xref: /openbmc/linux/drivers/mmc/core/core.c (revision 4f3db074)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87 
88 /*
89  * Internal function. Inject random data errors.
90  * If mmc_data is NULL no errors are injected.
91  */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 				    struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	struct mmc_data *data = mrq->data;
97 	static const int data_errors[] = {
98 		-ETIMEDOUT,
99 		-EILSEQ,
100 		-EIO,
101 	};
102 
103 	if (!data)
104 		return;
105 
106 	if (cmd->error || data->error ||
107 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 		return;
109 
110 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113 
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115 
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 					   struct mmc_request *mrq)
118 {
119 }
120 
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122 
123 /**
124  *	mmc_request_done - finish processing an MMC request
125  *	@host: MMC host which completed request
126  *	@mrq: MMC request which request
127  *
128  *	MMC drivers should call this function when they have completed
129  *	their processing of a request.
130  */
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132 {
133 	struct mmc_command *cmd = mrq->cmd;
134 	int err = cmd->error;
135 
136 	if (err && cmd->retries && mmc_host_is_spi(host)) {
137 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
138 			cmd->retries = 0;
139 	}
140 
141 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
142 		/*
143 		 * Request starter must handle retries - see
144 		 * mmc_wait_for_req_done().
145 		 */
146 		if (mrq->done)
147 			mrq->done(mrq);
148 	} else {
149 		mmc_should_fail_request(host, mrq);
150 
151 		led_trigger_event(host->led, LED_OFF);
152 
153 		if (mrq->sbc) {
154 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
155 				mmc_hostname(host), mrq->sbc->opcode,
156 				mrq->sbc->error,
157 				mrq->sbc->resp[0], mrq->sbc->resp[1],
158 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
159 		}
160 
161 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
162 			mmc_hostname(host), cmd->opcode, err,
163 			cmd->resp[0], cmd->resp[1],
164 			cmd->resp[2], cmd->resp[3]);
165 
166 		if (mrq->data) {
167 			pr_debug("%s:     %d bytes transferred: %d\n",
168 				mmc_hostname(host),
169 				mrq->data->bytes_xfered, mrq->data->error);
170 		}
171 
172 		if (mrq->stop) {
173 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
174 				mmc_hostname(host), mrq->stop->opcode,
175 				mrq->stop->error,
176 				mrq->stop->resp[0], mrq->stop->resp[1],
177 				mrq->stop->resp[2], mrq->stop->resp[3]);
178 		}
179 
180 		if (mrq->done)
181 			mrq->done(mrq);
182 
183 		mmc_host_clk_release(host);
184 	}
185 }
186 
187 EXPORT_SYMBOL(mmc_request_done);
188 
189 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190 {
191 #ifdef CONFIG_MMC_DEBUG
192 	unsigned int i, sz;
193 	struct scatterlist *sg;
194 #endif
195 	if (mmc_card_removed(host->card))
196 		return -ENOMEDIUM;
197 
198 	if (mrq->sbc) {
199 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
200 			 mmc_hostname(host), mrq->sbc->opcode,
201 			 mrq->sbc->arg, mrq->sbc->flags);
202 	}
203 
204 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
205 		 mmc_hostname(host), mrq->cmd->opcode,
206 		 mrq->cmd->arg, mrq->cmd->flags);
207 
208 	if (mrq->data) {
209 		pr_debug("%s:     blksz %d blocks %d flags %08x "
210 			"tsac %d ms nsac %d\n",
211 			mmc_hostname(host), mrq->data->blksz,
212 			mrq->data->blocks, mrq->data->flags,
213 			mrq->data->timeout_ns / 1000000,
214 			mrq->data->timeout_clks);
215 	}
216 
217 	if (mrq->stop) {
218 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
219 			 mmc_hostname(host), mrq->stop->opcode,
220 			 mrq->stop->arg, mrq->stop->flags);
221 	}
222 
223 	WARN_ON(!host->claimed);
224 
225 	mrq->cmd->error = 0;
226 	mrq->cmd->mrq = mrq;
227 	if (mrq->sbc) {
228 		mrq->sbc->error = 0;
229 		mrq->sbc->mrq = mrq;
230 	}
231 	if (mrq->data) {
232 		BUG_ON(mrq->data->blksz > host->max_blk_size);
233 		BUG_ON(mrq->data->blocks > host->max_blk_count);
234 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 			host->max_req_size);
236 
237 #ifdef CONFIG_MMC_DEBUG
238 		sz = 0;
239 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 			sz += sg->length;
241 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243 
244 		mrq->cmd->data = mrq->data;
245 		mrq->data->error = 0;
246 		mrq->data->mrq = mrq;
247 		if (mrq->stop) {
248 			mrq->data->stop = mrq->stop;
249 			mrq->stop->error = 0;
250 			mrq->stop->mrq = mrq;
251 		}
252 	}
253 	mmc_host_clk_hold(host);
254 	led_trigger_event(host->led, LED_FULL);
255 	host->ops->request(host, mrq);
256 
257 	return 0;
258 }
259 
260 /**
261  *	mmc_start_bkops - start BKOPS for supported cards
262  *	@card: MMC card to start BKOPS
263  *	@form_exception: A flag to indicate if this function was
264  *			 called due to an exception raised by the card
265  *
266  *	Start background operations whenever requested.
