1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "card.h" 44 #include "bus.h" 45 #include "host.h" 46 #include "sdio_bus.h" 47 #include "pwrseq.h" 48 49 #include "mmc_ops.h" 50 #include "sd_ops.h" 51 #include "sdio_ops.h" 52 53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 54 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 55 56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 57 58 /* 59 * Enabling software CRCs on the data blocks can be a significant (30%) 60 * performance cost, and for other reasons may not always be desired. 61 * So we allow it it to be disabled. 62 */ 63 bool use_spi_crc = 1; 64 module_param(use_spi_crc, bool, 0); 65 66 static int mmc_schedule_delayed_work(struct delayed_work *work, 67 unsigned long delay) 68 { 69 /* 70 * We use the system_freezable_wq, because of two reasons. 71 * First, it allows several works (not the same work item) to be 72 * executed simultaneously. Second, the queue becomes frozen when 73 * userspace becomes frozen during system PM. 74 */ 75 return queue_delayed_work(system_freezable_wq, work, delay); 76 } 77 78 #ifdef CONFIG_FAIL_MMC_REQUEST 79 80 /* 81 * Internal function. Inject random data errors. 82 * If mmc_data is NULL no errors are injected. 83 */ 84 static void mmc_should_fail_request(struct mmc_host *host, 85 struct mmc_request *mrq) 86 { 87 struct mmc_command *cmd = mrq->cmd; 88 struct mmc_data *data = mrq->data; 89 static const int data_errors[] = { 90 -ETIMEDOUT, 91 -EILSEQ, 92 -EIO, 93 }; 94 95 if (!data) 96 return; 97 98 if (cmd->error || data->error || 99 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 100 return; 101 102 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 103 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 104 } 105 106 #else /* CONFIG_FAIL_MMC_REQUEST */ 107 108 static inline void mmc_should_fail_request(struct mmc_host *host, 109 struct mmc_request *mrq) 110 { 111 } 112 113 #endif /* CONFIG_FAIL_MMC_REQUEST */ 114 115 static inline void mmc_complete_cmd(struct mmc_request *mrq) 116 { 117 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 118 complete_all(&mrq->cmd_completion); 119 } 120 121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 122 { 123 if (!mrq->cap_cmd_during_tfr) 124 return; 125 126 mmc_complete_cmd(mrq); 127 128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 129 mmc_hostname(host), mrq->cmd->opcode); 130 } 131 EXPORT_SYMBOL(mmc_command_done); 132 133 /** 134 * mmc_request_done - finish processing an MMC request 135 * @host: MMC host which completed request 136 * @mrq: MMC request which request 137 * 138 * MMC drivers should call this function when they have completed 139 * their processing of a request. 140 */ 141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 142 { 143 struct mmc_command *cmd = mrq->cmd; 144 int err = cmd->error; 145 146 /* Flag re-tuning needed on CRC errors */ 147 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 148 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 149 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 150 (mrq->data && mrq->data->error == -EILSEQ) || 151 (mrq->stop && mrq->stop->error == -EILSEQ))) 152 mmc_retune_needed(host); 153 154 if (err && cmd->retries && mmc_host_is_spi(host)) { 155 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 156 cmd->retries = 0; 157 } 158 159 if (host->ongoing_mrq == mrq) 160 host->ongoing_mrq = NULL; 161 162 mmc_complete_cmd(mrq); 163 164 trace_mmc_request_done(host, mrq); 165 166 /* 167 * We list various conditions for the command to be considered 168 * properly done: 169 * 170 * - There was no error, OK fine then 171 * - We are not doing some kind of retry 172 * - The card was removed (...so just complete everything no matter 173 * if there are errors or retries) 174 */ 175 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 176 mmc_should_fail_request(host, mrq); 177 178 if (!host->ongoing_mrq) 179 led_trigger_event(host->led, LED_OFF); 180 181 if (mrq->sbc) { 182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 183 mmc_hostname(host), mrq->sbc->opcode, 184 mrq->sbc->error, 185 mrq->sbc->resp[0], mrq->sbc->resp[1], 186 mrq->sbc->resp[2], mrq->sbc->resp[3]); 187 } 188 189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 190 mmc_hostname(host), cmd->opcode, err, 191 cmd->resp[0], cmd->resp[1], 192 cmd->resp[2], cmd->resp[3]); 193 194 if (mrq->data) { 195 pr_debug("%s: %d bytes transferred: %d\n", 196 mmc_hostname(host), 197 mrq->data->bytes_xfered, mrq->data->error); 198 } 199 200 if (mrq->stop) { 201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 202 mmc_hostname(host), mrq->stop->opcode, 203 mrq->stop->error, 204 mrq->stop->resp[0], mrq->stop->resp[1], 205 mrq->stop->resp[2], mrq->stop->resp[3]); 206 } 207 } 208 /* 209 * Request starter must handle retries - see 210 * mmc_wait_for_req_done(). 211 */ 212 if (mrq->done) 213 mrq->done(mrq); 214 } 215 216 EXPORT_SYMBOL(mmc_request_done); 217 218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 219 { 220 int err; 221 222 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 223 err = mmc_retune(host); 224 if (err) { 225 mrq->cmd->error = err; 226 mmc_request_done(host, mrq); 227 return; 228 } 229 230 /* 231 * For sdio rw commands we must wait for card busy otherwise some 232 * sdio devices won't work properly. 233 * And bypass I/O abort, reset and bus suspend operations. 234 */ 235 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 236 host->ops->card_busy) { 237 int tries = 500; /* Wait aprox 500ms at maximum */ 238 239 while (host->ops->card_busy(host) && --tries) 240 mmc_delay(1); 241 242 if (tries == 0) { 243 mrq->cmd->error = -EBUSY; 244 mmc_request_done(host, mrq); 245 return; 246 } 247 } 248 249 if (mrq->cap_cmd_during_tfr) { 250 host->ongoing_mrq = mrq; 251 /* 252 * Retry path could come through here without having waiting on 253 * cmd_completion, so ensure it is reinitialised. 254 */ 255 reinit_completion(&mrq->cmd_completion); 256 } 257 258 trace_mmc_request_start(host, mrq); 259 260 if (host->cqe_on) 261 host->cqe_ops->cqe_off(host); 262 263 host->ops->request(host, mrq); 264 } 265 266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 267 bool cqe) 268 { 269 if (mrq->sbc) { 270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 271 mmc_hostname(host), mrq->sbc->opcode, 272 mrq->sbc->arg, mrq->sbc->flags); 273 } 274 275 if (mrq->cmd) { 276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 277 mmc_hostname(host), cqe ? "CQE direct " : "", 278 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 279 } else if (cqe) { 280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 281 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 282 } 283 284 if (mrq->data) { 285 pr_debug("%s: blksz %d blocks %d flags %08x " 286 "tsac %d ms nsac %d\n", 287 mmc_hostname(host), mrq->data->blksz, 288 mrq->data->blocks, mrq->data->flags, 289 mrq->data->timeout_ns / 1000000, 290 mrq->data->timeout_clks); 291 } 292 293 if (mrq->stop) { 294 pr_debug("%s: CMD%u arg %08x flags %08x\n", 295 mmc_hostname(host), mrq->stop->opcode, 296 mrq->stop->arg, mrq->stop->flags); 297 } 298 } 299 300 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 301 { 302 unsigned int i, sz = 0; 303 struct scatterlist *sg; 304 305 if (mrq->cmd) { 306 mrq->cmd->error = 0; 307 mrq->cmd->mrq = mrq; 308 mrq->cmd->data = mrq->data; 309 } 310 if (mrq->sbc) { 311 mrq->sbc->error = 0; 312 mrq->sbc->mrq = mrq; 313 } 314 if (mrq->data) { 315 if (mrq->data->blksz > host->max_blk_size || 316 mrq->data->blocks > host->max_blk_count || 317 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 318 return -EINVAL; 319 320 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 321 sz += sg->length; 322 if (sz != mrq->data->blocks * mrq->data->blksz) 323 return -EINVAL; 324 325 mrq->data->error = 0; 326 mrq->data->mrq = mrq; 327 if (mrq->stop) { 328 mrq->data->stop = mrq->stop; 329 mrq->stop->error = 0; 330 mrq->stop->mrq = mrq; 331 } 332 } 333 334 return 0; 335 } 336 337 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 338 { 339 int err; 340 341 init_completion(&mrq->cmd_completion); 342 343 mmc_retune_hold(host); 344 345 if (mmc_card_removed(host->card)) 346 return -ENOMEDIUM; 347 348 mmc_mrq_pr_debug(host, mrq, false); 349 350 WARN_ON(!host->claimed); 351 352 err = mmc_mrq_prep(host, mrq); 353 if (err) 354 return err; 355 356 led_trigger_event(host->led, LED_FULL); 357 __mmc_start_request(host, mrq); 358 359 return 0; 360 } 361 EXPORT_SYMBOL(mmc_start_request); 362 363 static void mmc_wait_done(struct mmc_request *mrq) 364 { 365 complete(&mrq->completion); 366 } 367 368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 369 { 370 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 371 372 /* 373 * If there is an ongoing transfer, wait for the command line to become 374 * available. 375 */ 376 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 377 wait_for_completion(&ongoing_mrq->cmd_completion); 378 } 379 380 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 381 { 382 int err; 383 384 mmc_wait_ongoing_tfr_cmd(host); 385 386 init_completion(&mrq->completion); 387 mrq->done = mmc_wait_done; 388 389 err = mmc_start_request(host, mrq); 390 if (err) { 391 mrq->cmd->error = err; 392 mmc_complete_cmd(mrq); 393 complete(&mrq->completion); 394 } 395 396 return err; 397 } 398 399 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 400 { 401 struct mmc_command *cmd; 402 403 while (1) { 404 wait_for_completion(&mrq->completion); 405 406 cmd = mrq->cmd; 407 408 /* 409 * If host has timed out waiting for the sanitize 410 * to complete, card might be still in programming state 411 * so let's try to bring the card out of programming 412 * state. 