1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 44 #include "mmc_ops.h" 45 #include "sd_ops.h" 46 #include "sdio_ops.h" 47 48 /* If the device is not responding */ 49 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 50 51 /* 52 * Background operations can take a long time, depending on the housekeeping 53 * operations the card has to perform. 54 */ 55 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 56 57 static struct workqueue_struct *workqueue; 58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 59 60 /* 61 * Enabling software CRCs on the data blocks can be a significant (30%) 62 * performance cost, and for other reasons may not always be desired. 63 * So we allow it it to be disabled. 64 */ 65 bool use_spi_crc = 1; 66 module_param(use_spi_crc, bool, 0); 67 68 /* 69 * Internal function. Schedule delayed work in the MMC work queue. 70 */ 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 return queue_delayed_work(workqueue, work, delay); 75 } 76 77 /* 78 * Internal function. Flush all scheduled work from the MMC work queue. 79 */ 80 static void mmc_flush_scheduled_work(void) 81 { 82 flush_workqueue(workqueue); 83 } 84 85 #ifdef CONFIG_FAIL_MMC_REQUEST 86 87 /* 88 * Internal function. Inject random data errors. 89 * If mmc_data is NULL no errors are injected. 90 */ 91 static void mmc_should_fail_request(struct mmc_host *host, 92 struct mmc_request *mrq) 93 { 94 struct mmc_command *cmd = mrq->cmd; 95 struct mmc_data *data = mrq->data; 96 static const int data_errors[] = { 97 -ETIMEDOUT, 98 -EILSEQ, 99 -EIO, 100 }; 101 102 if (!data) 103 return; 104 105 if (cmd->error || data->error || 106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 107 return; 108 109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 111 } 112 113 #else /* CONFIG_FAIL_MMC_REQUEST */ 114 115 static inline void mmc_should_fail_request(struct mmc_host *host, 116 struct mmc_request *mrq) 117 { 118 } 119 120 #endif /* CONFIG_FAIL_MMC_REQUEST */ 121 122 /** 123 * mmc_request_done - finish processing an MMC request 124 * @host: MMC host which completed request 125 * @mrq: MMC request which request 126 * 127 * MMC drivers should call this function when they have completed 128 * their processing of a request. 129 */ 130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 131 { 132 struct mmc_command *cmd = mrq->cmd; 133 int err = cmd->error; 134 135 if (err && cmd->retries && mmc_host_is_spi(host)) { 136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 137 cmd->retries = 0; 138 } 139 140 if (err && cmd->retries && !mmc_card_removed(host->card)) { 141 /* 142 * Request starter must handle retries - see 143 * mmc_wait_for_req_done(). 144 */ 145 if (mrq->done) 146 mrq->done(mrq); 147 } else { 148 mmc_should_fail_request(host, mrq); 149 150 led_trigger_event(host->led, LED_OFF); 151 152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 153 mmc_hostname(host), cmd->opcode, err, 154 cmd->resp[0], cmd->resp[1], 155 cmd->resp[2], cmd->resp[3]); 156 157 if (mrq->data) { 158 pr_debug("%s: %d bytes transferred: %d\n", 159 mmc_hostname(host), 160 mrq->data->bytes_xfered, mrq->data->error); 161 } 162 163 if (mrq->stop) { 164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 165 mmc_hostname(host), mrq->stop->opcode, 166 mrq->stop->error, 167 mrq->stop->resp[0], mrq->stop->resp[1], 168 mrq->stop->resp[2], mrq->stop->resp[3]); 169 } 170 171 if (mrq->done) 172 mrq->done(mrq); 173 174 mmc_host_clk_release(host); 175 } 176 } 177 178 EXPORT_SYMBOL(mmc_request_done); 179 180 static void 181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 182 { 183 #ifdef CONFIG_MMC_DEBUG 184 unsigned int i, sz; 185 struct scatterlist *sg; 186 #endif 187 188 if (mrq->sbc) { 189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 190 mmc_hostname(host), mrq->sbc->opcode, 191 mrq->sbc->arg, mrq->sbc->flags); 192 } 193 194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 195 mmc_hostname(host), mrq->cmd->opcode, 196 mrq->cmd->arg, mrq->cmd->flags); 197 198 if (mrq->data) { 199 pr_debug("%s: blksz %d blocks %d flags %08x " 200 "tsac %d ms nsac %d\n", 201 mmc_hostname(host), mrq->data->blksz, 202 mrq->data->blocks, mrq->data->flags, 203 mrq->data->timeout_ns / 1000000, 204 mrq->data->timeout_clks); 205 } 206 207 if (mrq->stop) { 208 pr_debug("%s: CMD%u arg %08x flags %08x\n", 209 mmc_hostname(host), mrq->stop->opcode, 210 mrq->stop->arg, mrq->stop->flags); 211 } 212 213 WARN_ON(!host->claimed); 214 215 mrq->cmd->error = 0; 216 mrq->cmd->mrq = mrq; 217 if (mrq->data) { 218 BUG_ON(mrq->data->blksz > host->max_blk_size); 219 BUG_ON(mrq->data->blocks > host->max_blk_count); 220 BUG_ON(mrq->data->blocks * mrq->data->blksz > 221 host->max_req_size); 222 223 #ifdef CONFIG_MMC_DEBUG 224 sz = 0; 225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 226 sz += sg->length; 227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 228 #endif 229 230 mrq->cmd->data = mrq->data; 231 mrq->data->error = 0; 232 mrq->data->mrq = mrq; 233 if (mrq->stop) { 234 mrq->data->stop = mrq->stop; 235 mrq->stop->error = 0; 236 mrq->stop->mrq = mrq; 237 } 238 } 239 mmc_host_clk_hold(host); 240 led_trigger_event(host->led, LED_FULL); 241 host->ops->request(host, mrq); 242 } 243 244 /** 245 * mmc_start_bkops - start BKOPS for supported cards 246 * @card: MMC card to start BKOPS 247 * @form_exception: A flag to indicate if this function was 248 * called due to an exception raised by the card 249 * 250 * Start background operations whenever requested. 251 * When the urgent BKOPS bit is set in a R1 command response 252 * then background operations should be started immediately. 253 */ 254 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 255 { 256 int err; 257 int timeout; 258 bool use_busy_signal; 259 260 BUG_ON(!card); 261 262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) 263 return; 264 265 err = mmc_read_bkops_status(card); 266 if (err) { 267 pr_err("%s: Failed to read bkops status: %d\n", 268 mmc_hostname(card->host), err); 269 return; 270 } 271 272 if (!card->ext_csd.raw_bkops_status) 273 return; 274 275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 276 from_exception) 277 return; 278 279 mmc_claim_host(card->host); 280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 281 timeout = MMC_BKOPS_MAX_TIMEOUT; 282 use_busy_signal = true; 283 } else { 284 timeout = 0; 285 use_busy_signal = false; 286 } 287 288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 289 EXT_CSD_BKOPS_START, 1, timeout, 290 use_busy_signal, true, false); 291 if (err) { 292 pr_warn("%s: Error %d starting bkops\n", 293 mmc_hostname(card->host), err); 294 goto out; 295 } 296 297 /* 298 * For urgent bkops status (LEVEL_2 and more) 299 * bkops executed synchronously, otherwise 300 * the operation is in progress 301 */ 302 if (!use_busy_signal) 303 mmc_card_set_doing_bkops(card); 304 out: 305 mmc_release_host(card->host); 306 } 307 EXPORT_SYMBOL(mmc_start_bkops); 308 309 /* 310 * mmc_wait_data_done() - done callback for data request 311 * @mrq: done data request 312 * 313 * Wakes up mmc context, passed as a callback to host controller driver 314 */ 315 static void mmc_wait_data_done(struct mmc_request *mrq) 316 { 317 mrq->host->context_info.is_done_rcv = true; 318 wake_up_interruptible(&mrq->host->context_info.wait); 319 } 320 321 static void mmc_wait_done(struct mmc_request *mrq) 322 { 323 complete(&mrq->completion); 324 } 325 326 /* 327 *__mmc_start_data_req() - starts data request 328 * @host: MMC host to start the request 329 * @mrq: data request to start 330 * 331 * Sets the done callback to be called when request is completed by the card. 332 * Starts data mmc request execution 333 */ 334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 335 { 336 mrq->done = mmc_wait_data_done; 337 mrq->host = host; 338 if (mmc_card_removed(host->card)) { 339 mrq->cmd->error = -ENOMEDIUM; 340 mmc_wait_data_done(mrq); 341 return -ENOMEDIUM; 342 } 343 mmc_start_request(host, mrq); 344 345 return 0; 346 } 347 348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 349 { 350 init_completion(&mrq->completion); 351 mrq->done = mmc_wait_done; 352 if (mmc_card_removed(host->card)) { 353 mrq->cmd->error = -ENOMEDIUM; 354 complete(&mrq->completion); 355 return -ENOMEDIUM; 356 } 357 mmc_start_request(host, mrq); 358 return 0; 359 } 360 361 /* 362 * mmc_wait_for_data_req_done() - wait for request completed 363 * @host: MMC host to prepare the command. 364 * @mrq: MMC request to wait for 365 * 366 * Blocks MMC context till host controller will ack end of data request 367 * execution or new request notification arrives from the block layer. 368 * Handles command retries. 369 * 370 * Returns enum mmc_blk_status after checking errors. 