xref: /openbmc/linux/drivers/mmc/core/core.c (revision 6774def6)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 
44 #include "mmc_ops.h"
45 #include "sd_ops.h"
46 #include "sdio_ops.h"
47 
48 /* If the device is not responding */
49 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
50 
51 /*
52  * Background operations can take a long time, depending on the housekeeping
53  * operations the card has to perform.
54  */
55 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
56 
57 static struct workqueue_struct *workqueue;
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 
60 /*
61  * Enabling software CRCs on the data blocks can be a significant (30%)
62  * performance cost, and for other reasons may not always be desired.
63  * So we allow it it to be disabled.
64  */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 #ifdef CONFIG_FAIL_MMC_REQUEST
86 
87 /*
88  * Internal function. Inject random data errors.
89  * If mmc_data is NULL no errors are injected.
90  */
91 static void mmc_should_fail_request(struct mmc_host *host,
92 				    struct mmc_request *mrq)
93 {
94 	struct mmc_command *cmd = mrq->cmd;
95 	struct mmc_data *data = mrq->data;
96 	static const int data_errors[] = {
97 		-ETIMEDOUT,
98 		-EILSEQ,
99 		-EIO,
100 	};
101 
102 	if (!data)
103 		return;
104 
105 	if (cmd->error || data->error ||
106 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 		return;
108 
109 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111 }
112 
113 #else /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_should_fail_request(struct mmc_host *host,
116 					   struct mmc_request *mrq)
117 {
118 }
119 
120 #endif /* CONFIG_FAIL_MMC_REQUEST */
121 
122 /**
123  *	mmc_request_done - finish processing an MMC request
124  *	@host: MMC host which completed request
125  *	@mrq: MMC request which request
126  *
127  *	MMC drivers should call this function when they have completed
128  *	their processing of a request.
129  */
130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 	struct mmc_command *cmd = mrq->cmd;
133 	int err = cmd->error;
134 
135 	if (err && cmd->retries && mmc_host_is_spi(host)) {
136 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 			cmd->retries = 0;
138 	}
139 
140 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 		/*
142 		 * Request starter must handle retries - see
143 		 * mmc_wait_for_req_done().
144 		 */
145 		if (mrq->done)
146 			mrq->done(mrq);
147 	} else {
148 		mmc_should_fail_request(host, mrq);
149 
150 		led_trigger_event(host->led, LED_OFF);
151 
152 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 			mmc_hostname(host), cmd->opcode, err,
154 			cmd->resp[0], cmd->resp[1],
155 			cmd->resp[2], cmd->resp[3]);
156 
157 		if (mrq->data) {
158 			pr_debug("%s:     %d bytes transferred: %d\n",
159 				mmc_hostname(host),
160 				mrq->data->bytes_xfered, mrq->data->error);
161 		}
162 
163 		if (mrq->stop) {
164 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
165 				mmc_hostname(host), mrq->stop->opcode,
166 				mrq->stop->error,
167 				mrq->stop->resp[0], mrq->stop->resp[1],
168 				mrq->stop->resp[2], mrq->stop->resp[3]);
169 		}
170 
171 		if (mrq->done)
172 			mrq->done(mrq);
173 
174 		mmc_host_clk_release(host);
175 	}
176 }
177 
178 EXPORT_SYMBOL(mmc_request_done);
179 
180 static void
181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182 {
183 #ifdef CONFIG_MMC_DEBUG
184 	unsigned int i, sz;
185 	struct scatterlist *sg;
186 #endif
187 
188 	if (mrq->sbc) {
189 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 			 mmc_hostname(host), mrq->sbc->opcode,
191 			 mrq->sbc->arg, mrq->sbc->flags);
192 	}
193 
194 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 		 mmc_hostname(host), mrq->cmd->opcode,
196 		 mrq->cmd->arg, mrq->cmd->flags);
197 
198 	if (mrq->data) {
199 		pr_debug("%s:     blksz %d blocks %d flags %08x "
200 			"tsac %d ms nsac %d\n",
201 			mmc_hostname(host), mrq->data->blksz,
202 			mrq->data->blocks, mrq->data->flags,
203 			mrq->data->timeout_ns / 1000000,
204 			mrq->data->timeout_clks);
205 	}
206 
207 	if (mrq->stop) {
208 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
209 			 mmc_hostname(host), mrq->stop->opcode,
210 			 mrq->stop->arg, mrq->stop->flags);
211 	}
212 
213 	WARN_ON(!host->claimed);
214 
215 	mrq->cmd->error = 0;
216 	mrq->cmd->mrq = mrq;
217 	if (mrq->data) {
218 		BUG_ON(mrq->data->blksz > host->max_blk_size);
219 		BUG_ON(mrq->data->blocks > host->max_blk_count);
220 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 			host->max_req_size);
222 
223 #ifdef CONFIG_MMC_DEBUG
224 		sz = 0;
225 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 			sz += sg->length;
227 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228 #endif
229 
230 		mrq->cmd->data = mrq->data;
231 		mrq->data->error = 0;
232 		mrq->data->mrq = mrq;
233 		if (mrq->stop) {
234 			mrq->data->stop = mrq->stop;
235 			mrq->stop->error = 0;
236 			mrq->stop->mrq = mrq;
237 		}
238 	}
239 	mmc_host_clk_hold(host);
240 	led_trigger_event(host->led, LED_FULL);
241 	host->ops->request(host, mrq);
242 }
243 
244 /**
245  *	mmc_start_bkops - start BKOPS for supported cards
246  *	@card: MMC card to start BKOPS
247  *	@form_exception: A flag to indicate if this function was
248  *			 called due to an exception raised by the card
249  *
250  *	Start background operations whenever requested.
251  *	When the urgent BKOPS bit is set in a R1 command response
252  *	then background operations should be started immediately.
253 */
254 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255 {
256 	int err;
257 	int timeout;
258 	bool use_busy_signal;
259 
260 	BUG_ON(!card);
261 
262 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 		return;
264 
265 	err = mmc_read_bkops_status(card);
266 	if (err) {
267 		pr_err("%s: Failed to read bkops status: %d\n",
268 		       mmc_hostname(card->host), err);
269 		return;
270 	}
271 
272 	if (!card->ext_csd.raw_bkops_status)
273 		return;
274 
275 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 	    from_exception)
277 		return;
278 
279 	mmc_claim_host(card->host);
280 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 		timeout = MMC_BKOPS_MAX_TIMEOUT;
282 		use_busy_signal = true;
283 	} else {
284 		timeout = 0;
285 		use_busy_signal = false;
286 	}
287 
288 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 			EXT_CSD_BKOPS_START, 1, timeout,
290 			use_busy_signal, true, false);
291 	if (err) {
292 		pr_warn("%s: Error %d starting bkops\n",
293 			mmc_hostname(card->host), err);
294 		goto out;
295 	}
296 
297 	/*
298 	 * For urgent bkops status (LEVEL_2 and more)
299 	 * bkops executed synchronously, otherwise
300 	 * the operation is in progress
301 	 */
302 	if (!use_busy_signal)
303 		mmc_card_set_doing_bkops(card);
304 out:
305 	mmc_release_host(card->host);
306 }
307 EXPORT_SYMBOL(mmc_start_bkops);
308 
309 /*
310  * mmc_wait_data_done() - done callback for data request
311  * @mrq: done data request
312  *
313  * Wakes up mmc context, passed as a callback to host controller driver
314  */
315 static void mmc_wait_data_done(struct mmc_request *mrq)
316 {
317 	mrq->host->context_info.is_done_rcv = true;
318 	wake_up_interruptible(&mrq->host->context_info.wait);
319 }
320 
321 static void mmc_wait_done(struct mmc_request *mrq)
322 {
323 	complete(&mrq->completion);
324 }
325 
326 /*
327  *__mmc_start_data_req() - starts data request
328  * @host: MMC host to start the request
329  * @mrq: data request to start
330  *
331  * Sets the done callback to be called when request is completed by the card.
332  * Starts data mmc request execution
333  */
334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	mrq->done = mmc_wait_data_done;
337 	mrq->host = host;
338 	if (mmc_card_removed(host->card)) {
339 		mrq->cmd->error = -ENOMEDIUM;
340 		mmc_wait_data_done(mrq);
341 		return -ENOMEDIUM;
342 	}
343 	mmc_start_request(host, mrq);
344 
345 	return 0;
346 }
347 
348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349 {
350 	init_completion(&mrq->completion);
351 	mrq->done = mmc_wait_done;
352 	if (mmc_card_removed(host->card)) {
353 		mrq->cmd->error = -ENOMEDIUM;
354 		complete(&mrq->completion);
355 		return -ENOMEDIUM;
356 	}
357 	mmc_start_request(host, mrq);
358 	return 0;
359 }
360 
361 /*
362  * mmc_wait_for_data_req_done() - wait for request completed
363  * @host: MMC host to prepare the command.
364  * @mrq: MMC request to wait for
365  *
366  * Blocks MMC context till host controller will ack end of data request
367  * execution or new request notification arrives from the block layer.
368  * Handles command retries.
369  *
370  * Returns enum mmc_blk_status after checking errors.
371  */
372 static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 				      struct mmc_request *mrq,
374 				      struct mmc_async_req *next_req)
375 {
376 	struct mmc_command *cmd;
377 	struct mmc_context_info *context_info = &host->context_info;
378 	int err;
379 	unsigned long flags;
380 
381 	while (1) {
382 		wait_event_interruptible(context_info->wait,
383 				(context_info->is_done_rcv ||
384 				 context_info->is_new_req));
385 		spin_lock_irqsave(&context_info->lock, flags);
386 		context_info->is_waiting_last_req = false;
387 		spin_unlock_irqrestore(&context_info->lock, flags);
388 		if (context_info->is_done_rcv) {
389 			context_info->is_done_rcv = false;
390 			context_info->is_new_req = false;
391 			cmd = mrq->cmd;
392 
393 			if (!cmd->error || !cmd->retries ||
394 			    mmc_card_removed(host->card)) {
395 				err = host->areq->err_check(host->card,
396 							    host->areq);
397 				break; /* return err */
398 			} else {
399 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 					mmc_hostname(host),
401 					cmd->opcode, cmd->error);
402 				cmd->retries--;
403 				cmd->error = 0;
404 				host->ops->request(host, mrq);
405 				continue; /* wait for done/new event again */
406 			}
407 		} else if (context_info->is_new_req) {
408 			context_info->is_new_req = false;
409 			if (!next_req) {
410 				err = MMC_BLK_NEW_REQUEST;
411 				break; /* return err */
412 			}
413 		}
414 	}
415 	return err;
416 }
417 
418 static void mmc_wait_for_req_done(struct mmc_host *host,
419 				  struct mmc_request *mrq)
420 {
421 	struct mmc_command *cmd;
422 
423 	while (1) {
424 		wait_for_completion(&mrq->completion);
425 
426 		cmd = mrq->cmd;
427 
428 		/*
429 		 * If host has timed out waiting for the sanitize
430 		 * to complete, card might be still in programming state
431 		 * so let's try to bring the card out of programming
432 		 * state.
