xref: /openbmc/linux/drivers/mmc/core/core.c (revision 5b4cb650)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
55 
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57 
58 /*
59  * Enabling software CRCs on the data blocks can be a significant (30%)
60  * performance cost, and for other reasons may not always be desired.
61  * So we allow it it to be disabled.
62  */
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
65 
66 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 				     unsigned long delay)
68 {
69 	/*
70 	 * We use the system_freezable_wq, because of two reasons.
71 	 * First, it allows several works (not the same work item) to be
72 	 * executed simultaneously. Second, the queue becomes frozen when
73 	 * userspace becomes frozen during system PM.
74 	 */
75 	return queue_delayed_work(system_freezable_wq, work, delay);
76 }
77 
78 #ifdef CONFIG_FAIL_MMC_REQUEST
79 
80 /*
81  * Internal function. Inject random data errors.
82  * If mmc_data is NULL no errors are injected.
83  */
84 static void mmc_should_fail_request(struct mmc_host *host,
85 				    struct mmc_request *mrq)
86 {
87 	struct mmc_command *cmd = mrq->cmd;
88 	struct mmc_data *data = mrq->data;
89 	static const int data_errors[] = {
90 		-ETIMEDOUT,
91 		-EILSEQ,
92 		-EIO,
93 	};
94 
95 	if (!data)
96 		return;
97 
98 	if (cmd->error || data->error ||
99 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 		return;
101 
102 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104 }
105 
106 #else /* CONFIG_FAIL_MMC_REQUEST */
107 
108 static inline void mmc_should_fail_request(struct mmc_host *host,
109 					   struct mmc_request *mrq)
110 {
111 }
112 
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_complete_cmd(struct mmc_request *mrq)
116 {
117 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 		complete_all(&mrq->cmd_completion);
119 }
120 
121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
122 {
123 	if (!mrq->cap_cmd_during_tfr)
124 		return;
125 
126 	mmc_complete_cmd(mrq);
127 
128 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 		 mmc_hostname(host), mrq->cmd->opcode);
130 }
131 EXPORT_SYMBOL(mmc_command_done);
132 
133 /**
134  *	mmc_request_done - finish processing an MMC request
135  *	@host: MMC host which completed request
136  *	@mrq: MMC request which request
137  *
138  *	MMC drivers should call this function when they have completed
139  *	their processing of a request.
140  */
141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142 {
143 	struct mmc_command *cmd = mrq->cmd;
144 	int err = cmd->error;
145 
146 	/* Flag re-tuning needed on CRC errors */
147 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
149 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
150 	    (mrq->data && mrq->data->error == -EILSEQ) ||
151 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
152 		mmc_retune_needed(host);
153 
154 	if (err && cmd->retries && mmc_host_is_spi(host)) {
155 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 			cmd->retries = 0;
157 	}
158 
159 	if (host->ongoing_mrq == mrq)
160 		host->ongoing_mrq = NULL;
161 
162 	mmc_complete_cmd(mrq);
163 
164 	trace_mmc_request_done(host, mrq);
165 
166 	/*
167 	 * We list various conditions for the command to be considered
168 	 * properly done:
169 	 *
170 	 * - There was no error, OK fine then
171 	 * - We are not doing some kind of retry
172 	 * - The card was removed (...so just complete everything no matter
173 	 *   if there are errors or retries)
174 	 */
175 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
176 		mmc_should_fail_request(host, mrq);
177 
178 		if (!host->ongoing_mrq)
179 			led_trigger_event(host->led, LED_OFF);
180 
181 		if (mrq->sbc) {
182 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 				mmc_hostname(host), mrq->sbc->opcode,
184 				mrq->sbc->error,
185 				mrq->sbc->resp[0], mrq->sbc->resp[1],
186 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
187 		}
188 
189 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 			mmc_hostname(host), cmd->opcode, err,
191 			cmd->resp[0], cmd->resp[1],
192 			cmd->resp[2], cmd->resp[3]);
193 
194 		if (mrq->data) {
195 			pr_debug("%s:     %d bytes transferred: %d\n",
196 				mmc_hostname(host),
197 				mrq->data->bytes_xfered, mrq->data->error);
198 		}
199 
200 		if (mrq->stop) {
201 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
202 				mmc_hostname(host), mrq->stop->opcode,
203 				mrq->stop->error,
204 				mrq->stop->resp[0], mrq->stop->resp[1],
205 				mrq->stop->resp[2], mrq->stop->resp[3]);
206 		}
207 	}
208 	/*
209 	 * Request starter must handle retries - see
210 	 * mmc_wait_for_req_done().
211 	 */
212 	if (mrq->done)
213 		mrq->done(mrq);
214 }
215 
216 EXPORT_SYMBOL(mmc_request_done);
217 
218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219 {
220 	int err;
221 
222 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
223 	err = mmc_retune(host);
224 	if (err) {
225 		mrq->cmd->error = err;
226 		mmc_request_done(host, mrq);
227 		return;
228 	}
229 
230 	/*
231 	 * For sdio rw commands we must wait for card busy otherwise some
232 	 * sdio devices won't work properly.
233 	 * And bypass I/O abort, reset and bus suspend operations.
234 	 */
235 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
236 	    host->ops->card_busy) {
237 		int tries = 500; /* Wait aprox 500ms at maximum */
238 
239 		while (host->ops->card_busy(host) && --tries)
240 			mmc_delay(1);
241 
242 		if (tries == 0) {
243 			mrq->cmd->error = -EBUSY;
244 			mmc_request_done(host, mrq);
245 			return;
246 		}
247 	}
248 
249 	if (mrq->cap_cmd_during_tfr) {
250 		host->ongoing_mrq = mrq;
251 		/*
252 		 * Retry path could come through here without having waiting on
253 		 * cmd_completion, so ensure it is reinitialised.
254 		 */
255 		reinit_completion(&mrq->cmd_completion);
256 	}
257 
258 	trace_mmc_request_start(host, mrq);
259 
260 	if (host->cqe_on)
261 		host->cqe_ops->cqe_off(host);
262 
263 	host->ops->request(host, mrq);
264 }
265 
266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 			     bool cqe)
268 {
269 	if (mrq->sbc) {
270 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 			 mmc_hostname(host), mrq->sbc->opcode,
272 			 mrq->sbc->arg, mrq->sbc->flags);
273 	}
274 
275 	if (mrq->cmd) {
276 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 			 mmc_hostname(host), cqe ? "CQE direct " : "",
278 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 	} else if (cqe) {
280 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 	}
283 
284 	if (mrq->data) {
285 		pr_debug("%s:     blksz %d blocks %d flags %08x "
286 			"tsac %d ms nsac %d\n",
287 			mmc_hostname(host), mrq->data->blksz,
288 			mrq->data->blocks, mrq->data->flags,
289 			mrq->data->timeout_ns / 1000000,
290 			mrq->data->timeout_clks);
291 	}
292 
293 	if (mrq->stop) {
294 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
295 			 mmc_hostname(host), mrq->stop->opcode,
296 			 mrq->stop->arg, mrq->stop->flags);
297 	}
298 }
299 
300 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
301 {
302 	unsigned int i, sz = 0;
303 	struct scatterlist *sg;
304 
305 	if (mrq->cmd) {
306 		mrq->cmd->error = 0;
307 		mrq->cmd->mrq = mrq;
308 		mrq->cmd->data = mrq->data;
309 	}
310 	if (mrq->sbc) {
311 		mrq->sbc->error = 0;
312 		mrq->sbc->mrq = mrq;
313 	}
314 	if (mrq->data) {
315 		if (mrq->data->blksz > host->max_blk_size ||
316 		    mrq->data->blocks > host->max_blk_count ||
317 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
318 			return -EINVAL;
319 
320 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 			sz += sg->length;
322 		if (sz != mrq->data->blocks * mrq->data->blksz)
323 			return -EINVAL;
324 
325 		mrq->data->error = 0;
326 		mrq->data->mrq = mrq;
327 		if (mrq->stop) {
328 			mrq->data->stop = mrq->stop;
329 			mrq->stop->error = 0;
330 			mrq->stop->mrq = mrq;
331 		}
332 	}
333 
334 	return 0;
335 }
336 
337 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
338 {
339 	int err;
340 
341 	init_completion(&mrq->cmd_completion);
342 
343 	mmc_retune_hold(host);
344 
345 	if (mmc_card_removed(host->card))
346 		return -ENOMEDIUM;
347 
348 	mmc_mrq_pr_debug(host, mrq, false);
349 
350 	WARN_ON(!host->claimed);
351 
352 	err = mmc_mrq_prep(host, mrq);
353 	if (err)
354 		return err;
355 
356 	led_trigger_event(host->led, LED_FULL);
357 	__mmc_start_request(host, mrq);
358 
359 	return 0;
360 }
361 EXPORT_SYMBOL(mmc_start_request);
362 
363 static void mmc_wait_done(struct mmc_request *mrq)
364 {
365 	complete(&mrq->completion);
366 }
367 
368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
369 {
370 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
371 
372 	/*
373 	 * If there is an ongoing transfer, wait for the command line to become
374 	 * available.
375 	 */
376 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
377 		wait_for_completion(&ongoing_mrq->cmd_completion);
378 }
379 
380 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
381 {
382 	int err;
383 
384 	mmc_wait_ongoing_tfr_cmd(host);
385 
386 	init_completion(&mrq->completion);
387 	mrq->done = mmc_wait_done;
388 
389 	err = mmc_start_request(host, mrq);
390 	if (err) {
391 		mrq->cmd->error = err;
392 		mmc_complete_cmd(mrq);
393 		complete(&mrq->completion);
394 	}
395 
396 	return err;
397 }
398 
399 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
400 {
401 	struct mmc_command *cmd;
402 
403 	while (1) {
404 		wait_for_completion(&mrq->completion);
405 
406 		cmd = mrq->cmd;
407 
408 		/*
409 		 * If host has timed out waiting for the sanitize
410 		 * to complete, card might be still in programming state
411 		 * so let's try to bring the card out of programming
412 		 * state.