371 */ 372 static int mmc_wait_for_data_req_done(struct mmc_host *host, 373 struct mmc_request *mrq, 374 struct mmc_async_req *next_req) 375 { 376 struct mmc_command *cmd; 377 struct mmc_context_info *context_info = &host->context_info; 378 int err; 379 unsigned long flags; 380 381 while (1) { 382 wait_event_interruptible(context_info->wait, 383 (context_info->is_done_rcv || 384 context_info->is_new_req)); 385 spin_lock_irqsave(&context_info->lock, flags); 386 context_info->is_waiting_last_req = false; 387 spin_unlock_irqrestore(&context_info->lock, flags); 388 if (context_info->is_done_rcv) { 389 context_info->is_done_rcv = false; 390 context_info->is_new_req = false; 391 cmd = mrq->cmd; 392 393 if (!cmd->error || !cmd->retries || 394 mmc_card_removed(host->card)) { 395 err = host->areq->err_check(host->card, 396 host->areq); 397 break; /* return err */ 398 } else { 399 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 400 mmc_hostname(host), 401 cmd->opcode, cmd->error); 402 cmd->retries--; 403 cmd->error = 0; 404 host->ops->request(host, mrq); 405 continue; /* wait for done/new event again */ 406 } 407 } else if (context_info->is_new_req) { 408 context_info->is_new_req = false; 409 if (!next_req) { 410 err = MMC_BLK_NEW_REQUEST; 411 break; /* return err */ 412 } 413 } 414 } 415 return err; 416 } 417 418 static void mmc_wait_for_req_done(struct mmc_host *host, 419 struct mmc_request *mrq) 420 { 421 struct mmc_command *cmd; 422 423 while (1) { 424 wait_for_completion(&mrq->completion); 425 426 cmd = mrq->cmd; 427 428 /* 429 * If host has timed out waiting for the sanitize 430 * to complete, card might be still in programming state 431 * so let's try to bring the card out of programming 432 * state. 433 */ 434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 435 if (!mmc_interrupt_hpi(host->card)) { 436 pr_warn("%s: %s: Interrupted sanitize\n", 437 mmc_hostname(host), __func__); 438 cmd->error = 0; 439 break; 440 } else { 441 pr_err("%s: %s: Failed to interrupt sanitize\n", 442 mmc_hostname(host), __func__); 443 } 444 } 445 if (!cmd->error || !cmd->retries || 446 mmc_card_removed(host->card)) 447 break; 448 449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 450 mmc_hostname(host), cmd->opcode, cmd->error); 451 cmd->retries--; 452 cmd->error = 0; 453 host->ops->request(host, mrq); 454 } 455 } 456 457 /** 458 * mmc_pre_req - Prepare for a new request 459 * @host: MMC host to prepare command 460 * @mrq: MMC request to prepare for 461 * @is_first_req: true if there is no previous started request 462 * that may run in parellel to this call, otherwise false 463 * 464 * mmc_pre_req() is called in prior to mmc_start_req() to let 465 * host prepare for the new request. Preparation of a request may be 466 * performed while another request is running on the host. 467 */ 468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 469 bool is_first_req) 470 { 471 if (host->ops->pre_req) { 472 mmc_host_clk_hold(host); 473 host->ops->pre_req(host, mrq, is_first_req); 474 mmc_host_clk_release(host); 475 } 476 } 477 478 /** 479 * mmc_post_req - Post process a completed request 480 * @host: MMC host to post process command 481 * @mrq: MMC request to post process for 482 * @err: Error, if non zero, clean up any resources made in pre_req 483 * 484 * Let the host post process a completed request. Post processing of 485 * a request may be performed while another reuqest is running. 486 */ 487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 488 int err) 489 { 490 if (host->ops->post_req) { 491 mmc_host_clk_hold(host); 492 host->ops->post_req(host, mrq, err); 493 mmc_host_clk_release(host); 494 } 495 } 496 497 /** 498 * mmc_start_req - start a non-blocking request 499 * @host: MMC host to start command 500 * @areq: async request to start 501 * @error: out parameter returns 0 for success, otherwise non zero 502 * 503 * Start a new MMC custom command request for a host. 504 * If there is on ongoing async request wait for completion 505 * of that request and start the new one and return. 506 * Does not wait for the new request to complete. 507 * 508 * Returns the completed request, NULL in case of none completed. 509 * Wait for the an ongoing request (previoulsy started) to complete and 510 * return the completed request. If there is no ongoing request, NULL 511 * is returned without waiting. NULL is not an error condition. 512 */ 513 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 514 struct mmc_async_req *areq, int *error) 515 { 516 int err = 0; 517 int start_err = 0; 518 struct mmc_async_req *data = host->areq; 519 520 /* Prepare a new request */ 521 if (areq) 522 mmc_pre_req(host, areq->mrq, !host->areq); 523 524 if (host->areq) { 525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 526 if (err == MMC_BLK_NEW_REQUEST) { 527 if (error) 528 *error = err; 529 /* 530 * The previous request was not completed, 531 * nothing to return 532 */ 533 return NULL; 534 } 535 /* 536 * Check BKOPS urgency for each R1 response 537 */ 538 if (host->card && mmc_card_mmc(host->card) && 539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) 542 mmc_start_bkops(host->card, true); 543 } 544 545 if (!err && areq) 546 start_err = __mmc_start_data_req(host, areq->mrq); 547 548 if (host->areq) 549 mmc_post_req(host, host->areq->mrq, 0); 550 551 /* Cancel a prepared request if it was not started. */ 552 if ((err || start_err) && areq) 553 mmc_post_req(host, areq->mrq, -EINVAL); 554 555 if (err) 556 host->areq = NULL; 557 else 558 host->areq = areq; 559 560 if (error) 561 *error = err; 562 return data; 563 } 564 EXPORT_SYMBOL(mmc_start_req); 565 566 /** 567 * mmc_wait_for_req - start a request and wait for completion 568 * @host: MMC host to start command 569 * @mrq: MMC request to start 570 * 571 * Start a new MMC custom command request for a host, and wait 572 * for the command to complete. Does not attempt to parse the 573 * response. 574 */ 575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 576 { 577 __mmc_start_req(host, mrq); 578 mmc_wait_for_req_done(host, mrq); 579 } 580 EXPORT_SYMBOL(mmc_wait_for_req); 581 582 /** 583 * mmc_interrupt_hpi - Issue for High priority Interrupt 584 * @card: the MMC card associated with the HPI transfer 585 * 586 * Issued High Priority Interrupt, and check for card status 587 * until out-of prg-state. 588 */ 589 int mmc_interrupt_hpi(struct mmc_card *card) 590 { 591 int err; 592 u32 status; 593 unsigned long prg_wait; 594 595 BUG_ON(!card); 596 597 if (!card->ext_csd.hpi_en) { 598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 599 return 1; 600 } 601 602 mmc_claim_host(card->host); 603 err = mmc_send_status(card, &status); 604 if (err) { 605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 606 goto out; 607 } 608 609 switch (R1_CURRENT_STATE(status)) { 610 case R1_STATE_IDLE: 611 case R1_STATE_READY: 612 case R1_STATE_STBY: 613 case R1_STATE_TRAN: 614 /* 615 * In idle and transfer states, HPI is not needed and the caller 616 * can issue the next intended command immediately 617 */ 618 goto out; 619 case R1_STATE_PRG: 620 break; 621 default: 622 /* In all other states, it's illegal to issue HPI */ 623 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 624 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 625 err = -EINVAL; 626 goto out; 627 } 628 629 err = mmc_send_hpi_cmd(card, &status); 630 if (err) 631 goto out; 632 633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 634 do { 635 err = mmc_send_status(card, &status); 636 637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 638 break; 639 if (time_after(jiffies, prg_wait)) 640 err = -ETIMEDOUT; 641 } while (!err); 642 643 out: 644 mmc_release_host(card->host); 645 return err; 646 } 647 EXPORT_SYMBOL(mmc_interrupt_hpi); 648 649 /** 650 * mmc_wait_for_cmd - start a command and wait for completion 651 * @host: MMC host to start command 652 * @cmd: MMC command to start 653 * @retries: maximum number of retries 654 * 655 * Start a new MMC command for a host, and wait for the command 656 * to complete. Return any error that occurred while the command 657 * was executing. Do not attempt to parse the response. 658 */ 659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 660 { 661 struct mmc_request mrq = {NULL}; 662 663 WARN_ON(!host->claimed); 664 665 memset(cmd->resp, 0, sizeof(cmd->resp)); 666 cmd->retries = retries; 667 668 mrq.cmd = cmd; 669 cmd->data = NULL; 670 671 mmc_wait_for_req(host, &mrq); 672 673 return cmd->error; 674 } 675 676 EXPORT_SYMBOL(mmc_wait_for_cmd); 677 678 /** 679 * mmc_stop_bkops - stop ongoing BKOPS 680 * @card: MMC card to check BKOPS 681 * 682 * Send HPI command to stop ongoing background operations to 683 * allow rapid servicing of foreground operations, e.g. read/ 684 * writes. Wait until the card comes out of the programming state 685 * to avoid errors in servicing read/write requests. 686 */ 687 int mmc_stop_bkops(struct mmc_card *card) 688 { 689 int err = 0; 690 691 BUG_ON(!card); 692 err = mmc_interrupt_hpi(card); 693 694 /* 695 * If err is EINVAL, we can't issue an HPI. 696 * It should complete the BKOPS. 