433 		 */
434 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 			if (!mmc_interrupt_hpi(host->card)) {
436 				pr_warn("%s: %s: Interrupted sanitize\n",
437 					mmc_hostname(host), __func__);
438 				cmd->error = 0;
439 				break;
440 			} else {
441 				pr_err("%s: %s: Failed to interrupt sanitize\n",
442 				       mmc_hostname(host), __func__);
443 			}
444 		}
445 		if (!cmd->error || !cmd->retries ||
446 		    mmc_card_removed(host->card))
447 			break;
448 
449 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 			 mmc_hostname(host), cmd->opcode, cmd->error);
451 		cmd->retries--;
452 		cmd->error = 0;
453 		host->ops->request(host, mrq);
454 	}
455 }
456 
457 /**
458  *	mmc_pre_req - Prepare for a new request
459  *	@host: MMC host to prepare command
460  *	@mrq: MMC request to prepare for
461  *	@is_first_req: true if there is no previous started request
462  *                     that may run in parellel to this call, otherwise false
463  *
464  *	mmc_pre_req() is called in prior to mmc_start_req() to let
465  *	host prepare for the new request. Preparation of a request may be
466  *	performed while another request is running on the host.
467  */
468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 		 bool is_first_req)
470 {
471 	if (host->ops->pre_req) {
472 		mmc_host_clk_hold(host);
473 		host->ops->pre_req(host, mrq, is_first_req);
474 		mmc_host_clk_release(host);
475 	}
476 }
477 
478 /**
479  *	mmc_post_req - Post process a completed request
480  *	@host: MMC host to post process command
481  *	@mrq: MMC request to post process for
482  *	@err: Error, if non zero, clean up any resources made in pre_req
483  *
484  *	Let the host post process a completed request. Post processing of
485  *	a request may be performed while another reuqest is running.
486  */
487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 			 int err)
489 {
490 	if (host->ops->post_req) {
491 		mmc_host_clk_hold(host);
492 		host->ops->post_req(host, mrq, err);
493 		mmc_host_clk_release(host);
494 	}
495 }
496 
497 /**
498  *	mmc_start_req - start a non-blocking request
499  *	@host: MMC host to start command
500  *	@areq: async request to start
501  *	@error: out parameter returns 0 for success, otherwise non zero
502  *
503  *	Start a new MMC custom command request for a host.
504  *	If there is on ongoing async request wait for completion
505  *	of that request and start the new one and return.
506  *	Does not wait for the new request to complete.
507  *
508  *      Returns the completed request, NULL in case of none completed.
509  *	Wait for the an ongoing request (previoulsy started) to complete and
510  *	return the completed request. If there is no ongoing request, NULL
511  *	is returned without waiting. NULL is not an error condition.
512  */
513 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 				    struct mmc_async_req *areq, int *error)
515 {
516 	int err = 0;
517 	int start_err = 0;
518 	struct mmc_async_req *data = host->areq;
519 
520 	/* Prepare a new request */
521 	if (areq)
522 		mmc_pre_req(host, areq->mrq, !host->areq);
523 
524 	if (host->areq) {
525 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
526 		if (err == MMC_BLK_NEW_REQUEST) {
527 			if (error)
528 				*error = err;
529 			/*
530 			 * The previous request was not completed,
531 			 * nothing to return
532 			 */
533 			return NULL;
534 		}
535 		/*
536 		 * Check BKOPS urgency for each R1 response
537 		 */
538 		if (host->card && mmc_card_mmc(host->card) &&
539 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 			mmc_start_bkops(host->card, true);
543 	}
544 
545 	if (!err && areq)
546 		start_err = __mmc_start_data_req(host, areq->mrq);
547 
548 	if (host->areq)
549 		mmc_post_req(host, host->areq->mrq, 0);
550 
551 	 /* Cancel a prepared request if it was not started. */
552 	if ((err || start_err) && areq)
553 		mmc_post_req(host, areq->mrq, -EINVAL);
554 
555 	if (err)
556 		host->areq = NULL;
557 	else
558 		host->areq = areq;
559 
560 	if (error)
561 		*error = err;
562 	return data;
563 }
564 EXPORT_SYMBOL(mmc_start_req);
565 
566 /**
567  *	mmc_wait_for_req - start a request and wait for completion
568  *	@host: MMC host to start command
569  *	@mrq: MMC request to start
570  *
571  *	Start a new MMC custom command request for a host, and wait
572  *	for the command to complete. Does not attempt to parse the
573  *	response.
574  */
575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576 {
577 	__mmc_start_req(host, mrq);
578 	mmc_wait_for_req_done(host, mrq);
579 }
580 EXPORT_SYMBOL(mmc_wait_for_req);
581 
582 /**
583  *	mmc_interrupt_hpi - Issue for High priority Interrupt
584  *	@card: the MMC card associated with the HPI transfer
585  *
586  *	Issued High Priority Interrupt, and check for card status
587  *	until out-of prg-state.
588  */
589 int mmc_interrupt_hpi(struct mmc_card *card)
590 {
591 	int err;
592 	u32 status;
593 	unsigned long prg_wait;
594 
595 	BUG_ON(!card);
596 
597 	if (!card->ext_csd.hpi_en) {
598 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 		return 1;
600 	}
601 
602 	mmc_claim_host(card->host);
603 	err = mmc_send_status(card, &status);
604 	if (err) {
605 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 		goto out;
607 	}
608 
609 	switch (R1_CURRENT_STATE(status)) {
610 	case R1_STATE_IDLE:
611 	case R1_STATE_READY:
612 	case R1_STATE_STBY:
613 	case R1_STATE_TRAN:
614 		/*
615 		 * In idle and transfer states, HPI is not needed and the caller
616 		 * can issue the next intended command immediately
617 		 */
618 		goto out;
619 	case R1_STATE_PRG:
620 		break;
621 	default:
622 		/* In all other states, it's illegal to issue HPI */
623 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 		err = -EINVAL;
626 		goto out;
627 	}
628 
629 	err = mmc_send_hpi_cmd(card, &status);
630 	if (err)
631 		goto out;
632 
633 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 	do {
635 		err = mmc_send_status(card, &status);
636 
637 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 			break;
639 		if (time_after(jiffies, prg_wait))
640 			err = -ETIMEDOUT;
641 	} while (!err);
642 
643 out:
644 	mmc_release_host(card->host);
645 	return err;
646 }
647 EXPORT_SYMBOL(mmc_interrupt_hpi);
648 
649 /**
650  *	mmc_wait_for_cmd - start a command and wait for completion
651  *	@host: MMC host to start command
652  *	@cmd: MMC command to start
653  *	@retries: maximum number of retries
654  *
655  *	Start a new MMC command for a host, and wait for the command
656  *	to complete.  Return any error that occurred while the command
657  *	was executing.  Do not attempt to parse the response.
658  */
659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660 {
661 	struct mmc_request mrq = {NULL};
662 
663 	WARN_ON(!host->claimed);
664 
665 	memset(cmd->resp, 0, sizeof(cmd->resp));
666 	cmd->retries = retries;
667 
668 	mrq.cmd = cmd;
669 	cmd->data = NULL;
670 
671 	mmc_wait_for_req(host, &mrq);
672 
673 	return cmd->error;
674 }
675 
676 EXPORT_SYMBOL(mmc_wait_for_cmd);
677 
678 /**
679  *	mmc_stop_bkops - stop ongoing BKOPS
680  *	@card: MMC card to check BKOPS
681  *
682  *	Send HPI command to stop ongoing background operations to
683  *	allow rapid servicing of foreground operations, e.g. read/
684  *	writes. Wait until the card comes out of the programming state
685  *	to avoid errors in servicing read/write requests.
686  */
687 int mmc_stop_bkops(struct mmc_card *card)
688 {
689 	int err = 0;
690 
691 	BUG_ON(!card);
692 	err = mmc_interrupt_hpi(card);
693 
694 	/*
695 	 * If err is EINVAL, we can't issue an HPI.
696 	 * It should complete the BKOPS.
697 	 */
698 	if (!err || (err == -EINVAL)) {
699 		mmc_card_clr_doing_bkops(card);
700 		err = 0;
701 	}
702 
703 	return err;
704 }
705 EXPORT_SYMBOL(mmc_stop_bkops);
706 
707 int mmc_read_bkops_status(struct mmc_card *card)
708 {
709 	int err;
710 	u8 *ext_csd;
711 
712 	/*
713 	 * In future work, we should consider storing the entire ext_csd.
714 	 */
715 	ext_csd = kmalloc(512, GFP_KERNEL);
716 	if (!ext_csd) {
717 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 		       mmc_hostname(card->host));
719 		return -ENOMEM;
720 	}
721 
722 	mmc_claim_host(card->host);
723 	err = mmc_send_ext_csd(card, ext_csd);
724 	mmc_release_host(card->host);
725 	if (err)
726 		goto out;
727 
728 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730 out:
731 	kfree(ext_csd);
732 	return err;
733 }
734 EXPORT_SYMBOL(mmc_read_bkops_status);
735 
736 /**
737  *	mmc_set_data_timeout - set the timeout for a data command
738  *	@data: data phase for command
739  *	@card: the MMC card associated with the data transfer
740  *
741  *	Computes the data timeout parameters according to the
742  *	correct algorithm given the card type.
743  */
744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745 {
746 	unsigned int mult;
747 
748 	/*
749 	 * SDIO cards only define an upper 1 s limit on access.