413 		 */
414 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
415 			if (!mmc_interrupt_hpi(host->card)) {
416 				pr_warn("%s: %s: Interrupted sanitize\n",
417 					mmc_hostname(host), __func__);
418 				cmd->error = 0;
419 				break;
420 			} else {
421 				pr_err("%s: %s: Failed to interrupt sanitize\n",
422 				       mmc_hostname(host), __func__);
423 			}
424 		}
425 		if (!cmd->error || !cmd->retries ||
426 		    mmc_card_removed(host->card))
427 			break;
428 
429 		mmc_retune_recheck(host);
430 
431 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 			 mmc_hostname(host), cmd->opcode, cmd->error);
433 		cmd->retries--;
434 		cmd->error = 0;
435 		__mmc_start_request(host, mrq);
436 	}
437 
438 	mmc_retune_release(host);
439 }
440 EXPORT_SYMBOL(mmc_wait_for_req_done);
441 
442 /*
443  * mmc_cqe_start_req - Start a CQE request.
444  * @host: MMC host to start the request
445  * @mrq: request to start
446  *
447  * Start the request, re-tuning if needed and it is possible. Returns an error
448  * code if the request fails to start or -EBUSY if CQE is busy.
449  */
450 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
451 {
452 	int err;
453 
454 	/*
455 	 * CQE cannot process re-tuning commands. Caller must hold retuning
456 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
457 	 * active requests i.e. this is the first.  Note, re-tuning will call
458 	 * ->cqe_off().
459 	 */
460 	err = mmc_retune(host);
461 	if (err)
462 		goto out_err;
463 
464 	mrq->host = host;
465 
466 	mmc_mrq_pr_debug(host, mrq, true);
467 
468 	err = mmc_mrq_prep(host, mrq);
469 	if (err)
470 		goto out_err;
471 
472 	err = host->cqe_ops->cqe_request(host, mrq);
473 	if (err)
474 		goto out_err;
475 
476 	trace_mmc_request_start(host, mrq);
477 
478 	return 0;
479 
480 out_err:
481 	if (mrq->cmd) {
482 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 			 mmc_hostname(host), mrq->cmd->opcode, err);
484 	} else {
485 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 			 mmc_hostname(host), mrq->tag, err);
487 	}
488 	return err;
489 }
490 EXPORT_SYMBOL(mmc_cqe_start_req);
491 
492 /**
493  *	mmc_cqe_request_done - CQE has finished processing an MMC request
494  *	@host: MMC host which completed request
495  *	@mrq: MMC request which completed
496  *
497  *	CQE drivers should call this function when they have completed
498  *	their processing of a request.
499  */
500 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
501 {
502 	mmc_should_fail_request(host, mrq);
503 
504 	/* Flag re-tuning needed on CRC errors */
505 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
506 	    (mrq->data && mrq->data->error == -EILSEQ))
507 		mmc_retune_needed(host);
508 
509 	trace_mmc_request_done(host, mrq);
510 
511 	if (mrq->cmd) {
512 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
514 	} else {
515 		pr_debug("%s: CQE transfer done tag %d\n",
516 			 mmc_hostname(host), mrq->tag);
517 	}
518 
519 	if (mrq->data) {
520 		pr_debug("%s:     %d bytes transferred: %d\n",
521 			 mmc_hostname(host),
522 			 mrq->data->bytes_xfered, mrq->data->error);
523 	}
524 
525 	mrq->done(mrq);
526 }
527 EXPORT_SYMBOL(mmc_cqe_request_done);
528 
529 /**
530  *	mmc_cqe_post_req - CQE post process of a completed MMC request
531  *	@host: MMC host
532  *	@mrq: MMC request to be processed
533  */
534 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
535 {
536 	if (host->cqe_ops->cqe_post_req)
537 		host->cqe_ops->cqe_post_req(host, mrq);
538 }
539 EXPORT_SYMBOL(mmc_cqe_post_req);
540 
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT	1000
543 
544 /*
545  * mmc_cqe_recovery - Recover from CQE errors.
546  * @host: MMC host to recover
547  *
548  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549  * in eMMC, and discarding the queue in CQE. CQE must call
550  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551  * fails to discard its queue.
552  */
553 int mmc_cqe_recovery(struct mmc_host *host)
554 {
555 	struct mmc_command cmd;
556 	int err;
557 
558 	mmc_retune_hold_now(host);
559 
560 	/*
561 	 * Recovery is expected seldom, if at all, but it reduces performance,
562 	 * so make sure it is not completely silent.
563 	 */
564 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
565 
566 	host->cqe_ops->cqe_recovery_start(host);
567 
568 	memset(&cmd, 0, sizeof(cmd));
569 	cmd.opcode       = MMC_STOP_TRANSMISSION,
570 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
571 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
572 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
573 	mmc_wait_for_cmd(host, &cmd, 0);
574 
575 	memset(&cmd, 0, sizeof(cmd));
576 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
577 	cmd.arg          = 1; /* Discard entire queue */
578 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
579 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
580 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
581 	err = mmc_wait_for_cmd(host, &cmd, 0);
582 
583 	host->cqe_ops->cqe_recovery_finish(host);
584 
585 	mmc_retune_release(host);
586 
587 	return err;
588 }
589 EXPORT_SYMBOL(mmc_cqe_recovery);
590 
591 /**
592  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
593  *	@host: MMC host
594  *	@mrq: MMC request
595  *
596  *	mmc_is_req_done() is used with requests that have
597  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598  *	starting a request and before waiting for it to complete. That is,
599  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600  *	and before mmc_wait_for_req_done(). If it is called at other times the
601  *	result is not meaningful.
602  */
603 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 	return completion_done(&mrq->completion);
606 }
607 EXPORT_SYMBOL(mmc_is_req_done);
608 
609 /**
610  *	mmc_wait_for_req - start a request and wait for completion
611  *	@host: MMC host to start command
612  *	@mrq: MMC request to start
613  *
614  *	Start a new MMC custom command request for a host, and wait
615  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
616  *	requests, the transfer is ongoing and the caller can issue further
617  *	commands that do not use the data lines, and then wait by calling
618  *	mmc_wait_for_req_done().
619  *	Does not attempt to parse the response.
620  */
621 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
622 {
623 	__mmc_start_req(host, mrq);
624 
625 	if (!mrq->cap_cmd_during_tfr)
626 		mmc_wait_for_req_done(host, mrq);
627 }
628 EXPORT_SYMBOL(mmc_wait_for_req);
629 
630 /**
631  *	mmc_wait_for_cmd - start a command and wait for completion
632  *	@host: MMC host to start command
633  *	@cmd: MMC command to start
634  *	@retries: maximum number of retries
635  *
636  *	Start a new MMC command for a host, and wait for the command
637  *	to complete.  Return any error that occurred while the command
638  *	was executing.  Do not attempt to parse the response.
639  */
640 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
641 {
642 	struct mmc_request mrq = {};
643 
644 	WARN_ON(!host->claimed);
645 
646 	memset(cmd->resp, 0, sizeof(cmd->resp));
647 	cmd->retries = retries;
648 
649 	mrq.cmd = cmd;
650 	cmd->data = NULL;
651 
652 	mmc_wait_for_req(host, &mrq);
653 
654 	return cmd->error;
655 }
656 
657 EXPORT_SYMBOL(mmc_wait_for_cmd);
658 
659 /**
660  *	mmc_set_data_timeout - set the timeout for a data command
661  *	@data: data phase for command
662  *	@card: the MMC card associated with the data transfer
663  *
664  *	Computes the data timeout parameters according to the
665  *	correct algorithm given the card type.
666  */
667 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
668 {
669 	unsigned int mult;
670 
671 	/*
672 	 * SDIO cards only define an upper 1 s limit on access.
673 	 */
674 	if (mmc_card_sdio(card)) {
675 		data->timeout_ns = 1000000000;
676 		data->timeout_clks = 0;
677 		return;
678 	}
679 
680 	/*
681 	 * SD cards use a 100 multiplier rather than 10
682 	 */
683 	mult = mmc_card_sd(card) ? 100 : 10;
684 
685 	/*
686 	 * Scale up the multiplier (and therefore the timeout) by
687 	 * the r2w factor for writes.
688 	 */
689 	if (data->flags & MMC_DATA_WRITE)
690 		mult <<= card->csd.r2w_factor;
691 
692 	data->timeout_ns = card->csd.taac_ns * mult;
693 	data->timeout_clks = card->csd.taac_clks * mult;
694 
695 	/*
696 	 * SD cards also have an upper limit on the timeout.
697 	 */
698 	if (mmc_card_sd(card)) {
699 		unsigned int timeout_us, limit_us;
700 
701 		timeout_us = data->timeout_ns / 1000;
702 		if (card->host->ios.clock)
703 			timeout_us += data->timeout_clks * 1000 /
704 				(card->host->ios.clock / 1000);
705 
706 		if (data->flags & MMC_DATA_WRITE)
707 			/*
708 			 * The MMC spec "It is strongly recommended
709 			 * for hosts to implement more than 500ms
710 			 * timeout value even if the card indicates
711 			 * the 250ms maximum busy length."  Even the
712 			 * previous value of 300ms is known to be
713 			 * insufficient for some cards.
714 			 */
715 			limit_us = 3000000;
716 		else
717 			limit_us = 100000;
718 
719 		/*
720 		 * SDHC cards always use these fixed values.
721 		 */
722 		if (timeout_us > limit_us) {
723 			data->timeout_ns = limit_us * 1000;
724 			data->timeout_clks = 0;
725 		}
726 
727 		/* assign limit value if invalid */
728 		if (timeout_us == 0)
729 			data->timeout_ns = limit_us * 1000;
730 	}
731 
732 	/*
733 	 * Some cards require longer data read timeout than indicated in CSD.
734 	 * Address this by setting the read timeout to a "reasonably high"
735 	 * value. For the cards tested, 600ms has proven enough. If necessary,
736 	 * this value can be increased if other problematic cards require this.
737 	 */
738 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
739 		data->timeout_ns = 600000000;
740 		data->timeout_clks = 0;
741 	}
742 
743 	/*
744 	 * Some cards need very high timeouts if driven in SPI mode.
745 	 * The worst observed timeout was 900ms after writing a
746 	 * continuous stream of data until the internal logic
747 	 * overflowed.
748 	 */
749 	if (mmc_host_is_spi(card->host)) {
750 		if (data->flags & MMC_DATA_WRITE) {
751 			if (data->timeout_ns < 1000000000)
752 				data->timeout_ns = 1000000000;	/* 1s */
753 		} else {
754 			if (data->timeout_ns < 100000000)
755 				data->timeout_ns =  100000000;	/* 100ms */
756 		}
757 	}
758 }
759 EXPORT_SYMBOL(mmc_set_data_timeout);
760 
761 /**
762  *	mmc_align_data_size - pads a transfer size to a more optimal value
763  *	@card: the MMC card associated with the data transfer
764  *	@sz: original transfer size
765  *
766  *	Pads the original data size with a number of extra bytes in
767  *	order to avoid controller bugs and/or performance hits
768  *	(e.g. some controllers revert to PIO for certain sizes).