413 */ 414 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 415 if (!mmc_interrupt_hpi(host->card)) { 416 pr_warn("%s: %s: Interrupted sanitize\n", 417 mmc_hostname(host), __func__); 418 cmd->error = 0; 419 break; 420 } else { 421 pr_err("%s: %s: Failed to interrupt sanitize\n", 422 mmc_hostname(host), __func__); 423 } 424 } 425 if (!cmd->error || !cmd->retries || 426 mmc_card_removed(host->card)) 427 break; 428 429 mmc_retune_recheck(host); 430 431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 432 mmc_hostname(host), cmd->opcode, cmd->error); 433 cmd->retries--; 434 cmd->error = 0; 435 __mmc_start_request(host, mrq); 436 } 437 438 mmc_retune_release(host); 439 } 440 EXPORT_SYMBOL(mmc_wait_for_req_done); 441 442 /* 443 * mmc_cqe_start_req - Start a CQE request. 444 * @host: MMC host to start the request 445 * @mrq: request to start 446 * 447 * Start the request, re-tuning if needed and it is possible. Returns an error 448 * code if the request fails to start or -EBUSY if CQE is busy. 449 */ 450 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 451 { 452 int err; 453 454 /* 455 * CQE cannot process re-tuning commands. Caller must hold retuning 456 * while CQE is in use. Re-tuning can happen here only when CQE has no 457 * active requests i.e. this is the first. Note, re-tuning will call 458 * ->cqe_off(). 459 */ 460 err = mmc_retune(host); 461 if (err) 462 goto out_err; 463 464 mrq->host = host; 465 466 mmc_mrq_pr_debug(host, mrq, true); 467 468 err = mmc_mrq_prep(host, mrq); 469 if (err) 470 goto out_err; 471 472 err = host->cqe_ops->cqe_request(host, mrq); 473 if (err) 474 goto out_err; 475 476 trace_mmc_request_start(host, mrq); 477 478 return 0; 479 480 out_err: 481 if (mrq->cmd) { 482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 483 mmc_hostname(host), mrq->cmd->opcode, err); 484 } else { 485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 486 mmc_hostname(host), mrq->tag, err); 487 } 488 return err; 489 } 490 EXPORT_SYMBOL(mmc_cqe_start_req); 491 492 /** 493 * mmc_cqe_request_done - CQE has finished processing an MMC request 494 * @host: MMC host which completed request 495 * @mrq: MMC request which completed 496 * 497 * CQE drivers should call this function when they have completed 498 * their processing of a request. 499 */ 500 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 501 { 502 mmc_should_fail_request(host, mrq); 503 504 /* Flag re-tuning needed on CRC errors */ 505 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 506 (mrq->data && mrq->data->error == -EILSEQ)) 507 mmc_retune_needed(host); 508 509 trace_mmc_request_done(host, mrq); 510 511 if (mrq->cmd) { 512 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 513 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 514 } else { 515 pr_debug("%s: CQE transfer done tag %d\n", 516 mmc_hostname(host), mrq->tag); 517 } 518 519 if (mrq->data) { 520 pr_debug("%s: %d bytes transferred: %d\n", 521 mmc_hostname(host), 522 mrq->data->bytes_xfered, mrq->data->error); 523 } 524 525 mrq->done(mrq); 526 } 527 EXPORT_SYMBOL(mmc_cqe_request_done); 528 529 /** 530 * mmc_cqe_post_req - CQE post process of a completed MMC request 531 * @host: MMC host 532 * @mrq: MMC request to be processed 533 */ 534 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 535 { 536 if (host->cqe_ops->cqe_post_req) 537 host->cqe_ops->cqe_post_req(host, mrq); 538 } 539 EXPORT_SYMBOL(mmc_cqe_post_req); 540 541 /* Arbitrary 1 second timeout */ 542 #define MMC_CQE_RECOVERY_TIMEOUT 1000 543 544 /* 545 * mmc_cqe_recovery - Recover from CQE errors. 546 * @host: MMC host to recover 547 * 548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 549 * in eMMC, and discarding the queue in CQE. CQE must call 550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 551 * fails to discard its queue. 552 */ 553 int mmc_cqe_recovery(struct mmc_host *host) 554 { 555 struct mmc_command cmd; 556 int err; 557 558 mmc_retune_hold_now(host); 559 560 /* 561 * Recovery is expected seldom, if at all, but it reduces performance, 562 * so make sure it is not completely silent. 563 */ 564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 565 566 host->cqe_ops->cqe_recovery_start(host); 567 568 memset(&cmd, 0, sizeof(cmd)); 569 cmd.opcode = MMC_STOP_TRANSMISSION, 570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC, 571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 573 mmc_wait_for_cmd(host, &cmd, 0); 574 575 memset(&cmd, 0, sizeof(cmd)); 576 cmd.opcode = MMC_CMDQ_TASK_MGMT; 577 cmd.arg = 1; /* Discard entire queue */ 578 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 579 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 580 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 581 err = mmc_wait_for_cmd(host, &cmd, 0); 582 583 host->cqe_ops->cqe_recovery_finish(host); 584 585 mmc_retune_release(host); 586 587 return err; 588 } 589 EXPORT_SYMBOL(mmc_cqe_recovery); 590 591 /** 592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 593 * @host: MMC host 594 * @mrq: MMC request 595 * 596 * mmc_is_req_done() is used with requests that have 597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 598 * starting a request and before waiting for it to complete. That is, 599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 600 * and before mmc_wait_for_req_done(). If it is called at other times the 601 * result is not meaningful. 602 */ 603 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 604 { 605 return completion_done(&mrq->completion); 606 } 607 EXPORT_SYMBOL(mmc_is_req_done); 608 609 /** 610 * mmc_wait_for_req - start a request and wait for completion 611 * @host: MMC host to start command 612 * @mrq: MMC request to start 613 * 614 * Start a new MMC custom command request for a host, and wait 615 * for the command to complete. In the case of 'cap_cmd_during_tfr' 616 * requests, the transfer is ongoing and the caller can issue further 617 * commands that do not use the data lines, and then wait by calling 618 * mmc_wait_for_req_done(). 619 * Does not attempt to parse the response. 620 */ 621 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 622 { 623 __mmc_start_req(host, mrq); 624 625 if (!mrq->cap_cmd_during_tfr) 626 mmc_wait_for_req_done(host, mrq); 627 } 628 EXPORT_SYMBOL(mmc_wait_for_req); 629 630 /** 631 * mmc_wait_for_cmd - start a command and wait for completion 632 * @host: MMC host to start command 633 * @cmd: MMC command to start 634 * @retries: maximum number of retries 635 * 636 * Start a new MMC command for a host, and wait for the command 637 * to complete. Return any error that occurred while the command 638 * was executing. Do not attempt to parse the response. 639 */ 640 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 641 { 642 struct mmc_request mrq = {}; 643 644 WARN_ON(!host->claimed); 645 646 memset(cmd->resp, 0, sizeof(cmd->resp)); 647 cmd->retries = retries; 648 649 mrq.cmd = cmd; 650 cmd->data = NULL; 651 652 mmc_wait_for_req(host, &mrq); 653 654 return cmd->error; 655 } 656 657 EXPORT_SYMBOL(mmc_wait_for_cmd); 658 659 /** 660 * mmc_set_data_timeout - set the timeout for a data command 661 * @data: data phase for command 662 * @card: the MMC card associated with the data transfer 663 * 664 * Computes the data timeout parameters according to the 665 * correct algorithm given the card type. 666 */ 667 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 668 { 669 unsigned int mult; 670 671 /* 672 * SDIO cards only define an upper 1 s limit on access. 673 */ 674 if (mmc_card_sdio(card)) { 675 data->timeout_ns = 1000000000; 676 data->timeout_clks = 0; 677 return; 678 } 679 680 /* 681 * SD cards use a 100 multiplier rather than 10 682 */ 683 mult = mmc_card_sd(card) ? 100 : 10; 684 685 /* 686 * Scale up the multiplier (and therefore the timeout) by 687 * the r2w factor for writes. 688 */ 689 if (data->flags & MMC_DATA_WRITE) 690 mult <<= card->csd.r2w_factor; 691 692 data->timeout_ns = card->csd.taac_ns * mult; 693 data->timeout_clks = card->csd.taac_clks * mult; 694 695 /* 696 * SD cards also have an upper limit on the timeout. 697 */ 698 if (mmc_card_sd(card)) { 699 unsigned int timeout_us, limit_us; 700 701 timeout_us = data->timeout_ns / 1000; 702 if (card->host->ios.clock) 703 timeout_us += data->timeout_clks * 1000 / 704 (card->host->ios.clock / 1000); 705 706 if (data->flags & MMC_DATA_WRITE) 707 /* 708 * The MMC spec "It is strongly recommended 709 * for hosts to implement more than 500ms 710 * timeout value even if the card indicates 711 * the 250ms maximum busy length." Even the 712 * previous value of 300ms is known to be 713 * insufficient for some cards. 714 */ 715 limit_us = 3000000; 716 else 717 limit_us = 100000; 718 719 /* 720 * SDHC cards always use these fixed values. 721 */ 722 if (timeout_us > limit_us) { 723 data->timeout_ns = limit_us * 1000; 724 data->timeout_clks = 0; 725 } 726 727 /* assign limit value if invalid */ 728 if (timeout_us == 0) 729 data->timeout_ns = limit_us * 1000; 730 } 731 732 /* 733 * Some cards require longer data read timeout than indicated in CSD. 734 * Address this by setting the read timeout to a "reasonably high" 735 * value. For the cards tested, 600ms has proven enough. If necessary, 736 * this value can be increased if other problematic cards require this. 737 */ 738 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 739 data->timeout_ns = 600000000; 740 data->timeout_clks = 0; 741 } 742 743 /* 744 * Some cards need very high timeouts if driven in SPI mode. 745 * The worst observed timeout was 900ms after writing a 746 * continuous stream of data until the internal logic 747 * overflowed. 