750 	 */
751 	if (mmc_card_sdio(card)) {
752 		data->timeout_ns = 1000000000;
753 		data->timeout_clks = 0;
754 		return;
755 	}
756 
757 	/*
758 	 * SD cards use a 100 multiplier rather than 10
759 	 */
760 	mult = mmc_card_sd(card) ? 100 : 10;
761 
762 	/*
763 	 * Scale up the multiplier (and therefore the timeout) by
764 	 * the r2w factor for writes.
765 	 */
766 	if (data->flags & MMC_DATA_WRITE)
767 		mult <<= card->csd.r2w_factor;
768 
769 	data->timeout_ns = card->csd.tacc_ns * mult;
770 	data->timeout_clks = card->csd.tacc_clks * mult;
771 
772 	/*
773 	 * SD cards also have an upper limit on the timeout.
774 	 */
775 	if (mmc_card_sd(card)) {
776 		unsigned int timeout_us, limit_us;
777 
778 		timeout_us = data->timeout_ns / 1000;
779 		if (mmc_host_clk_rate(card->host))
780 			timeout_us += data->timeout_clks * 1000 /
781 				(mmc_host_clk_rate(card->host) / 1000);
782 
783 		if (data->flags & MMC_DATA_WRITE)
784 			/*
785 			 * The MMC spec "It is strongly recommended
786 			 * for hosts to implement more than 500ms
787 			 * timeout value even if the card indicates
788 			 * the 250ms maximum busy length."  Even the
789 			 * previous value of 300ms is known to be
790 			 * insufficient for some cards.
791 			 */
792 			limit_us = 3000000;
793 		else
794 			limit_us = 100000;
795 
796 		/*
797 		 * SDHC cards always use these fixed values.
798 		 */
799 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 			data->timeout_ns = limit_us * 1000;
801 			data->timeout_clks = 0;
802 		}
803 
804 		/* assign limit value if invalid */
805 		if (timeout_us == 0)
806 			data->timeout_ns = limit_us * 1000;
807 	}
808 
809 	/*
810 	 * Some cards require longer data read timeout than indicated in CSD.
811 	 * Address this by setting the read timeout to a "reasonably high"
812 	 * value. For the cards tested, 300ms has proven enough. If necessary,
813 	 * this value can be increased if other problematic cards require this.
814 	 */
815 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
816 		data->timeout_ns = 300000000;
817 		data->timeout_clks = 0;
818 	}
819 
820 	/*
821 	 * Some cards need very high timeouts if driven in SPI mode.
822 	 * The worst observed timeout was 900ms after writing a
823 	 * continuous stream of data until the internal logic
824 	 * overflowed.
825 	 */
826 	if (mmc_host_is_spi(card->host)) {
827 		if (data->flags & MMC_DATA_WRITE) {
828 			if (data->timeout_ns < 1000000000)
829 				data->timeout_ns = 1000000000;	/* 1s */
830 		} else {
831 			if (data->timeout_ns < 100000000)
832 				data->timeout_ns =  100000000;	/* 100ms */
833 		}
834 	}
835 }
836 EXPORT_SYMBOL(mmc_set_data_timeout);
837 
838 /**
839  *	mmc_align_data_size - pads a transfer size to a more optimal value
840  *	@card: the MMC card associated with the data transfer
841  *	@sz: original transfer size
842  *
843  *	Pads the original data size with a number of extra bytes in
844  *	order to avoid controller bugs and/or performance hits
845  *	(e.g. some controllers revert to PIO for certain sizes).
846  *
847  *	Returns the improved size, which might be unmodified.
848  *
849  *	Note that this function is only relevant when issuing a
850  *	single scatter gather entry.
851  */
852 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
853 {
854 	/*
855 	 * FIXME: We don't have a system for the controller to tell
856 	 * the core about its problems yet, so for now we just 32-bit
857 	 * align the size.
858 	 */
859 	sz = ((sz + 3) / 4) * 4;
860 
861 	return sz;
862 }
863 EXPORT_SYMBOL(mmc_align_data_size);
864 
865 /**
866  *	__mmc_claim_host - exclusively claim a host
867  *	@host: mmc host to claim
868  *	@abort: whether or not the operation should be aborted
869  *
870  *	Claim a host for a set of operations.  If @abort is non null and
871  *	dereference a non-zero value then this will return prematurely with
872  *	that non-zero value without acquiring the lock.  Returns zero
873  *	with the lock held otherwise.
874  */
875 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
876 {
877 	DECLARE_WAITQUEUE(wait, current);
878 	unsigned long flags;
879 	int stop;
880 
881 	might_sleep();
882 
883 	add_wait_queue(&host->wq, &wait);
884 	spin_lock_irqsave(&host->lock, flags);
885 	while (1) {
886 		set_current_state(TASK_UNINTERRUPTIBLE);
887 		stop = abort ? atomic_read(abort) : 0;
888 		if (stop || !host->claimed || host->claimer == current)
889 			break;
890 		spin_unlock_irqrestore(&host->lock, flags);
891 		schedule();
892 		spin_lock_irqsave(&host->lock, flags);
893 	}
894 	set_current_state(TASK_RUNNING);
895 	if (!stop) {
896 		host->claimed = 1;
897 		host->claimer = current;
898 		host->claim_cnt += 1;
899 	} else
900 		wake_up(&host->wq);
901 	spin_unlock_irqrestore(&host->lock, flags);
902 	remove_wait_queue(&host->wq, &wait);
903 	if (host->ops->enable && !stop && host->claim_cnt == 1)
904 		host->ops->enable(host);
905 	return stop;
906 }
907 
908 EXPORT_SYMBOL(__mmc_claim_host);
909 
910 /**
911  *	mmc_release_host - release a host
912  *	@host: mmc host to release
913  *
914  *	Release a MMC host, allowing others to claim the host
915  *	for their operations.
916  */
917 void mmc_release_host(struct mmc_host *host)
918 {
919 	unsigned long flags;
920 
921 	WARN_ON(!host->claimed);
922 
923 	if (host->ops->disable && host->claim_cnt == 1)
924 		host->ops->disable(host);
925 
926 	spin_lock_irqsave(&host->lock, flags);
927 	if (--host->claim_cnt) {
928 		/* Release for nested claim */
929 		spin_unlock_irqrestore(&host->lock, flags);
930 	} else {
931 		host->claimed = 0;
932 		host->claimer = NULL;
933 		spin_unlock_irqrestore(&host->lock, flags);
934 		wake_up(&host->wq);
935 	}
936 }
937 EXPORT_SYMBOL(mmc_release_host);
938 
939 /*
940  * This is a helper function, which fetches a runtime pm reference for the
941  * card device and also claims the host.
942  */
943 void mmc_get_card(struct mmc_card *card)
944 {
945 	pm_runtime_get_sync(&card->dev);
946 	mmc_claim_host(card->host);
947 }
948 EXPORT_SYMBOL(mmc_get_card);
949 
950 /*
951  * This is a helper function, which releases the host and drops the runtime
952  * pm reference for the card device.
953  */
954 void mmc_put_card(struct mmc_card *card)
955 {
956 	mmc_release_host(card->host);
957 	pm_runtime_mark_last_busy(&card->dev);
958 	pm_runtime_put_autosuspend(&card->dev);
959 }
960 EXPORT_SYMBOL(mmc_put_card);
961 
962 /*
963  * Internal function that does the actual ios call to the host driver,
964  * optionally printing some debug output.
965  */
966 static inline void mmc_set_ios(struct mmc_host *host)
967 {
968 	struct mmc_ios *ios = &host->ios;
969 
970 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
971 		"width %u timing %u\n",
972 		 mmc_hostname(host), ios->clock, ios->bus_mode,
973 		 ios->power_mode, ios->chip_select, ios->vdd,
974 		 ios->bus_width, ios->timing);
975 
976 	if (ios->clock > 0)
977 		mmc_set_ungated(host);
978 	host->ops->set_ios(host, ios);
979 }
980 
981 /*
982  * Control chip select pin on a host.
983  */
984 void mmc_set_chip_select(struct mmc_host *host, int mode)
985 {
986 	mmc_host_clk_hold(host);
987 	host->ios.chip_select = mode;
988 	mmc_set_ios(host);
989 	mmc_host_clk_release(host);
990 }
991 
992 /*
993  * Sets the host clock to the highest possible frequency that
994  * is below "hz".
995  */
996 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
997 {
998 	WARN_ON(hz && hz < host->f_min);
999 
1000 	if (hz > host->f_max)
1001 		hz = host->f_max;
1002 
1003 	host->ios.clock = hz;
1004 	mmc_set_ios(host);
1005 }
1006 
1007 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008 {
1009 	mmc_host_clk_hold(host);
1010 	__mmc_set_clock(host, hz);
1011 	mmc_host_clk_release(host);
1012 }
1013 
1014 #ifdef CONFIG_MMC_CLKGATE
1015 /*
1016  * This gates the clock by setting it to 0 Hz.
1017  */
1018 void mmc_gate_clock(struct mmc_host *host)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&host->clk_lock, flags);
1023 	host->clk_old = host->ios.clock;
1024 	host->ios.clock = 0;
1025 	host->clk_gated = true;
1026 	spin_unlock_irqrestore(&host->clk_lock, flags);
1027 	mmc_set_ios(host);
1028 }
1029 
1030 /*
1031  * This restores the clock from gating by using the cached
1032  * clock value.
1033  */
1034 void mmc_ungate_clock(struct mmc_host *host)
1035 {
1036 	/*
1037 	 * We should previously have gated the clock, so the clock shall
1038 	 * be 0 here! The clock may however be 0 during initialization,
1039 	 * when some request operations are performed before setting
1040 	 * the frequency. When ungate is requested in that situation
1041 	 * we just ignore the call.
1042 	 */
1043 	if (host->clk_old) {
1044 		BUG_ON(host->ios.clock);
1045 		/* This call will also set host->clk_gated to false */
1046 		__mmc_set_clock(host, host->clk_old);
1047 	}
1048 }
1049 
1050 void mmc_set_ungated(struct mmc_host *host)
1051 {
1052 	unsigned long flags;
1053 
1054 	/*
1055 	 * We've been given a new frequency while the clock is gated,
1056 	 * so make sure we regard this as ungating it.