769  *
770  *	Returns the improved size, which might be unmodified.
771  *
772  *	Note that this function is only relevant when issuing a
773  *	single scatter gather entry.
774  */
775 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
776 {
777 	/*
778 	 * FIXME: We don't have a system for the controller to tell
779 	 * the core about its problems yet, so for now we just 32-bit
780 	 * align the size.
781 	 */
782 	sz = ((sz + 3) / 4) * 4;
783 
784 	return sz;
785 }
786 EXPORT_SYMBOL(mmc_align_data_size);
787 
788 /*
789  * Allow claiming an already claimed host if the context is the same or there is
790  * no context but the task is the same.
791  */
792 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
793 				   struct task_struct *task)
794 {
795 	return host->claimer == ctx ||
796 	       (!ctx && task && host->claimer->task == task);
797 }
798 
799 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
800 				       struct mmc_ctx *ctx,
801 				       struct task_struct *task)
802 {
803 	if (!host->claimer) {
804 		if (ctx)
805 			host->claimer = ctx;
806 		else
807 			host->claimer = &host->default_ctx;
808 	}
809 	if (task)
810 		host->claimer->task = task;
811 }
812 
813 /**
814  *	__mmc_claim_host - exclusively claim a host
815  *	@host: mmc host to claim
816  *	@ctx: context that claims the host or NULL in which case the default
817  *	context will be used
818  *	@abort: whether or not the operation should be aborted
819  *
820  *	Claim a host for a set of operations.  If @abort is non null and
821  *	dereference a non-zero value then this will return prematurely with
822  *	that non-zero value without acquiring the lock.  Returns zero
823  *	with the lock held otherwise.
824  */
825 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
826 		     atomic_t *abort)
827 {
828 	struct task_struct *task = ctx ? NULL : current;
829 	DECLARE_WAITQUEUE(wait, current);
830 	unsigned long flags;
831 	int stop;
832 	bool pm = false;
833 
834 	might_sleep();
835 
836 	add_wait_queue(&host->wq, &wait);
837 	spin_lock_irqsave(&host->lock, flags);
838 	while (1) {
839 		set_current_state(TASK_UNINTERRUPTIBLE);
840 		stop = abort ? atomic_read(abort) : 0;
841 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
842 			break;
843 		spin_unlock_irqrestore(&host->lock, flags);
844 		schedule();
845 		spin_lock_irqsave(&host->lock, flags);
846 	}
847 	set_current_state(TASK_RUNNING);
848 	if (!stop) {
849 		host->claimed = 1;
850 		mmc_ctx_set_claimer(host, ctx, task);
851 		host->claim_cnt += 1;
852 		if (host->claim_cnt == 1)
853 			pm = true;
854 	} else
855 		wake_up(&host->wq);
856 	spin_unlock_irqrestore(&host->lock, flags);
857 	remove_wait_queue(&host->wq, &wait);
858 
859 	if (pm)
860 		pm_runtime_get_sync(mmc_dev(host));
861 
862 	return stop;
863 }
864 EXPORT_SYMBOL(__mmc_claim_host);
865 
866 /**
867  *	mmc_release_host - release a host
868  *	@host: mmc host to release
869  *
870  *	Release a MMC host, allowing others to claim the host
871  *	for their operations.
872  */
873 void mmc_release_host(struct mmc_host *host)
874 {
875 	unsigned long flags;
876 
877 	WARN_ON(!host->claimed);
878 
879 	spin_lock_irqsave(&host->lock, flags);
880 	if (--host->claim_cnt) {
881 		/* Release for nested claim */
882 		spin_unlock_irqrestore(&host->lock, flags);
883 	} else {
884 		host->claimed = 0;
885 		host->claimer->task = NULL;
886 		host->claimer = NULL;
887 		spin_unlock_irqrestore(&host->lock, flags);
888 		wake_up(&host->wq);
889 		pm_runtime_mark_last_busy(mmc_dev(host));
890 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
891 			pm_runtime_put_sync_suspend(mmc_dev(host));
892 		else
893 			pm_runtime_put_autosuspend(mmc_dev(host));
894 	}
895 }
896 EXPORT_SYMBOL(mmc_release_host);
897 
898 /*
899  * This is a helper function, which fetches a runtime pm reference for the
900  * card device and also claims the host.
901  */
902 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903 {
904 	pm_runtime_get_sync(&card->dev);
905 	__mmc_claim_host(card->host, ctx, NULL);
906 }
907 EXPORT_SYMBOL(mmc_get_card);
908 
909 /*
910  * This is a helper function, which releases the host and drops the runtime
911  * pm reference for the card device.
912  */
913 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914 {
915 	struct mmc_host *host = card->host;
916 
917 	WARN_ON(ctx && host->claimer != ctx);
918 
919 	mmc_release_host(host);
920 	pm_runtime_mark_last_busy(&card->dev);
921 	pm_runtime_put_autosuspend(&card->dev);
922 }
923 EXPORT_SYMBOL(mmc_put_card);
924 
925 /*
926  * Internal function that does the actual ios call to the host driver,
927  * optionally printing some debug output.
928  */
929 static inline void mmc_set_ios(struct mmc_host *host)
930 {
931 	struct mmc_ios *ios = &host->ios;
932 
933 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 		"width %u timing %u\n",
935 		 mmc_hostname(host), ios->clock, ios->bus_mode,
936 		 ios->power_mode, ios->chip_select, ios->vdd,
937 		 1 << ios->bus_width, ios->timing);
938 
939 	host->ops->set_ios(host, ios);
940 }
941 
942 /*
943  * Control chip select pin on a host.
944  */
945 void mmc_set_chip_select(struct mmc_host *host, int mode)
946 {
947 	host->ios.chip_select = mode;
948 	mmc_set_ios(host);
949 }
950 
951 /*
952  * Sets the host clock to the highest possible frequency that
953  * is below "hz".
954  */
955 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956 {
957 	WARN_ON(hz && hz < host->f_min);
958 
959 	if (hz > host->f_max)
960 		hz = host->f_max;
961 
962 	host->ios.clock = hz;
963 	mmc_set_ios(host);
964 }
965 
966 int mmc_execute_tuning(struct mmc_card *card)
967 {
968 	struct mmc_host *host = card->host;
969 	u32 opcode;
970 	int err;
971 
972 	if (!host->ops->execute_tuning)
973 		return 0;
974 
975 	if (host->cqe_on)
976 		host->cqe_ops->cqe_off(host);
977 
978 	if (mmc_card_mmc(card))
979 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 	else
981 		opcode = MMC_SEND_TUNING_BLOCK;
982 
983 	err = host->ops->execute_tuning(host, opcode);
984 
985 	if (err)
986 		pr_err("%s: tuning execution failed: %d\n",
987 			mmc_hostname(host), err);
988 	else
989 		mmc_retune_enable(host);
990 
991 	return err;
992 }
993 
994 /*
995  * Change the bus mode (open drain/push-pull) of a host.
996  */
997 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998 {
999 	host->ios.bus_mode = mode;
1000 	mmc_set_ios(host);
1001 }
1002 
1003 /*
1004  * Change data bus width of a host.
1005  */
1006 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007 {
1008 	host->ios.bus_width = width;
1009 	mmc_set_ios(host);
1010 }
1011 
1012 /*
1013  * Set initial state after a power cycle or a hw_reset.
1014  */
1015 void mmc_set_initial_state(struct mmc_host *host)
1016 {
1017 	if (host->cqe_on)
1018 		host->cqe_ops->cqe_off(host);
1019 
1020 	mmc_retune_disable(host);
1021 
1022 	if (mmc_host_is_spi(host))
1023 		host->ios.chip_select = MMC_CS_HIGH;
1024 	else
1025 		host->ios.chip_select = MMC_CS_DONTCARE;
1026 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 	host->ios.timing = MMC_TIMING_LEGACY;
1029 	host->ios.drv_type = 0;
1030 	host->ios.enhanced_strobe = false;
1031 
1032 	/*
1033 	 * Make sure we are in non-enhanced strobe mode before we
1034 	 * actually enable it in ext_csd.
1035 	 */
1036 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 	     host->ops->hs400_enhanced_strobe)
1038 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1039 
1040 	mmc_set_ios(host);
1041 }
1042 
1043 /**
1044  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045  * @vdd:	voltage (mV)
1046  * @low_bits:	prefer low bits in boundary cases
1047  *
1048  * This function returns the OCR bit number according to the provided @vdd
1049  * value. If conversion is not possible a negative errno value returned.
1050  *
1051  * Depending on the @low_bits flag the function prefers low or high OCR bits
1052  * on boundary voltages. For example,
1053  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055  *
1056  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057  */
1058 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059 {
1060 	const int max_bit = ilog2(MMC_VDD_35_36);
1061 	int bit;
1062 
1063 	if (vdd < 1650 || vdd > 3600)
1064 		return -EINVAL;
1065 
1066 	if (vdd >= 1650 && vdd <= 1950)
1067 		return ilog2(MMC_VDD_165_195);
1068 
1069 	if (low_bits)
1070 		vdd -= 1;
1071 
1072 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1073 	bit = (vdd - 2000) / 100 + 8;
1074 	if (bit > max_bit)
1075 		return max_bit;
1076 	return bit;
1077 }
1078 
1079 /**
1080  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081  * @vdd_min:	minimum voltage value (mV)
1082  * @vdd_max:	maximum voltage value (mV)
1083  *
1084  * This function returns the OCR mask bits according to the provided @vdd_min
1085  * and @vdd_max values. If conversion is not possible the function returns 0.
1086  *
1087  * Notes wrt boundary cases:
1088  * This function sets the OCR bits for all boundary voltages, for example
1089  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090  * MMC_VDD_34_35 mask.
1091  */
1092 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093 {
1094 	u32 mask = 0;
1095 
1096 	if (vdd_max < vdd_min)
1097 		return 0;
1098 
1099 	/* Prefer high bits for the boundary vdd_max values. */
1100 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 	if (vdd_max < 0)
1102 		return 0;
1103 
1104 	/* Prefer low bits for the boundary vdd_min values. */
1105 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 	if (vdd_min < 0)
1107 		return 0;
1108 
1109 	/* Fill the mask, from max bit to min bit. */
1110 	while (vdd_max >= vdd_min)
1111 		mask |= 1 << vdd_max--;
1112 
1113 	return mask;
1114 }
1115 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116 
1117 #ifdef CONFIG_OF
1118 
1119 /**
1120  * mmc_of_parse_voltage - return mask of supported voltages
1121  * @np: The device node need to be parsed.