748 */ 749 if (mmc_host_is_spi(card->host)) { 750 if (data->flags & MMC_DATA_WRITE) { 751 if (data->timeout_ns < 1000000000) 752 data->timeout_ns = 1000000000; /* 1s */ 753 } else { 754 if (data->timeout_ns < 100000000) 755 data->timeout_ns = 100000000; /* 100ms */ 756 } 757 } 758 } 759 EXPORT_SYMBOL(mmc_set_data_timeout); 760 761 /** 762 * mmc_align_data_size - pads a transfer size to a more optimal value 763 * @card: the MMC card associated with the data transfer 764 * @sz: original transfer size 765 * 766 * Pads the original data size with a number of extra bytes in 767 * order to avoid controller bugs and/or performance hits 768 * (e.g. some controllers revert to PIO for certain sizes). 769 * 770 * Returns the improved size, which might be unmodified. 771 * 772 * Note that this function is only relevant when issuing a 773 * single scatter gather entry. 774 */ 775 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 776 { 777 /* 778 * FIXME: We don't have a system for the controller to tell 779 * the core about its problems yet, so for now we just 32-bit 780 * align the size. 781 */ 782 sz = ((sz + 3) / 4) * 4; 783 784 return sz; 785 } 786 EXPORT_SYMBOL(mmc_align_data_size); 787 788 /* 789 * Allow claiming an already claimed host if the context is the same or there is 790 * no context but the task is the same. 791 */ 792 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 793 struct task_struct *task) 794 { 795 return host->claimer == ctx || 796 (!ctx && task && host->claimer->task == task); 797 } 798 799 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 800 struct mmc_ctx *ctx, 801 struct task_struct *task) 802 { 803 if (!host->claimer) { 804 if (ctx) 805 host->claimer = ctx; 806 else 807 host->claimer = &host->default_ctx; 808 } 809 if (task) 810 host->claimer->task = task; 811 } 812 813 /** 814 * __mmc_claim_host - exclusively claim a host 815 * @host: mmc host to claim 816 * @ctx: context that claims the host or NULL in which case the default 817 * context will be used 818 * @abort: whether or not the operation should be aborted 819 * 820 * Claim a host for a set of operations. If @abort is non null and 821 * dereference a non-zero value then this will return prematurely with 822 * that non-zero value without acquiring the lock. Returns zero 823 * with the lock held otherwise. 824 */ 825 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 826 atomic_t *abort) 827 { 828 struct task_struct *task = ctx ? NULL : current; 829 DECLARE_WAITQUEUE(wait, current); 830 unsigned long flags; 831 int stop; 832 bool pm = false; 833 834 might_sleep(); 835 836 add_wait_queue(&host->wq, &wait); 837 spin_lock_irqsave(&host->lock, flags); 838 while (1) { 839 set_current_state(TASK_UNINTERRUPTIBLE); 840 stop = abort ? atomic_read(abort) : 0; 841 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 842 break; 843 spin_unlock_irqrestore(&host->lock, flags); 844 schedule(); 845 spin_lock_irqsave(&host->lock, flags); 846 } 847 set_current_state(TASK_RUNNING); 848 if (!stop) { 849 host->claimed = 1; 850 mmc_ctx_set_claimer(host, ctx, task); 851 host->claim_cnt += 1; 852 if (host->claim_cnt == 1) 853 pm = true; 854 } else 855 wake_up(&host->wq); 856 spin_unlock_irqrestore(&host->lock, flags); 857 remove_wait_queue(&host->wq, &wait); 858 859 if (pm) 860 pm_runtime_get_sync(mmc_dev(host)); 861 862 return stop; 863 } 864 EXPORT_SYMBOL(__mmc_claim_host); 865 866 /** 867 * mmc_release_host - release a host 868 * @host: mmc host to release 869 * 870 * Release a MMC host, allowing others to claim the host 871 * for their operations. 872 */ 873 void mmc_release_host(struct mmc_host *host) 874 { 875 unsigned long flags; 876 877 WARN_ON(!host->claimed); 878 879 spin_lock_irqsave(&host->lock, flags); 880 if (--host->claim_cnt) { 881 /* Release for nested claim */ 882 spin_unlock_irqrestore(&host->lock, flags); 883 } else { 884 host->claimed = 0; 885 host->claimer->task = NULL; 886 host->claimer = NULL; 887 spin_unlock_irqrestore(&host->lock, flags); 888 wake_up(&host->wq); 889 pm_runtime_mark_last_busy(mmc_dev(host)); 890 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) 891 pm_runtime_put_sync_suspend(mmc_dev(host)); 892 else 893 pm_runtime_put_autosuspend(mmc_dev(host)); 894 } 895 } 896 EXPORT_SYMBOL(mmc_release_host); 897 898 /* 899 * This is a helper function, which fetches a runtime pm reference for the 900 * card device and also claims the host. 901 */ 902 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 903 { 904 pm_runtime_get_sync(&card->dev); 905 __mmc_claim_host(card->host, ctx, NULL); 906 } 907 EXPORT_SYMBOL(mmc_get_card); 908 909 /* 910 * This is a helper function, which releases the host and drops the runtime 911 * pm reference for the card device. 912 */ 913 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 914 { 915 struct mmc_host *host = card->host; 916 917 WARN_ON(ctx && host->claimer != ctx); 918 919 mmc_release_host(host); 920 pm_runtime_mark_last_busy(&card->dev); 921 pm_runtime_put_autosuspend(&card->dev); 922 } 923 EXPORT_SYMBOL(mmc_put_card); 924 925 /* 926 * Internal function that does the actual ios call to the host driver, 927 * optionally printing some debug output. 928 */ 929 static inline void mmc_set_ios(struct mmc_host *host) 930 { 931 struct mmc_ios *ios = &host->ios; 932 933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 934 "width %u timing %u\n", 935 mmc_hostname(host), ios->clock, ios->bus_mode, 936 ios->power_mode, ios->chip_select, ios->vdd, 937 1 << ios->bus_width, ios->timing); 938 939 host->ops->set_ios(host, ios); 940 } 941 942 /* 943 * Control chip select pin on a host. 944 */ 945 void mmc_set_chip_select(struct mmc_host *host, int mode) 946 { 947 host->ios.chip_select = mode; 948 mmc_set_ios(host); 949 } 950 951 /* 952 * Sets the host clock to the highest possible frequency that 953 * is below "hz". 954 */ 955 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 956 { 957 WARN_ON(hz && hz < host->f_min); 958 959 if (hz > host->f_max) 960 hz = host->f_max; 961 962 host->ios.clock = hz; 963 mmc_set_ios(host); 964 } 965 966 int mmc_execute_tuning(struct mmc_card *card) 967 { 968 struct mmc_host *host = card->host; 969 u32 opcode; 970 int err; 971 972 if (!host->ops->execute_tuning) 973 return 0; 974 975 if (host->cqe_on) 976 host->cqe_ops->cqe_off(host); 977 978 if (mmc_card_mmc(card)) 979 opcode = MMC_SEND_TUNING_BLOCK_HS200; 980 else 981 opcode = MMC_SEND_TUNING_BLOCK; 982 983 err = host->ops->execute_tuning(host, opcode); 984 985 if (err) 986 pr_err("%s: tuning execution failed: %d\n", 987 mmc_hostname(host), err); 988 else 989 mmc_retune_enable(host); 990 991 return err; 992 } 993 994 /* 995 * Change the bus mode (open drain/push-pull) of a host. 996 */ 997 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 998 { 999 host->ios.bus_mode = mode; 1000 mmc_set_ios(host); 1001 } 1002 1003 /* 1004 * Change data bus width of a host. 1005 */ 1006 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1007 { 1008 host->ios.bus_width = width; 1009 mmc_set_ios(host); 1010 } 1011 1012 /* 1013 * Set initial state after a power cycle or a hw_reset. 1014 */ 1015 void mmc_set_initial_state(struct mmc_host *host) 1016 { 1017 if (host->cqe_on) 1018 host->cqe_ops->cqe_off(host); 1019 1020 mmc_retune_disable(host); 1021 1022 if (mmc_host_is_spi(host)) 1023 host->ios.chip_select = MMC_CS_HIGH; 1024 else 1025 host->ios.chip_select = MMC_CS_DONTCARE; 1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1027 host->ios.bus_width = MMC_BUS_WIDTH_1; 1028 host->ios.timing = MMC_TIMING_LEGACY; 1029 host->ios.drv_type = 0; 1030 host->ios.enhanced_strobe = false; 1031 1032 /* 1033 * Make sure we are in non-enhanced strobe mode before we 1034 * actually enable it in ext_csd. 1035 */ 1036 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1037 host->ops->hs400_enhanced_strobe) 1038 host->ops->hs400_enhanced_strobe(host, &host->ios); 1039 1040 mmc_set_ios(host); 1041 } 1042 1043 /** 1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1045 * @vdd: voltage (mV) 1046 * @low_bits: prefer low bits in boundary cases 1047 * 1048 * This function returns the OCR bit number according to the provided @vdd 1049 * value. If conversion is not possible a negative errno value returned. 1050 * 1051 * Depending on the @low_bits flag the function prefers low or high OCR bits 1052 * on boundary voltages. For example, 1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1055 * 1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1057 */ 1058 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1059 { 1060 const int max_bit = ilog2(MMC_VDD_35_36); 1061 int bit; 1062 1063 if (vdd < 1650 || vdd > 3600) 1064 return -EINVAL; 1065 1066 if (vdd >= 1650 && vdd <= 1950) 1067 return ilog2(MMC_VDD_165_195); 1068 1069 if (low_bits) 1070 vdd -= 1; 1071 1072 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1073 bit = (vdd - 2000) / 100 + 8; 1074 if (bit > max_bit) 1075 return max_bit; 1076 return bit; 1077 } 1078 1079 /** 1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1081 * @vdd_min: minimum voltage value (mV) 1082 * @vdd_max: maximum voltage value (mV) 1083 * 1084 * This function returns the OCR mask bits according to the provided @vdd_min 1085 * and @vdd_max values. If conversion is not possible the function returns 0. 