267  *	When the urgent BKOPS bit is set in a R1 command response
268  *	then background operations should be started immediately.
269 */
270 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
271 {
272 	int err;
273 	int timeout;
274 	bool use_busy_signal;
275 
276 	BUG_ON(!card);
277 
278 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
279 		return;
280 
281 	err = mmc_read_bkops_status(card);
282 	if (err) {
283 		pr_err("%s: Failed to read bkops status: %d\n",
284 		       mmc_hostname(card->host), err);
285 		return;
286 	}
287 
288 	if (!card->ext_csd.raw_bkops_status)
289 		return;
290 
291 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
292 	    from_exception)
293 		return;
294 
295 	mmc_claim_host(card->host);
296 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
297 		timeout = MMC_BKOPS_MAX_TIMEOUT;
298 		use_busy_signal = true;
299 	} else {
300 		timeout = 0;
301 		use_busy_signal = false;
302 	}
303 
304 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
305 			EXT_CSD_BKOPS_START, 1, timeout,
306 			use_busy_signal, true, false);
307 	if (err) {
308 		pr_warn("%s: Error %d starting bkops\n",
309 			mmc_hostname(card->host), err);
310 		goto out;
311 	}
312 
313 	/*
314 	 * For urgent bkops status (LEVEL_2 and more)
315 	 * bkops executed synchronously, otherwise
316 	 * the operation is in progress
317 	 */
318 	if (!use_busy_signal)
319 		mmc_card_set_doing_bkops(card);
320 out:
321 	mmc_release_host(card->host);
322 }
323 EXPORT_SYMBOL(mmc_start_bkops);
324 
325 /*
326  * mmc_wait_data_done() - done callback for data request
327  * @mrq: done data request
328  *
329  * Wakes up mmc context, passed as a callback to host controller driver
330  */
331 static void mmc_wait_data_done(struct mmc_request *mrq)
332 {
333 	mrq->host->context_info.is_done_rcv = true;
334 	wake_up_interruptible(&mrq->host->context_info.wait);
335 }
336 
337 static void mmc_wait_done(struct mmc_request *mrq)
338 {
339 	complete(&mrq->completion);
340 }
341 
342 /*
343  *__mmc_start_data_req() - starts data request
344  * @host: MMC host to start the request
345  * @mrq: data request to start
346  *
347  * Sets the done callback to be called when request is completed by the card.
348  * Starts data mmc request execution
349  */
350 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
351 {
352 	int err;
353 
354 	mrq->done = mmc_wait_data_done;
355 	mrq->host = host;
356 
357 	err = mmc_start_request(host, mrq);
358 	if (err) {
359 		mrq->cmd->error = err;
360 		mmc_wait_data_done(mrq);
361 	}
362 
363 	return err;
364 }
365 
366 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
367 {
368 	int err;
369 
370 	init_completion(&mrq->completion);
371 	mrq->done = mmc_wait_done;
372 
373 	err = mmc_start_request(host, mrq);
374 	if (err) {
375 		mrq->cmd->error = err;
376 		complete(&mrq->completion);
377 	}
378 
379 	return err;
380 }
381 
382 /*
383  * mmc_wait_for_data_req_done() - wait for request completed
384  * @host: MMC host to prepare the command.
385  * @mrq: MMC request to wait for
386  *
387  * Blocks MMC context till host controller will ack end of data request
388  * execution or new request notification arrives from the block layer.
389  * Handles command retries.
390  *
391  * Returns enum mmc_blk_status after checking errors.