1122  * @mask: mask of voltages available for MMC/SD/SDIO
1123  *
1124  * Parse the "voltage-ranges" DT property, returning zero if it is not
1125  * found, negative errno if the voltage-range specification is invalid,
1126  * or one if the voltage-range is specified and successfully parsed.
1127  */
1128 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129 {
1130 	const u32 *voltage_ranges;
1131 	int num_ranges, i;
1132 
1133 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 	if (!voltage_ranges) {
1136 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 		return 0;
1138 	}
1139 	if (!num_ranges) {
1140 		pr_err("%pOF: voltage-ranges empty\n", np);
1141 		return -EINVAL;
1142 	}
1143 
1144 	for (i = 0; i < num_ranges; i++) {
1145 		const int j = i * 2;
1146 		u32 ocr_mask;
1147 
1148 		ocr_mask = mmc_vddrange_to_ocrmask(
1149 				be32_to_cpu(voltage_ranges[j]),
1150 				be32_to_cpu(voltage_ranges[j + 1]));
1151 		if (!ocr_mask) {
1152 			pr_err("%pOF: voltage-range #%d is invalid\n",
1153 				np, i);
1154 			return -EINVAL;
1155 		}
1156 		*mask |= ocr_mask;
1157 	}
1158 
1159 	return 1;
1160 }
1161 EXPORT_SYMBOL(mmc_of_parse_voltage);
1162 
1163 #endif /* CONFIG_OF */
1164 
1165 static int mmc_of_get_func_num(struct device_node *node)
1166 {
1167 	u32 reg;
1168 	int ret;
1169 
1170 	ret = of_property_read_u32(node, "reg", &reg);
1171 	if (ret < 0)
1172 		return ret;
1173 
1174 	return reg;
1175 }
1176 
1177 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 		unsigned func_num)
1179 {
1180 	struct device_node *node;
1181 
1182 	if (!host->parent || !host->parent->of_node)
1183 		return NULL;
1184 
1185 	for_each_child_of_node(host->parent->of_node, node) {
1186 		if (mmc_of_get_func_num(node) == func_num)
1187 			return node;
1188 	}
1189 
1190 	return NULL;
1191 }
1192 
1193 #ifdef CONFIG_REGULATOR
1194 
1195 /**
1196  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197  * @vdd_bit:	OCR bit number
1198  * @min_uV:	minimum voltage value (mV)
1199  * @max_uV:	maximum voltage value (mV)
1200  *
1201  * This function returns the voltage range according to the provided OCR
1202  * bit number. If conversion is not possible a negative errno value returned.
1203  */
1204 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205 {
1206 	int		tmp;
1207 
1208 	if (!vdd_bit)
1209 		return -EINVAL;
1210 
1211 	/*
1212 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 	 * bits this regulator doesn't quite support ... don't
1214 	 * be too picky, most cards and regulators are OK with
1215 	 * a 0.1V range goof (it's a small error percentage).
1216 	 */
1217 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 	if (tmp == 0) {
1219 		*min_uV = 1650 * 1000;
1220 		*max_uV = 1950 * 1000;
1221 	} else {
1222 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 		*max_uV = *min_uV + 100 * 1000;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * mmc_regulator_get_ocrmask - return mask of supported voltages
1231  * @supply: regulator to use
1232  *
1233  * This returns either a negative errno, or a mask of voltages that
1234  * can be provided to MMC/SD/SDIO devices using the specified voltage
1235  * regulator.  This would normally be called before registering the
1236  * MMC host adapter.
1237  */
1238 int mmc_regulator_get_ocrmask(struct regulator *supply)
1239 {
1240 	int			result = 0;
1241 	int			count;
1242 	int			i;
1243 	int			vdd_uV;
1244 	int			vdd_mV;
1245 
1246 	count = regulator_count_voltages(supply);
1247 	if (count < 0)
1248 		return count;
1249 
1250 	for (i = 0; i < count; i++) {
1251 		vdd_uV = regulator_list_voltage(supply, i);
1252 		if (vdd_uV <= 0)
1253 			continue;
1254 
1255 		vdd_mV = vdd_uV / 1000;
1256 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 	}
1258 
1259 	if (!result) {
1260 		vdd_uV = regulator_get_voltage(supply);
1261 		if (vdd_uV <= 0)
1262 			return vdd_uV;
1263 
1264 		vdd_mV = vdd_uV / 1000;
1265 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 	}
1267 
1268 	return result;
1269 }
1270 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271 
1272 /**
1273  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274  * @mmc: the host to regulate
1275  * @supply: regulator to use
1276  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277  *
1278  * Returns zero on success, else negative errno.
1279  *
1280  * MMC host drivers may use this to enable or disable a regulator using
1281  * a particular supply voltage.  This would normally be called from the
1282  * set_ios() method.
1283  */
1284 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 			struct regulator *supply,
1286 			unsigned short vdd_bit)
1287 {
1288 	int			result = 0;
1289 	int			min_uV, max_uV;
1290 
1291 	if (vdd_bit) {
1292 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293 
1294 		result = regulator_set_voltage(supply, min_uV, max_uV);
1295 		if (result == 0 && !mmc->regulator_enabled) {
1296 			result = regulator_enable(supply);
1297 			if (!result)
1298 				mmc->regulator_enabled = true;
1299 		}
1300 	} else if (mmc->regulator_enabled) {
1301 		result = regulator_disable(supply);
1302 		if (result == 0)
1303 			mmc->regulator_enabled = false;
1304 	}
1305 
1306 	if (result)
1307 		dev_err(mmc_dev(mmc),
1308 			"could not set regulator OCR (%d)\n", result);
1309 	return result;
1310 }
1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312 
1313 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 						  int min_uV, int target_uV,
1315 						  int max_uV)
1316 {
1317 	/*
1318 	 * Check if supported first to avoid errors since we may try several
1319 	 * signal levels during power up and don't want to show errors.
1320 	 */
1321 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 		return -EINVAL;
1323 
1324 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 					     max_uV);
1326 }
1327 
1328 /**
1329  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330  *
1331  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1334  * SD card spec also define VQMMC in terms of VMMC.
1335  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336  *
1337  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338  * requested voltage.  This is definitely a good idea for UHS where there's a
1339  * separate regulator on the card that's trying to make 1.8V and it's best if
1340  * we match.
1341  *
1342  * This function is expected to be used by a controller's
1343  * start_signal_voltage_switch() function.
1344  */
1345 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346 {
1347 	struct device *dev = mmc_dev(mmc);
1348 	int ret, volt, min_uV, max_uV;
1349 
1350 	/* If no vqmmc supply then we can't change the voltage */
1351 	if (IS_ERR(mmc->supply.vqmmc))
1352 		return -EINVAL;
1353 
1354 	switch (ios->signal_voltage) {
1355 	case MMC_SIGNAL_VOLTAGE_120:
1356 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 						1100000, 1200000, 1300000);
1358 	case MMC_SIGNAL_VOLTAGE_180:
1359 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 						1700000, 1800000, 1950000);
1361 	case MMC_SIGNAL_VOLTAGE_330:
1362 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 		if (ret < 0)
1364 			return ret;
1365 
1366 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 			__func__, volt, max_uV);
1368 
1369 		min_uV = max(volt - 300000, 2700000);
1370 		max_uV = min(max_uV + 200000, 3600000);
1371 
1372 		/*
1373 		 * Due to a limitation in the current implementation of
1374 		 * regulator_set_voltage_triplet() which is taking the lowest
1375 		 * voltage possible if below the target, search for a suitable
1376 		 * voltage in two steps and try to stay close to vmmc
1377 		 * with a 0.3V tolerance at first.
1378 		 */
1379 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 						min_uV, volt, max_uV))
1381 			return 0;
1382 
1383 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 						2700000, volt, 3600000);
1385 	default:
1386 		return -EINVAL;
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390 
1391 #endif /* CONFIG_REGULATOR */
1392 
1393 /**
1394  * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395  * @mmc: the host to regulate
1396  *
1397  * Returns 0 or errno. errno should be handled, it is either a critical error
1398  * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399  * regulators have been found because they all are optional. If you require
1400  * certain regulators, you need to check separately in your driver if they got
1401  * populated after calling this function.
1402  */
1403 int mmc_regulator_get_supply(struct mmc_host *mmc)
1404 {
1405 	struct device *dev = mmc_dev(mmc);
1406 	int ret;
1407 
1408 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410 
1411 	if (IS_ERR(mmc->supply.vmmc)) {
1412 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 			return -EPROBE_DEFER;
1414 		dev_dbg(dev, "No vmmc regulator found\n");
1415 	} else {
1416 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 		if (ret > 0)
1418 			mmc->ocr_avail = ret;
1419 		else
1420 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 	}
1422 
1423 	if (IS_ERR(mmc->supply.vqmmc)) {
1424 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 			return -EPROBE_DEFER;
1426 		dev_dbg(dev, "No vqmmc regulator found\n");
1427 	}
1428 
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432 
1433 /*
1434  * Mask off any voltages we don't support and select
1435  * the lowest voltage
1436  */
1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438 {
1439 	int bit;
1440 
1441 	/*
1442 	 * Sanity check the voltages that the card claims to
1443 	 * support.