1057 	 */
1058 	spin_lock_irqsave(&host->clk_lock, flags);
1059 	host->clk_gated = false;
1060 	spin_unlock_irqrestore(&host->clk_lock, flags);
1061 }
1062 
1063 #else
1064 void mmc_set_ungated(struct mmc_host *host)
1065 {
1066 }
1067 #endif
1068 
1069 /*
1070  * Change the bus mode (open drain/push-pull) of a host.
1071  */
1072 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1073 {
1074 	mmc_host_clk_hold(host);
1075 	host->ios.bus_mode = mode;
1076 	mmc_set_ios(host);
1077 	mmc_host_clk_release(host);
1078 }
1079 
1080 /*
1081  * Change data bus width of a host.
1082  */
1083 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1084 {
1085 	mmc_host_clk_hold(host);
1086 	host->ios.bus_width = width;
1087 	mmc_set_ios(host);
1088 	mmc_host_clk_release(host);
1089 }
1090 
1091 /**
1092  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1093  * @vdd:	voltage (mV)
1094  * @low_bits:	prefer low bits in boundary cases
1095  *
1096  * This function returns the OCR bit number according to the provided @vdd
1097  * value. If conversion is not possible a negative errno value returned.
1098  *
1099  * Depending on the @low_bits flag the function prefers low or high OCR bits
1100  * on boundary voltages. For example,
1101  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1102  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1103  *
1104  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1105  */
1106 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1107 {
1108 	const int max_bit = ilog2(MMC_VDD_35_36);
1109 	int bit;
1110 
1111 	if (vdd < 1650 || vdd > 3600)
1112 		return -EINVAL;
1113 
1114 	if (vdd >= 1650 && vdd <= 1950)
1115 		return ilog2(MMC_VDD_165_195);
1116 
1117 	if (low_bits)
1118 		vdd -= 1;
1119 
1120 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1121 	bit = (vdd - 2000) / 100 + 8;
1122 	if (bit > max_bit)
1123 		return max_bit;
1124 	return bit;
1125 }
1126 
1127 /**
1128  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1129  * @vdd_min:	minimum voltage value (mV)
1130  * @vdd_max:	maximum voltage value (mV)
1131  *
1132  * This function returns the OCR mask bits according to the provided @vdd_min
1133  * and @vdd_max values. If conversion is not possible the function returns 0.
1134  *
1135  * Notes wrt boundary cases:
1136  * This function sets the OCR bits for all boundary voltages, for example
1137  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1138  * MMC_VDD_34_35 mask.
1139  */
1140 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1141 {
1142 	u32 mask = 0;
1143 
1144 	if (vdd_max < vdd_min)
1145 		return 0;
1146 
1147 	/* Prefer high bits for the boundary vdd_max values. */
1148 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1149 	if (vdd_max < 0)
1150 		return 0;
1151 
1152 	/* Prefer low bits for the boundary vdd_min values. */
1153 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1154 	if (vdd_min < 0)
1155 		return 0;
1156 
1157 	/* Fill the mask, from max bit to min bit. */
1158 	while (vdd_max >= vdd_min)
1159 		mask |= 1 << vdd_max--;
1160 
1161 	return mask;
1162 }
1163 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1164 
1165 #ifdef CONFIG_OF
1166 
1167 /**
1168  * mmc_of_parse_voltage - return mask of supported voltages
1169  * @np: The device node need to be parsed.
1170  * @mask: mask of voltages available for MMC/SD/SDIO
1171  *
1172  * 1. Return zero on success.
1173  * 2. Return negative errno: voltage-range is invalid.
1174  */
1175 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1176 {
1177 	const u32 *voltage_ranges;
1178 	int num_ranges, i;
1179 
1180 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1181 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1182 	if (!voltage_ranges || !num_ranges) {
1183 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1184 		return -EINVAL;
1185 	}
1186 
1187 	for (i = 0; i < num_ranges; i++) {
1188 		const int j = i * 2;
1189 		u32 ocr_mask;
1190 
1191 		ocr_mask = mmc_vddrange_to_ocrmask(
1192 				be32_to_cpu(voltage_ranges[j]),
1193 				be32_to_cpu(voltage_ranges[j + 1]));
1194 		if (!ocr_mask) {
1195 			pr_err("%s: voltage-range #%d is invalid\n",
1196 				np->full_name, i);
1197 			return -EINVAL;
1198 		}
1199 		*mask |= ocr_mask;
1200 	}
1201 
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL(mmc_of_parse_voltage);
1205 
1206 #endif /* CONFIG_OF */
1207 
1208 #ifdef CONFIG_REGULATOR
1209 
1210 /**
1211  * mmc_regulator_get_ocrmask - return mask of supported voltages
1212  * @supply: regulator to use
1213  *
1214  * This returns either a negative errno, or a mask of voltages that
1215  * can be provided to MMC/SD/SDIO devices using the specified voltage
1216  * regulator.  This would normally be called before registering the
1217  * MMC host adapter.
1218  */
1219 int mmc_regulator_get_ocrmask(struct regulator *supply)
1220 {
1221 	int			result = 0;
1222 	int			count;
1223 	int			i;
1224 	int			vdd_uV;
1225 	int			vdd_mV;
1226 
1227 	count = regulator_count_voltages(supply);
1228 	if (count < 0)
1229 		return count;
1230 
1231 	for (i = 0; i < count; i++) {
1232 		vdd_uV = regulator_list_voltage(supply, i);
1233 		if (vdd_uV <= 0)
1234 			continue;
1235 
1236 		vdd_mV = vdd_uV / 1000;
1237 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1238 	}
1239 
1240 	if (!result) {
1241 		vdd_uV = regulator_get_voltage(supply);
1242 		if (vdd_uV <= 0)
1243 			return vdd_uV;
1244 
1245 		vdd_mV = vdd_uV / 1000;
1246 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1247 	}
1248 
1249 	return result;
1250 }
1251 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1252 
1253 /**
1254  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1255  * @mmc: the host to regulate
1256  * @supply: regulator to use
1257  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1258  *
1259  * Returns zero on success, else negative errno.
1260  *
1261  * MMC host drivers may use this to enable or disable a regulator using
1262  * a particular supply voltage.  This would normally be called from the
1263  * set_ios() method.
1264  */
1265 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1266 			struct regulator *supply,
1267 			unsigned short vdd_bit)
1268 {
1269 	int			result = 0;
1270 	int			min_uV, max_uV;
1271 
1272 	if (vdd_bit) {
1273 		int		tmp;
1274 
1275 		/*
1276 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1277 		 * bits this regulator doesn't quite support ... don't
1278 		 * be too picky, most cards and regulators are OK with
1279 		 * a 0.1V range goof (it's a small error percentage).
1280 		 */
1281 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1282 		if (tmp == 0) {
1283 			min_uV = 1650 * 1000;
1284 			max_uV = 1950 * 1000;
1285 		} else {
1286 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1287 			max_uV = min_uV + 100 * 1000;
1288 		}
1289 
1290 		result = regulator_set_voltage(supply, min_uV, max_uV);
1291 		if (result == 0 && !mmc->regulator_enabled) {
1292 			result = regulator_enable(supply);
1293 			if (!result)
1294 				mmc->regulator_enabled = true;
1295 		}
1296 	} else if (mmc->regulator_enabled) {
1297 		result = regulator_disable(supply);
1298 		if (result == 0)
1299 			mmc->regulator_enabled = false;
1300 	}
1301 
1302 	if (result)
1303 		dev_err(mmc_dev(mmc),
1304 			"could not set regulator OCR (%d)\n", result);
1305 	return result;
1306 }
1307 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1308 
1309 #endif /* CONFIG_REGULATOR */
1310 
1311 int mmc_regulator_get_supply(struct mmc_host *mmc)
1312 {
1313 	struct device *dev = mmc_dev(mmc);
1314 	int ret;
1315 
1316 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1317 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1318 
1319 	if (IS_ERR(mmc->supply.vmmc)) {
1320 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1321 			return -EPROBE_DEFER;
1322 		dev_info(dev, "No vmmc regulator found\n");
1323 	} else {
1324 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1325 		if (ret > 0)
1326 			mmc->ocr_avail = ret;
1327 		else
1328 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1329 	}
1330 
1331 	if (IS_ERR(mmc->supply.vqmmc)) {
1332 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1333 			return -EPROBE_DEFER;
1334 		dev_info(dev, "No vqmmc regulator found\n");
1335 	}
1336 
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1340 
1341 /*
1342  * Mask off any voltages we don't support and select
1343  * the lowest voltage
1344  */
1345 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1346 {
1347 	int bit;
1348 
1349 	/*
1350 	 * Sanity check the voltages that the card claims to
1351 	 * support.
1352 	 */
1353 	if (ocr & 0x7F) {
1354 		dev_warn(mmc_dev(host),
1355 		"card claims to support voltages below defined range\n");
1356 		ocr &= ~0x7F;
1357 	}
1358 
1359 	ocr &= host->ocr_avail;
1360 	if (!ocr) {
1361 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1362 		return 0;
1363 	}
1364 
1365 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1366 		bit = ffs(ocr) - 1;
1367 		ocr &= 3 << bit;
1368 		mmc_power_cycle(host, ocr);
1369 	} else {
1370 		bit = fls(ocr) - 1;
1371 		ocr &= 3 << bit;
1372 		if (bit != host->ios.vdd)
1373 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1374 	}
1375 
1376 	return ocr;
1377 }
1378 
1379 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1380 {
1381 	int err = 0;
1382 	int old_signal_voltage = host->ios.signal_voltage;
1383 
1384 	host->ios.signal_voltage = signal_voltage;
1385 	if (host->ops->start_signal_voltage_switch) {
1386 		mmc_host_clk_hold(host);
1387 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1388 		mmc_host_clk_release(host);
1389 	}
1390 
1391 	if (err)
1392 		host->ios.signal_voltage = old_signal_voltage;
1393 
1394 	return err;
1395 
1396 }
1397 
1398 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1399 {
1400 	struct mmc_command cmd = {0};
1401 	int err = 0;
1402 	u32 clock;
1403 
1404 	BUG_ON(!host);
1405 
1406 	/*
1407 	 * Send CMD11 only if the request is to switch the card to
1408 	 * 1.8V signalling.