1086 * 1087 * Notes wrt boundary cases: 1088 * This function sets the OCR bits for all boundary voltages, for example 1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1090 * MMC_VDD_34_35 mask. 1091 */ 1092 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1093 { 1094 u32 mask = 0; 1095 1096 if (vdd_max < vdd_min) 1097 return 0; 1098 1099 /* Prefer high bits for the boundary vdd_max values. */ 1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1101 if (vdd_max < 0) 1102 return 0; 1103 1104 /* Prefer low bits for the boundary vdd_min values. */ 1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1106 if (vdd_min < 0) 1107 return 0; 1108 1109 /* Fill the mask, from max bit to min bit. */ 1110 while (vdd_max >= vdd_min) 1111 mask |= 1 << vdd_max--; 1112 1113 return mask; 1114 } 1115 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1116 1117 #ifdef CONFIG_OF 1118 1119 /** 1120 * mmc_of_parse_voltage - return mask of supported voltages 1121 * @np: The device node need to be parsed. 1122 * @mask: mask of voltages available for MMC/SD/SDIO 1123 * 1124 * Parse the "voltage-ranges" DT property, returning zero if it is not 1125 * found, negative errno if the voltage-range specification is invalid, 1126 * or one if the voltage-range is specified and successfully parsed. 1127 */ 1128 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1129 { 1130 const u32 *voltage_ranges; 1131 int num_ranges, i; 1132 1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1135 if (!voltage_ranges) { 1136 pr_debug("%pOF: voltage-ranges unspecified\n", np); 1137 return 0; 1138 } 1139 if (!num_ranges) { 1140 pr_err("%pOF: voltage-ranges empty\n", np); 1141 return -EINVAL; 1142 } 1143 1144 for (i = 0; i < num_ranges; i++) { 1145 const int j = i * 2; 1146 u32 ocr_mask; 1147 1148 ocr_mask = mmc_vddrange_to_ocrmask( 1149 be32_to_cpu(voltage_ranges[j]), 1150 be32_to_cpu(voltage_ranges[j + 1])); 1151 if (!ocr_mask) { 1152 pr_err("%pOF: voltage-range #%d is invalid\n", 1153 np, i); 1154 return -EINVAL; 1155 } 1156 *mask |= ocr_mask; 1157 } 1158 1159 return 1; 1160 } 1161 EXPORT_SYMBOL(mmc_of_parse_voltage); 1162 1163 #endif /* CONFIG_OF */ 1164 1165 static int mmc_of_get_func_num(struct device_node *node) 1166 { 1167 u32 reg; 1168 int ret; 1169 1170 ret = of_property_read_u32(node, "reg", ®); 1171 if (ret < 0) 1172 return ret; 1173 1174 return reg; 1175 } 1176 1177 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1178 unsigned func_num) 1179 { 1180 struct device_node *node; 1181 1182 if (!host->parent || !host->parent->of_node) 1183 return NULL; 1184 1185 for_each_child_of_node(host->parent->of_node, node) { 1186 if (mmc_of_get_func_num(node) == func_num) 1187 return node; 1188 } 1189 1190 return NULL; 1191 } 1192 1193 #ifdef CONFIG_REGULATOR 1194 1195 /** 1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1197 * @vdd_bit: OCR bit number 1198 * @min_uV: minimum voltage value (mV) 1199 * @max_uV: maximum voltage value (mV) 1200 * 1201 * This function returns the voltage range according to the provided OCR 1202 * bit number. If conversion is not possible a negative errno value returned. 1203 */ 1204 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1205 { 1206 int tmp; 1207 1208 if (!vdd_bit) 1209 return -EINVAL; 1210 1211 /* 1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1213 * bits this regulator doesn't quite support ... don't 1214 * be too picky, most cards and regulators are OK with 1215 * a 0.1V range goof (it's a small error percentage). 1216 */ 1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1218 if (tmp == 0) { 1219 *min_uV = 1650 * 1000; 1220 *max_uV = 1950 * 1000; 1221 } else { 1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1223 *max_uV = *min_uV + 100 * 1000; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * mmc_regulator_get_ocrmask - return mask of supported voltages 1231 * @supply: regulator to use 1232 * 1233 * This returns either a negative errno, or a mask of voltages that 1234 * can be provided to MMC/SD/SDIO devices using the specified voltage 1235 * regulator. This would normally be called before registering the 1236 * MMC host adapter. 1237 */ 1238 int mmc_regulator_get_ocrmask(struct regulator *supply) 1239 { 1240 int result = 0; 1241 int count; 1242 int i; 1243 int vdd_uV; 1244 int vdd_mV; 1245 1246 count = regulator_count_voltages(supply); 1247 if (count < 0) 1248 return count; 1249 1250 for (i = 0; i < count; i++) { 1251 vdd_uV = regulator_list_voltage(supply, i); 1252 if (vdd_uV <= 0) 1253 continue; 1254 1255 vdd_mV = vdd_uV / 1000; 1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1257 } 1258 1259 if (!result) { 1260 vdd_uV = regulator_get_voltage(supply); 1261 if (vdd_uV <= 0) 1262 return vdd_uV; 1263 1264 vdd_mV = vdd_uV / 1000; 1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1266 } 1267 1268 return result; 1269 } 1270 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1271 1272 /** 1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1274 * @mmc: the host to regulate 1275 * @supply: regulator to use 1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1277 * 1278 * Returns zero on success, else negative errno. 1279 * 1280 * MMC host drivers may use this to enable or disable a regulator using 1281 * a particular supply voltage. This would normally be called from the 1282 * set_ios() method. 1283 */ 1284 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1285 struct regulator *supply, 1286 unsigned short vdd_bit) 1287 { 1288 int result = 0; 1289 int min_uV, max_uV; 1290 1291 if (vdd_bit) { 1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1293 1294 result = regulator_set_voltage(supply, min_uV, max_uV); 1295 if (result == 0 && !mmc->regulator_enabled) { 1296 result = regulator_enable(supply); 1297 if (!result) 1298 mmc->regulator_enabled = true; 1299 } 1300 } else if (mmc->regulator_enabled) { 1301 result = regulator_disable(supply); 1302 if (result == 0) 1303 mmc->regulator_enabled = false; 1304 } 1305 1306 if (result) 1307 dev_err(mmc_dev(mmc), 1308 "could not set regulator OCR (%d)\n", result); 1309 return result; 1310 } 1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1312 1313 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1314 int min_uV, int target_uV, 1315 int max_uV) 1316 { 1317 /* 1318 * Check if supported first to avoid errors since we may try several 1319 * signal levels during power up and don't want to show errors. 1320 */ 1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1322 return -EINVAL; 1323 1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1325 max_uV); 1326 } 1327 1328 /** 1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1330 * 1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1334 * SD card spec also define VQMMC in terms of VMMC. 1335 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1336 * 1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1338 * requested voltage. This is definitely a good idea for UHS where there's a 1339 * separate regulator on the card that's trying to make 1.8V and it's best if 1340 * we match. 1341 * 1342 * This function is expected to be used by a controller's 1343 * start_signal_voltage_switch() function. 1344 */ 1345 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1346 { 1347 struct device *dev = mmc_dev(mmc); 1348 int ret, volt, min_uV, max_uV; 1349 1350 /* If no vqmmc supply then we can't change the voltage */ 1351 if (IS_ERR(mmc->supply.vqmmc)) 1352 return -EINVAL; 1353 1354 switch (ios->signal_voltage) { 1355 case MMC_SIGNAL_VOLTAGE_120: 1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1357 1100000, 1200000, 1300000); 1358 case MMC_SIGNAL_VOLTAGE_180: 1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1360 1700000, 1800000, 1950000); 1361 case MMC_SIGNAL_VOLTAGE_330: 1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1363 if (ret < 0) 1364 return ret; 1365 1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1367 __func__, volt, max_uV); 1368 1369 min_uV = max(volt - 300000, 2700000); 1370 max_uV = min(max_uV + 200000, 3600000); 1371 1372 /* 1373 * Due to a limitation in the current implementation of 1374 * regulator_set_voltage_triplet() which is taking the lowest 1375 * voltage possible if below the target, search for a suitable 1376 * voltage in two steps and try to stay close to vmmc 1377 * with a 0.3V tolerance at first. 1378 */ 1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1380 min_uV, volt, max_uV)) 1381 return 0; 1382 1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1384 2700000, volt, 3600000); 1385 default: 1386 return -EINVAL; 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1390 1391 #endif /* CONFIG_REGULATOR */ 1392 1393 /** 1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host 1395 * @mmc: the host to regulate 1396 * 1397 * Returns 0 or errno. errno should be handled, it is either a critical error 1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all 1399 * regulators have been found because they all are optional. If you require 1400 * certain regulators, you need to check separately in your driver if they got 1401 * populated after calling this function. 1402 */ 1403 int mmc_regulator_get_supply(struct mmc_host *mmc) 1404 { 1405 struct device *dev = mmc_dev(mmc); 1406 int ret; 1407 1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1410 1411 if (IS_ERR(mmc->supply.vmmc)) { 1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1413 return -EPROBE_DEFER; 1414 dev_dbg(dev, "No vmmc regulator found\n"); 1415 } else { 1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1417 if (ret > 0) 1418 mmc->ocr_avail = ret; 1419 else 1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1421 } 1422 1423 if (IS_ERR(mmc->supply.vqmmc)) { 1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1425 return -EPROBE_DEFER; 1426 dev_dbg(dev, "No vqmmc regulator found\n"); 1427 } 1428 1429 return 0; 1430 } 1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1432 1433 /* 1434 * Mask off any voltages we don't support and select 1435 * the lowest voltage 1436 */ 1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1438 { 1439 int bit; 1440 1441 /* 1442 * Sanity check the voltages that the card claims to 1443 * support. 