1444 	 */
1445 	if (ocr & 0x7F) {
1446 		dev_warn(mmc_dev(host),
1447 		"card claims to support voltages below defined range\n");
1448 		ocr &= ~0x7F;
1449 	}
1450 
1451 	ocr &= host->ocr_avail;
1452 	if (!ocr) {
1453 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 		return 0;
1455 	}
1456 
1457 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 		bit = ffs(ocr) - 1;
1459 		ocr &= 3 << bit;
1460 		mmc_power_cycle(host, ocr);
1461 	} else {
1462 		bit = fls(ocr) - 1;
1463 		ocr &= 3 << bit;
1464 		if (bit != host->ios.vdd)
1465 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 	}
1467 
1468 	return ocr;
1469 }
1470 
1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472 {
1473 	int err = 0;
1474 	int old_signal_voltage = host->ios.signal_voltage;
1475 
1476 	host->ios.signal_voltage = signal_voltage;
1477 	if (host->ops->start_signal_voltage_switch)
1478 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479 
1480 	if (err)
1481 		host->ios.signal_voltage = old_signal_voltage;
1482 
1483 	return err;
1484 
1485 }
1486 
1487 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1488 {
1489 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1490 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1491 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1492 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1493 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1494 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1495 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1496 }
1497 
1498 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1499 {
1500 	u32 clock;
1501 
1502 	/*
1503 	 * During a signal voltage level switch, the clock must be gated
1504 	 * for 5 ms according to the SD spec
1505 	 */
1506 	clock = host->ios.clock;
1507 	host->ios.clock = 0;
1508 	mmc_set_ios(host);
1509 
1510 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1511 		return -EAGAIN;
1512 
1513 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1514 	mmc_delay(10);
1515 	host->ios.clock = clock;
1516 	mmc_set_ios(host);
1517 
1518 	return 0;
1519 }
1520 
1521 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1522 {
1523 	struct mmc_command cmd = {};
1524 	int err = 0;
1525 
1526 	/*
1527 	 * If we cannot switch voltages, return failure so the caller
1528 	 * can continue without UHS mode
1529 	 */
1530 	if (!host->ops->start_signal_voltage_switch)
1531 		return -EPERM;
1532 	if (!host->ops->card_busy)
1533 		pr_warn("%s: cannot verify signal voltage switch\n",
1534 			mmc_hostname(host));
1535 
1536 	cmd.opcode = SD_SWITCH_VOLTAGE;
1537 	cmd.arg = 0;
1538 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1539 
1540 	err = mmc_wait_for_cmd(host, &cmd, 0);
1541 	if (err)
1542 		return err;
1543 
1544 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1545 		return -EIO;
1546 
1547 	/*
1548 	 * The card should drive cmd and dat[0:3] low immediately
1549 	 * after the response of cmd11, but wait 1 ms to be sure
1550 	 */
1551 	mmc_delay(1);
1552 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1553 		err = -EAGAIN;
1554 		goto power_cycle;
1555 	}
1556 
1557 	if (mmc_host_set_uhs_voltage(host)) {
1558 		/*
1559 		 * Voltages may not have been switched, but we've already
1560 		 * sent CMD11, so a power cycle is required anyway
1561 		 */
1562 		err = -EAGAIN;
1563 		goto power_cycle;
1564 	}
1565 
1566 	/* Wait for at least 1 ms according to spec */
1567 	mmc_delay(1);
1568 
1569 	/*
1570 	 * Failure to switch is indicated by the card holding
1571 	 * dat[0:3] low
1572 	 */
1573 	if (host->ops->card_busy && host->ops->card_busy(host))
1574 		err = -EAGAIN;
1575 
1576 power_cycle:
1577 	if (err) {
1578 		pr_debug("%s: Signal voltage switch failed, "
1579 			"power cycling card\n", mmc_hostname(host));
1580 		mmc_power_cycle(host, ocr);
1581 	}
1582 
1583 	return err;
1584 }
1585 
1586 /*
1587  * Select timing parameters for host.
1588  */
1589 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1590 {
1591 	host->ios.timing = timing;
1592 	mmc_set_ios(host);
1593 }
1594 
1595 /*
1596  * Select appropriate driver type for host.
1597  */
1598 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1599 {
1600 	host->ios.drv_type = drv_type;
1601 	mmc_set_ios(host);
1602 }
1603 
1604 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1605 			      int card_drv_type, int *drv_type)
1606 {
1607 	struct mmc_host *host = card->host;
1608 	int host_drv_type = SD_DRIVER_TYPE_B;
1609 
1610 	*drv_type = 0;
1611 
1612 	if (!host->ops->select_drive_strength)
1613 		return 0;
1614 
1615 	/* Use SD definition of driver strength for hosts */
1616 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1617 		host_drv_type |= SD_DRIVER_TYPE_A;
1618 
1619 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1620 		host_drv_type |= SD_DRIVER_TYPE_C;
1621 
1622 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1623 		host_drv_type |= SD_DRIVER_TYPE_D;
1624 
1625 	/*
1626 	 * The drive strength that the hardware can support
1627 	 * depends on the board design.  Pass the appropriate
1628 	 * information and let the hardware specific code
1629 	 * return what is possible given the options
1630 	 */
1631 	return host->ops->select_drive_strength(card, max_dtr,
1632 						host_drv_type,
1633 						card_drv_type,
1634 						drv_type);
1635 }
1636 
1637 /*
1638  * Apply power to the MMC stack.  This is a two-stage process.
1639  * First, we enable power to the card without the clock running.
1640  * We then wait a bit for the power to stabilise.  Finally,
1641  * enable the bus drivers and clock to the card.
1642  *
1643  * We must _NOT_ enable the clock prior to power stablising.
1644  *
1645  * If a host does all the power sequencing itself, ignore the
1646  * initial MMC_POWER_UP stage.
1647  */
1648 void mmc_power_up(struct mmc_host *host, u32 ocr)
1649 {
1650 	if (host->ios.power_mode == MMC_POWER_ON)
1651 		return;
1652 
1653 	mmc_pwrseq_pre_power_on(host);
1654 
1655 	host->ios.vdd = fls(ocr) - 1;
1656 	host->ios.power_mode = MMC_POWER_UP;
1657 	/* Set initial state and call mmc_set_ios */
1658 	mmc_set_initial_state(host);
1659 
1660 	mmc_set_initial_signal_voltage(host);
1661 
1662 	/*
1663 	 * This delay should be sufficient to allow the power supply
1664 	 * to reach the minimum voltage.
1665 	 */
1666 	mmc_delay(host->ios.power_delay_ms);
1667 
1668 	mmc_pwrseq_post_power_on(host);
1669 
1670 	host->ios.clock = host->f_init;
1671 
1672 	host->ios.power_mode = MMC_POWER_ON;
1673 	mmc_set_ios(host);
1674 
1675 	/*
1676 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1677 	 * time required to reach a stable voltage.
1678 	 */
1679 	mmc_delay(host->ios.power_delay_ms);
1680 }
1681 
1682 void mmc_power_off(struct mmc_host *host)
1683 {
1684 	if (host->ios.power_mode == MMC_POWER_OFF)
1685 		return;
1686 
1687 	mmc_pwrseq_power_off(host);
1688 
1689 	host->ios.clock = 0;
1690 	host->ios.vdd = 0;
1691 
1692 	host->ios.power_mode = MMC_POWER_OFF;
1693 	/* Set initial state and call mmc_set_ios */
1694 	mmc_set_initial_state(host);
1695 
1696 	/*
1697 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1698 	 * XO-1.5, require a short delay after poweroff before the card
1699 	 * can be successfully turned on again.
1700 	 */
1701 	mmc_delay(1);
1702 }
1703 
1704 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1705 {
1706 	mmc_power_off(host);
1707 	/* Wait at least 1 ms according to SD spec */
1708 	mmc_delay(1);
1709 	mmc_power_up(host, ocr);
1710 }
1711 
1712 /*
1713  * Cleanup when the last reference to the bus operator is dropped.
1714  */
1715 static void __mmc_release_bus(struct mmc_host *host)
1716 {
1717 	WARN_ON(!host->bus_dead);
1718 
1719 	host->bus_ops = NULL;
1720 }
1721 
1722 /*
1723  * Increase reference count of bus operator
1724  */
1725 static inline void mmc_bus_get(struct mmc_host *host)
1726 {
1727 	unsigned long flags;
1728 
1729 	spin_lock_irqsave(&host->lock, flags);
1730 	host->bus_refs++;
1731 	spin_unlock_irqrestore(&host->lock, flags);
1732 }
1733 
1734 /*
1735  * Decrease reference count of bus operator and free it if
1736  * it is the last reference.
1737  */
1738 static inline void mmc_bus_put(struct mmc_host *host)
1739 {
1740 	unsigned long flags;
1741 
1742 	spin_lock_irqsave(&host->lock, flags);
1743 	host->bus_refs--;
1744 	if ((host->bus_refs == 0) && host->bus_ops)
1745 		__mmc_release_bus(host);
1746 	spin_unlock_irqrestore(&host->lock, flags);
1747 }
1748 
1749 /*
1750  * Assign a mmc bus handler to a host. Only one bus handler may control a
1751  * host at any given time.
1752  */
1753 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1754 {
1755 	unsigned long flags;
1756 
1757 	WARN_ON(!host->claimed);
1758 
1759 	spin_lock_irqsave(&host->lock, flags);
1760 
1761 	WARN_ON(host->bus_ops);
1762 	WARN_ON(host->bus_refs);
1763 
1764 	host->bus_ops = ops;
1765 	host->bus_refs = 1;
1766 	host->bus_dead = 0;
1767 
1768 	spin_unlock_irqrestore(&host->lock, flags);
1769 }
1770 
1771 /*
1772  * Remove the current bus handler from a host.
1773  */
1774 void mmc_detach_bus(struct mmc_host *host)
1775 {
1776 	unsigned long flags;
1777 
1778 	WARN_ON(!host->claimed);
1779 	WARN_ON(!host->bus_ops);
1780 
1781 	spin_lock_irqsave(&host->lock, flags);
1782 
1783 	host->bus_dead = 1;
1784 
1785 	spin_unlock_irqrestore(&host->lock, flags);
1786 
1787 	mmc_bus_put(host);
1788 }
1789 
1790 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1791 				bool cd_irq)
1792 {
1793 	/*
1794 	 * If the device is configured as wakeup, we prevent a new sleep for
1795 	 * 5 s to give provision for user space to consume the event.
1796 	 */
1797 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1798 		device_can_wakeup(mmc_dev(host)))
1799 		pm_wakeup_event(mmc_dev(host), 5000);
1800 
1801 	host->detect_change = 1;
1802 	mmc_schedule_delayed_work(&host->detect, delay);
1803 }
1804 
1805 /**
1806  *	mmc_detect_change - process change of state on a MMC socket
1807  *	@host: host which changed state.
1808  *	@delay: optional delay to wait before detection (jiffies)
1809  *
1810  *	MMC drivers should call this when they detect a card has been
1811  *	inserted or removed. The MMC layer will confirm that any
1812  *	present card is still functional, and initialize any newly
1813  *	inserted.