697 */ 698 if (!err || (err == -EINVAL)) { 699 mmc_card_clr_doing_bkops(card); 700 err = 0; 701 } 702 703 return err; 704 } 705 EXPORT_SYMBOL(mmc_stop_bkops); 706 707 int mmc_read_bkops_status(struct mmc_card *card) 708 { 709 int err; 710 u8 *ext_csd; 711 712 /* 713 * In future work, we should consider storing the entire ext_csd. 714 */ 715 ext_csd = kmalloc(512, GFP_KERNEL); 716 if (!ext_csd) { 717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n", 718 mmc_hostname(card->host)); 719 return -ENOMEM; 720 } 721 722 mmc_claim_host(card->host); 723 err = mmc_send_ext_csd(card, ext_csd); 724 mmc_release_host(card->host); 725 if (err) 726 goto out; 727 728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 730 out: 731 kfree(ext_csd); 732 return err; 733 } 734 EXPORT_SYMBOL(mmc_read_bkops_status); 735 736 /** 737 * mmc_set_data_timeout - set the timeout for a data command 738 * @data: data phase for command 739 * @card: the MMC card associated with the data transfer 740 * 741 * Computes the data timeout parameters according to the 742 * correct algorithm given the card type. 743 */ 744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 745 { 746 unsigned int mult; 747 748 /* 749 * SDIO cards only define an upper 1 s limit on access. 750 */ 751 if (mmc_card_sdio(card)) { 752 data->timeout_ns = 1000000000; 753 data->timeout_clks = 0; 754 return; 755 } 756 757 /* 758 * SD cards use a 100 multiplier rather than 10 759 */ 760 mult = mmc_card_sd(card) ? 100 : 10; 761 762 /* 763 * Scale up the multiplier (and therefore the timeout) by 764 * the r2w factor for writes. 765 */ 766 if (data->flags & MMC_DATA_WRITE) 767 mult <<= card->csd.r2w_factor; 768 769 data->timeout_ns = card->csd.tacc_ns * mult; 770 data->timeout_clks = card->csd.tacc_clks * mult; 771 772 /* 773 * SD cards also have an upper limit on the timeout. 774 */ 775 if (mmc_card_sd(card)) { 776 unsigned int timeout_us, limit_us; 777 778 timeout_us = data->timeout_ns / 1000; 779 if (mmc_host_clk_rate(card->host)) 780 timeout_us += data->timeout_clks * 1000 / 781 (mmc_host_clk_rate(card->host) / 1000); 782 783 if (data->flags & MMC_DATA_WRITE) 784 /* 785 * The MMC spec "It is strongly recommended 786 * for hosts to implement more than 500ms 787 * timeout value even if the card indicates 788 * the 250ms maximum busy length." Even the 789 * previous value of 300ms is known to be 790 * insufficient for some cards. 791 */ 792 limit_us = 3000000; 793 else 794 limit_us = 100000; 795 796 /* 797 * SDHC cards always use these fixed values. 798 */ 799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 800 data->timeout_ns = limit_us * 1000; 801 data->timeout_clks = 0; 802 } 803 804 /* assign limit value if invalid */ 805 if (timeout_us == 0) 806 data->timeout_ns = limit_us * 1000; 807 } 808 809 /* 810 * Some cards require longer data read timeout than indicated in CSD. 811 * Address this by setting the read timeout to a "reasonably high" 812 * value. For the cards tested, 300ms has proven enough. If necessary, 813 * this value can be increased if other problematic cards require this. 814 */ 815 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 816 data->timeout_ns = 300000000; 817 data->timeout_clks = 0; 818 } 819 820 /* 821 * Some cards need very high timeouts if driven in SPI mode. 822 * The worst observed timeout was 900ms after writing a 823 * continuous stream of data until the internal logic 824 * overflowed. 825 */ 826 if (mmc_host_is_spi(card->host)) { 827 if (data->flags & MMC_DATA_WRITE) { 828 if (data->timeout_ns < 1000000000) 829 data->timeout_ns = 1000000000; /* 1s */ 830 } else { 831 if (data->timeout_ns < 100000000) 832 data->timeout_ns = 100000000; /* 100ms */ 833 } 834 } 835 } 836 EXPORT_SYMBOL(mmc_set_data_timeout); 837 838 /** 839 * mmc_align_data_size - pads a transfer size to a more optimal value 840 * @card: the MMC card associated with the data transfer 841 * @sz: original transfer size 842 * 843 * Pads the original data size with a number of extra bytes in 844 * order to avoid controller bugs and/or performance hits 845 * (e.g. some controllers revert to PIO for certain sizes). 846 * 847 * Returns the improved size, which might be unmodified. 848 * 849 * Note that this function is only relevant when issuing a 850 * single scatter gather entry. 851 */ 852 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 853 { 854 /* 855 * FIXME: We don't have a system for the controller to tell 856 * the core about its problems yet, so for now we just 32-bit 857 * align the size. 858 */ 859 sz = ((sz + 3) / 4) * 4; 860 861 return sz; 862 } 863 EXPORT_SYMBOL(mmc_align_data_size); 864 865 /** 866 * __mmc_claim_host - exclusively claim a host 867 * @host: mmc host to claim 868 * @abort: whether or not the operation should be aborted 869 * 870 * Claim a host for a set of operations. If @abort is non null and 871 * dereference a non-zero value then this will return prematurely with 872 * that non-zero value without acquiring the lock. Returns zero 873 * with the lock held otherwise. 874 */ 875 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 876 { 877 DECLARE_WAITQUEUE(wait, current); 878 unsigned long flags; 879 int stop; 880 881 might_sleep(); 882 883 add_wait_queue(&host->wq, &wait); 884 spin_lock_irqsave(&host->lock, flags); 885 while (1) { 886 set_current_state(TASK_UNINTERRUPTIBLE); 887 stop = abort ? atomic_read(abort) : 0; 888 if (stop || !host->claimed || host->claimer == current) 889 break; 890 spin_unlock_irqrestore(&host->lock, flags); 891 schedule(); 892 spin_lock_irqsave(&host->lock, flags); 893 } 894 set_current_state(TASK_RUNNING); 895 if (!stop) { 896 host->claimed = 1; 897 host->claimer = current; 898 host->claim_cnt += 1; 899 } else 900 wake_up(&host->wq); 901 spin_unlock_irqrestore(&host->lock, flags); 902 remove_wait_queue(&host->wq, &wait); 903 if (host->ops->enable && !stop && host->claim_cnt == 1) 904 host->ops->enable(host); 905 return stop; 906 } 907 908 EXPORT_SYMBOL(__mmc_claim_host); 909 910 /** 911 * mmc_release_host - release a host 912 * @host: mmc host to release 913 * 914 * Release a MMC host, allowing others to claim the host 915 * for their operations. 916 */ 917 void mmc_release_host(struct mmc_host *host) 918 { 919 unsigned long flags; 920 921 WARN_ON(!host->claimed); 922 923 if (host->ops->disable && host->claim_cnt == 1) 924 host->ops->disable(host); 925 926 spin_lock_irqsave(&host->lock, flags); 927 if (--host->claim_cnt) { 928 /* Release for nested claim */ 929 spin_unlock_irqrestore(&host->lock, flags); 930 } else { 931 host->claimed = 0; 932 host->claimer = NULL; 933 spin_unlock_irqrestore(&host->lock, flags); 934 wake_up(&host->wq); 935 } 936 } 937 EXPORT_SYMBOL(mmc_release_host); 938 939 /* 940 * This is a helper function, which fetches a runtime pm reference for the 941 * card device and also claims the host. 942 */ 943 void mmc_get_card(struct mmc_card *card) 944 { 945 pm_runtime_get_sync(&card->dev); 946 mmc_claim_host(card->host); 947 } 948 EXPORT_SYMBOL(mmc_get_card); 949 950 /* 951 * This is a helper function, which releases the host and drops the runtime 952 * pm reference for the card device. 953 */ 954 void mmc_put_card(struct mmc_card *card) 955 { 956 mmc_release_host(card->host); 957 pm_runtime_mark_last_busy(&card->dev); 958 pm_runtime_put_autosuspend(&card->dev); 959 } 960 EXPORT_SYMBOL(mmc_put_card); 961 962 /* 963 * Internal function that does the actual ios call to the host driver, 964 * optionally printing some debug output. 965 */ 966 static inline void mmc_set_ios(struct mmc_host *host) 967 { 968 struct mmc_ios *ios = &host->ios; 969 970 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 971 "width %u timing %u\n", 972 mmc_hostname(host), ios->clock, ios->bus_mode, 973 ios->power_mode, ios->chip_select, ios->vdd, 974 ios->bus_width, ios->timing); 975 976 if (ios->clock > 0) 977 mmc_set_ungated(host); 978 host->ops->set_ios(host, ios); 979 } 980 981 /* 982 * Control chip select pin on a host. 983 */ 984 void mmc_set_chip_select(struct mmc_host *host, int mode) 985 { 986 mmc_host_clk_hold(host); 987 host->ios.chip_select = mode; 988 mmc_set_ios(host); 989 mmc_host_clk_release(host); 990 } 991 992 /* 993 * Sets the host clock to the highest possible frequency that 994 * is below "hz". 995 */ 996 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 997 { 998 WARN_ON(hz && hz < host->f_min); 999 1000 if (hz > host->f_max) 1001 hz = host->f_max; 1002 1003 host->ios.clock = hz; 1004 mmc_set_ios(host); 1005 } 1006 1007 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1008 { 1009 mmc_host_clk_hold(host); 1010 __mmc_set_clock(host, hz); 1011 mmc_host_clk_release(host); 1012 } 1013 1014 #ifdef CONFIG_MMC_CLKGATE 1015 /* 1016 * This gates the clock by setting it to 0 Hz. 1017 */ 1018 void mmc_gate_clock(struct mmc_host *host) 1019 { 1020 unsigned long flags; 1021 1022 spin_lock_irqsave(&host->clk_lock, flags); 1023 host->clk_old = host->ios.clock; 1024 host->ios.clock = 0; 1025 host->clk_gated = true; 1026 spin_unlock_irqrestore(&host->clk_lock, flags); 1027 mmc_set_ios(host); 1028 } 1029 1030 /* 1031 * This restores the clock from gating by using the cached 1032 * clock value. 