1444 */ 1445 if (ocr & 0x7F) { 1446 dev_warn(mmc_dev(host), 1447 "card claims to support voltages below defined range\n"); 1448 ocr &= ~0x7F; 1449 } 1450 1451 ocr &= host->ocr_avail; 1452 if (!ocr) { 1453 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1454 return 0; 1455 } 1456 1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1458 bit = ffs(ocr) - 1; 1459 ocr &= 3 << bit; 1460 mmc_power_cycle(host, ocr); 1461 } else { 1462 bit = fls(ocr) - 1; 1463 ocr &= 3 << bit; 1464 if (bit != host->ios.vdd) 1465 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1466 } 1467 1468 return ocr; 1469 } 1470 1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1472 { 1473 int err = 0; 1474 int old_signal_voltage = host->ios.signal_voltage; 1475 1476 host->ios.signal_voltage = signal_voltage; 1477 if (host->ops->start_signal_voltage_switch) 1478 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1479 1480 if (err) 1481 host->ios.signal_voltage = old_signal_voltage; 1482 1483 return err; 1484 1485 } 1486 1487 void mmc_set_initial_signal_voltage(struct mmc_host *host) 1488 { 1489 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1490 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1491 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1492 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1493 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1494 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1495 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1496 } 1497 1498 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1499 { 1500 u32 clock; 1501 1502 /* 1503 * During a signal voltage level switch, the clock must be gated 1504 * for 5 ms according to the SD spec 1505 */ 1506 clock = host->ios.clock; 1507 host->ios.clock = 0; 1508 mmc_set_ios(host); 1509 1510 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1511 return -EAGAIN; 1512 1513 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1514 mmc_delay(10); 1515 host->ios.clock = clock; 1516 mmc_set_ios(host); 1517 1518 return 0; 1519 } 1520 1521 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1522 { 1523 struct mmc_command cmd = {}; 1524 int err = 0; 1525 1526 /* 1527 * If we cannot switch voltages, return failure so the caller 1528 * can continue without UHS mode 1529 */ 1530 if (!host->ops->start_signal_voltage_switch) 1531 return -EPERM; 1532 if (!host->ops->card_busy) 1533 pr_warn("%s: cannot verify signal voltage switch\n", 1534 mmc_hostname(host)); 1535 1536 cmd.opcode = SD_SWITCH_VOLTAGE; 1537 cmd.arg = 0; 1538 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1539 1540 err = mmc_wait_for_cmd(host, &cmd, 0); 1541 if (err) 1542 return err; 1543 1544 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1545 return -EIO; 1546 1547 /* 1548 * The card should drive cmd and dat[0:3] low immediately 1549 * after the response of cmd11, but wait 1 ms to be sure 1550 */ 1551 mmc_delay(1); 1552 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1553 err = -EAGAIN; 1554 goto power_cycle; 1555 } 1556 1557 if (mmc_host_set_uhs_voltage(host)) { 1558 /* 1559 * Voltages may not have been switched, but we've already 1560 * sent CMD11, so a power cycle is required anyway 1561 */ 1562 err = -EAGAIN; 1563 goto power_cycle; 1564 } 1565 1566 /* Wait for at least 1 ms according to spec */ 1567 mmc_delay(1); 1568 1569 /* 1570 * Failure to switch is indicated by the card holding 1571 * dat[0:3] low 1572 */ 1573 if (host->ops->card_busy && host->ops->card_busy(host)) 1574 err = -EAGAIN; 1575 1576 power_cycle: 1577 if (err) { 1578 pr_debug("%s: Signal voltage switch failed, " 1579 "power cycling card\n", mmc_hostname(host)); 1580 mmc_power_cycle(host, ocr); 1581 } 1582 1583 return err; 1584 } 1585 1586 /* 1587 * Select timing parameters for host. 1588 */ 1589 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1590 { 1591 host->ios.timing = timing; 1592 mmc_set_ios(host); 1593 } 1594 1595 /* 1596 * Select appropriate driver type for host. 1597 */ 1598 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1599 { 1600 host->ios.drv_type = drv_type; 1601 mmc_set_ios(host); 1602 } 1603 1604 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1605 int card_drv_type, int *drv_type) 1606 { 1607 struct mmc_host *host = card->host; 1608 int host_drv_type = SD_DRIVER_TYPE_B; 1609 1610 *drv_type = 0; 1611 1612 if (!host->ops->select_drive_strength) 1613 return 0; 1614 1615 /* Use SD definition of driver strength for hosts */ 1616 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1617 host_drv_type |= SD_DRIVER_TYPE_A; 1618 1619 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1620 host_drv_type |= SD_DRIVER_TYPE_C; 1621 1622 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1623 host_drv_type |= SD_DRIVER_TYPE_D; 1624 1625 /* 1626 * The drive strength that the hardware can support 1627 * depends on the board design. Pass the appropriate 1628 * information and let the hardware specific code 1629 * return what is possible given the options 1630 */ 1631 return host->ops->select_drive_strength(card, max_dtr, 1632 host_drv_type, 1633 card_drv_type, 1634 drv_type); 1635 } 1636 1637 /* 1638 * Apply power to the MMC stack. This is a two-stage process. 1639 * First, we enable power to the card without the clock running. 1640 * We then wait a bit for the power to stabilise. Finally, 1641 * enable the bus drivers and clock to the card. 1642 * 1643 * We must _NOT_ enable the clock prior to power stablising. 1644 * 1645 * If a host does all the power sequencing itself, ignore the 1646 * initial MMC_POWER_UP stage. 1647 */ 1648 void mmc_power_up(struct mmc_host *host, u32 ocr) 1649 { 1650 if (host->ios.power_mode == MMC_POWER_ON) 1651 return; 1652 1653 mmc_pwrseq_pre_power_on(host); 1654 1655 host->ios.vdd = fls(ocr) - 1; 1656 host->ios.power_mode = MMC_POWER_UP; 1657 /* Set initial state and call mmc_set_ios */ 1658 mmc_set_initial_state(host); 1659 1660 mmc_set_initial_signal_voltage(host); 1661 1662 /* 1663 * This delay should be sufficient to allow the power supply 1664 * to reach the minimum voltage. 1665 */ 1666 mmc_delay(host->ios.power_delay_ms); 1667 1668 mmc_pwrseq_post_power_on(host); 1669 1670 host->ios.clock = host->f_init; 1671 1672 host->ios.power_mode = MMC_POWER_ON; 1673 mmc_set_ios(host); 1674 1675 /* 1676 * This delay must be at least 74 clock sizes, or 1 ms, or the 1677 * time required to reach a stable voltage. 1678 */ 1679 mmc_delay(host->ios.power_delay_ms); 1680 } 1681 1682 void mmc_power_off(struct mmc_host *host) 1683 { 1684 if (host->ios.power_mode == MMC_POWER_OFF) 1685 return; 1686 1687 mmc_pwrseq_power_off(host); 1688 1689 host->ios.clock = 0; 1690 host->ios.vdd = 0; 1691 1692 host->ios.power_mode = MMC_POWER_OFF; 1693 /* Set initial state and call mmc_set_ios */ 1694 mmc_set_initial_state(host); 1695 1696 /* 1697 * Some configurations, such as the 802.11 SDIO card in the OLPC 1698 * XO-1.5, require a short delay after poweroff before the card 1699 * can be successfully turned on again. 1700 */ 1701 mmc_delay(1); 1702 } 1703 1704 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1705 { 1706 mmc_power_off(host); 1707 /* Wait at least 1 ms according to SD spec */ 1708 mmc_delay(1); 1709 mmc_power_up(host, ocr); 1710 } 1711 1712 /* 1713 * Cleanup when the last reference to the bus operator is dropped. 1714 */ 1715 static void __mmc_release_bus(struct mmc_host *host) 1716 { 1717 WARN_ON(!host->bus_dead); 1718 1719 host->bus_ops = NULL; 1720 } 1721 1722 /* 1723 * Increase reference count of bus operator 1724 */ 1725 static inline void mmc_bus_get(struct mmc_host *host) 1726 { 1727 unsigned long flags; 1728 1729 spin_lock_irqsave(&host->lock, flags); 1730 host->bus_refs++; 1731 spin_unlock_irqrestore(&host->lock, flags); 1732 } 1733 1734 /* 1735 * Decrease reference count of bus operator and free it if 1736 * it is the last reference. 1737 */ 1738 static inline void mmc_bus_put(struct mmc_host *host) 1739 { 1740 unsigned long flags; 1741 1742 spin_lock_irqsave(&host->lock, flags); 1743 host->bus_refs--; 1744 if ((host->bus_refs == 0) && host->bus_ops) 1745 __mmc_release_bus(host); 1746 spin_unlock_irqrestore(&host->lock, flags); 1747 } 1748 1749 /* 1750 * Assign a mmc bus handler to a host. Only one bus handler may control a 1751 * host at any given time. 1752 */ 1753 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1754 { 1755 unsigned long flags; 1756 1757 WARN_ON(!host->claimed); 1758 1759 spin_lock_irqsave(&host->lock, flags); 1760 1761 WARN_ON(host->bus_ops); 1762 WARN_ON(host->bus_refs); 1763 1764 host->bus_ops = ops; 1765 host->bus_refs = 1; 1766 host->bus_dead = 0; 1767 1768 spin_unlock_irqrestore(&host->lock, flags); 1769 } 1770 1771 /* 1772 * Remove the current bus handler from a host. 1773 */ 1774 void mmc_detach_bus(struct mmc_host *host) 1775 { 1776 unsigned long flags; 1777 1778 WARN_ON(!host->claimed); 1779 WARN_ON(!host->bus_ops); 1780 1781 spin_lock_irqsave(&host->lock, flags); 1782 1783 host->bus_dead = 1; 1784 1785 spin_unlock_irqrestore(&host->lock, flags); 1786 1787 mmc_bus_put(host); 1788 } 1789 1790 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1791 bool cd_irq) 1792 { 1793 /* 1794 * If the device is configured as wakeup, we prevent a new sleep for 1795 * 5 s to give provision for user space to consume the event. 1796 */ 1797 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1798 device_can_wakeup(mmc_dev(host))) 1799 pm_wakeup_event(mmc_dev(host), 5000); 1800 1801 host->detect_change = 1; 1802 mmc_schedule_delayed_work(&host->detect, delay); 1803 } 1804 1805 /** 1806 * mmc_detect_change - process change of state on a MMC socket 1807 * @host: host which changed state. 