1814  */
1815 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1816 {
1817 	_mmc_detect_change(host, delay, true);
1818 }
1819 EXPORT_SYMBOL(mmc_detect_change);
1820 
1821 void mmc_init_erase(struct mmc_card *card)
1822 {
1823 	unsigned int sz;
1824 
1825 	if (is_power_of_2(card->erase_size))
1826 		card->erase_shift = ffs(card->erase_size) - 1;
1827 	else
1828 		card->erase_shift = 0;
1829 
1830 	/*
1831 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1832 	 * card.  That is not desirable because it can take a long time
1833 	 * (minutes) potentially delaying more important I/O, and also the
1834 	 * timeout calculations become increasingly hugely over-estimated.
1835 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1836 	 * to that size and alignment.
1837 	 *
1838 	 * For SD cards that define Allocation Unit size, limit erases to one
1839 	 * Allocation Unit at a time.
1840 	 * For MMC, have a stab at ai good value and for modern cards it will
1841 	 * end up being 4MiB. Note that if the value is too small, it can end
1842 	 * up taking longer to erase. Also note, erase_size is already set to
1843 	 * High Capacity Erase Size if available when this function is called.
1844 	 */
1845 	if (mmc_card_sd(card) && card->ssr.au) {
1846 		card->pref_erase = card->ssr.au;
1847 		card->erase_shift = ffs(card->ssr.au) - 1;
1848 	} else if (card->erase_size) {
1849 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1850 		if (sz < 128)
1851 			card->pref_erase = 512 * 1024 / 512;
1852 		else if (sz < 512)
1853 			card->pref_erase = 1024 * 1024 / 512;
1854 		else if (sz < 1024)
1855 			card->pref_erase = 2 * 1024 * 1024 / 512;
1856 		else
1857 			card->pref_erase = 4 * 1024 * 1024 / 512;
1858 		if (card->pref_erase < card->erase_size)
1859 			card->pref_erase = card->erase_size;
1860 		else {
1861 			sz = card->pref_erase % card->erase_size;
1862 			if (sz)
1863 				card->pref_erase += card->erase_size - sz;
1864 		}
1865 	} else
1866 		card->pref_erase = 0;
1867 }
1868 
1869 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1870 				          unsigned int arg, unsigned int qty)
1871 {
1872 	unsigned int erase_timeout;
1873 
1874 	if (arg == MMC_DISCARD_ARG ||
1875 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1876 		erase_timeout = card->ext_csd.trim_timeout;
1877 	} else if (card->ext_csd.erase_group_def & 1) {
1878 		/* High Capacity Erase Group Size uses HC timeouts */
1879 		if (arg == MMC_TRIM_ARG)
1880 			erase_timeout = card->ext_csd.trim_timeout;
1881 		else
1882 			erase_timeout = card->ext_csd.hc_erase_timeout;
1883 	} else {
1884 		/* CSD Erase Group Size uses write timeout */
1885 		unsigned int mult = (10 << card->csd.r2w_factor);
1886 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1887 		unsigned int timeout_us;
1888 
1889 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1890 		if (card->csd.taac_ns < 1000000)
1891 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1892 		else
1893 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1894 
1895 		/*
1896 		 * ios.clock is only a target.  The real clock rate might be
1897 		 * less but not that much less, so fudge it by multiplying by 2.
1898 		 */
1899 		timeout_clks <<= 1;
1900 		timeout_us += (timeout_clks * 1000) /
1901 			      (card->host->ios.clock / 1000);
1902 
1903 		erase_timeout = timeout_us / 1000;
1904 
1905 		/*
1906 		 * Theoretically, the calculation could underflow so round up
1907 		 * to 1ms in that case.
1908 		 */
1909 		if (!erase_timeout)
1910 			erase_timeout = 1;
1911 	}
1912 
1913 	/* Multiplier for secure operations */
1914 	if (arg & MMC_SECURE_ARGS) {
1915 		if (arg == MMC_SECURE_ERASE_ARG)
1916 			erase_timeout *= card->ext_csd.sec_erase_mult;
1917 		else
1918 			erase_timeout *= card->ext_csd.sec_trim_mult;
1919 	}
1920 
1921 	erase_timeout *= qty;
1922 
1923 	/*
1924 	 * Ensure at least a 1 second timeout for SPI as per
1925 	 * 'mmc_set_data_timeout()'
1926 	 */
1927 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1928 		erase_timeout = 1000;
1929 
1930 	return erase_timeout;
1931 }
1932 
1933 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1934 					 unsigned int arg,
1935 					 unsigned int qty)
1936 {
1937 	unsigned int erase_timeout;
1938 
1939 	if (card->ssr.erase_timeout) {
1940 		/* Erase timeout specified in SD Status Register (SSR) */
1941 		erase_timeout = card->ssr.erase_timeout * qty +
1942 				card->ssr.erase_offset;
1943 	} else {
1944 		/*
1945 		 * Erase timeout not specified in SD Status Register (SSR) so
1946 		 * use 250ms per write block.
1947 		 */
1948 		erase_timeout = 250 * qty;
1949 	}
1950 
1951 	/* Must not be less than 1 second */
1952 	if (erase_timeout < 1000)
1953 		erase_timeout = 1000;
1954 
1955 	return erase_timeout;
1956 }
1957 
1958 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1959 				      unsigned int arg,
1960 				      unsigned int qty)
1961 {
1962 	if (mmc_card_sd(card))
1963 		return mmc_sd_erase_timeout(card, arg, qty);
1964 	else
1965 		return mmc_mmc_erase_timeout(card, arg, qty);
1966 }
1967 
1968 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1969 			unsigned int to, unsigned int arg)
1970 {
1971 	struct mmc_command cmd = {};
1972 	unsigned int qty = 0, busy_timeout = 0;
1973 	bool use_r1b_resp = false;
1974 	unsigned long timeout;
1975 	int loop_udelay=64, udelay_max=32768;
1976 	int err;
1977 
1978 	mmc_retune_hold(card->host);
1979 
1980 	/*
1981 	 * qty is used to calculate the erase timeout which depends on how many
1982 	 * erase groups (or allocation units in SD terminology) are affected.
1983 	 * We count erasing part of an erase group as one erase group.
1984 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1985 	 * erase group size is almost certainly also power of 2, but it does not
1986 	 * seem to insist on that in the JEDEC standard, so we fall back to
1987 	 * division in that case.  SD may not specify an allocation unit size,
1988 	 * in which case the timeout is based on the number of write blocks.
1989 	 *
1990 	 * Note that the timeout for secure trim 2 will only be correct if the
1991 	 * number of erase groups specified is the same as the total of all
1992 	 * preceding secure trim 1 commands.  Since the power may have been
1993 	 * lost since the secure trim 1 commands occurred, it is generally
1994 	 * impossible to calculate the secure trim 2 timeout correctly.
1995 	 */
1996 	if (card->erase_shift)
1997 		qty += ((to >> card->erase_shift) -
1998 			(from >> card->erase_shift)) + 1;
1999 	else if (mmc_card_sd(card))
2000 		qty += to - from + 1;
2001 	else
2002 		qty += ((to / card->erase_size) -
2003 			(from / card->erase_size)) + 1;
2004 
2005 	if (!mmc_card_blockaddr(card)) {
2006 		from <<= 9;
2007 		to <<= 9;
2008 	}
2009 
2010 	if (mmc_card_sd(card))
2011 		cmd.opcode = SD_ERASE_WR_BLK_START;
2012 	else
2013 		cmd.opcode = MMC_ERASE_GROUP_START;
2014 	cmd.arg = from;
2015 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2016 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2017 	if (err) {
2018 		pr_err("mmc_erase: group start error %d, "
2019 		       "status %#x\n", err, cmd.resp[0]);
2020 		err = -EIO;
2021 		goto out;
2022 	}
2023 
2024 	memset(&cmd, 0, sizeof(struct mmc_command));
2025 	if (mmc_card_sd(card))
2026 		cmd.opcode = SD_ERASE_WR_BLK_END;
2027 	else
2028 		cmd.opcode = MMC_ERASE_GROUP_END;
2029 	cmd.arg = to;
2030 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2031 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2032 	if (err) {
2033 		pr_err("mmc_erase: group end error %d, status %#x\n",
2034 		       err, cmd.resp[0]);
2035 		err = -EIO;
2036 		goto out;
2037 	}
2038 
2039 	memset(&cmd, 0, sizeof(struct mmc_command));
2040 	cmd.opcode = MMC_ERASE;
2041 	cmd.arg = arg;
2042 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2043 	/*
2044 	 * If the host controller supports busy signalling and the timeout for
2045 	 * the erase operation does not exceed the max_busy_timeout, we should
2046 	 * use R1B response. Or we need to prevent the host from doing hw busy
2047 	 * detection, which is done by converting to a R1 response instead.
2048 	 */
2049 	if (card->host->max_busy_timeout &&
2050 	    busy_timeout > card->host->max_busy_timeout) {
2051 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2052 	} else {
2053 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2054 		cmd.busy_timeout = busy_timeout;
2055 		use_r1b_resp = true;
2056 	}
2057 
2058 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2059 	if (err) {
2060 		pr_err("mmc_erase: erase error %d, status %#x\n",
2061 		       err, cmd.resp[0]);
2062 		err = -EIO;
2063 		goto out;
2064 	}
2065 
2066 	if (mmc_host_is_spi(card->host))
2067 		goto out;
2068 
2069 	/*
2070 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2071 	 * shall be avoided.
2072 	 */
2073 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2074 		goto out;
2075 
2076 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2077 	do {
2078 		memset(&cmd, 0, sizeof(struct mmc_command));
2079 		cmd.opcode = MMC_SEND_STATUS;
2080 		cmd.arg = card->rca << 16;
2081 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2082 		/* Do not retry else we can't see errors */
2083 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2084 		if (err || R1_STATUS(cmd.resp[0])) {
2085 			pr_err("error %d requesting status %#x\n",
2086 				err, cmd.resp[0]);
2087 			err = -EIO;
2088 			goto out;
2089 		}
2090 
2091 		/* Timeout if the device never becomes ready for data and
2092 		 * never leaves the program state.
2093 		 */
2094 		if (time_after(jiffies, timeout)) {
2095 			pr_err("%s: Card stuck in programming state! %s\n",
2096 				mmc_hostname(card->host), __func__);
2097 			err =  -EIO;
2098 			goto out;
2099 		}
2100 		if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2101 		    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2102 			break;
2103 
2104 		usleep_range(loop_udelay, loop_udelay*2);
2105 		if (loop_udelay < udelay_max)
2106 			loop_udelay *= 2;
2107 	} while (1);
2108 
2109 out:
2110 	mmc_retune_release(card->host);
2111 	return err;
2112 }
2113 
2114 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2115 					 unsigned int *from,
2116 					 unsigned int *to,
2117 					 unsigned int nr)
2118 {
2119 	unsigned int from_new = *from, nr_new = nr, rem;
2120 
2121 	/*
2122 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2123 	 * to align the erase size efficiently.