1033 */ 1034 void mmc_ungate_clock(struct mmc_host *host) 1035 { 1036 /* 1037 * We should previously have gated the clock, so the clock shall 1038 * be 0 here! The clock may however be 0 during initialization, 1039 * when some request operations are performed before setting 1040 * the frequency. When ungate is requested in that situation 1041 * we just ignore the call. 1042 */ 1043 if (host->clk_old) { 1044 BUG_ON(host->ios.clock); 1045 /* This call will also set host->clk_gated to false */ 1046 __mmc_set_clock(host, host->clk_old); 1047 } 1048 } 1049 1050 void mmc_set_ungated(struct mmc_host *host) 1051 { 1052 unsigned long flags; 1053 1054 /* 1055 * We've been given a new frequency while the clock is gated, 1056 * so make sure we regard this as ungating it. 1057 */ 1058 spin_lock_irqsave(&host->clk_lock, flags); 1059 host->clk_gated = false; 1060 spin_unlock_irqrestore(&host->clk_lock, flags); 1061 } 1062 1063 #else 1064 void mmc_set_ungated(struct mmc_host *host) 1065 { 1066 } 1067 #endif 1068 1069 /* 1070 * Change the bus mode (open drain/push-pull) of a host. 1071 */ 1072 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1073 { 1074 mmc_host_clk_hold(host); 1075 host->ios.bus_mode = mode; 1076 mmc_set_ios(host); 1077 mmc_host_clk_release(host); 1078 } 1079 1080 /* 1081 * Change data bus width of a host. 1082 */ 1083 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1084 { 1085 mmc_host_clk_hold(host); 1086 host->ios.bus_width = width; 1087 mmc_set_ios(host); 1088 mmc_host_clk_release(host); 1089 } 1090 1091 /** 1092 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1093 * @vdd: voltage (mV) 1094 * @low_bits: prefer low bits in boundary cases 1095 * 1096 * This function returns the OCR bit number according to the provided @vdd 1097 * value. If conversion is not possible a negative errno value returned. 1098 * 1099 * Depending on the @low_bits flag the function prefers low or high OCR bits 1100 * on boundary voltages. For example, 1101 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1102 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1103 * 1104 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1105 */ 1106 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1107 { 1108 const int max_bit = ilog2(MMC_VDD_35_36); 1109 int bit; 1110 1111 if (vdd < 1650 || vdd > 3600) 1112 return -EINVAL; 1113 1114 if (vdd >= 1650 && vdd <= 1950) 1115 return ilog2(MMC_VDD_165_195); 1116 1117 if (low_bits) 1118 vdd -= 1; 1119 1120 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1121 bit = (vdd - 2000) / 100 + 8; 1122 if (bit > max_bit) 1123 return max_bit; 1124 return bit; 1125 } 1126 1127 /** 1128 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1129 * @vdd_min: minimum voltage value (mV) 1130 * @vdd_max: maximum voltage value (mV) 1131 * 1132 * This function returns the OCR mask bits according to the provided @vdd_min 1133 * and @vdd_max values. If conversion is not possible the function returns 0. 1134 * 1135 * Notes wrt boundary cases: 1136 * This function sets the OCR bits for all boundary voltages, for example 1137 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1138 * MMC_VDD_34_35 mask. 1139 */ 1140 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1141 { 1142 u32 mask = 0; 1143 1144 if (vdd_max < vdd_min) 1145 return 0; 1146 1147 /* Prefer high bits for the boundary vdd_max values. */ 1148 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1149 if (vdd_max < 0) 1150 return 0; 1151 1152 /* Prefer low bits for the boundary vdd_min values. */ 1153 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1154 if (vdd_min < 0) 1155 return 0; 1156 1157 /* Fill the mask, from max bit to min bit. */ 1158 while (vdd_max >= vdd_min) 1159 mask |= 1 << vdd_max--; 1160 1161 return mask; 1162 } 1163 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1164 1165 #ifdef CONFIG_OF 1166 1167 /** 1168 * mmc_of_parse_voltage - return mask of supported voltages 1169 * @np: The device node need to be parsed. 1170 * @mask: mask of voltages available for MMC/SD/SDIO 1171 * 1172 * 1. Return zero on success. 1173 * 2. Return negative errno: voltage-range is invalid. 1174 */ 1175 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1176 { 1177 const u32 *voltage_ranges; 1178 int num_ranges, i; 1179 1180 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1181 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1182 if (!voltage_ranges || !num_ranges) { 1183 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1184 return -EINVAL; 1185 } 1186 1187 for (i = 0; i < num_ranges; i++) { 1188 const int j = i * 2; 1189 u32 ocr_mask; 1190 1191 ocr_mask = mmc_vddrange_to_ocrmask( 1192 be32_to_cpu(voltage_ranges[j]), 1193 be32_to_cpu(voltage_ranges[j + 1])); 1194 if (!ocr_mask) { 1195 pr_err("%s: voltage-range #%d is invalid\n", 1196 np->full_name, i); 1197 return -EINVAL; 1198 } 1199 *mask |= ocr_mask; 1200 } 1201 1202 return 0; 1203 } 1204 EXPORT_SYMBOL(mmc_of_parse_voltage); 1205 1206 #endif /* CONFIG_OF */ 1207 1208 #ifdef CONFIG_REGULATOR 1209 1210 /** 1211 * mmc_regulator_get_ocrmask - return mask of supported voltages 1212 * @supply: regulator to use 1213 * 1214 * This returns either a negative errno, or a mask of voltages that 1215 * can be provided to MMC/SD/SDIO devices using the specified voltage 1216 * regulator. This would normally be called before registering the 1217 * MMC host adapter. 1218 */ 1219 int mmc_regulator_get_ocrmask(struct regulator *supply) 1220 { 1221 int result = 0; 1222 int count; 1223 int i; 1224 int vdd_uV; 1225 int vdd_mV; 1226 1227 count = regulator_count_voltages(supply); 1228 if (count < 0) 1229 return count; 1230 1231 for (i = 0; i < count; i++) { 1232 vdd_uV = regulator_list_voltage(supply, i); 1233 if (vdd_uV <= 0) 1234 continue; 1235 1236 vdd_mV = vdd_uV / 1000; 1237 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1238 } 1239 1240 if (!result) { 1241 vdd_uV = regulator_get_voltage(supply); 1242 if (vdd_uV <= 0) 1243 return vdd_uV; 1244 1245 vdd_mV = vdd_uV / 1000; 1246 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1247 } 1248 1249 return result; 1250 } 1251 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1252 1253 /** 1254 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1255 * @mmc: the host to regulate 1256 * @supply: regulator to use 1257 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1258 * 1259 * Returns zero on success, else negative errno. 1260 * 1261 * MMC host drivers may use this to enable or disable a regulator using 1262 * a particular supply voltage. This would normally be called from the 1263 * set_ios() method. 1264 */ 1265 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1266 struct regulator *supply, 1267 unsigned short vdd_bit) 1268 { 1269 int result = 0; 1270 int min_uV, max_uV; 1271 1272 if (vdd_bit) { 1273 int tmp; 1274 1275 /* 1276 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1277 * bits this regulator doesn't quite support ... don't 1278 * be too picky, most cards and regulators are OK with 1279 * a 0.1V range goof (it's a small error percentage). 1280 */ 1281 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1282 if (tmp == 0) { 1283 min_uV = 1650 * 1000; 1284 max_uV = 1950 * 1000; 1285 } else { 1286 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1287 max_uV = min_uV + 100 * 1000; 1288 } 1289 1290 result = regulator_set_voltage(supply, min_uV, max_uV); 1291 if (result == 0 && !mmc->regulator_enabled) { 1292 result = regulator_enable(supply); 1293 if (!result) 1294 mmc->regulator_enabled = true; 1295 } 1296 } else if (mmc->regulator_enabled) { 1297 result = regulator_disable(supply); 1298 if (result == 0) 1299 mmc->regulator_enabled = false; 1300 } 1301 1302 if (result) 1303 dev_err(mmc_dev(mmc), 1304 "could not set regulator OCR (%d)\n", result); 1305 return result; 1306 } 1307 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1308 1309 #endif /* CONFIG_REGULATOR */ 1310 1311 int mmc_regulator_get_supply(struct mmc_host *mmc) 1312 { 1313 struct device *dev = mmc_dev(mmc); 1314 int ret; 1315 1316 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1317 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1318 1319 if (IS_ERR(mmc->supply.vmmc)) { 1320 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1321 return -EPROBE_DEFER; 1322 dev_info(dev, "No vmmc regulator found\n"); 1323 } else { 1324 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1325 if (ret > 0) 1326 mmc->ocr_avail = ret; 1327 else 1328 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1329 } 1330 1331 if (IS_ERR(mmc->supply.vqmmc)) { 1332 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1333 return -EPROBE_DEFER; 1334 dev_info(dev, "No vqmmc regulator found\n"); 1335 } 1336 1337 return 0; 1338 } 1339 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1340 1341 /* 1342 * Mask off any voltages we don't support and select 1343 * the lowest voltage 1344 */ 1345 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1346 { 1347 int bit; 1348 1349 /* 1350 * Sanity check the voltages that the card claims to 1351 * support. 