) 2448 return -EINVAL; 2449 2450 mmc_bus_get(host); 2451 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2452 mmc_bus_put(host); 2453 return -EOPNOTSUPP; 2454 } 2455 2456 ret = host->bus_ops->reset(host); 2457 mmc_bus_put(host); 2458 2459 if (ret) 2460 pr_warn("%s: tried to reset card, got error %d\n", 2461 mmc_hostname(host), ret); 2462 2463 return ret; 2464 } 2465 EXPORT_SYMBOL(mmc_hw_reset); 2466 2467 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2468 { 2469 host->f_init = freq; 2470 2471 #ifdef CONFIG_MMC_DEBUG 2472 pr_info("%s: %s: trying to init card at %u Hz\n", 2473 mmc_hostname(host), __func__, host->f_init); 2474 #endif 2475 mmc_power_up(host, host->ocr_avail); 2476 2477 /* 2478 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2479 * do a hardware reset if possible. 2480 */ 2481 mmc_hw_reset_for_init(host); 2482 2483 /* 2484 * sdio_reset sends CMD52 to reset card. Since we do not know 2485 * if the card is being re-initialized, just send it. CMD52 2486 * should be ignored by SD/eMMC cards. 2487 * Skip it if we already know that we do not support SDIO commands 2488 */ 2489 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2490 sdio_reset(host); 2491 2492 mmc_go_idle(host); 2493 2494 mmc_send_if_cond(host, host->ocr_avail); 2495 2496 /* Order's important: probe SDIO, then SD, then MMC */ 2497 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2498 if (!mmc_attach_sdio(host)) 2499 return 0; 2500 2501 if (!mmc_attach_sd(host)) 2502 return 0; 2503 if (!mmc_attach_mmc(host)) 2504 return 0; 2505 2506 mmc_power_off(host); 2507 return -EIO; 2508 } 2509 2510 int _mmc_detect_card_removed(struct mmc_host *host) 2511 { 2512 int ret; 2513 2514 if (!host->card || mmc_card_removed(host->card)) 2515 return 1; 2516 2517 ret = host->bus_ops->alive(host); 2518 2519 /* 2520 * Card detect status and alive check may be out of sync if card is 2521 * removed slowly, when card detect switch changes while card/slot 2522 * pads are still contacted in hardware (refer to "SD Card Mechanical 2523 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2524 * detect work 200ms later for this case. 2525 */ 2526 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2527 mmc_detect_change(host, msecs_to_jiffies(200)); 2528 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2529 } 2530 2531 if (ret) { 2532 mmc_card_set_removed(host->card); 2533 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2534 } 2535 2536 return ret; 2537 } 2538 2539 int mmc_detect_card_removed(struct mmc_host *host) 2540 { 2541 struct mmc_card *card = host->card; 2542 int ret; 2543 2544 WARN_ON(!host->claimed); 2545 2546 if (!card) 2547 return 1; 2548 2549 if (!mmc_card_is_removable(host)) 2550 return 0; 2551 2552 ret = mmc_card_removed(card); 2553 /* 2554 * The card will be considered unchanged unless we have been asked to 2555 * detect a change or host requires polling to provide card detection. 2556 */ 2557 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2558 return ret; 2559 2560 host->detect_change = 0; 2561 if (!ret) { 2562 ret = _mmc_detect_card_removed(host); 2563 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2564 /* 2565 * Schedule a detect work as soon as possible to let a 2566 * rescan handle the card removal. 