1409 	 */
1410 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1411 		return __mmc_set_signal_voltage(host, signal_voltage);
1412 
1413 	/*
1414 	 * If we cannot switch voltages, return failure so the caller
1415 	 * can continue without UHS mode
1416 	 */
1417 	if (!host->ops->start_signal_voltage_switch)
1418 		return -EPERM;
1419 	if (!host->ops->card_busy)
1420 		pr_warn("%s: cannot verify signal voltage switch\n",
1421 			mmc_hostname(host));
1422 
1423 	cmd.opcode = SD_SWITCH_VOLTAGE;
1424 	cmd.arg = 0;
1425 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1426 
1427 	err = mmc_wait_for_cmd(host, &cmd, 0);
1428 	if (err)
1429 		return err;
1430 
1431 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1432 		return -EIO;
1433 
1434 	mmc_host_clk_hold(host);
1435 	/*
1436 	 * The card should drive cmd and dat[0:3] low immediately
1437 	 * after the response of cmd11, but wait 1 ms to be sure
1438 	 */
1439 	mmc_delay(1);
1440 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1441 		err = -EAGAIN;
1442 		goto power_cycle;
1443 	}
1444 	/*
1445 	 * During a signal voltage level switch, the clock must be gated
1446 	 * for 5 ms according to the SD spec
1447 	 */
1448 	clock = host->ios.clock;
1449 	host->ios.clock = 0;
1450 	mmc_set_ios(host);
1451 
1452 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1453 		/*
1454 		 * Voltages may not have been switched, but we've already
1455 		 * sent CMD11, so a power cycle is required anyway
1456 		 */
1457 		err = -EAGAIN;
1458 		goto power_cycle;
1459 	}
1460 
1461 	/* Keep clock gated for at least 5 ms */
1462 	mmc_delay(5);
1463 	host->ios.clock = clock;
1464 	mmc_set_ios(host);
1465 
1466 	/* Wait for at least 1 ms according to spec */
1467 	mmc_delay(1);
1468 
1469 	/*
1470 	 * Failure to switch is indicated by the card holding
1471 	 * dat[0:3] low
1472 	 */
1473 	if (host->ops->card_busy && host->ops->card_busy(host))
1474 		err = -EAGAIN;
1475 
1476 power_cycle:
1477 	if (err) {
1478 		pr_debug("%s: Signal voltage switch failed, "
1479 			"power cycling card\n", mmc_hostname(host));
1480 		mmc_power_cycle(host, ocr);
1481 	}
1482 
1483 	mmc_host_clk_release(host);
1484 
1485 	return err;
1486 }
1487 
1488 /*
1489  * Select timing parameters for host.
1490  */
1491 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1492 {
1493 	mmc_host_clk_hold(host);
1494 	host->ios.timing = timing;
1495 	mmc_set_ios(host);
1496 	mmc_host_clk_release(host);
1497 }
1498 
1499 /*
1500  * Select appropriate driver type for host.
1501  */
1502 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1503 {
1504 	mmc_host_clk_hold(host);
1505 	host->ios.drv_type = drv_type;
1506 	mmc_set_ios(host);
1507 	mmc_host_clk_release(host);
1508 }
1509 
1510 /*
1511  * Apply power to the MMC stack.  This is a two-stage process.
1512  * First, we enable power to the card without the clock running.
1513  * We then wait a bit for the power to stabilise.  Finally,
1514  * enable the bus drivers and clock to the card.
1515  *
1516  * We must _NOT_ enable the clock prior to power stablising.
1517  *
1518  * If a host does all the power sequencing itself, ignore the
1519  * initial MMC_POWER_UP stage.
1520  */
1521 void mmc_power_up(struct mmc_host *host, u32 ocr)
1522 {
1523 	if (host->ios.power_mode == MMC_POWER_ON)
1524 		return;
1525 
1526 	mmc_host_clk_hold(host);
1527 
1528 	host->ios.vdd = fls(ocr) - 1;
1529 	if (mmc_host_is_spi(host))
1530 		host->ios.chip_select = MMC_CS_HIGH;
1531 	else
1532 		host->ios.chip_select = MMC_CS_DONTCARE;
1533 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1534 	host->ios.power_mode = MMC_POWER_UP;
1535 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1536 	host->ios.timing = MMC_TIMING_LEGACY;
1537 	mmc_set_ios(host);
1538 
1539 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1540 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1541 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1542 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1543 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1544 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1545 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1546 
1547 	/*
1548 	 * This delay should be sufficient to allow the power supply
1549 	 * to reach the minimum voltage.
1550 	 */
1551 	mmc_delay(10);
1552 
1553 	host->ios.clock = host->f_init;
1554 
1555 	host->ios.power_mode = MMC_POWER_ON;
1556 	mmc_set_ios(host);
1557 
1558 	/*
1559 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1560 	 * time required to reach a stable voltage.
1561 	 */
1562 	mmc_delay(10);
1563 
1564 	mmc_host_clk_release(host);
1565 }
1566 
1567 void mmc_power_off(struct mmc_host *host)
1568 {
1569 	if (host->ios.power_mode == MMC_POWER_OFF)
1570 		return;
1571 
1572 	mmc_host_clk_hold(host);
1573 
1574 	host->ios.clock = 0;
1575 	host->ios.vdd = 0;
1576 
1577 	if (!mmc_host_is_spi(host)) {
1578 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1579 		host->ios.chip_select = MMC_CS_DONTCARE;
1580 	}
1581 	host->ios.power_mode = MMC_POWER_OFF;
1582 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1583 	host->ios.timing = MMC_TIMING_LEGACY;
1584 	mmc_set_ios(host);
1585 
1586 	/*
1587 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1588 	 * XO-1.5, require a short delay after poweroff before the card
1589 	 * can be successfully turned on again.
1590 	 */
1591 	mmc_delay(1);
1592 
1593 	mmc_host_clk_release(host);
1594 }
1595 
1596 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1597 {
1598 	mmc_power_off(host);
1599 	/* Wait at least 1 ms according to SD spec */
1600 	mmc_delay(1);
1601 	mmc_power_up(host, ocr);
1602 }
1603 
1604 /*
1605  * Cleanup when the last reference to the bus operator is dropped.
1606  */
1607 static void __mmc_release_bus(struct mmc_host *host)
1608 {
1609 	BUG_ON(!host);
1610 	BUG_ON(host->bus_refs);
1611 	BUG_ON(!host->bus_dead);
1612 
1613 	host->bus_ops = NULL;
1614 }
1615 
1616 /*
1617  * Increase reference count of bus operator
1618  */
1619 static inline void mmc_bus_get(struct mmc_host *host)
1620 {
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&host->lock, flags);
1624 	host->bus_refs++;
1625 	spin_unlock_irqrestore(&host->lock, flags);
1626 }
1627 
1628 /*
1629  * Decrease reference count of bus operator and free it if
1630  * it is the last reference.
1631  */
1632 static inline void mmc_bus_put(struct mmc_host *host)
1633 {
1634 	unsigned long flags;
1635 
1636 	spin_lock_irqsave(&host->lock, flags);
1637 	host->bus_refs--;
1638 	if ((host->bus_refs == 0) && host->bus_ops)
1639 		__mmc_release_bus(host);
1640 	spin_unlock_irqrestore(&host->lock, flags);
1641 }
1642 
1643 /*
1644  * Assign a mmc bus handler to a host. Only one bus handler may control a
1645  * host at any given time.
1646  */
1647 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1648 {
1649 	unsigned long flags;
1650 
1651 	BUG_ON(!host);
1652 	BUG_ON(!ops);
1653 
1654 	WARN_ON(!host->claimed);
1655 
1656 	spin_lock_irqsave(&host->lock, flags);
1657 
1658 	BUG_ON(host->bus_ops);
1659 	BUG_ON(host->bus_refs);
1660 
1661 	host->bus_ops = ops;
1662 	host->bus_refs = 1;
1663 	host->bus_dead = 0;
1664 
1665 	spin_unlock_irqrestore(&host->lock, flags);
1666 }
1667 
1668 /*
1669  * Remove the current bus handler from a host.
1670  */
1671 void mmc_detach_bus(struct mmc_host *host)
1672 {
1673 	unsigned long flags;
1674 
1675 	BUG_ON(!host);
1676 
1677 	WARN_ON(!host->claimed);
1678 	WARN_ON(!host->bus_ops);
1679 
1680 	spin_lock_irqsave(&host->lock, flags);
1681 
1682 	host->bus_dead = 1;
1683 
1684 	spin_unlock_irqrestore(&host->lock, flags);
1685 
1686 	mmc_bus_put(host);
1687 }
1688 
1689 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1690 				bool cd_irq)
1691 {
1692 #ifdef CONFIG_MMC_DEBUG
1693 	unsigned long flags;
1694 	spin_lock_irqsave(&host->lock, flags);
1695 	WARN_ON(host->removed);
1696 	spin_unlock_irqrestore(&host->lock, flags);
1697 #endif
1698 
1699 	/*
1700 	 * If the device is configured as wakeup, we prevent a new sleep for
1701 	 * 5 s to give provision for user space to consume the event.
1702 	 */
1703 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1704 		device_can_wakeup(mmc_dev(host)))
1705 		pm_wakeup_event(mmc_dev(host), 5000);
1706 
1707 	host->detect_change = 1;
1708 	mmc_schedule_delayed_work(&host->detect, delay);
1709 }
1710 
1711 /**
1712  *	mmc_detect_change - process change of state on a MMC socket
1713  *	@host: host which changed state.
1714  *	@delay: optional delay to wait before detection (jiffies)
1715  *
1716  *	MMC drivers should call this when they detect a card has been
1717  *	inserted or removed. The MMC layer will confirm that any
1718  *	present card is still functional, and initialize any newly
1719  *	inserted.
1720  */
1721 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1722 {
1723 	_mmc_detect_change(host, delay, true);
1724 }
1725 EXPORT_SYMBOL(mmc_detect_change);
1726 
1727 void mmc_init_erase(struct mmc_card *card)
1728 {
1729 	unsigned int sz;
1730 
1731 	if (is_power_of_2(card->erase_size))
1732 		card->erase_shift = ffs(card->erase_size) - 1;
1733 	else
1734 		card->erase_shift = 0;
1735 
1736 	/*
1737 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1738 	 * card.  That is not desirable because it can take a long time
1739 	 * (minutes) potentially delaying more important I/O, and also the
1740 	 * timeout calculations become increasingly hugely over-estimated.