392  */
393 static int mmc_wait_for_data_req_done(struct mmc_host *host,
394 				      struct mmc_request *mrq,
395 				      struct mmc_async_req *next_req)
396 {
397 	struct mmc_command *cmd;
398 	struct mmc_context_info *context_info = &host->context_info;
399 	int err;
400 	unsigned long flags;
401 
402 	while (1) {
403 		wait_event_interruptible(context_info->wait,
404 				(context_info->is_done_rcv ||
405 				 context_info->is_new_req));
406 		spin_lock_irqsave(&context_info->lock, flags);
407 		context_info->is_waiting_last_req = false;
408 		spin_unlock_irqrestore(&context_info->lock, flags);
409 		if (context_info->is_done_rcv) {
410 			context_info->is_done_rcv = false;
411 			context_info->is_new_req = false;
412 			cmd = mrq->cmd;
413 
414 			if (!cmd->error || !cmd->retries ||
415 			    mmc_card_removed(host->card)) {
416 				err = host->areq->err_check(host->card,
417 							    host->areq);
418 				break; /* return err */
419 			} else {
420 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
421 					mmc_hostname(host),
422 					cmd->opcode, cmd->error);
423 				cmd->retries--;
424 				cmd->error = 0;
425 				host->ops->request(host, mrq);
426 				continue; /* wait for done/new event again */
427 			}
428 		} else if (context_info->is_new_req) {
429 			context_info->is_new_req = false;
430 			if (!next_req) {
431 				err = MMC_BLK_NEW_REQUEST;
432 				break; /* return err */
433 			}
434 		}
435 	}
436 	return err;
437 }
438 
439 static void mmc_wait_for_req_done(struct mmc_host *host,
440 				  struct mmc_request *mrq)
441 {
442 	struct mmc_command *cmd;
443 
444 	while (1) {
445 		wait_for_completion(&mrq->completion);
446 
447 		cmd = mrq->cmd;
448 
449 		/*
450 		 * If host has timed out waiting for the sanitize
451 		 * to complete, card might be still in programming state
452 		 * so let's try to bring the card out of programming
453 		 * state.
454 		 */
455 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
456 			if (!mmc_interrupt_hpi(host->card)) {
457 				pr_warn("%s: %s: Interrupted sanitize\n",
458 					mmc_hostname(host), __func__);
459 				cmd->error = 0;
460 				break;
461 			} else {
462 				pr_err("%s: %s: Failed to interrupt sanitize\n",
463 				       mmc_hostname(host), __func__);
464 			}
465 		}
466 		if (!cmd->error || !cmd->retries ||
467 		    mmc_card_removed(host->card))
468 			break;
469 
470 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
471 			 mmc_hostname(host), cmd->opcode, cmd->error);
472 		cmd->retries--;
473 		cmd->error = 0;
474 		host->ops->request(host, mrq);
475 	}
476 }
477 
478 /**
479  *	mmc_pre_req - Prepare for a new request
480  *	@host: MMC host to prepare command
481  *	@mrq: MMC request to prepare for
482  *	@is_first_req: true if there is no previous started request
483  *                     that may run in parellel to this call, otherwise false
484  *
485  *	mmc_pre_req() is called in prior to mmc_start_req() to let
486  *	host prepare for the new request. Preparation of a request may be
487  *	performed while another request is running on the host.
488  */
489 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
490 		 bool is_first_req)
491 {
492 	if (host->ops->pre_req) {
493 		mmc_host_clk_hold(host);
494 		host->ops->pre_req(host, mrq, is_first_req);
495 		mmc_host_clk_release(host);
496 	}
497 }
498 
499 /**
500  *	mmc_post_req - Post process a completed request
501  *	@host: MMC host to post process command
502  *	@mrq: MMC request to post process for
503  *	@err: Error, if non zero, clean up any resources made in pre_req
504  *
505  *	Let the host post process a completed request. Post processing of
506  *	a request may be performed while another reuqest is running.
507  */
508 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
509 			 int err)
510 {
511 	if (host->ops->post_req) {
512 		mmc_host_clk_hold(host);
513 		host->ops->post_req(host, mrq, err);
514 		mmc_host_clk_release(host);
515 	}
516 }
517 
518 /**
519  *	mmc_start_req - start a non-blocking request
520  *	@host: MMC host to start command
521  *	@areq: async request to start
522  *	@error: out parameter returns 0 for success, otherwise non zero
523  *
524  *	Start a new MMC custom command request for a host.
525  *	If there is on ongoing async request wait for completion
526  *	of that request and start the new one and return.
527  *	Does not wait for the new request to complete.
528  *
529  *      Returns the completed request, NULL in case of none completed.
530  *	Wait for the an ongoing request (previoulsy started) to complete and
531  *	return the completed request. If there is no ongoing request, NULL
532  *	is returned without waiting. NULL is not an error condition.