2567 */ 2568 cancel_delayed_work(&host->detect); 2569 _mmc_detect_change(host, 0, false); 2570 } 2571 } 2572 2573 return ret; 2574 } 2575 EXPORT_SYMBOL(mmc_detect_card_removed); 2576 2577 void mmc_rescan(struct work_struct *work) 2578 { 2579 struct mmc_host *host = 2580 container_of(work, struct mmc_host, detect.work); 2581 int i; 2582 2583 if (host->rescan_disable) 2584 return; 2585 2586 /* If there is a non-removable card registered, only scan once */ 2587 if (!mmc_card_is_removable(host) && host->rescan_entered) 2588 return; 2589 host->rescan_entered = 1; 2590 2591 if (host->trigger_card_event && host->ops->card_event) { 2592 mmc_claim_host(host); 2593 host->ops->card_event(host); 2594 mmc_release_host(host); 2595 host->trigger_card_event = false; 2596 } 2597 2598 mmc_bus_get(host); 2599 2600 /* 2601 * if there is a _removable_ card registered, check whether it is 2602 * still present 2603 */ 2604 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2605 host->bus_ops->detect(host); 2606 2607 host->detect_change = 0; 2608 2609 /* 2610 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2611 * the card is no longer present. 2612 */ 2613 mmc_bus_put(host); 2614 mmc_bus_get(host); 2615 2616 /* if there still is a card present, stop here */ 2617 if (host->bus_ops != NULL) { 2618 mmc_bus_put(host); 2619 goto out; 2620 } 2621 2622 /* 2623 * Only we can add a new handler, so it's safe to 2624 * release the lock here. 2625 */ 2626 mmc_bus_put(host); 2627 2628 mmc_claim_host(host); 2629 if (mmc_card_is_removable(host) && host->ops->get_cd && 2630 host->ops->get_cd(host) == 0) { 2631 mmc_power_off(host); 2632 mmc_release_host(host); 2633 goto out; 2634 } 2635 2636 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2637 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2638 break; 2639 if (freqs[i] <= host->f_min) 2640 break; 2641 } 2642 mmc_release_host(host); 2643 2644 out: 2645 if (host->caps & MMC_CAP_NEEDS_POLL) 2646 mmc_schedule_delayed_work(&host->detect, HZ); 2647 } 2648 2649 void mmc_start_host(struct mmc_host *host) 2650 { 2651 host->f_init = max(freqs[0], host->f_min); 2652 host->rescan_disable = 0; 2653 host->ios.power_mode = MMC_POWER_UNDEFINED; 2654 2655 mmc_claim_host(host); 2656 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2657 mmc_power_off(host); 2658 else 2659 mmc_power_up(host, host->ocr_avail); 2660 mmc_release_host(host); 2661 2662 mmc_gpiod_request_cd_irq(host); 2663 _mmc_detect_change(host, 0, false); 2664 } 2665 2666 void mmc_stop_host(struct mmc_host *host) 2667 { 2668 #ifdef CONFIG_MMC_DEBUG 2669 unsigned long flags; 2670 spin_lock_irqsave(&host->lock, flags); 2671 host->removed = 1; 2672 spin_unlock_irqrestore(&host->lock, flags); 2673 #endif 2674 if (host->slot.cd_irq >= 0) 2675 disable_irq(host->slot.cd_irq); 2676 2677 host->rescan_disable = 1; 2678 cancel_delayed_work_sync(&host->detect); 2679 2680 /* clear pm flags now and let card drivers set them as needed */ 2681 host->pm_flags = 0; 2682 2683 mmc_bus_get(host); 2684 if (host->bus_ops && !host->bus_dead) { 2685 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2686 host->bus_ops->remove(host); 2687 mmc_claim_host(host); 2688 mmc_detach_bus(host); 2689 mmc_power_off(host); 2690 mmc_release_host(host); 2691 mmc_bus_put(host); 2692 return; 2693 } 2694 mmc_bus_put(host); 2695 2696 BUG_ON(host->card); 2697 2698 mmc_claim_host(host); 2699 mmc_power_off(host); 2700 mmc_release_host(host); 2701 } 2702 2703 int mmc_power_save_host(struct mmc_host *host) 2704 { 2705 int ret = 0; 2706 2707 #ifdef CONFIG_MMC_DEBUG 2708 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2709 #endif 2710 2711 mmc_bus_get(host); 2712 2713 if (!host->bus_ops || host->bus_dead) { 2714 mmc_bus_put(host); 2715 return -EINVAL; 2716 } 2717 2718 if (host->bus_ops->power_save) 2719 ret = host->bus_ops->power_save(host); 2720 2721 mmc_bus_put(host); 2722 2723 mmc_power_off(host); 2724 2725 return ret; 2726 } 2727 EXPORT_SYMBOL(mmc_power_save_host); 2728 2729 int mmc_power_restore_host(struct mmc_host *host) 2730 { 2731 int ret; 2732 2733 #ifdef CONFIG_MMC_DEBUG 2734 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2735 #endif 2736 2737 mmc_bus_get(host); 2738 2739 if (!host->bus_ops || host->bus_dead) { 2740 mmc_bus_put(host); 2741 return -EINVAL; 2742 } 2743 2744 mmc_power_up(host, host->card->ocr); 2745 ret = host->bus_ops->power_restore(host); 2746 2747 mmc_bus_put(host); 2748 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(mmc_power_restore_host); 2752 2753 /* 2754 * Flush the cache to the non-volatile storage. 