2124 	 */
2125 	if (is_power_of_2(card->erase_size)) {
2126 		unsigned int temp = from_new;
2127 
2128 		from_new = round_up(temp, card->erase_size);
2129 		rem = from_new - temp;
2130 
2131 		if (nr_new > rem)
2132 			nr_new -= rem;
2133 		else
2134 			return 0;
2135 
2136 		nr_new = round_down(nr_new, card->erase_size);
2137 	} else {
2138 		rem = from_new % card->erase_size;
2139 		if (rem) {
2140 			rem = card->erase_size - rem;
2141 			from_new += rem;
2142 			if (nr_new > rem)
2143 				nr_new -= rem;
2144 			else
2145 				return 0;
2146 		}
2147 
2148 		rem = nr_new % card->erase_size;
2149 		if (rem)
2150 			nr_new -= rem;
2151 	}
2152 
2153 	if (nr_new == 0)
2154 		return 0;
2155 
2156 	*to = from_new + nr_new;
2157 	*from = from_new;
2158 
2159 	return nr_new;
2160 }
2161 
2162 /**
2163  * mmc_erase - erase sectors.
2164  * @card: card to erase
2165  * @from: first sector to erase
2166  * @nr: number of sectors to erase
2167  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2168  *
2169  * Caller must claim host before calling this function.
2170  */
2171 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2172 	      unsigned int arg)
2173 {
2174 	unsigned int rem, to = from + nr;
2175 	int err;
2176 
2177 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2178 	    !(card->csd.cmdclass & CCC_ERASE))
2179 		return -EOPNOTSUPP;
2180 
2181 	if (!card->erase_size)
2182 		return -EOPNOTSUPP;
2183 
2184 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2185 		return -EOPNOTSUPP;
2186 
2187 	if ((arg & MMC_SECURE_ARGS) &&
2188 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2189 		return -EOPNOTSUPP;
2190 
2191 	if ((arg & MMC_TRIM_ARGS) &&
2192 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2193 		return -EOPNOTSUPP;
2194 
2195 	if (arg == MMC_SECURE_ERASE_ARG) {
2196 		if (from % card->erase_size || nr % card->erase_size)
2197 			return -EINVAL;
2198 	}
2199 
2200 	if (arg == MMC_ERASE_ARG)
2201 		nr = mmc_align_erase_size(card, &from, &to, nr);
2202 
2203 	if (nr == 0)
2204 		return 0;
2205 
2206 	if (to <= from)
2207 		return -EINVAL;
2208 
2209 	/* 'from' and 'to' are inclusive */
2210 	to -= 1;
2211 
2212 	/*
2213 	 * Special case where only one erase-group fits in the timeout budget:
2214 	 * If the region crosses an erase-group boundary on this particular
2215 	 * case, we will be trimming more than one erase-group which, does not
2216 	 * fit in the timeout budget of the controller, so we need to split it
2217 	 * and call mmc_do_erase() twice if necessary. This special case is
2218 	 * identified by the card->eg_boundary flag.
2219 	 */
2220 	rem = card->erase_size - (from % card->erase_size);
2221 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2222 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2223 		from += rem;
2224 		if ((err) || (to <= from))
2225 			return err;
2226 	}
2227 
2228 	return mmc_do_erase(card, from, to, arg);
2229 }
2230 EXPORT_SYMBOL(mmc_erase);
2231 
2232 int mmc_can_erase(struct mmc_card *card)
2233 {
2234 	if ((card->host->caps & MMC_CAP_ERASE) &&
2235 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2236 		return 1;
2237 	return 0;
2238 }
2239 EXPORT_SYMBOL(mmc_can_erase);
2240 
2241 int mmc_can_trim(struct mmc_card *card)
2242 {
2243 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2244 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2245 		return 1;
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL(mmc_can_trim);
2249 
2250 int mmc_can_discard(struct mmc_card *card)
2251 {
2252 	/*
2253 	 * As there's no way to detect the discard support bit at v4.5
2254 	 * use the s/w feature support filed.
2255 	 */
2256 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2257 		return 1;
2258 	return 0;
2259 }
2260 EXPORT_SYMBOL(mmc_can_discard);
2261 
2262 int mmc_can_sanitize(struct mmc_card *card)
2263 {
2264 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2265 		return 0;
2266 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2267 		return 1;
2268 	return 0;
2269 }
2270 EXPORT_SYMBOL(mmc_can_sanitize);
2271 
2272 int mmc_can_secure_erase_trim(struct mmc_card *card)
2273 {
2274 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2275 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2276 		return 1;
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2280 
2281 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2282 			    unsigned int nr)
2283 {
2284 	if (!card->erase_size)
2285 		return 0;
2286 	if (from % card->erase_size || nr % card->erase_size)
2287 		return 0;
2288 	return 1;
2289 }
2290 EXPORT_SYMBOL(mmc_erase_group_aligned);
2291 
2292 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2293 					    unsigned int arg)
2294 {
2295 	struct mmc_host *host = card->host;
2296 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2297 	unsigned int last_timeout = 0;
2298 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2299 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2300 
2301 	if (card->erase_shift) {
2302 		max_qty = UINT_MAX >> card->erase_shift;
2303 		min_qty = card->pref_erase >> card->erase_shift;
2304 	} else if (mmc_card_sd(card)) {
2305 		max_qty = UINT_MAX;
2306 		min_qty = card->pref_erase;
2307 	} else {
2308 		max_qty = UINT_MAX / card->erase_size;
2309 		min_qty = card->pref_erase / card->erase_size;
2310 	}
2311 
2312 	/*
2313 	 * We should not only use 'host->max_busy_timeout' as the limitation
2314 	 * when deciding the max discard sectors. We should set a balance value
2315 	 * to improve the erase speed, and it can not get too long timeout at
2316 	 * the same time.
2317 	 *
2318 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2319 	 * matter what size of 'host->max_busy_timeout', but if the
2320 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2321 	 * then we can continue to increase the max discard sectors until we
2322 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2323 	 * isn't specified, use the default max erase timeout.
2324 	 */
2325 	do {
2326 		y = 0;
2327 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2328 			timeout = mmc_erase_timeout(card, arg, qty + x);
2329 
2330 			if (qty + x > min_qty && timeout > max_busy_timeout)
2331 				break;
2332 
2333 			if (timeout < last_timeout)
2334 				break;
2335 			last_timeout = timeout;
2336 			y = x;
2337 		}
2338 		qty += y;
2339 	} while (y);
2340 
2341 	if (!qty)
2342 		return 0;
2343 
2344 	/*
2345 	 * When specifying a sector range to trim, chances are we might cross
2346 	 * an erase-group boundary even if the amount of sectors is less than
2347 	 * one erase-group.
2348 	 * If we can only fit one erase-group in the controller timeout budget,
2349 	 * we have to care that erase-group boundaries are not crossed by a
2350 	 * single trim operation. We flag that special case with "eg_boundary".
2351 	 * In all other cases we can just decrement qty and pretend that we
2352 	 * always touch (qty + 1) erase-groups as a simple optimization.
2353 	 */
2354 	if (qty == 1)
2355 		card->eg_boundary = 1;
2356 	else
2357 		qty--;
2358 
2359 	/* Convert qty to sectors */
2360 	if (card->erase_shift)
2361 		max_discard = qty << card->erase_shift;
2362 	else if (mmc_card_sd(card))
2363 		max_discard = qty + 1;
2364 	else
2365 		max_discard = qty * card->erase_size;
2366 
2367 	return max_discard;
2368 }
2369 
2370 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2371 {
2372 	struct mmc_host *host = card->host;
2373 	unsigned int max_discard, max_trim;
2374 
2375 	/*
2376 	 * Without erase_group_def set, MMC erase timeout depends on clock
2377 	 * frequence which can change.  In that case, the best choice is
2378 	 * just the preferred erase size.
2379 	 */
2380 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2381 		return card->pref_erase;
2382 
2383 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2384 	if (max_discard && mmc_can_trim(card)) {
2385 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2386 		if (max_trim < max_discard)
2387 			max_discard = max_trim;
2388 	} else if (max_discard < card->erase_size) {
2389 		max_discard = 0;
2390 	}
2391 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2392 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2393 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2394 	return max_discard;
2395 }
2396 EXPORT_SYMBOL(mmc_calc_max_discard);
2397 
2398 bool mmc_card_is_blockaddr(struct mmc_card *card)
2399 {
2400 	return card ? mmc_card_blockaddr(card) : false;
2401 }
2402 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2403 
2404 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2405 {
2406 	struct mmc_command cmd = {};
2407 
2408 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2409 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2410 		return 0;
2411 
2412 	cmd.opcode = MMC_SET_BLOCKLEN;
2413 	cmd.arg = blocklen;
2414 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2415 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2416 }
2417 EXPORT_SYMBOL(mmc_set_blocklen);
2418 
2419 static void mmc_hw_reset_for_init(struct mmc_host *host)
2420 {
2421 	mmc_pwrseq_reset(host);
2422 
2423 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2424 		return;
2425 	host->ops->hw_reset(host);
2426 }
2427 
2428 int mmc_hw_reset(struct mmc_host *host)
2429 {
2430 	int ret;
2431 
2432 	if (!host->card)
2433 		return -EINVAL;
2434 
2435 	mmc_bus_get(host);
2436 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2437 		mmc_bus_put(host);
2438 		return -EOPNOTSUPP;
2439 	}
2440 
2441 	ret = host->bus_ops->hw_reset(host);
2442 	mmc_bus_put(host);
2443 
2444 	if (ret)
2445 		pr_warn("%s: tried to HW reset card, got error %d\n",
2446 			mmc_hostname(host), ret);
2447 
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(mmc_hw_reset);
2451 
2452 int mmc_sw_reset(struct mmc_host *host)
2453 {
2454 	int ret;
2455 
2456 	if (!host->card)
2457 		return -EINVAL;
2458 
2459 	mmc_bus_get(host);
2460 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2461 		mmc_bus_put(host);
2462 		return -EOPNOTSUPP;
2463 	}
2464 
2465 	ret = host->bus_ops->sw_reset(host);
2466 	mmc_bus_put(host);
2467 
2468 	if (ret)
2469 		pr_warn("%s: tried to SW reset card, got error %d\n",
2470 			mmc_hostname(host), ret);
2471 
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL(mmc_sw_reset);
2475 
2476 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2477 {
2478 	host->f_init = freq;
2479 
2480 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2481 		mmc_hostname(host), __func__, host->f_init);
2482 
2483 	mmc_power_up(host, host->ocr_avail);
2484 
2485 	/*
2486 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2487 	 * do a hardware reset if possible.