1352 */ 1353 if (ocr & 0x7F) { 1354 dev_warn(mmc_dev(host), 1355 "card claims to support voltages below defined range\n"); 1356 ocr &= ~0x7F; 1357 } 1358 1359 ocr &= host->ocr_avail; 1360 if (!ocr) { 1361 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1362 return 0; 1363 } 1364 1365 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1366 bit = ffs(ocr) - 1; 1367 ocr &= 3 << bit; 1368 mmc_power_cycle(host, ocr); 1369 } else { 1370 bit = fls(ocr) - 1; 1371 ocr &= 3 << bit; 1372 if (bit != host->ios.vdd) 1373 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1374 } 1375 1376 return ocr; 1377 } 1378 1379 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1380 { 1381 int err = 0; 1382 int old_signal_voltage = host->ios.signal_voltage; 1383 1384 host->ios.signal_voltage = signal_voltage; 1385 if (host->ops->start_signal_voltage_switch) { 1386 mmc_host_clk_hold(host); 1387 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1388 mmc_host_clk_release(host); 1389 } 1390 1391 if (err) 1392 host->ios.signal_voltage = old_signal_voltage; 1393 1394 return err; 1395 1396 } 1397 1398 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1399 { 1400 struct mmc_command cmd = {0}; 1401 int err = 0; 1402 u32 clock; 1403 1404 BUG_ON(!host); 1405 1406 /* 1407 * Send CMD11 only if the request is to switch the card to 1408 * 1.8V signalling. 1409 */ 1410 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1411 return __mmc_set_signal_voltage(host, signal_voltage); 1412 1413 /* 1414 * If we cannot switch voltages, return failure so the caller 1415 * can continue without UHS mode 1416 */ 1417 if (!host->ops->start_signal_voltage_switch) 1418 return -EPERM; 1419 if (!host->ops->card_busy) 1420 pr_warn("%s: cannot verify signal voltage switch\n", 1421 mmc_hostname(host)); 1422 1423 cmd.opcode = SD_SWITCH_VOLTAGE; 1424 cmd.arg = 0; 1425 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1426 1427 err = mmc_wait_for_cmd(host, &cmd, 0); 1428 if (err) 1429 return err; 1430 1431 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1432 return -EIO; 1433 1434 mmc_host_clk_hold(host); 1435 /* 1436 * The card should drive cmd and dat[0:3] low immediately 1437 * after the response of cmd11, but wait 1 ms to be sure 1438 */ 1439 mmc_delay(1); 1440 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1441 err = -EAGAIN; 1442 goto power_cycle; 1443 } 1444 /* 1445 * During a signal voltage level switch, the clock must be gated 1446 * for 5 ms according to the SD spec 1447 */ 1448 clock = host->ios.clock; 1449 host->ios.clock = 0; 1450 mmc_set_ios(host); 1451 1452 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1453 /* 1454 * Voltages may not have been switched, but we've already 1455 * sent CMD11, so a power cycle is required anyway 1456 */ 1457 err = -EAGAIN; 1458 goto power_cycle; 1459 } 1460 1461 /* Keep clock gated for at least 5 ms */ 1462 mmc_delay(5); 1463 host->ios.clock = clock; 1464 mmc_set_ios(host); 1465 1466 /* Wait for at least 1 ms according to spec */ 1467 mmc_delay(1); 1468 1469 /* 1470 * Failure to switch is indicated by the card holding 1471 * dat[0:3] low 1472 */ 1473 if (host->ops->card_busy && host->ops->card_busy(host)) 1474 err = -EAGAIN; 1475 1476 power_cycle: 1477 if (err) { 1478 pr_debug("%s: Signal voltage switch failed, " 1479 "power cycling card\n", mmc_hostname(host)); 1480 mmc_power_cycle(host, ocr); 1481 } 1482 1483 mmc_host_clk_release(host); 1484 1485 return err; 1486 } 1487 1488 /* 1489 * Select timing parameters for host. 1490 */ 1491 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1492 { 1493 mmc_host_clk_hold(host); 1494 host->ios.timing = timing; 1495 mmc_set_ios(host); 1496 mmc_host_clk_release(host); 1497 } 1498 1499 /* 1500 * Select appropriate driver type for host. 1501 */ 1502 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1503 { 1504 mmc_host_clk_hold(host); 1505 host->ios.drv_type = drv_type; 1506 mmc_set_ios(host); 1507 mmc_host_clk_release(host); 1508 } 1509 1510 /* 1511 * Apply power to the MMC stack. This is a two-stage process. 1512 * First, we enable power to the card without the clock running. 1513 * We then wait a bit for the power to stabilise. Finally, 1514 * enable the bus drivers and clock to the card. 1515 * 1516 * We must _NOT_ enable the clock prior to power stablising. 1517 * 1518 * If a host does all the power sequencing itself, ignore the 1519 * initial MMC_POWER_UP stage. 1520 */ 1521 void mmc_power_up(struct mmc_host *host, u32 ocr) 1522 { 1523 if (host->ios.power_mode == MMC_POWER_ON) 1524 return; 1525 1526 mmc_host_clk_hold(host); 1527 1528 host->ios.vdd = fls(ocr) - 1; 1529 if (mmc_host_is_spi(host)) 1530 host->ios.chip_select = MMC_CS_HIGH; 1531 else 1532 host->ios.chip_select = MMC_CS_DONTCARE; 1533 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1534 host->ios.power_mode = MMC_POWER_UP; 1535 host->ios.bus_width = MMC_BUS_WIDTH_1; 1536 host->ios.timing = MMC_TIMING_LEGACY; 1537 mmc_set_ios(host); 1538 1539 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1540 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1541 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1542 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1543 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1544 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1545 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1546 1547 /* 1548 * This delay should be sufficient to allow the power supply 1549 * to reach the minimum voltage. 1550 */ 1551 mmc_delay(10); 1552 1553 host->ios.clock = host->f_init; 1554 1555 host->ios.power_mode = MMC_POWER_ON; 1556 mmc_set_ios(host); 1557 1558 /* 1559 * This delay must be at least 74 clock sizes, or 1 ms, or the 1560 * time required to reach a stable voltage. 1561 */ 1562 mmc_delay(10); 1563 1564 mmc_host_clk_release(host); 1565 } 1566 1567 void mmc_power_off(struct mmc_host *host) 1568 { 1569 if (host->ios.power_mode == MMC_POWER_OFF) 1570 return; 1571 1572 mmc_host_clk_hold(host); 1573 1574 host->ios.clock = 0; 1575 host->ios.vdd = 0; 1576 1577 if (!mmc_host_is_spi(host)) { 1578 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1579 host->ios.chip_select = MMC_CS_DONTCARE; 1580 } 1581 host->ios.power_mode = MMC_POWER_OFF; 1582 host->ios.bus_width = MMC_BUS_WIDTH_1; 1583 host->ios.timing = MMC_TIMING_LEGACY; 1584 mmc_set_ios(host); 1585 1586 /* 1587 * Some configurations, such as the 802.11 SDIO card in the OLPC 1588 * XO-1.5, require a short delay after poweroff before the card 1589 * can be successfully turned on again. 1590 */ 1591 mmc_delay(1); 1592 1593 mmc_host_clk_release(host); 1594 } 1595 1596 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1597 { 1598 mmc_power_off(host); 1599 /* Wait at least 1 ms according to SD spec */ 1600 mmc_delay(1); 1601 mmc_power_up(host, ocr); 1602 } 1603 1604 /* 1605 * Cleanup when the last reference to the bus operator is dropped. 1606 */ 1607 static void __mmc_release_bus(struct mmc_host *host) 1608 { 1609 BUG_ON(!host); 1610 BUG_ON(host->bus_refs); 1611 BUG_ON(!host->bus_dead); 1612 1613 host->bus_ops = NULL; 1614 } 1615 1616 /* 1617 * Increase reference count of bus operator 1618 */ 1619 static inline void mmc_bus_get(struct mmc_host *host) 1620 { 1621 unsigned long flags; 1622 1623 spin_lock_irqsave(&host->lock, flags); 1624 host->bus_refs++; 1625 spin_unlock_irqrestore(&host->lock, flags); 1626 } 1627 1628 /* 1629 * Decrease reference count of bus operator and free it if 1630 * it is the last reference. 1631 */ 1632 static inline void mmc_bus_put(struct mmc_host *host) 1633 { 1634 unsigned long flags; 1635 1636 spin_lock_irqsave(&host->lock, flags); 1637 host->bus_refs--; 1638 if ((host->bus_refs == 0) && host->bus_ops) 1639 __mmc_release_bus(host); 1640 spin_unlock_irqrestore(&host->lock, flags); 1641 } 1642 1643 /* 1644 * Assign a mmc bus handler to a host. Only one bus handler may control a 1645 * host at any given time. 1646 */ 1647 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1648 { 1649 unsigned long flags; 1650 1651 BUG_ON(!host); 1652 BUG_ON(!ops); 1653 1654 WARN_ON(!host->claimed); 1655 1656 spin_lock_irqsave(&host->lock, flags); 1657 1658 BUG_ON(host->bus_ops); 1659 BUG_ON(host->bus_refs); 1660 1661 host->bus_ops = ops; 1662 host->bus_refs = 1; 1663 host->bus_dead = 0; 1664 1665 spin_unlock_irqrestore(&host->lock, flags); 1666 } 1667 1668 /* 1669 * Remove the current bus handler from a host. 1670 */ 1671 void mmc_detach_bus(struct mmc_host *host) 1672 { 1673 unsigned long flags; 1674 1675 BUG_ON(!host); 1676 1677 WARN_ON(!host->claimed); 1678 WARN_ON(!host->bus_ops); 1679 1680 spin_lock_irqsave(&host->lock, flags); 1681 1682 host->bus_dead = 1; 1683 1684 spin_unlock_irqrestore(&host->lock, flags); 1685 1686 mmc_bus_put(host); 1687 } 1688 1689 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1690 bool cd_irq) 1691 { 1692 #ifdef CONFIG_MMC_DEBUG 1693 unsigned long flags; 1694 spin_lock_irqsave(&host->lock, flags); 1695 WARN_ON(host->removed); 1696 spin_unlock_irqrestore(&host->lock, flags); 1697 #endif 1698 1699 /* 1700 * If the device is configured as wakeup, we prevent a new sleep for 1701 * 5 s to give provision for user space to consume the event. 1702 */ 1703 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1704 device_can_wakeup(mmc_dev(host))) 1705 pm_wakeup_event(mmc_dev(host), 5000); 1706 1707 host->detect_change = 1; 1708 mmc_schedule_delayed_work(&host->detect, delay); 1709 } 1710 1711 /** 1712 * mmc_detect_change - process change of state on a MMC socket 1713 * @host: host which changed state. 1714 * @delay: optional delay to wait before detection (jiffies) 1715 * 1716 * MMC drivers should call this when they detect a card has been 1717 * inserted or removed. The MMC layer will confirm that any 1718 * present card is still functional, and initialize any newly 1719 * inserted. 