1808 * @delay: optional delay to wait before detection (jiffies) 1809 * 1810 * MMC drivers should call this when they detect a card has been 1811 * inserted or removed. The MMC layer will confirm that any 1812 * present card is still functional, and initialize any newly 1813 * inserted. 1814 */ 1815 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1816 { 1817 _mmc_detect_change(host, delay, true); 1818 } 1819 EXPORT_SYMBOL(mmc_detect_change); 1820 1821 void mmc_init_erase(struct mmc_card *card) 1822 { 1823 unsigned int sz; 1824 1825 if (is_power_of_2(card->erase_size)) 1826 card->erase_shift = ffs(card->erase_size) - 1; 1827 else 1828 card->erase_shift = 0; 1829 1830 /* 1831 * It is possible to erase an arbitrarily large area of an SD or MMC 1832 * card. That is not desirable because it can take a long time 1833 * (minutes) potentially delaying more important I/O, and also the 1834 * timeout calculations become increasingly hugely over-estimated. 1835 * Consequently, 'pref_erase' is defined as a guide to limit erases 1836 * to that size and alignment. 1837 * 1838 * For SD cards that define Allocation Unit size, limit erases to one 1839 * Allocation Unit at a time. 1840 * For MMC, have a stab at ai good value and for modern cards it will 1841 * end up being 4MiB. Note that if the value is too small, it can end 1842 * up taking longer to erase. Also note, erase_size is already set to 1843 * High Capacity Erase Size if available when this function is called. 1844 */ 1845 if (mmc_card_sd(card) && card->ssr.au) { 1846 card->pref_erase = card->ssr.au; 1847 card->erase_shift = ffs(card->ssr.au) - 1; 1848 } else if (card->erase_size) { 1849 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1850 if (sz < 128) 1851 card->pref_erase = 512 * 1024 / 512; 1852 else if (sz < 512) 1853 card->pref_erase = 1024 * 1024 / 512; 1854 else if (sz < 1024) 1855 card->pref_erase = 2 * 1024 * 1024 / 512; 1856 else 1857 card->pref_erase = 4 * 1024 * 1024 / 512; 1858 if (card->pref_erase < card->erase_size) 1859 card->pref_erase = card->erase_size; 1860 else { 1861 sz = card->pref_erase % card->erase_size; 1862 if (sz) 1863 card->pref_erase += card->erase_size - sz; 1864 } 1865 } else 1866 card->pref_erase = 0; 1867 } 1868 1869 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1870 unsigned int arg, unsigned int qty) 1871 { 1872 unsigned int erase_timeout; 1873 1874 if (arg == MMC_DISCARD_ARG || 1875 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1876 erase_timeout = card->ext_csd.trim_timeout; 1877 } else if (card->ext_csd.erase_group_def & 1) { 1878 /* High Capacity Erase Group Size uses HC timeouts */ 1879 if (arg == MMC_TRIM_ARG) 1880 erase_timeout = card->ext_csd.trim_timeout; 1881 else 1882 erase_timeout = card->ext_csd.hc_erase_timeout; 1883 } else { 1884 /* CSD Erase Group Size uses write timeout */ 1885 unsigned int mult = (10 << card->csd.r2w_factor); 1886 unsigned int timeout_clks = card->csd.taac_clks * mult; 1887 unsigned int timeout_us; 1888 1889 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1890 if (card->csd.taac_ns < 1000000) 1891 timeout_us = (card->csd.taac_ns * mult) / 1000; 1892 else 1893 timeout_us = (card->csd.taac_ns / 1000) * mult; 1894 1895 /* 1896 * ios.clock is only a target. The real clock rate might be 1897 * less but not that much less, so fudge it by multiplying by 2. 1898 */ 1899 timeout_clks <<= 1; 1900 timeout_us += (timeout_clks * 1000) / 1901 (card->host->ios.clock / 1000); 1902 1903 erase_timeout = timeout_us / 1000; 1904 1905 /* 1906 * Theoretically, the calculation could underflow so round up 1907 * to 1ms in that case. 1908 */ 1909 if (!erase_timeout) 1910 erase_timeout = 1; 1911 } 1912 1913 /* Multiplier for secure operations */ 1914 if (arg & MMC_SECURE_ARGS) { 1915 if (arg == MMC_SECURE_ERASE_ARG) 1916 erase_timeout *= card->ext_csd.sec_erase_mult; 1917 else 1918 erase_timeout *= card->ext_csd.sec_trim_mult; 1919 } 1920 1921 erase_timeout *= qty; 1922 1923 /* 1924 * Ensure at least a 1 second timeout for SPI as per 1925 * 'mmc_set_data_timeout()' 1926 */ 1927 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1928 erase_timeout = 1000; 1929 1930 return erase_timeout; 1931 } 1932 1933 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1934 unsigned int arg, 1935 unsigned int qty) 1936 { 1937 unsigned int erase_timeout; 1938 1939 if (card->ssr.erase_timeout) { 1940 /* Erase timeout specified in SD Status Register (SSR) */ 1941 erase_timeout = card->ssr.erase_timeout * qty + 1942 card->ssr.erase_offset; 1943 } else { 1944 /* 1945 * Erase timeout not specified in SD Status Register (SSR) so 1946 * use 250ms per write block. 1947 */ 1948 erase_timeout = 250 * qty; 1949 } 1950 1951 /* Must not be less than 1 second */ 1952 if (erase_timeout < 1000) 1953 erase_timeout = 1000; 1954 1955 return erase_timeout; 1956 } 1957 1958 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1959 unsigned int arg, 1960 unsigned int qty) 1961 { 1962 if (mmc_card_sd(card)) 1963 return mmc_sd_erase_timeout(card, arg, qty); 1964 else 1965 return mmc_mmc_erase_timeout(card, arg, qty); 1966 } 1967 1968 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1969 unsigned int to, unsigned int arg) 1970 { 1971 struct mmc_command cmd = {}; 1972 unsigned int qty = 0, busy_timeout = 0; 1973 bool use_r1b_resp = false; 1974 unsigned long timeout; 1975 int loop_udelay=64, udelay_max=32768; 1976 int err; 1977 1978 mmc_retune_hold(card->host); 1979 1980 /* 1981 * qty is used to calculate the erase timeout which depends on how many 1982 * erase groups (or allocation units in SD terminology) are affected. 1983 * We count erasing part of an erase group as one erase group. 1984 * For SD, the allocation units are always a power of 2. For MMC, the 1985 * erase group size is almost certainly also power of 2, but it does not 1986 * seem to insist on that in the JEDEC standard, so we fall back to 1987 * division in that case. SD may not specify an allocation unit size, 1988 * in which case the timeout is based on the number of write blocks. 1989 * 1990 * Note that the timeout for secure trim 2 will only be correct if the 1991 * number of erase groups specified is the same as the total of all 1992 * preceding secure trim 1 commands. Since the power may have been 1993 * lost since the secure trim 1 commands occurred, it is generally 1994 * impossible to calculate the secure trim 2 timeout correctly. 1995 */ 1996 if (card->erase_shift) 1997 qty += ((to >> card->erase_shift) - 1998 (from >> card->erase_shift)) + 1; 1999 else if (mmc_card_sd(card)) 2000 qty += to - from + 1; 2001 else 2002 qty += ((to / card->erase_size) - 2003 (from / card->erase_size)) + 1; 2004 2005 if (!mmc_card_blockaddr(card)) { 2006 from <<= 9; 2007 to <<= 9; 2008 } 2009 2010 if (mmc_card_sd(card)) 2011 cmd.opcode = SD_ERASE_WR_BLK_START; 2012 else 2013 cmd.opcode = MMC_ERASE_GROUP_START; 2014 cmd.arg = from; 2015 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2016 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2017 if (err) { 2018 pr_err("mmc_erase: group start error %d, " 2019 "status %#x\n", err, cmd.resp[0]); 2020 err = -EIO; 2021 goto out; 2022 } 2023 2024 memset(&cmd, 0, sizeof(struct mmc_command)); 2025 if (mmc_card_sd(card)) 2026 cmd.opcode = SD_ERASE_WR_BLK_END; 2027 else 2028 cmd.opcode = MMC_ERASE_GROUP_END; 2029 cmd.arg = to; 2030 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2031 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2032 if (err) { 2033 pr_err("mmc_erase: group end error %d, status %#x\n", 2034 err, cmd.resp[0]); 2035 err = -EIO; 2036 goto out; 2037 } 2038 2039 memset(&cmd, 0, sizeof(struct mmc_command)); 2040 cmd.opcode = MMC_ERASE; 2041 cmd.arg = arg; 2042 busy_timeout = mmc_erase_timeout(card, arg, qty); 2043 /* 2044 * If the host controller supports busy signalling and the timeout for 2045 * the erase operation does not exceed the max_busy_timeout, we should 2046 * use R1B response. Or we need to prevent the host from doing hw busy 2047 * detection, which is done by converting to a R1 response instead. 2048 */ 2049 if (card->host->max_busy_timeout && 2050 busy_timeout > card->host->max_busy_timeout) { 2051 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2052 } else { 2053 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2054 cmd.busy_timeout = busy_timeout; 2055 use_r1b_resp = true; 2056 } 2057 2058 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2059 if (err) { 2060 pr_err("mmc_erase: erase error %d, status %#x\n", 2061 err, cmd.resp[0]); 2062 err = -EIO; 2063 goto out; 2064 } 2065 2066 if (mmc_host_is_spi(card->host)) 2067 goto out; 2068 2069 /* 2070 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2071 * shall be avoided. 2072 */ 2073 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2074 goto out; 2075 2076 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2077 do { 2078 memset(&cmd, 0, sizeof(struct mmc_command)); 2079 cmd.opcode = MMC_SEND_STATUS; 2080 cmd.arg = card->rca << 16; 2081 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2082 /* Do not retry else we can't see errors */ 2083 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2084 if (err || R1_STATUS(cmd.resp[0])) { 2085 pr_err("error %d requesting status %#x\n", 2086 err, cmd.resp[0]); 2087 err = -EIO; 2088 goto out; 2089 } 2090 2091 /* Timeout if the device never becomes ready for data and 2092 * never leaves the program state. 