1741 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1742 	 * to that size and alignment.
1743 	 *
1744 	 * For SD cards that define Allocation Unit size, limit erases to one
1745 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1746 	 * Erase Size, whether it is switched on or not, limit to that size.
1747 	 * Otherwise just have a stab at a good value.  For modern cards it
1748 	 * will end up being 4MiB.  Note that if the value is too small, it
1749 	 * can end up taking longer to erase.
1750 	 */
1751 	if (mmc_card_sd(card) && card->ssr.au) {
1752 		card->pref_erase = card->ssr.au;
1753 		card->erase_shift = ffs(card->ssr.au) - 1;
1754 	} else if (card->ext_csd.hc_erase_size) {
1755 		card->pref_erase = card->ext_csd.hc_erase_size;
1756 	} else if (card->erase_size) {
1757 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1758 		if (sz < 128)
1759 			card->pref_erase = 512 * 1024 / 512;
1760 		else if (sz < 512)
1761 			card->pref_erase = 1024 * 1024 / 512;
1762 		else if (sz < 1024)
1763 			card->pref_erase = 2 * 1024 * 1024 / 512;
1764 		else
1765 			card->pref_erase = 4 * 1024 * 1024 / 512;
1766 		if (card->pref_erase < card->erase_size)
1767 			card->pref_erase = card->erase_size;
1768 		else {
1769 			sz = card->pref_erase % card->erase_size;
1770 			if (sz)
1771 				card->pref_erase += card->erase_size - sz;
1772 		}
1773 	} else
1774 		card->pref_erase = 0;
1775 }
1776 
1777 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1778 				          unsigned int arg, unsigned int qty)
1779 {
1780 	unsigned int erase_timeout;
1781 
1782 	if (arg == MMC_DISCARD_ARG ||
1783 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1784 		erase_timeout = card->ext_csd.trim_timeout;
1785 	} else if (card->ext_csd.erase_group_def & 1) {
1786 		/* High Capacity Erase Group Size uses HC timeouts */
1787 		if (arg == MMC_TRIM_ARG)
1788 			erase_timeout = card->ext_csd.trim_timeout;
1789 		else
1790 			erase_timeout = card->ext_csd.hc_erase_timeout;
1791 	} else {
1792 		/* CSD Erase Group Size uses write timeout */
1793 		unsigned int mult = (10 << card->csd.r2w_factor);
1794 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1795 		unsigned int timeout_us;
1796 
1797 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1798 		if (card->csd.tacc_ns < 1000000)
1799 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1800 		else
1801 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1802 
1803 		/*
1804 		 * ios.clock is only a target.  The real clock rate might be
1805 		 * less but not that much less, so fudge it by multiplying by 2.
1806 		 */
1807 		timeout_clks <<= 1;
1808 		timeout_us += (timeout_clks * 1000) /
1809 			      (mmc_host_clk_rate(card->host) / 1000);
1810 
1811 		erase_timeout = timeout_us / 1000;
1812 
1813 		/*
1814 		 * Theoretically, the calculation could underflow so round up
1815 		 * to 1ms in that case.
1816 		 */
1817 		if (!erase_timeout)
1818 			erase_timeout = 1;
1819 	}
1820 
1821 	/* Multiplier for secure operations */
1822 	if (arg & MMC_SECURE_ARGS) {
1823 		if (arg == MMC_SECURE_ERASE_ARG)
1824 			erase_timeout *= card->ext_csd.sec_erase_mult;
1825 		else
1826 			erase_timeout *= card->ext_csd.sec_trim_mult;
1827 	}
1828 
1829 	erase_timeout *= qty;
1830 
1831 	/*
1832 	 * Ensure at least a 1 second timeout for SPI as per
1833 	 * 'mmc_set_data_timeout()'
1834 	 */
1835 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1836 		erase_timeout = 1000;
1837 
1838 	return erase_timeout;
1839 }
1840 
1841 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1842 					 unsigned int arg,
1843 					 unsigned int qty)
1844 {
1845 	unsigned int erase_timeout;
1846 
1847 	if (card->ssr.erase_timeout) {
1848 		/* Erase timeout specified in SD Status Register (SSR) */
1849 		erase_timeout = card->ssr.erase_timeout * qty +
1850 				card->ssr.erase_offset;
1851 	} else {
1852 		/*
1853 		 * Erase timeout not specified in SD Status Register (SSR) so
1854 		 * use 250ms per write block.
1855 		 */
1856 		erase_timeout = 250 * qty;
1857 	}
1858 
1859 	/* Must not be less than 1 second */
1860 	if (erase_timeout < 1000)
1861 		erase_timeout = 1000;
1862 
1863 	return erase_timeout;
1864 }
1865 
1866 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1867 				      unsigned int arg,
1868 				      unsigned int qty)
1869 {
1870 	if (mmc_card_sd(card))
1871 		return mmc_sd_erase_timeout(card, arg, qty);
1872 	else
1873 		return mmc_mmc_erase_timeout(card, arg, qty);
1874 }
1875 
1876 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1877 			unsigned int to, unsigned int arg)
1878 {
1879 	struct mmc_command cmd = {0};
1880 	unsigned int qty = 0;
1881 	unsigned long timeout;
1882 	int err;
1883 
1884 	/*
1885 	 * qty is used to calculate the erase timeout which depends on how many
1886 	 * erase groups (or allocation units in SD terminology) are affected.
1887 	 * We count erasing part of an erase group as one erase group.
1888 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1889 	 * erase group size is almost certainly also power of 2, but it does not
1890 	 * seem to insist on that in the JEDEC standard, so we fall back to
1891 	 * division in that case.  SD may not specify an allocation unit size,
1892 	 * in which case the timeout is based on the number of write blocks.
1893 	 *
1894 	 * Note that the timeout for secure trim 2 will only be correct if the
1895 	 * number of erase groups specified is the same as the total of all
1896 	 * preceding secure trim 1 commands.  Since the power may have been
1897 	 * lost since the secure trim 1 commands occurred, it is generally
1898 	 * impossible to calculate the secure trim 2 timeout correctly.
1899 	 */
1900 	if (card->erase_shift)
1901 		qty += ((to >> card->erase_shift) -
1902 			(from >> card->erase_shift)) + 1;
1903 	else if (mmc_card_sd(card))
1904 		qty += to - from + 1;
1905 	else
1906 		qty += ((to / card->erase_size) -
1907 			(from / card->erase_size)) + 1;
1908 
1909 	if (!mmc_card_blockaddr(card)) {
1910 		from <<= 9;
1911 		to <<= 9;
1912 	}
1913 
1914 	if (mmc_card_sd(card))
1915 		cmd.opcode = SD_ERASE_WR_BLK_START;
1916 	else
1917 		cmd.opcode = MMC_ERASE_GROUP_START;
1918 	cmd.arg = from;
1919 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1920 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1921 	if (err) {
1922 		pr_err("mmc_erase: group start error %d, "
1923 		       "status %#x\n", err, cmd.resp[0]);
1924 		err = -EIO;
1925 		goto out;
1926 	}
1927 
1928 	memset(&cmd, 0, sizeof(struct mmc_command));
1929 	if (mmc_card_sd(card))
1930 		cmd.opcode = SD_ERASE_WR_BLK_END;
1931 	else
1932 		cmd.opcode = MMC_ERASE_GROUP_END;
1933 	cmd.arg = to;
1934 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1935 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1936 	if (err) {
1937 		pr_err("mmc_erase: group end error %d, status %#x\n",
1938 		       err, cmd.resp[0]);
1939 		err = -EIO;
1940 		goto out;
1941 	}
1942 
1943 	memset(&cmd, 0, sizeof(struct mmc_command));
1944 	cmd.opcode = MMC_ERASE;
1945 	cmd.arg = arg;
1946 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1947 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1948 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1949 	if (err) {
1950 		pr_err("mmc_erase: erase error %d, status %#x\n",
1951 		       err, cmd.resp[0]);
1952 		err = -EIO;
1953 		goto out;
1954 	}
1955 
1956 	if (mmc_host_is_spi(card->host))
1957 		goto out;
1958 
1959 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1960 	do {
1961 		memset(&cmd, 0, sizeof(struct mmc_command));
1962 		cmd.opcode = MMC_SEND_STATUS;
1963 		cmd.arg = card->rca << 16;
1964 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1965 		/* Do not retry else we can't see errors */
1966 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1967 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1968 			pr_err("error %d requesting status %#x\n",
1969 				err, cmd.resp[0]);
1970 			err = -EIO;
1971 			goto out;
1972 		}
1973 
1974 		/* Timeout if the device never becomes ready for data and
1975 		 * never leaves the program state.
1976 		 */
1977 		if (time_after(jiffies, timeout)) {
1978 			pr_err("%s: Card stuck in programming state! %s\n",
1979 				mmc_hostname(card->host), __func__);
1980 			err =  -EIO;
1981 			goto out;
1982 		}
1983 
1984 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1985 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1986 out:
1987 	return err;
1988 }
1989 
1990 /**
1991  * mmc_erase - erase sectors.
1992  * @card: card to erase
1993  * @from: first sector to erase
1994  * @nr: number of sectors to erase
1995  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1996  *
1997  * Caller must claim host before calling this function.