1720 */ 1721 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1722 { 1723 _mmc_detect_change(host, delay, true); 1724 } 1725 EXPORT_SYMBOL(mmc_detect_change); 1726 1727 void mmc_init_erase(struct mmc_card *card) 1728 { 1729 unsigned int sz; 1730 1731 if (is_power_of_2(card->erase_size)) 1732 card->erase_shift = ffs(card->erase_size) - 1; 1733 else 1734 card->erase_shift = 0; 1735 1736 /* 1737 * It is possible to erase an arbitrarily large area of an SD or MMC 1738 * card. That is not desirable because it can take a long time 1739 * (minutes) potentially delaying more important I/O, and also the 1740 * timeout calculations become increasingly hugely over-estimated. 1741 * Consequently, 'pref_erase' is defined as a guide to limit erases 1742 * to that size and alignment. 1743 * 1744 * For SD cards that define Allocation Unit size, limit erases to one 1745 * Allocation Unit at a time. For MMC cards that define High Capacity 1746 * Erase Size, whether it is switched on or not, limit to that size. 1747 * Otherwise just have a stab at a good value. For modern cards it 1748 * will end up being 4MiB. Note that if the value is too small, it 1749 * can end up taking longer to erase. 1750 */ 1751 if (mmc_card_sd(card) && card->ssr.au) { 1752 card->pref_erase = card->ssr.au; 1753 card->erase_shift = ffs(card->ssr.au) - 1; 1754 } else if (card->ext_csd.hc_erase_size) { 1755 card->pref_erase = card->ext_csd.hc_erase_size; 1756 } else if (card->erase_size) { 1757 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1758 if (sz < 128) 1759 card->pref_erase = 512 * 1024 / 512; 1760 else if (sz < 512) 1761 card->pref_erase = 1024 * 1024 / 512; 1762 else if (sz < 1024) 1763 card->pref_erase = 2 * 1024 * 1024 / 512; 1764 else 1765 card->pref_erase = 4 * 1024 * 1024 / 512; 1766 if (card->pref_erase < card->erase_size) 1767 card->pref_erase = card->erase_size; 1768 else { 1769 sz = card->pref_erase % card->erase_size; 1770 if (sz) 1771 card->pref_erase += card->erase_size - sz; 1772 } 1773 } else 1774 card->pref_erase = 0; 1775 } 1776 1777 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1778 unsigned int arg, unsigned int qty) 1779 { 1780 unsigned int erase_timeout; 1781 1782 if (arg == MMC_DISCARD_ARG || 1783 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1784 erase_timeout = card->ext_csd.trim_timeout; 1785 } else if (card->ext_csd.erase_group_def & 1) { 1786 /* High Capacity Erase Group Size uses HC timeouts */ 1787 if (arg == MMC_TRIM_ARG) 1788 erase_timeout = card->ext_csd.trim_timeout; 1789 else 1790 erase_timeout = card->ext_csd.hc_erase_timeout; 1791 } else { 1792 /* CSD Erase Group Size uses write timeout */ 1793 unsigned int mult = (10 << card->csd.r2w_factor); 1794 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1795 unsigned int timeout_us; 1796 1797 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1798 if (card->csd.tacc_ns < 1000000) 1799 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1800 else 1801 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1802 1803 /* 1804 * ios.clock is only a target. The real clock rate might be 1805 * less but not that much less, so fudge it by multiplying by 2. 1806 */ 1807 timeout_clks <<= 1; 1808 timeout_us += (timeout_clks * 1000) / 1809 (mmc_host_clk_rate(card->host) / 1000); 1810 1811 erase_timeout = timeout_us / 1000; 1812 1813 /* 1814 * Theoretically, the calculation could underflow so round up 1815 * to 1ms in that case. 1816 */ 1817 if (!erase_timeout) 1818 erase_timeout = 1; 1819 } 1820 1821 /* Multiplier for secure operations */ 1822 if (arg & MMC_SECURE_ARGS) { 1823 if (arg == MMC_SECURE_ERASE_ARG) 1824 erase_timeout *= card->ext_csd.sec_erase_mult; 1825 else 1826 erase_timeout *= card->ext_csd.sec_trim_mult; 1827 } 1828 1829 erase_timeout *= qty; 1830 1831 /* 1832 * Ensure at least a 1 second timeout for SPI as per 1833 * 'mmc_set_data_timeout()' 1834 */ 1835 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1836 erase_timeout = 1000; 1837 1838 return erase_timeout; 1839 } 1840 1841 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1842 unsigned int arg, 1843 unsigned int qty) 1844 { 1845 unsigned int erase_timeout; 1846 1847 if (card->ssr.erase_timeout) { 1848 /* Erase timeout specified in SD Status Register (SSR) */ 1849 erase_timeout = card->ssr.erase_timeout * qty + 1850 card->ssr.erase_offset; 1851 } else { 1852 /* 1853 * Erase timeout not specified in SD Status Register (SSR) so 1854 * use 250ms per write block. 1855 */ 1856 erase_timeout = 250 * qty; 1857 } 1858 1859 /* Must not be less than 1 second */ 1860 if (erase_timeout < 1000) 1861 erase_timeout = 1000; 1862 1863 return erase_timeout; 1864 } 1865 1866 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1867 unsigned int arg, 1868 unsigned int qty) 1869 { 1870 if (mmc_card_sd(card)) 1871 return mmc_sd_erase_timeout(card, arg, qty); 1872 else 1873 return mmc_mmc_erase_timeout(card, arg, qty); 1874 } 1875 1876 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1877 unsigned int to, unsigned int arg) 1878 { 1879 struct mmc_command cmd = {0}; 1880 unsigned int qty = 0; 1881 unsigned long timeout; 1882 int err; 1883 1884 /* 1885 * qty is used to calculate the erase timeout which depends on how many 1886 * erase groups (or allocation units in SD terminology) are affected. 1887 * We count erasing part of an erase group as one erase group. 1888 * For SD, the allocation units are always a power of 2. For MMC, the 1889 * erase group size is almost certainly also power of 2, but it does not 1890 * seem to insist on that in the JEDEC standard, so we fall back to 1891 * division in that case. SD may not specify an allocation unit size, 1892 * in which case the timeout is based on the number of write blocks. 1893 * 1894 * Note that the timeout for secure trim 2 will only be correct if the 1895 * number of erase groups specified is the same as the total of all 1896 * preceding secure trim 1 commands. Since the power may have been 1897 * lost since the secure trim 1 commands occurred, it is generally 1898 * impossible to calculate the secure trim 2 timeout correctly. 1899 */ 1900 if (card->erase_shift) 1901 qty += ((to >> card->erase_shift) - 1902 (from >> card->erase_shift)) + 1; 1903 else if (mmc_card_sd(card)) 1904 qty += to - from + 1; 1905 else 1906 qty += ((to / card->erase_size) - 1907 (from / card->erase_size)) + 1; 1908 1909 if (!mmc_card_blockaddr(card)) { 1910 from <<= 9; 1911 to <<= 9; 1912 } 1913 1914 if (mmc_card_sd(card)) 1915 cmd.opcode = SD_ERASE_WR_BLK_START; 1916 else 1917 cmd.opcode = MMC_ERASE_GROUP_START; 1918 cmd.arg = from; 1919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1920 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1921 if (err) { 1922 pr_err("mmc_erase: group start error %d, " 1923 "status %#x\n", err, cmd.resp[0]); 1924 err = -EIO; 1925 goto out; 1926 } 1927 1928 memset(&cmd, 0, sizeof(struct mmc_command)); 1929 if (mmc_card_sd(card)) 1930 cmd.opcode = SD_ERASE_WR_BLK_END; 1931 else 1932 cmd.opcode = MMC_ERASE_GROUP_END; 1933 cmd.arg = to; 1934 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1935 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1936 if (err) { 1937 pr_err("mmc_erase: group end error %d, status %#x\n", 1938 err, cmd.resp[0]); 1939 err = -EIO; 1940 goto out; 1941 } 1942 1943 memset(&cmd, 0, sizeof(struct mmc_command)); 1944 cmd.opcode = MMC_ERASE; 1945 cmd.arg = arg; 1946 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1947 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 1948 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1949 if (err) { 1950 pr_err("mmc_erase: erase error %d, status %#x\n", 1951 err, cmd.resp[0]); 1952 err = -EIO; 1953 goto out; 1954 } 1955 1956 if (mmc_host_is_spi(card->host)) 1957 goto out; 1958 1959 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 1960 do { 1961 memset(&cmd, 0, sizeof(struct mmc_command)); 1962 cmd.opcode = MMC_SEND_STATUS; 1963 cmd.arg = card->rca << 16; 1964 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1965 /* Do not retry else we can't see errors */ 1966 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1967 if (err || (cmd.resp[0] & 0xFDF92000)) { 1968 pr_err("error %d requesting status %#x\n", 1969 err, cmd.resp[0]); 1970 err = -EIO; 1971 goto out; 1972 } 1973 1974 /* Timeout if the device never becomes ready for data and 1975 * never leaves the program state. 1976 */ 1977 if (time_after(jiffies, timeout)) { 1978 pr_err("%s: Card stuck in programming state! %s\n", 1979 mmc_hostname(card->host), __func__); 1980 err = -EIO; 1981 goto out; 1982 } 1983 1984 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1985 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 1986 out: 1987 return err; 1988 } 1989 1990 /** 1991 * mmc_erase - erase sectors. 1992 * @card: card to erase 1993 * @from: first sector to erase 1994 * @nr: number of sectors to erase 1995 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1996 * 1997 * Caller must claim host before calling this function. 1998 */ 1999 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2000 unsigned int arg) 2001 { 2002 unsigned int rem, to = from + nr; 2003 2004 if (!