2093 */ 2094 if (time_after(jiffies, timeout)) { 2095 pr_err("%s: Card stuck in programming state! %s\n", 2096 mmc_hostname(card->host), __func__); 2097 err = -EIO; 2098 goto out; 2099 } 2100 if ((cmd.resp[0] & R1_READY_FOR_DATA) && 2101 R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG) 2102 break; 2103 2104 usleep_range(loop_udelay, loop_udelay*2); 2105 if (loop_udelay < udelay_max) 2106 loop_udelay *= 2; 2107 } while (1); 2108 2109 out: 2110 mmc_retune_release(card->host); 2111 return err; 2112 } 2113 2114 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2115 unsigned int *from, 2116 unsigned int *to, 2117 unsigned int nr) 2118 { 2119 unsigned int from_new = *from, nr_new = nr, rem; 2120 2121 /* 2122 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2123 * to align the erase size efficiently. 2124 */ 2125 if (is_power_of_2(card->erase_size)) { 2126 unsigned int temp = from_new; 2127 2128 from_new = round_up(temp, card->erase_size); 2129 rem = from_new - temp; 2130 2131 if (nr_new > rem) 2132 nr_new -= rem; 2133 else 2134 return 0; 2135 2136 nr_new = round_down(nr_new, card->erase_size); 2137 } else { 2138 rem = from_new % card->erase_size; 2139 if (rem) { 2140 rem = card->erase_size - rem; 2141 from_new += rem; 2142 if (nr_new > rem) 2143 nr_new -= rem; 2144 else 2145 return 0; 2146 } 2147 2148 rem = nr_new % card->erase_size; 2149 if (rem) 2150 nr_new -= rem; 2151 } 2152 2153 if (nr_new == 0) 2154 return 0; 2155 2156 *to = from_new + nr_new; 2157 *from = from_new; 2158 2159 return nr_new; 2160 } 2161 2162 /** 2163 * mmc_erase - erase sectors. 2164 * @card: card to erase 2165 * @from: first sector to erase 2166 * @nr: number of sectors to erase 2167 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2168 * 2169 * Caller must claim host before calling this function. 2170 */ 2171 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2172 unsigned int arg) 2173 { 2174 unsigned int rem, to = from + nr; 2175 int err; 2176 2177 if (!(card->host->caps & MMC_CAP_ERASE) || 2178 !(card->csd.cmdclass & CCC_ERASE)) 2179 return -EOPNOTSUPP; 2180 2181 if (!card->erase_size) 2182 return -EOPNOTSUPP; 2183 2184 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2185 return -EOPNOTSUPP; 2186 2187 if ((arg & MMC_SECURE_ARGS) && 2188 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2189 return -EOPNOTSUPP; 2190 2191 if ((arg & MMC_TRIM_ARGS) && 2192 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2193 return -EOPNOTSUPP; 2194 2195 if (arg == MMC_SECURE_ERASE_ARG) { 2196 if (from % card->erase_size || nr % card->erase_size) 2197 return -EINVAL; 2198 } 2199 2200 if (arg == MMC_ERASE_ARG) 2201 nr = mmc_align_erase_size(card, &from, &to, nr); 2202 2203 if (nr == 0) 2204 return 0; 2205 2206 if (to <= from) 2207 return -EINVAL; 2208 2209 /* 'from' and 'to' are inclusive */ 2210 to -= 1; 2211 2212 /* 2213 * Special case where only one erase-group fits in the timeout budget: 2214 * If the region crosses an erase-group boundary on this particular 2215 * case, we will be trimming more than one erase-group which, does not 2216 * fit in the timeout budget of the controller, so we need to split it 2217 * and call mmc_do_erase() twice if necessary. This special case is 2218 * identified by the card->eg_boundary flag. 2219 */ 2220 rem = card->erase_size - (from % card->erase_size); 2221 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2222 err = mmc_do_erase(card, from, from + rem - 1, arg); 2223 from += rem; 2224 if ((err) || (to <= from)) 2225 return err; 2226 } 2227 2228 return mmc_do_erase(card, from, to, arg); 2229 } 2230 EXPORT_SYMBOL(mmc_erase); 2231 2232 int mmc_can_erase(struct mmc_card *card) 2233 { 2234 if ((card->host->caps & MMC_CAP_ERASE) && 2235 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2236 return 1; 2237 return 0; 2238 } 2239 EXPORT_SYMBOL(mmc_can_erase); 2240 2241 int mmc_can_trim(struct mmc_card *card) 2242 { 2243 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2244 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2245 return 1; 2246 return 0; 2247 } 2248 EXPORT_SYMBOL(mmc_can_trim); 2249 2250 int mmc_can_discard(struct mmc_card *card) 2251 { 2252 /* 2253 * As there's no way to detect the discard support bit at v4.5 2254 * use the s/w feature support filed. 2255 */ 2256 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2257 return 1; 2258 return 0; 2259 } 2260 EXPORT_SYMBOL(mmc_can_discard); 2261 2262 int mmc_can_sanitize(struct mmc_card *card) 2263 { 2264 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2265 return 0; 2266 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2267 return 1; 2268 return 0; 2269 } 2270 EXPORT_SYMBOL(mmc_can_sanitize); 2271 2272 int mmc_can_secure_erase_trim(struct mmc_card *card) 2273 { 2274 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2275 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2276 return 1; 2277 return 0; 2278 } 2279 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2280 2281 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2282 unsigned int nr) 2283 { 2284 if (!card->erase_size) 2285 return 0; 2286 if (from % card->erase_size || nr % card->erase_size) 2287 return 0; 2288 return 1; 2289 } 2290 EXPORT_SYMBOL(mmc_erase_group_aligned); 2291 2292 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2293 unsigned int arg) 2294 { 2295 struct mmc_host *host = card->host; 2296 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2297 unsigned int last_timeout = 0; 2298 unsigned int max_busy_timeout = host->max_busy_timeout ? 2299 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2300 2301 if (card->erase_shift) { 2302 max_qty = UINT_MAX >> card->erase_shift; 2303 min_qty = card->pref_erase >> card->erase_shift; 2304 } else if (mmc_card_sd(card)) { 2305 max_qty = UINT_MAX; 2306 min_qty = card->pref_erase; 2307 } else { 2308 max_qty = UINT_MAX / card->erase_size; 2309 min_qty = card->pref_erase / card->erase_size; 2310 } 2311 2312 /* 2313 * We should not only use 'host->max_busy_timeout' as the limitation 2314 * when deciding the max discard sectors. We should set a balance value 2315 * to improve the erase speed, and it can not get too long timeout at 2316 * the same time. 2317 * 2318 * Here we set 'card->pref_erase' as the minimal discard sectors no 2319 * matter what size of 'host->max_busy_timeout', but if the 2320 * 'host->max_busy_timeout' is large enough for more discard sectors, 2321 * then we can continue to increase the max discard sectors until we 2322 * get a balance value. In cases when the 'host->max_busy_timeout' 2323 * isn't specified, use the default max erase timeout. 2324 */ 2325 do { 2326 y = 0; 2327 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2328 timeout = mmc_erase_timeout(card, arg, qty + x); 2329 2330 if (qty + x > min_qty && timeout > max_busy_timeout) 2331 break; 2332 2333 if (timeout < last_timeout) 2334 break; 2335 last_timeout = timeout; 2336 y = x; 2337 } 2338 qty += y; 2339 } while (y); 2340 2341 if (!qty) 2342 return 0; 2343 2344 /* 2345 * When specifying a sector range to trim, chances are we might cross 2346 * an erase-group boundary even if the amount of sectors is less than 2347 * one erase-group. 2348 * If we can only fit one erase-group in the controller timeout budget, 2349 * we have to care that erase-group boundaries are not crossed by a 2350 * single trim operation. We flag that special case with "eg_boundary". 2351 * In all other cases we can just decrement qty and pretend that we 2352 * always touch (qty + 1) erase-groups as a simple optimization. 2353 */ 2354 if (qty == 1) 2355 card->eg_boundary = 1; 2356 else 2357 qty--; 2358 2359 /* Convert qty to sectors */ 2360 if (card->erase_shift) 2361 max_discard = qty << card->erase_shift; 2362 else if (mmc_card_sd(card)) 2363 max_discard = qty + 1; 2364 else 2365 max_discard = qty * card->erase_size; 2366 2367 return max_discard; 2368 } 2369 2370 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2371 { 2372 struct mmc_host *host = card->host; 2373 unsigned int max_discard, max_trim; 2374 2375 /* 2376 * Without erase_group_def set, MMC erase timeout depends on clock 2377 * frequence which can change. In that case, the best choice is 2378 * just the preferred erase size. 2379 */ 2380 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2381 return card->pref_erase; 2382 2383 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2384 if (max_discard && mmc_can_trim(card)) { 2385 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2386 if (max_trim < max_discard) 2387 max_discard = max_trim; 2388 } else if (max_discard < card->erase_size) { 2389 max_discard = 0; 2390 } 2391 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2392 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2393 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2394 return max_discard; 2395 } 2396 EXPORT_SYMBOL(mmc_calc_max_discard); 2397 2398 bool mmc_card_is_blockaddr(struct mmc_card *card) 2399 { 2400 return card ? mmc_card_blockaddr(card) : false; 2401 } 2402 EXPORT_SYMBOL(mmc_card_is_blockaddr); 2403 2404 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2405 { 2406 struct mmc_command cmd = {}; 2407 2408 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2409 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2410 return 0; 2411 2412 cmd.opcode = MMC_SET_BLOCKLEN; 2413 cmd.arg = blocklen; 2414 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2415 return mmc_wait_for_cmd(card->host, &cmd, 5); 2416 } 2417 EXPORT_SYMBOL(mmc_set_blocklen); 2418 2419 static void mmc_hw_reset_for_init(struct mmc_host *host) 2420 { 2421 mmc_pwrseq_reset(host); 2422 2423 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2424 return; 2425 host->ops->hw_reset(host); 2426 } 2427 2428 int mmc_hw_reset(struct mmc_host *host) 2429 { 2430 int ret; 2431 2432 if (!host->card) 2433 return -EINVAL; 2434 2435 mmc_bus_get(host); 2436 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) { 2437 mmc_bus_put(host); 2438 return -EOPNOTSUPP; 2439 } 2440 2441 ret = host->bus_ops->hw_reset(host); 2442 mmc_bus_put(host); 2443 2444 if (ret) 2445 pr_warn("%s: tried to HW reset card, got error %d\n", 2446 mmc_hostname(host), ret); 2447 2448 return ret; 2449 } 2450 EXPORT_SYMBOL(mmc_hw_reset); 2451 2452 int mmc_sw_reset(struct mmc_host *host) 2453 { 2454 int ret; 2455 2456 if (!host->card) 2457 return -EINVAL; 2458 2459 mmc_bus_get(host); 2460 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) { 2461 mmc_bus_put(host); 2462 return -EOPNOTSUPP; 2463 } 2464 2465 ret = host->bus_ops->sw_reset(host); 2466 mmc_bus_put(host); 2467 2468 if (ret) 2469 pr_warn("%s: tried to SW reset card, got error %d\n", 2470 mmc_hostname(host), ret); 2471 2472 return ret; 2473 } 2474 EXPORT_SYMBOL(mmc_sw_reset); 2475 2476 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2477 { 2478 host->f_init = freq; 2479 2480 pr_debug("%s: %s: trying to init card at %u Hz\n", 2481 mmc_hostname(host), __func__, host->f_init); 2482 2483 mmc_power_up(host, host->ocr_avail); 2484 2485 /* 2486 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2487 * do a hardware reset if possible. 