1998  */
1999 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2000 	      unsigned int arg)
2001 {
2002 	unsigned int rem, to = from + nr;
2003 
2004 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2005 	    !(card->csd.cmdclass & CCC_ERASE))
2006 		return -EOPNOTSUPP;
2007 
2008 	if (!card->erase_size)
2009 		return -EOPNOTSUPP;
2010 
2011 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2012 		return -EOPNOTSUPP;
2013 
2014 	if ((arg & MMC_SECURE_ARGS) &&
2015 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2016 		return -EOPNOTSUPP;
2017 
2018 	if ((arg & MMC_TRIM_ARGS) &&
2019 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2020 		return -EOPNOTSUPP;
2021 
2022 	if (arg == MMC_SECURE_ERASE_ARG) {
2023 		if (from % card->erase_size || nr % card->erase_size)
2024 			return -EINVAL;
2025 	}
2026 
2027 	if (arg == MMC_ERASE_ARG) {
2028 		rem = from % card->erase_size;
2029 		if (rem) {
2030 			rem = card->erase_size - rem;
2031 			from += rem;
2032 			if (nr > rem)
2033 				nr -= rem;
2034 			else
2035 				return 0;
2036 		}
2037 		rem = nr % card->erase_size;
2038 		if (rem)
2039 			nr -= rem;
2040 	}
2041 
2042 	if (nr == 0)
2043 		return 0;
2044 
2045 	to = from + nr;
2046 
2047 	if (to <= from)
2048 		return -EINVAL;
2049 
2050 	/* 'from' and 'to' are inclusive */
2051 	to -= 1;
2052 
2053 	return mmc_do_erase(card, from, to, arg);
2054 }
2055 EXPORT_SYMBOL(mmc_erase);
2056 
2057 int mmc_can_erase(struct mmc_card *card)
2058 {
2059 	if ((card->host->caps & MMC_CAP_ERASE) &&
2060 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2061 		return 1;
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL(mmc_can_erase);
2065 
2066 int mmc_can_trim(struct mmc_card *card)
2067 {
2068 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2069 		return 1;
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL(mmc_can_trim);
2073 
2074 int mmc_can_discard(struct mmc_card *card)
2075 {
2076 	/*
2077 	 * As there's no way to detect the discard support bit at v4.5
2078 	 * use the s/w feature support filed.
2079 	 */
2080 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2081 		return 1;
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(mmc_can_discard);
2085 
2086 int mmc_can_sanitize(struct mmc_card *card)
2087 {
2088 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2089 		return 0;
2090 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2091 		return 1;
2092 	return 0;
2093 }
2094 EXPORT_SYMBOL(mmc_can_sanitize);
2095 
2096 int mmc_can_secure_erase_trim(struct mmc_card *card)
2097 {
2098 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2099 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2100 		return 1;
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2104 
2105 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2106 			    unsigned int nr)
2107 {
2108 	if (!card->erase_size)
2109 		return 0;
2110 	if (from % card->erase_size || nr % card->erase_size)
2111 		return 0;
2112 	return 1;
2113 }
2114 EXPORT_SYMBOL(mmc_erase_group_aligned);
2115 
2116 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2117 					    unsigned int arg)
2118 {
2119 	struct mmc_host *host = card->host;
2120 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2121 	unsigned int last_timeout = 0;
2122 
2123 	if (card->erase_shift)
2124 		max_qty = UINT_MAX >> card->erase_shift;
2125 	else if (mmc_card_sd(card))
2126 		max_qty = UINT_MAX;
2127 	else
2128 		max_qty = UINT_MAX / card->erase_size;
2129 
2130 	/* Find the largest qty with an OK timeout */
2131 	do {
2132 		y = 0;
2133 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2134 			timeout = mmc_erase_timeout(card, arg, qty + x);
2135 			if (timeout > host->max_busy_timeout)
2136 				break;
2137 			if (timeout < last_timeout)
2138 				break;
2139 			last_timeout = timeout;
2140 			y = x;
2141 		}
2142 		qty += y;
2143 	} while (y);
2144 
2145 	if (!qty)
2146 		return 0;
2147 
2148 	if (qty == 1)
2149 		return 1;
2150 
2151 	/* Convert qty to sectors */
2152 	if (card->erase_shift)
2153 		max_discard = --qty << card->erase_shift;
2154 	else if (mmc_card_sd(card))
2155 		max_discard = qty;
2156 	else
2157 		max_discard = --qty * card->erase_size;
2158 
2159 	return max_discard;
2160 }
2161 
2162 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2163 {
2164 	struct mmc_host *host = card->host;
2165 	unsigned int max_discard, max_trim;
2166 
2167 	if (!host->max_busy_timeout)
2168 		return UINT_MAX;
2169 
2170 	/*
2171 	 * Without erase_group_def set, MMC erase timeout depends on clock
2172 	 * frequence which can change.  In that case, the best choice is
2173 	 * just the preferred erase size.
2174 	 */
2175 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2176 		return card->pref_erase;
2177 
2178 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2179 	if (mmc_can_trim(card)) {
2180 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2181 		if (max_trim < max_discard)
2182 			max_discard = max_trim;
2183 	} else if (max_discard < card->erase_size) {
2184 		max_discard = 0;
2185 	}
2186 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2187 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2188 	return max_discard;
2189 }
2190 EXPORT_SYMBOL(mmc_calc_max_discard);
2191 
2192 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2193 {
2194 	struct mmc_command cmd = {0};
2195 
2196 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2197 		return 0;
2198 
2199 	cmd.opcode = MMC_SET_BLOCKLEN;
2200 	cmd.arg = blocklen;
2201 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2202 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2203 }
2204 EXPORT_SYMBOL(mmc_set_blocklen);
2205 
2206 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2207 			bool is_rel_write)
2208 {
2209 	struct mmc_command cmd = {0};
2210 
2211 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2212 	cmd.arg = blockcount & 0x0000FFFF;
2213 	if (is_rel_write)
2214 		cmd.arg |= 1 << 31;
2215 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2216 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2217 }
2218 EXPORT_SYMBOL(mmc_set_blockcount);
2219 
2220 static void mmc_hw_reset_for_init(struct mmc_host *host)
2221 {
2222 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2223 		return;
2224 	mmc_host_clk_hold(host);
2225 	host->ops->hw_reset(host);
2226 	mmc_host_clk_release(host);
2227 }
2228 
2229 int mmc_can_reset(struct mmc_card *card)
2230 {
2231 	u8 rst_n_function;
2232 
2233 	if (!mmc_card_mmc(card))
2234 		return 0;
2235 	rst_n_function = card->ext_csd.rst_n_function;
2236 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2237 		return 0;
2238 	return 1;
2239 }
2240 EXPORT_SYMBOL(mmc_can_reset);
2241 
2242 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2243 {
2244 	struct mmc_card *card = host->card;
2245 
2246 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2247 		return -EOPNOTSUPP;
2248 
2249 	if (!card)
2250 		return -EINVAL;
2251 
2252 	if (!mmc_can_reset(card))
2253 		return -EOPNOTSUPP;
2254 
2255 	mmc_host_clk_hold(host);
2256 	mmc_set_clock(host, host->f_init);
2257 
2258 	host->ops->hw_reset(host);
2259 
2260 	/* If the reset has happened, then a status command will fail */
2261 	if (check) {
2262 		struct mmc_command cmd = {0};
2263 		int err;
2264 
2265 		cmd.opcode = MMC_SEND_STATUS;
2266 		if (!mmc_host_is_spi(card->host))
2267 			cmd.arg = card->rca << 16;
2268 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2269 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2270 		if (!err) {
2271 			mmc_host_clk_release(host);
2272 			return -ENOSYS;
2273 		}
2274 	}
2275 
2276 	if (mmc_host_is_spi(host)) {
2277 		host->ios.chip_select = MMC_CS_HIGH;
2278 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2279 	} else {
2280 		host->ios.chip_select = MMC_CS_DONTCARE;
2281 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2282 	}
2283 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2284 	host->ios.timing = MMC_TIMING_LEGACY;
2285 	mmc_set_ios(host);
2286 
2287 	mmc_host_clk_release(host);
2288 
2289 	return host->bus_ops->power_restore(host);
2290 }
2291 
2292 int mmc_hw_reset(struct mmc_host *host)
2293 {
2294 	return mmc_do_hw_reset(host, 0);
2295 }
2296 EXPORT_SYMBOL(mmc_hw_reset);
2297 
2298 int mmc_hw_reset_check(struct mmc_host *host)
2299 {
2300 	return mmc_do_hw_reset(host, 1);
2301 }
2302 EXPORT_SYMBOL(mmc_hw_reset_check);
2303 
2304 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2305 {
2306 	host->f_init = freq;
2307 
2308 #ifdef CONFIG_MMC_DEBUG
2309 	pr_info("%s: %s: trying to init card at %u Hz\n",
2310 		mmc_hostname(host), __func__, host->f_init);
2311 #endif
2312 	mmc_power_up(host, host->ocr_avail);
2313 
2314 	/*
2315 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2316 	 * do a hardware reset if possible.
2317 	 */
2318 	mmc_hw_reset_for_init(host);
2319 
2320 	/*
2321 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2322 	 * if the card is being re-initialized, just send it.  CMD52
2323 	 * should be ignored by SD/eMMC cards.
2324 	 */
2325 	sdio_reset(host);
2326 	mmc_go_idle(host);
2327 
2328 	mmc_send_if_cond(host, host->ocr_avail);
2329 
2330 	/* Order's important: probe SDIO, then SD, then MMC */
2331 	if (!mmc_attach_sdio(host))
2332 		return 0;
2333 	if (!mmc_attach_sd(host))
2334 		return 0;
2335 	if (!mmc_attach_mmc(host))
2336 		return 0;
2337 
2338 	mmc_power_off(host);
2339 	return -EIO;
2340 }
2341 
2342 int _mmc_detect_card_removed(struct mmc_host *host)
2343 {
2344 	int ret;
2345 
2346 	if (host->caps & MMC_CAP_NONREMOVABLE)
2347 		return 0;
2348 
2349 	if (!host->card || mmc_card_removed(host->card))
2350 		return 1;
2351 
2352 	ret = host->bus_ops->alive(host);
2353 
2354 	/*
2355 	 * Card detect status and alive check may be out of sync if card is
2356 	 * removed slowly, when card detect switch changes while card/slot
2357 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2358 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2359 	 * detect work 200ms later for this case.
2360 	 */
2361 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2362 		mmc_detect_change(host, msecs_to_jiffies(200));
2363 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2364 	}
2365 
2366 	if (ret) {
2367 		mmc_card_set_removed(host->card);
2368 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2369 	}
2370 
2371 	return ret;
2372 }
2373 
2374 int mmc_detect_card_removed(struct mmc_host *host)
2375 {
2376 	struct mmc_card *card = host->card;
2377 	int ret;
2378 
2379 	WARN_ON(!host->claimed);
2380 
2381 	if (!card)
2382 		return 1;
2383 
2384 	ret = mmc_card_removed(card);
2385 	/*
2386 	 * The card will be considered unchanged unless we have been asked to
2387 	 * detect a change or host requires polling to provide card detection.