(card->host->caps & MMC_CAP_ERASE) || 2005 !(card->csd.cmdclass & CCC_ERASE)) 2006 return -EOPNOTSUPP; 2007 2008 if (!card->erase_size) 2009 return -EOPNOTSUPP; 2010 2011 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2012 return -EOPNOTSUPP; 2013 2014 if ((arg & MMC_SECURE_ARGS) && 2015 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2016 return -EOPNOTSUPP; 2017 2018 if ((arg & MMC_TRIM_ARGS) && 2019 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2020 return -EOPNOTSUPP; 2021 2022 if (arg == MMC_SECURE_ERASE_ARG) { 2023 if (from % card->erase_size || nr % card->erase_size) 2024 return -EINVAL; 2025 } 2026 2027 if (arg == MMC_ERASE_ARG) { 2028 rem = from % card->erase_size; 2029 if (rem) { 2030 rem = card->erase_size - rem; 2031 from += rem; 2032 if (nr > rem) 2033 nr -= rem; 2034 else 2035 return 0; 2036 } 2037 rem = nr % card->erase_size; 2038 if (rem) 2039 nr -= rem; 2040 } 2041 2042 if (nr == 0) 2043 return 0; 2044 2045 to = from + nr; 2046 2047 if (to <= from) 2048 return -EINVAL; 2049 2050 /* 'from' and 'to' are inclusive */ 2051 to -= 1; 2052 2053 return mmc_do_erase(card, from, to, arg); 2054 } 2055 EXPORT_SYMBOL(mmc_erase); 2056 2057 int mmc_can_erase(struct mmc_card *card) 2058 { 2059 if ((card->host->caps & MMC_CAP_ERASE) && 2060 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2061 return 1; 2062 return 0; 2063 } 2064 EXPORT_SYMBOL(mmc_can_erase); 2065 2066 int mmc_can_trim(struct mmc_card *card) 2067 { 2068 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 2069 return 1; 2070 return 0; 2071 } 2072 EXPORT_SYMBOL(mmc_can_trim); 2073 2074 int mmc_can_discard(struct mmc_card *card) 2075 { 2076 /* 2077 * As there's no way to detect the discard support bit at v4.5 2078 * use the s/w feature support filed. 2079 */ 2080 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2081 return 1; 2082 return 0; 2083 } 2084 EXPORT_SYMBOL(mmc_can_discard); 2085 2086 int mmc_can_sanitize(struct mmc_card *card) 2087 { 2088 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2089 return 0; 2090 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2091 return 1; 2092 return 0; 2093 } 2094 EXPORT_SYMBOL(mmc_can_sanitize); 2095 2096 int mmc_can_secure_erase_trim(struct mmc_card *card) 2097 { 2098 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2099 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2100 return 1; 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2104 2105 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2106 unsigned int nr) 2107 { 2108 if (!card->erase_size) 2109 return 0; 2110 if (from % card->erase_size || nr % card->erase_size) 2111 return 0; 2112 return 1; 2113 } 2114 EXPORT_SYMBOL(mmc_erase_group_aligned); 2115 2116 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2117 unsigned int arg) 2118 { 2119 struct mmc_host *host = card->host; 2120 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2121 unsigned int last_timeout = 0; 2122 2123 if (card->erase_shift) 2124 max_qty = UINT_MAX >> card->erase_shift; 2125 else if (mmc_card_sd(card)) 2126 max_qty = UINT_MAX; 2127 else 2128 max_qty = UINT_MAX / card->erase_size; 2129 2130 /* Find the largest qty with an OK timeout */ 2131 do { 2132 y = 0; 2133 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2134 timeout = mmc_erase_timeout(card, arg, qty + x); 2135 if (timeout > host->max_busy_timeout) 2136 break; 2137 if (timeout < last_timeout) 2138 break; 2139 last_timeout = timeout; 2140 y = x; 2141 } 2142 qty += y; 2143 } while (y); 2144 2145 if (!qty) 2146 return 0; 2147 2148 if (qty == 1) 2149 return 1; 2150 2151 /* Convert qty to sectors */ 2152 if (card->erase_shift) 2153 max_discard = --qty << card->erase_shift; 2154 else if (mmc_card_sd(card)) 2155 max_discard = qty; 2156 else 2157 max_discard = --qty * card->erase_size; 2158 2159 return max_discard; 2160 } 2161 2162 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2163 { 2164 struct mmc_host *host = card->host; 2165 unsigned int max_discard, max_trim; 2166 2167 if (!host->max_busy_timeout) 2168 return UINT_MAX; 2169 2170 /* 2171 * Without erase_group_def set, MMC erase timeout depends on clock 2172 * frequence which can change. In that case, the best choice is 2173 * just the preferred erase size. 2174 */ 2175 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2176 return card->pref_erase; 2177 2178 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2179 if (mmc_can_trim(card)) { 2180 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2181 if (max_trim < max_discard) 2182 max_discard = max_trim; 2183 } else if (max_discard < card->erase_size) { 2184 max_discard = 0; 2185 } 2186 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2187 mmc_hostname(host), max_discard, host->max_busy_timeout); 2188 return max_discard; 2189 } 2190 EXPORT_SYMBOL(mmc_calc_max_discard); 2191 2192 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2193 { 2194 struct mmc_command cmd = {0}; 2195 2196 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2197 return 0; 2198 2199 cmd.opcode = MMC_SET_BLOCKLEN; 2200 cmd.arg = blocklen; 2201 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2202 return mmc_wait_for_cmd(card->host, &cmd, 5); 2203 } 2204 EXPORT_SYMBOL(mmc_set_blocklen); 2205 2206 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2207 bool is_rel_write) 2208 { 2209 struct mmc_command cmd = {0}; 2210 2211 cmd.opcode = MMC_SET_BLOCK_COUNT; 2212 cmd.arg = blockcount & 0x0000FFFF; 2213 if (is_rel_write) 2214 cmd.arg |= 1 << 31; 2215 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2216 return mmc_wait_for_cmd(card->host, &cmd, 5); 2217 } 2218 EXPORT_SYMBOL(mmc_set_blockcount); 2219 2220 static void mmc_hw_reset_for_init(struct mmc_host *host) 2221 { 2222 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2223 return; 2224 mmc_host_clk_hold(host); 2225 host->ops->hw_reset(host); 2226 mmc_host_clk_release(host); 2227 } 2228 2229 int mmc_can_reset(struct mmc_card *card) 2230 { 2231 u8 rst_n_function; 2232 2233 if (!mmc_card_mmc(card)) 2234 return 0; 2235 rst_n_function = card->ext_csd.rst_n_function; 2236 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2237 return 0; 2238 return 1; 2239 } 2240 EXPORT_SYMBOL(mmc_can_reset); 2241 2242 static int mmc_do_hw_reset(struct mmc_host *host, int check) 2243 { 2244 struct mmc_card *card = host->card; 2245 2246 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2247 return -EOPNOTSUPP; 2248 2249 if (!card) 2250 return -EINVAL; 2251 2252 if (!mmc_can_reset(card)) 2253 return -EOPNOTSUPP; 2254 2255 mmc_host_clk_hold(host); 2256 mmc_set_clock(host, host->f_init); 2257 2258 host->ops->hw_reset(host); 2259 2260 /* If the reset has happened, then a status command will fail */ 2261 if (check) { 2262 struct mmc_command cmd = {0}; 2263 int err; 2264 2265 cmd.opcode = MMC_SEND_STATUS; 2266 if (!mmc_host_is_spi(card->host)) 2267 cmd.arg = card->rca << 16; 2268 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 2269 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2270 if (!err) { 2271 mmc_host_clk_release(host); 2272 return -ENOSYS; 2273 } 2274 } 2275 2276 if (mmc_host_is_spi(host)) { 2277 host->ios.chip_select = MMC_CS_HIGH; 2278 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 2279 } else { 2280 host->ios.chip_select = MMC_CS_DONTCARE; 2281 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 2282 } 2283 host->ios.bus_width = MMC_BUS_WIDTH_1; 2284 host->ios.timing = MMC_TIMING_LEGACY; 2285 mmc_set_ios(host); 2286 2287 mmc_host_clk_release(host); 2288 2289 return host->bus_ops->power_restore(host); 2290 } 2291 2292 int mmc_hw_reset(struct mmc_host *host) 2293 { 2294 return mmc_do_hw_reset(host, 0); 2295 } 2296 EXPORT_SYMBOL(mmc_hw_reset); 2297 2298 int mmc_hw_reset_check(struct mmc_host *host) 2299 { 2300 return mmc_do_hw_reset(host, 1); 2301 } 2302 EXPORT_SYMBOL(mmc_hw_reset_check); 2303 2304 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2305 { 2306 host->f_init = freq; 2307 2308 #ifdef CONFIG_MMC_DEBUG 2309 pr_info("%s: %s: trying to init card at %u Hz\n", 2310 mmc_hostname(host), __func__, host->f_init); 2311 #endif 2312 mmc_power_up(host, host->ocr_avail); 2313 2314 /* 2315 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2316 * do a hardware reset if possible. 2317 */ 2318 mmc_hw_reset_for_init(host); 2319 2320 /* 2321 * sdio_reset sends CMD52 to reset card. Since we do not know 2322 * if the card is being re-initialized, just send it. CMD52 2323 * should be ignored by SD/eMMC cards. 