2488 */ 2489 mmc_hw_reset_for_init(host); 2490 2491 /* 2492 * sdio_reset sends CMD52 to reset card. Since we do not know 2493 * if the card is being re-initialized, just send it. CMD52 2494 * should be ignored by SD/eMMC cards. 2495 * Skip it if we already know that we do not support SDIO commands 2496 */ 2497 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2498 sdio_reset(host); 2499 2500 mmc_go_idle(host); 2501 2502 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2503 mmc_send_if_cond(host, host->ocr_avail); 2504 2505 /* Order's important: probe SDIO, then SD, then MMC */ 2506 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2507 if (!mmc_attach_sdio(host)) 2508 return 0; 2509 2510 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2511 if (!mmc_attach_sd(host)) 2512 return 0; 2513 2514 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2515 if (!mmc_attach_mmc(host)) 2516 return 0; 2517 2518 mmc_power_off(host); 2519 return -EIO; 2520 } 2521 2522 int _mmc_detect_card_removed(struct mmc_host *host) 2523 { 2524 int ret; 2525 2526 if (!host->card || mmc_card_removed(host->card)) 2527 return 1; 2528 2529 ret = host->bus_ops->alive(host); 2530 2531 /* 2532 * Card detect status and alive check may be out of sync if card is 2533 * removed slowly, when card detect switch changes while card/slot 2534 * pads are still contacted in hardware (refer to "SD Card Mechanical 2535 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2536 * detect work 200ms later for this case. 2537 */ 2538 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2539 mmc_detect_change(host, msecs_to_jiffies(200)); 2540 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2541 } 2542 2543 if (ret) { 2544 mmc_card_set_removed(host->card); 2545 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2546 } 2547 2548 return ret; 2549 } 2550 2551 int mmc_detect_card_removed(struct mmc_host *host) 2552 { 2553 struct mmc_card *card = host->card; 2554 int ret; 2555 2556 WARN_ON(!host->claimed); 2557 2558 if (!card) 2559 return 1; 2560 2561 if (!mmc_card_is_removable(host)) 2562 return 0; 2563 2564 ret = mmc_card_removed(card); 2565 /* 2566 * The card will be considered unchanged unless we have been asked to 2567 * detect a change or host requires polling to provide card detection. 2568 */ 2569 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2570 return ret; 2571 2572 host->detect_change = 0; 2573 if (!ret) { 2574 ret = _mmc_detect_card_removed(host); 2575 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2576 /* 2577 * Schedule a detect work as soon as possible to let a 2578 * rescan handle the card removal. 2579 */ 2580 cancel_delayed_work(&host->detect); 2581 _mmc_detect_change(host, 0, false); 2582 } 2583 } 2584 2585 return ret; 2586 } 2587 EXPORT_SYMBOL(mmc_detect_card_removed); 2588 2589 void mmc_rescan(struct work_struct *work) 2590 { 2591 struct mmc_host *host = 2592 container_of(work, struct mmc_host, detect.work); 2593 int i; 2594 2595 if (host->rescan_disable) 2596 return; 2597 2598 /* If there is a non-removable card registered, only scan once */ 2599 if (!mmc_card_is_removable(host) && host->rescan_entered) 2600 return; 2601 host->rescan_entered = 1; 2602 2603 if (host->trigger_card_event && host->ops->card_event) { 2604 mmc_claim_host(host); 2605 host->ops->card_event(host); 2606 mmc_release_host(host); 2607 host->trigger_card_event = false; 2608 } 2609 2610 mmc_bus_get(host); 2611 2612 /* 2613 * if there is a _removable_ card registered, check whether it is 2614 * still present 2615 */ 2616 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2617 host->bus_ops->detect(host); 2618 2619 host->detect_change = 0; 2620 2621 /* 2622 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2623 * the card is no longer present. 2624 */ 2625 mmc_bus_put(host); 2626 mmc_bus_get(host); 2627 2628 /* if there still is a card present, stop here */ 2629 if (host->bus_ops != NULL) { 2630 mmc_bus_put(host); 2631 goto out; 2632 } 2633 2634 /* 2635 * Only we can add a new handler, so it's safe to 2636 * release the lock here. 2637 */ 2638 mmc_bus_put(host); 2639 2640 mmc_claim_host(host); 2641 if (mmc_card_is_removable(host) && host->ops->get_cd && 2642 host->ops->get_cd(host) == 0) { 2643 mmc_power_off(host); 2644 mmc_release_host(host); 2645 goto out; 2646 } 2647 2648 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2649 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2650 break; 2651 if (freqs[i] <= host->f_min) 2652 break; 2653 } 2654 mmc_release_host(host); 2655 2656 out: 2657 if (host->caps & MMC_CAP_NEEDS_POLL) 2658 mmc_schedule_delayed_work(&host->detect, HZ); 2659 } 2660 2661 void mmc_start_host(struct mmc_host *host) 2662 { 2663 host->f_init = max(freqs[0], host->f_min); 2664 host->rescan_disable = 0; 2665 host->ios.power_mode = MMC_POWER_UNDEFINED; 2666 2667 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2668 mmc_claim_host(host); 2669 mmc_power_up(host, host->ocr_avail); 2670 mmc_release_host(host); 2671 } 2672 2673 mmc_gpiod_request_cd_irq(host); 2674 _mmc_detect_change(host, 0, false); 2675 } 2676 2677 void mmc_stop_host(struct mmc_host *host) 2678 { 2679 if (host->slot.cd_irq >= 0) { 2680 mmc_gpio_set_cd_wake(host, false); 2681 disable_irq(host->slot.cd_irq); 2682 } 2683 2684 host->rescan_disable = 1; 2685 cancel_delayed_work_sync(&host->detect); 2686 2687 /* clear pm flags now and let card drivers set them as needed */ 2688 host->pm_flags = 0; 2689 2690 mmc_bus_get(host); 2691 if (host->bus_ops && !host->bus_dead) { 2692 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2693 host->bus_ops->remove(host); 2694 mmc_claim_host(host); 2695 mmc_detach_bus(host); 2696 mmc_power_off(host); 2697 mmc_release_host(host); 2698 mmc_bus_put(host); 2699 return; 2700 } 2701 mmc_bus_put(host); 2702 2703 mmc_claim_host(host); 2704 mmc_power_off(host); 2705 mmc_release_host(host); 2706 } 2707 2708 #ifdef CONFIG_PM_SLEEP 2709 /* Do the card removal on suspend if card is assumed removeable 2710 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2711 to sync the card. 2712 */ 2713 static int mmc_pm_notify(struct notifier_block *notify_block, 2714 unsigned long mode, void *unused) 2715 { 2716 struct mmc_host *host = container_of( 2717 notify_block, struct mmc_host, pm_notify); 2718 unsigned long flags; 2719 int err = 0; 2720 2721 switch (mode) { 2722 case PM_HIBERNATION_PREPARE: 2723 case PM_SUSPEND_PREPARE: 2724 case PM_RESTORE_PREPARE: 2725 spin_lock_irqsave(&host->lock, flags); 2726 host->rescan_disable = 1; 2727 spin_unlock_irqrestore(&host->lock, flags); 2728 cancel_delayed_work_sync(&host->detect); 2729 2730 if (!host->bus_ops) 2731 break; 2732 2733 /* Validate prerequisites for suspend */ 2734 if (host->bus_ops->pre_suspend) 2735 err = host->bus_ops->pre_suspend(host); 2736 if (!err) 2737 break; 2738 2739 if (!mmc_card_is_removable(host)) { 2740 dev_warn(mmc_dev(host), 2741 "pre_suspend failed for non-removable host: " 2742 "%d\n", err); 2743 /* Avoid removing non-removable hosts */ 2744 break; 2745 } 2746 2747 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2748 host->bus_ops->remove(host); 2749 mmc_claim_host(host); 2750 mmc_detach_bus(host); 2751 mmc_power_off(host); 2752 mmc_release_host(host); 2753 host->pm_flags = 0; 2754 break; 2755 2756 case PM_POST_SUSPEND: 2757 case PM_POST_HIBERNATION: 2758 case PM_POST_RESTORE: 2759 2760 spin_lock_irqsave(&host->lock, flags); 2761 host->rescan_disable = 0; 2762 spin_unlock_irqrestore(&host->lock, flags); 2763 _mmc_detect_change(host, 0, false); 2764 2765 } 2766 2767 return 0; 2768 } 2769 2770 void mmc_register_pm_notifier(struct mmc_host *host) 2771 { 2772 host->pm_notify.notifier_call = mmc_pm_notify; 2773 register_pm_notifier(&host->pm_notify); 2774 } 2775 2776 void mmc_unregister_pm_notifier(struct mmc_host *host) 2777 { 2778 unregister_pm_notifier(&host->pm_notify); 2779 } 2780 #endif 2781 2782 static int __init mmc_init(void) 2783 { 2784 int ret; 2785 2786 ret = mmc_register_bus(); 2787 if (ret) 2788 return ret; 2789 2790 ret = mmc_register_host_class(); 2791 if (ret) 2792 goto unregister_bus; 2793 2794 ret = sdio_register_bus(); 2795 if (ret) 2796 goto unregister_host_class; 2797 2798 return 0; 2799 2800 unregister_host_class: 2801 mmc_unregister_host_class(); 2802 unregister_bus: 2803 mmc_unregister_bus(); 2804 return ret; 2805 } 2806 2807 static void __exit mmc_exit(void) 2808 { 2809 sdio_unregister_bus(); 2810 mmc_unregister_host_class(); 2811 mmc_unregister_bus(); 2812 } 2813 2814 subsys_initcall(mmc_init); 2815 module_exit(mmc_exit); 2816 2817 MODULE_LICENSE("GPL"); 2818