2388 	 */
2389 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2390 		return ret;
2391 
2392 	host->detect_change = 0;
2393 	if (!ret) {
2394 		ret = _mmc_detect_card_removed(host);
2395 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2396 			/*
2397 			 * Schedule a detect work as soon as possible to let a
2398 			 * rescan handle the card removal.
2399 			 */
2400 			cancel_delayed_work(&host->detect);
2401 			_mmc_detect_change(host, 0, false);
2402 		}
2403 	}
2404 
2405 	return ret;
2406 }
2407 EXPORT_SYMBOL(mmc_detect_card_removed);
2408 
2409 void mmc_rescan(struct work_struct *work)
2410 {
2411 	struct mmc_host *host =
2412 		container_of(work, struct mmc_host, detect.work);
2413 	int i;
2414 
2415 	if (host->trigger_card_event && host->ops->card_event) {
2416 		host->ops->card_event(host);
2417 		host->trigger_card_event = false;
2418 	}
2419 
2420 	if (host->rescan_disable)
2421 		return;
2422 
2423 	/* If there is a non-removable card registered, only scan once */
2424 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2425 		return;
2426 	host->rescan_entered = 1;
2427 
2428 	mmc_bus_get(host);
2429 
2430 	/*
2431 	 * if there is a _removable_ card registered, check whether it is
2432 	 * still present
2433 	 */
2434 	if (host->bus_ops && !host->bus_dead
2435 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2436 		host->bus_ops->detect(host);
2437 
2438 	host->detect_change = 0;
2439 
2440 	/*
2441 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2442 	 * the card is no longer present.
2443 	 */
2444 	mmc_bus_put(host);
2445 	mmc_bus_get(host);
2446 
2447 	/* if there still is a card present, stop here */
2448 	if (host->bus_ops != NULL) {
2449 		mmc_bus_put(host);
2450 		goto out;
2451 	}
2452 
2453 	/*
2454 	 * Only we can add a new handler, so it's safe to
2455 	 * release the lock here.
2456 	 */
2457 	mmc_bus_put(host);
2458 
2459 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2460 			host->ops->get_cd(host) == 0) {
2461 		mmc_claim_host(host);
2462 		mmc_power_off(host);
2463 		mmc_release_host(host);
2464 		goto out;
2465 	}
2466 
2467 	mmc_claim_host(host);
2468 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2469 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2470 			break;
2471 		if (freqs[i] <= host->f_min)
2472 			break;
2473 	}
2474 	mmc_release_host(host);
2475 
2476  out:
2477 	if (host->caps & MMC_CAP_NEEDS_POLL)
2478 		mmc_schedule_delayed_work(&host->detect, HZ);
2479 }
2480 
2481 void mmc_start_host(struct mmc_host *host)
2482 {
2483 	host->f_init = max(freqs[0], host->f_min);
2484 	host->rescan_disable = 0;
2485 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2486 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2487 		mmc_power_off(host);
2488 	else
2489 		mmc_power_up(host, host->ocr_avail);
2490 	mmc_gpiod_request_cd_irq(host);
2491 	_mmc_detect_change(host, 0, false);
2492 }
2493 
2494 void mmc_stop_host(struct mmc_host *host)
2495 {
2496 #ifdef CONFIG_MMC_DEBUG
2497 	unsigned long flags;
2498 	spin_lock_irqsave(&host->lock, flags);
2499 	host->removed = 1;
2500 	spin_unlock_irqrestore(&host->lock, flags);
2501 #endif
2502 	if (host->slot.cd_irq >= 0)
2503 		disable_irq(host->slot.cd_irq);
2504 
2505 	host->rescan_disable = 1;
2506 	cancel_delayed_work_sync(&host->detect);
2507 	mmc_flush_scheduled_work();
2508 
2509 	/* clear pm flags now and let card drivers set them as needed */
2510 	host->pm_flags = 0;
2511 
2512 	mmc_bus_get(host);
2513 	if (host->bus_ops && !host->bus_dead) {
2514 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2515 		host->bus_ops->remove(host);
2516 		mmc_claim_host(host);
2517 		mmc_detach_bus(host);
2518 		mmc_power_off(host);
2519 		mmc_release_host(host);
2520 		mmc_bus_put(host);
2521 		return;
2522 	}
2523 	mmc_bus_put(host);
2524 
2525 	BUG_ON(host->card);
2526 
2527 	mmc_power_off(host);
2528 }
2529 
2530 int mmc_power_save_host(struct mmc_host *host)
2531 {
2532 	int ret = 0;
2533 
2534 #ifdef CONFIG_MMC_DEBUG
2535 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2536 #endif
2537 
2538 	mmc_bus_get(host);
2539 
2540 	if (!host->bus_ops || host->bus_dead) {
2541 		mmc_bus_put(host);
2542 		return -EINVAL;
2543 	}
2544 
2545 	if (host->bus_ops->power_save)
2546 		ret = host->bus_ops->power_save(host);
2547 
2548 	mmc_bus_put(host);
2549 
2550 	mmc_power_off(host);
2551 
2552 	return ret;
2553 }
2554 EXPORT_SYMBOL(mmc_power_save_host);
2555 
2556 int mmc_power_restore_host(struct mmc_host *host)
2557 {
2558 	int ret;
2559 
2560 #ifdef CONFIG_MMC_DEBUG
2561 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2562 #endif
2563 
2564 	mmc_bus_get(host);
2565 
2566 	if (!host->bus_ops || host->bus_dead) {
2567 		mmc_bus_put(host);
2568 		return -EINVAL;
2569 	}
2570 
2571 	mmc_power_up(host, host->card->ocr);
2572 	ret = host->bus_ops->power_restore(host);
2573 
2574 	mmc_bus_put(host);
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL(mmc_power_restore_host);
2579 
2580 /*
2581  * Flush the cache to the non-volatile storage.
2582  */
2583 int mmc_flush_cache(struct mmc_card *card)
2584 {
2585 	int err = 0;
2586 
2587 	if (mmc_card_mmc(card) &&
2588 			(card->ext_csd.cache_size > 0) &&
2589 			(card->ext_csd.cache_ctrl & 1)) {
2590 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2591 				EXT_CSD_FLUSH_CACHE, 1, 0);
2592 		if (err)
2593 			pr_err("%s: cache flush error %d\n",
2594 					mmc_hostname(card->host), err);
2595 	}
2596 
2597 	return err;
2598 }
2599 EXPORT_SYMBOL(mmc_flush_cache);
2600 
2601 #ifdef CONFIG_PM
2602 
2603 /* Do the card removal on suspend if card is assumed removeable
2604  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2605    to sync the card.
2606 */
2607 int mmc_pm_notify(struct notifier_block *notify_block,
2608 					unsigned long mode, void *unused)
2609 {
2610 	struct mmc_host *host = container_of(
2611 		notify_block, struct mmc_host, pm_notify);
2612 	unsigned long flags;
2613 	int err = 0;
2614 
2615 	switch (mode) {
2616 	case PM_HIBERNATION_PREPARE:
2617 	case PM_SUSPEND_PREPARE:
2618 		spin_lock_irqsave(&host->lock, flags);
2619 		host->rescan_disable = 1;
2620 		spin_unlock_irqrestore(&host->lock, flags);
2621 		cancel_delayed_work_sync(&host->detect);
2622 
2623 		if (!host->bus_ops)
2624 			break;
2625 
2626 		/* Validate prerequisites for suspend */
2627 		if (host->bus_ops->pre_suspend)
2628 			err = host->bus_ops->pre_suspend(host);
2629 		if (!err)
2630 			break;
2631 
2632 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2633 		host->bus_ops->remove(host);
2634 		mmc_claim_host(host);
2635 		mmc_detach_bus(host);
2636 		mmc_power_off(host);
2637 		mmc_release_host(host);
2638 		host->pm_flags = 0;
2639 		break;
2640 
2641 	case PM_POST_SUSPEND:
2642 	case PM_POST_HIBERNATION:
2643 	case PM_POST_RESTORE:
2644 
2645 		spin_lock_irqsave(&host->lock, flags);
2646 		host->rescan_disable = 0;
2647 		spin_unlock_irqrestore(&host->lock, flags);
2648 		_mmc_detect_change(host, 0, false);
2649 
2650 	}
2651 
2652 	return 0;
2653 }
2654 #endif
2655 
2656 /**
2657  * mmc_init_context_info() - init synchronization context
2658  * @host: mmc host
2659  *
2660  * Init struct context_info needed to implement asynchronous
2661  * request mechanism, used by mmc core, host driver and mmc requests
2662  * supplier.
2663  */
2664 void mmc_init_context_info(struct mmc_host *host)
2665 {
2666 	spin_lock_init(&host->context_info.lock);
2667 	host->context_info.is_new_req = false;
2668 	host->context_info.is_done_rcv = false;
2669 	host->context_info.is_waiting_last_req = false;
2670 	init_waitqueue_head(&host->context_info.wait);
2671 }
2672 
2673 static int __init mmc_init(void)
2674 {
2675 	int ret;
2676 
2677 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2678 	if (!workqueue)
2679 		return -ENOMEM;
2680 
2681 	ret = mmc_register_bus();
2682 	if (ret)
2683 		goto destroy_workqueue;
2684 
2685 	ret = mmc_register_host_class();
2686 	if (ret)
2687 		goto unregister_bus;
2688 
2689 	ret = sdio_register_bus();
2690 	if (ret)
2691 		goto unregister_host_class;
2692 
2693 	return 0;
2694 
2695 unregister_host_class:
2696 	mmc_unregister_host_class();
2697 unregister_bus:
2698 	mmc_unregister_bus();
2699 destroy_workqueue:
2700 	destroy_workqueue(workqueue);
2701 
2702 	return ret;
2703 }
2704 
2705 static void __exit mmc_exit(void)
2706 {
2707 	sdio_unregister_bus();
2708 	mmc_unregister_host_class();
2709 	mmc_unregister_bus();
2710 	destroy_workqueue(workqueue);
2711 }
2712 
2713 subsys_initcall(mmc_init);
2714 module_exit(mmc_exit);
2715 
2716 MODULE_LICENSE("GPL");
2717