2488 	 */
2489 	mmc_hw_reset_for_init(host);
2490 
2491 	/*
2492 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2493 	 * if the card is being re-initialized, just send it.  CMD52
2494 	 * should be ignored by SD/eMMC cards.
2495 	 * Skip it if we already know that we do not support SDIO commands
2496 	 */
2497 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2498 		sdio_reset(host);
2499 
2500 	mmc_go_idle(host);
2501 
2502 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2503 		mmc_send_if_cond(host, host->ocr_avail);
2504 
2505 	/* Order's important: probe SDIO, then SD, then MMC */
2506 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2507 		if (!mmc_attach_sdio(host))
2508 			return 0;
2509 
2510 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2511 		if (!mmc_attach_sd(host))
2512 			return 0;
2513 
2514 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2515 		if (!mmc_attach_mmc(host))
2516 			return 0;
2517 
2518 	mmc_power_off(host);
2519 	return -EIO;
2520 }
2521 
2522 int _mmc_detect_card_removed(struct mmc_host *host)
2523 {
2524 	int ret;
2525 
2526 	if (!host->card || mmc_card_removed(host->card))
2527 		return 1;
2528 
2529 	ret = host->bus_ops->alive(host);
2530 
2531 	/*
2532 	 * Card detect status and alive check may be out of sync if card is
2533 	 * removed slowly, when card detect switch changes while card/slot
2534 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2535 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2536 	 * detect work 200ms later for this case.
2537 	 */
2538 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2539 		mmc_detect_change(host, msecs_to_jiffies(200));
2540 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2541 	}
2542 
2543 	if (ret) {
2544 		mmc_card_set_removed(host->card);
2545 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2546 	}
2547 
2548 	return ret;
2549 }
2550 
2551 int mmc_detect_card_removed(struct mmc_host *host)
2552 {
2553 	struct mmc_card *card = host->card;
2554 	int ret;
2555 
2556 	WARN_ON(!host->claimed);
2557 
2558 	if (!card)
2559 		return 1;
2560 
2561 	if (!mmc_card_is_removable(host))
2562 		return 0;
2563 
2564 	ret = mmc_card_removed(card);
2565 	/*
2566 	 * The card will be considered unchanged unless we have been asked to
2567 	 * detect a change or host requires polling to provide card detection.
2568 	 */
2569 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2570 		return ret;
2571 
2572 	host->detect_change = 0;
2573 	if (!ret) {
2574 		ret = _mmc_detect_card_removed(host);
2575 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2576 			/*
2577 			 * Schedule a detect work as soon as possible to let a
2578 			 * rescan handle the card removal.
2579 			 */
2580 			cancel_delayed_work(&host->detect);
2581 			_mmc_detect_change(host, 0, false);
2582 		}
2583 	}
2584 
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL(mmc_detect_card_removed);
2588 
2589 void mmc_rescan(struct work_struct *work)
2590 {
2591 	struct mmc_host *host =
2592 		container_of(work, struct mmc_host, detect.work);
2593 	int i;
2594 
2595 	if (host->rescan_disable)
2596 		return;
2597 
2598 	/* If there is a non-removable card registered, only scan once */
2599 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2600 		return;
2601 	host->rescan_entered = 1;
2602 
2603 	if (host->trigger_card_event && host->ops->card_event) {
2604 		mmc_claim_host(host);
2605 		host->ops->card_event(host);
2606 		mmc_release_host(host);
2607 		host->trigger_card_event = false;
2608 	}
2609 
2610 	mmc_bus_get(host);
2611 
2612 	/*
2613 	 * if there is a _removable_ card registered, check whether it is
2614 	 * still present
2615 	 */
2616 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2617 		host->bus_ops->detect(host);
2618 
2619 	host->detect_change = 0;
2620 
2621 	/*
2622 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2623 	 * the card is no longer present.
2624 	 */
2625 	mmc_bus_put(host);
2626 	mmc_bus_get(host);
2627 
2628 	/* if there still is a card present, stop here */
2629 	if (host->bus_ops != NULL) {
2630 		mmc_bus_put(host);
2631 		goto out;
2632 	}
2633 
2634 	/*
2635 	 * Only we can add a new handler, so it's safe to
2636 	 * release the lock here.
2637 	 */
2638 	mmc_bus_put(host);
2639 
2640 	mmc_claim_host(host);
2641 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2642 			host->ops->get_cd(host) == 0) {
2643 		mmc_power_off(host);
2644 		mmc_release_host(host);
2645 		goto out;
2646 	}
2647 
2648 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2649 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2650 			break;
2651 		if (freqs[i] <= host->f_min)
2652 			break;
2653 	}
2654 	mmc_release_host(host);
2655 
2656  out:
2657 	if (host->caps & MMC_CAP_NEEDS_POLL)
2658 		mmc_schedule_delayed_work(&host->detect, HZ);
2659 }
2660 
2661 void mmc_start_host(struct mmc_host *host)
2662 {
2663 	host->f_init = max(freqs[0], host->f_min);
2664 	host->rescan_disable = 0;
2665 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2666 
2667 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2668 		mmc_claim_host(host);
2669 		mmc_power_up(host, host->ocr_avail);
2670 		mmc_release_host(host);
2671 	}
2672 
2673 	mmc_gpiod_request_cd_irq(host);
2674 	_mmc_detect_change(host, 0, false);
2675 }
2676 
2677 void mmc_stop_host(struct mmc_host *host)
2678 {
2679 	if (host->slot.cd_irq >= 0) {
2680 		mmc_gpio_set_cd_wake(host, false);
2681 		disable_irq(host->slot.cd_irq);
2682 	}
2683 
2684 	host->rescan_disable = 1;
2685 	cancel_delayed_work_sync(&host->detect);
2686 
2687 	/* clear pm flags now and let card drivers set them as needed */
2688 	host->pm_flags = 0;
2689 
2690 	mmc_bus_get(host);
2691 	if (host->bus_ops && !host->bus_dead) {
2692 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2693 		host->bus_ops->remove(host);
2694 		mmc_claim_host(host);
2695 		mmc_detach_bus(host);
2696 		mmc_power_off(host);
2697 		mmc_release_host(host);
2698 		mmc_bus_put(host);
2699 		return;
2700 	}
2701 	mmc_bus_put(host);
2702 
2703 	mmc_claim_host(host);
2704 	mmc_power_off(host);
2705 	mmc_release_host(host);
2706 }
2707 
2708 #ifdef CONFIG_PM_SLEEP
2709 /* Do the card removal on suspend if card is assumed removeable
2710  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2711    to sync the card.
2712 */
2713 static int mmc_pm_notify(struct notifier_block *notify_block,
2714 			unsigned long mode, void *unused)
2715 {
2716 	struct mmc_host *host = container_of(
2717 		notify_block, struct mmc_host, pm_notify);
2718 	unsigned long flags;
2719 	int err = 0;
2720 
2721 	switch (mode) {
2722 	case PM_HIBERNATION_PREPARE:
2723 	case PM_SUSPEND_PREPARE:
2724 	case PM_RESTORE_PREPARE:
2725 		spin_lock_irqsave(&host->lock, flags);
2726 		host->rescan_disable = 1;
2727 		spin_unlock_irqrestore(&host->lock, flags);
2728 		cancel_delayed_work_sync(&host->detect);
2729 
2730 		if (!host->bus_ops)
2731 			break;
2732 
2733 		/* Validate prerequisites for suspend */
2734 		if (host->bus_ops->pre_suspend)
2735 			err = host->bus_ops->pre_suspend(host);
2736 		if (!err)
2737 			break;
2738 
2739 		if (!mmc_card_is_removable(host)) {
2740 			dev_warn(mmc_dev(host),
2741 				 "pre_suspend failed for non-removable host: "
2742 				 "%d\n", err);
2743 			/* Avoid removing non-removable hosts */
2744 			break;
2745 		}
2746 
2747 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2748 		host->bus_ops->remove(host);
2749 		mmc_claim_host(host);
2750 		mmc_detach_bus(host);
2751 		mmc_power_off(host);
2752 		mmc_release_host(host);
2753 		host->pm_flags = 0;
2754 		break;
2755 
2756 	case PM_POST_SUSPEND:
2757 	case PM_POST_HIBERNATION:
2758 	case PM_POST_RESTORE:
2759 
2760 		spin_lock_irqsave(&host->lock, flags);
2761 		host->rescan_disable = 0;
2762 		spin_unlock_irqrestore(&host->lock, flags);
2763 		_mmc_detect_change(host, 0, false);
2764 
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 void mmc_register_pm_notifier(struct mmc_host *host)
2771 {
2772 	host->pm_notify.notifier_call = mmc_pm_notify;
2773 	register_pm_notifier(&host->pm_notify);
2774 }
2775 
2776 void mmc_unregister_pm_notifier(struct mmc_host *host)
2777 {
2778 	unregister_pm_notifier(&host->pm_notify);
2779 }
2780 #endif
2781 
2782 static int __init mmc_init(void)
2783 {
2784 	int ret;
2785 
2786 	ret = mmc_register_bus();
2787 	if (ret)
2788 		return ret;
2789 
2790 	ret = mmc_register_host_class();
2791 	if (ret)
2792 		goto unregister_bus;
2793 
2794 	ret = sdio_register_bus();
2795 	if (ret)
2796 		goto unregister_host_class;
2797 
2798 	return 0;
2799 
2800 unregister_host_class:
2801 	mmc_unregister_host_class();
2802 unregister_bus:
2803 	mmc_unregister_bus();
2804 	return ret;
2805 }
2806 
2807 static void __exit mmc_exit(void)
2808 {
2809 	sdio_unregister_bus();
2810 	mmc_unregister_host_class();
2811 	mmc_unregister_bus();
2812 }
2813 
2814 subsys_initcall(mmc_init);
2815 module_exit(mmc_exit);
2816 
2817 MODULE_LICENSE("GPL");
2818