2324 */ 2325 sdio_reset(host); 2326 mmc_go_idle(host); 2327 2328 mmc_send_if_cond(host, host->ocr_avail); 2329 2330 /* Order's important: probe SDIO, then SD, then MMC */ 2331 if (!mmc_attach_sdio(host)) 2332 return 0; 2333 if (!mmc_attach_sd(host)) 2334 return 0; 2335 if (!mmc_attach_mmc(host)) 2336 return 0; 2337 2338 mmc_power_off(host); 2339 return -EIO; 2340 } 2341 2342 int _mmc_detect_card_removed(struct mmc_host *host) 2343 { 2344 int ret; 2345 2346 if (host->caps & MMC_CAP_NONREMOVABLE) 2347 return 0; 2348 2349 if (!host->card || mmc_card_removed(host->card)) 2350 return 1; 2351 2352 ret = host->bus_ops->alive(host); 2353 2354 /* 2355 * Card detect status and alive check may be out of sync if card is 2356 * removed slowly, when card detect switch changes while card/slot 2357 * pads are still contacted in hardware (refer to "SD Card Mechanical 2358 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2359 * detect work 200ms later for this case. 2360 */ 2361 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2362 mmc_detect_change(host, msecs_to_jiffies(200)); 2363 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2364 } 2365 2366 if (ret) { 2367 mmc_card_set_removed(host->card); 2368 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2369 } 2370 2371 return ret; 2372 } 2373 2374 int mmc_detect_card_removed(struct mmc_host *host) 2375 { 2376 struct mmc_card *card = host->card; 2377 int ret; 2378 2379 WARN_ON(!host->claimed); 2380 2381 if (!card) 2382 return 1; 2383 2384 ret = mmc_card_removed(card); 2385 /* 2386 * The card will be considered unchanged unless we have been asked to 2387 * detect a change or host requires polling to provide card detection. 2388 */ 2389 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2390 return ret; 2391 2392 host->detect_change = 0; 2393 if (!ret) { 2394 ret = _mmc_detect_card_removed(host); 2395 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2396 /* 2397 * Schedule a detect work as soon as possible to let a 2398 * rescan handle the card removal. 2399 */ 2400 cancel_delayed_work(&host->detect); 2401 _mmc_detect_change(host, 0, false); 2402 } 2403 } 2404 2405 return ret; 2406 } 2407 EXPORT_SYMBOL(mmc_detect_card_removed); 2408 2409 void mmc_rescan(struct work_struct *work) 2410 { 2411 struct mmc_host *host = 2412 container_of(work, struct mmc_host, detect.work); 2413 int i; 2414 2415 if (host->trigger_card_event && host->ops->card_event) { 2416 host->ops->card_event(host); 2417 host->trigger_card_event = false; 2418 } 2419 2420 if (host->rescan_disable) 2421 return; 2422 2423 /* If there is a non-removable card registered, only scan once */ 2424 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2425 return; 2426 host->rescan_entered = 1; 2427 2428 mmc_bus_get(host); 2429 2430 /* 2431 * if there is a _removable_ card registered, check whether it is 2432 * still present 2433 */ 2434 if (host->bus_ops && !host->bus_dead 2435 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2436 host->bus_ops->detect(host); 2437 2438 host->detect_change = 0; 2439 2440 /* 2441 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2442 * the card is no longer present. 2443 */ 2444 mmc_bus_put(host); 2445 mmc_bus_get(host); 2446 2447 /* if there still is a card present, stop here */ 2448 if (host->bus_ops != NULL) { 2449 mmc_bus_put(host); 2450 goto out; 2451 } 2452 2453 /* 2454 * Only we can add a new handler, so it's safe to 2455 * release the lock here. 2456 */ 2457 mmc_bus_put(host); 2458 2459 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2460 host->ops->get_cd(host) == 0) { 2461 mmc_claim_host(host); 2462 mmc_power_off(host); 2463 mmc_release_host(host); 2464 goto out; 2465 } 2466 2467 mmc_claim_host(host); 2468 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2469 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2470 break; 2471 if (freqs[i] <= host->f_min) 2472 break; 2473 } 2474 mmc_release_host(host); 2475 2476 out: 2477 if (host->caps & MMC_CAP_NEEDS_POLL) 2478 mmc_schedule_delayed_work(&host->detect, HZ); 2479 } 2480 2481 void mmc_start_host(struct mmc_host *host) 2482 { 2483 host->f_init = max(freqs[0], host->f_min); 2484 host->rescan_disable = 0; 2485 host->ios.power_mode = MMC_POWER_UNDEFINED; 2486 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2487 mmc_power_off(host); 2488 else 2489 mmc_power_up(host, host->ocr_avail); 2490 mmc_gpiod_request_cd_irq(host); 2491 _mmc_detect_change(host, 0, false); 2492 } 2493 2494 void mmc_stop_host(struct mmc_host *host) 2495 { 2496 #ifdef CONFIG_MMC_DEBUG 2497 unsigned long flags; 2498 spin_lock_irqsave(&host->lock, flags); 2499 host->removed = 1; 2500 spin_unlock_irqrestore(&host->lock, flags); 2501 #endif 2502 if (host->slot.cd_irq >= 0) 2503 disable_irq(host->slot.cd_irq); 2504 2505 host->rescan_disable = 1; 2506 cancel_delayed_work_sync(&host->detect); 2507 mmc_flush_scheduled_work(); 2508 2509 /* clear pm flags now and let card drivers set them as needed */ 2510 host->pm_flags = 0; 2511 2512 mmc_bus_get(host); 2513 if (host->bus_ops && !host->bus_dead) { 2514 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2515 host->bus_ops->remove(host); 2516 mmc_claim_host(host); 2517 mmc_detach_bus(host); 2518 mmc_power_off(host); 2519 mmc_release_host(host); 2520 mmc_bus_put(host); 2521 return; 2522 } 2523 mmc_bus_put(host); 2524 2525 BUG_ON(host->card); 2526 2527 mmc_power_off(host); 2528 } 2529 2530 int mmc_power_save_host(struct mmc_host *host) 2531 { 2532 int ret = 0; 2533 2534 #ifdef CONFIG_MMC_DEBUG 2535 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2536 #endif 2537 2538 mmc_bus_get(host); 2539 2540 if (!host->bus_ops || host->bus_dead) { 2541 mmc_bus_put(host); 2542 return -EINVAL; 2543 } 2544 2545 if (host->bus_ops->power_save) 2546 ret = host->bus_ops->power_save(host); 2547 2548 mmc_bus_put(host); 2549 2550 mmc_power_off(host); 2551 2552 return ret; 2553 } 2554 EXPORT_SYMBOL(mmc_power_save_host); 2555 2556 int mmc_power_restore_host(struct mmc_host *host) 2557 { 2558 int ret; 2559 2560 #ifdef CONFIG_MMC_DEBUG 2561 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2562 #endif 2563 2564 mmc_bus_get(host); 2565 2566 if (!host->bus_ops || host->bus_dead) { 2567 mmc_bus_put(host); 2568 return -EINVAL; 2569 } 2570 2571 mmc_power_up(host, host->card->ocr); 2572 ret = host->bus_ops->power_restore(host); 2573 2574 mmc_bus_put(host); 2575 2576 return ret; 2577 } 2578 EXPORT_SYMBOL(mmc_power_restore_host); 2579 2580 /* 2581 * Flush the cache to the non-volatile storage. 2582 */ 2583 int mmc_flush_cache(struct mmc_card *card) 2584 { 2585 int err = 0; 2586 2587 if (mmc_card_mmc(card) && 2588 (card->ext_csd.cache_size > 0) && 2589 (card->ext_csd.cache_ctrl & 1)) { 2590 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2591 EXT_CSD_FLUSH_CACHE, 1, 0); 2592 if (err) 2593 pr_err("%s: cache flush error %d\n", 2594 mmc_hostname(card->host), err); 2595 } 2596 2597 return err; 2598 } 2599 EXPORT_SYMBOL(mmc_flush_cache); 2600 2601 #ifdef CONFIG_PM 2602 2603 /* Do the card removal on suspend if card is assumed removeable 2604 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2605 to sync the card. 2606 */ 2607 int mmc_pm_notify(struct notifier_block *notify_block, 2608 unsigned long mode, void *unused) 2609 { 2610 struct mmc_host *host = container_of( 2611 notify_block, struct mmc_host, pm_notify); 2612 unsigned long flags; 2613 int err = 0; 2614 2615 switch (mode) { 2616 case PM_HIBERNATION_PREPARE: 2617 case PM_SUSPEND_PREPARE: 2618 spin_lock_irqsave(&host->lock, flags); 2619 host->rescan_disable = 1; 2620 spin_unlock_irqrestore(&host->lock, flags); 2621 cancel_delayed_work_sync(&host->detect); 2622 2623 if (!host->bus_ops) 2624 break; 2625 2626 /* Validate prerequisites for suspend */ 2627 if (host->bus_ops->pre_suspend) 2628 err = host->bus_ops->pre_suspend(host); 2629 if (!err) 2630 break; 2631 2632 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2633 host->bus_ops->remove(host); 2634 mmc_claim_host(host); 2635 mmc_detach_bus(host); 2636 mmc_power_off(host); 2637 mmc_release_host(host); 2638 host->pm_flags = 0; 2639 break; 2640 2641 case PM_POST_SUSPEND: 2642 case PM_POST_HIBERNATION: 2643 case PM_POST_RESTORE: 2644 2645 spin_lock_irqsave(&host->lock, flags); 2646 host->rescan_disable = 0; 2647 spin_unlock_irqrestore(&host->lock, flags); 2648 _mmc_detect_change(host, 0, false); 2649 2650 } 2651 2652 return 0; 2653 } 2654 #endif 2655 2656 /** 2657 * mmc_init_context_info() - init synchronization context 2658 * @host: mmc host 2659 * 2660 * Init struct context_info needed to implement asynchronous 2661 * request mechanism, used by mmc core, host driver and mmc requests 2662 * supplier. 2663 */ 2664 void mmc_init_context_info(struct mmc_host *host) 2665 { 2666 spin_lock_init(&host->context_info.lock); 2667 host->context_info.is_new_req = false; 2668 host->context_info.is_done_rcv = false; 2669 host->context_info.is_waiting_last_req = false; 2670 init_waitqueue_head(&host->context_info.wait); 2671 } 2672 2673 static int __init mmc_init(void) 2674 { 2675 int ret; 2676 2677 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2678 if (!workqueue) 2679 return -ENOMEM; 2680 2681 ret = mmc_register_bus(); 2682 if (ret) 2683 goto destroy_workqueue; 2684 2685 ret = mmc_register_host_class(); 2686 if (ret) 2687 goto unregister_bus; 2688 2689 ret = sdio_register_bus(); 2690 if (ret) 2691 goto unregister_host_class; 2692 2693 return 0; 2694 2695 unregister_host_class: 2696 mmc_unregister_host_class(); 2697 unregister_bus: 2698 mmc_unregister_bus(); 2699 destroy_workqueue: 2700 destroy_workqueue(workqueue); 2701 2702 return ret; 2703 } 2704 2705 static void __exit mmc_exit(void) 2706 { 2707 sdio_unregister_bus(); 2708 mmc_unregister_host_class(); 2709 mmc_unregister_bus(); 2710 destroy_workqueue(workqueue); 2711 } 2712 2713 subsys_initcall(mmc_init); 2714 module_exit(mmc_exit); 2715 2716 MODULE_LICENSE("GPL"); 2717