2755 */ 2756 int mmc_flush_cache(struct mmc_card *card) 2757 { 2758 int err = 0; 2759 2760 if (mmc_card_mmc(card) && 2761 (card->ext_csd.cache_size > 0) && 2762 (card->ext_csd.cache_ctrl & 1)) { 2763 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2764 EXT_CSD_FLUSH_CACHE, 1, 0); 2765 if (err) 2766 pr_err("%s: cache flush error %d\n", 2767 mmc_hostname(card->host), err); 2768 } 2769 2770 return err; 2771 } 2772 EXPORT_SYMBOL(mmc_flush_cache); 2773 2774 #ifdef CONFIG_PM_SLEEP 2775 /* Do the card removal on suspend if card is assumed removeable 2776 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2777 to sync the card. 2778 */ 2779 static int mmc_pm_notify(struct notifier_block *notify_block, 2780 unsigned long mode, void *unused) 2781 { 2782 struct mmc_host *host = container_of( 2783 notify_block, struct mmc_host, pm_notify); 2784 unsigned long flags; 2785 int err = 0; 2786 2787 switch (mode) { 2788 case PM_HIBERNATION_PREPARE: 2789 case PM_SUSPEND_PREPARE: 2790 case PM_RESTORE_PREPARE: 2791 spin_lock_irqsave(&host->lock, flags); 2792 host->rescan_disable = 1; 2793 spin_unlock_irqrestore(&host->lock, flags); 2794 cancel_delayed_work_sync(&host->detect); 2795 2796 if (!host->bus_ops) 2797 break; 2798 2799 /* Validate prerequisites for suspend */ 2800 if (host->bus_ops->pre_suspend) 2801 err = host->bus_ops->pre_suspend(host); 2802 if (!err) 2803 break; 2804 2805 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2806 host->bus_ops->remove(host); 2807 mmc_claim_host(host); 2808 mmc_detach_bus(host); 2809 mmc_power_off(host); 2810 mmc_release_host(host); 2811 host->pm_flags = 0; 2812 break; 2813 2814 case PM_POST_SUSPEND: 2815 case PM_POST_HIBERNATION: 2816 case PM_POST_RESTORE: 2817 2818 spin_lock_irqsave(&host->lock, flags); 2819 host->rescan_disable = 0; 2820 spin_unlock_irqrestore(&host->lock, flags); 2821 _mmc_detect_change(host, 0, false); 2822 2823 } 2824 2825 return 0; 2826 } 2827 2828 void mmc_register_pm_notifier(struct mmc_host *host) 2829 { 2830 host->pm_notify.notifier_call = mmc_pm_notify; 2831 register_pm_notifier(&host->pm_notify); 2832 } 2833 2834 void mmc_unregister_pm_notifier(struct mmc_host *host) 2835 { 2836 unregister_pm_notifier(&host->pm_notify); 2837 } 2838 #endif 2839 2840 /** 2841 * mmc_init_context_info() - init synchronization context 2842 * @host: mmc host 2843 * 2844 * Init struct context_info needed to implement asynchronous 2845 * request mechanism, used by mmc core, host driver and mmc requests 2846 * supplier. 2847 */ 2848 void mmc_init_context_info(struct mmc_host *host) 2849 { 2850 spin_lock_init(&host->context_info.lock); 2851 host->context_info.is_new_req = false; 2852 host->context_info.is_done_rcv = false; 2853 host->context_info.is_waiting_last_req = false; 2854 init_waitqueue_head(&host->context_info.wait); 2855 } 2856 2857 static int __init mmc_init(void) 2858 { 2859 int ret; 2860 2861 ret = mmc_register_bus(); 2862 if (ret) 2863 return ret; 2864 2865 ret = mmc_register_host_class(); 2866 if (ret) 2867 goto unregister_bus; 2868 2869 ret = sdio_register_bus(); 2870 if (ret) 2871 goto unregister_host_class; 2872 2873 return 0; 2874 2875 unregister_host_class: 2876 mmc_unregister_host_class(); 2877 unregister_bus: 2878 mmc_unregister_bus(); 2879 return ret; 2880 } 2881 2882 static void __exit mmc_exit(void) 2883 { 2884 sdio_unregister_bus(); 2885 mmc_unregister_host_class(); 2886 mmc_unregister_bus(); 2887 } 2888 2889 subsys_initcall(mmc_init); 2890 module_exit(mmc_exit); 2891 2892 MODULE_LICENSE("GPL"); 2893