533  */
534 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
535 				    struct mmc_async_req *areq, int *error)
536 {
537 	int err = 0;
538 	int start_err = 0;
539 	struct mmc_async_req *data = host->areq;
540 
541 	/* Prepare a new request */
542 	if (areq)
543 		mmc_pre_req(host, areq->mrq, !host->areq);
544 
545 	if (host->areq) {
546 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
547 		if (err == MMC_BLK_NEW_REQUEST) {
548 			if (error)
549 				*error = err;
550 			/*
551 			 * The previous request was not completed,
552 			 * nothing to return
553 			 */
554 			return NULL;
555 		}
556 		/*
557 		 * Check BKOPS urgency for each R1 response
558 		 */
559 		if (host->card && mmc_card_mmc(host->card) &&
560 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
561 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
562 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
563 
564 			/* Cancel the prepared request */
565 			if (areq)
566 				mmc_post_req(host, areq->mrq, -EINVAL);
567 
568 			mmc_start_bkops(host->card, true);
569 
570 			/* prepare the request again */
571 			if (areq)
572 				mmc_pre_req(host, areq->mrq, !host->areq);
573 		}
574 	}
575 
576 	if (!err && areq)
577 		start_err = __mmc_start_data_req(host, areq->mrq);
578 
579 	if (host->areq)
580 		mmc_post_req(host, host->areq->mrq, 0);
581 
582 	 /* Cancel a prepared request if it was not started. */
583 	if ((err || start_err) && areq)
584 		mmc_post_req(host, areq->mrq, -EINVAL);
585 
586 	if (err)
587 		host->areq = NULL;
588 	else
589 		host->areq = areq;
590 
591 	if (error)
592 		*error = err;
593 	return data;
594 }
595 EXPORT_SYMBOL(mmc_start_req);
596 
597 /**
598  *	mmc_wait_for_req - start a request and wait for completion
599  *	@host: MMC host to start command
600  *	@mrq: MMC request to start
601  *
602  *	Start a new MMC custom command request for a host, and wait
603  *	for the command to complete. Does not attempt to parse the
604  *	response.
605  */
606 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
607 {
608 	__mmc_start_req(host, mrq);
609 	mmc_wait_for_req_done(host, mrq);
610 }
611 EXPORT_SYMBOL(mmc_wait_for_req);
612 
613 /**
614  *	mmc_interrupt_hpi - Issue for High priority Interrupt
615  *	@card: the MMC card associated with the HPI transfer
616  *
617  *	Issued High Priority Interrupt, and check for card status
618  *	until out-of prg-state.
619  */
620 int mmc_interrupt_hpi(struct mmc_card *card)
621 {
622 	int err;
623 	u32 status;
624 	unsigned long prg_wait;
625 
626 	BUG_ON(!card);
627 
628 	if (!card->ext_csd.hpi_en) {
629 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
630 		return 1;
631 	}
632 
633 	mmc_claim_host(card->host);
634 	err = mmc_send_status(card, &status);
635 	if (err) {
636 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
637 		goto out;
638 	}
639 
640 	switch (R1_CURRENT_STATE(status)) {
641 	case R1_STATE_IDLE:
642 	case R1_STATE_READY:
643 	case R1_STATE_STBY:
644 	case R1_STATE_TRAN:
645 		/*
646 		 * In idle and transfer states, HPI is not needed and the caller
647 		 * can issue the next intended command immediately
648 		 */
649 		goto out;
650 	case R1_STATE_PRG:
651 		break;
652 	default:
653 		/* In all other states, it's illegal to issue HPI */
654 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
655 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
656 		err = -EINVAL;
657 		goto out;
658 	}
659 
660 	err = mmc_send_hpi_cmd(card, &status);
661 	if (err)
662 		goto out;
663 
664 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
665 	do {
666 		err = mmc_send_status(card, &status);
667 
668 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
669 			break;
670 		if (time_after(jiffies, prg_wait))
671 			err = -ETIMEDOUT;
672 	} while (!err);
673 
674 out:
675 	mmc_release_host(card->host);
676 	return err;
677 }
678 EXPORT_SYMBOL(mmc_interrupt_hpi);
679 
680 /**
681  *	mmc_wait_for_cmd - start a command and wait for completion
682  *	@host: MMC host to start command
683  *	@cmd: MMC command to start
684  *	@retries: maximum number of retries
685  *
686  *	Start a new MMC command for a host, and wait for the command
687  *	to complete.  Return any error that occurred while the command
688  *	was executing.  Do not attempt to parse the response.
689  */
690 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
691 {
692 	struct mmc_request mrq = {NULL};
693 
694 	WARN_ON(!host->claimed);
695 
696 	memset(cmd->resp, 0, sizeof(cmd->resp));
697 	cmd->retries = retries;
698 
699 	mrq.cmd = cmd;
700 	cmd->data = NULL;
701 
702 	mmc_wait_for_req(host, &mrq);
703 
704 	return cmd->error;
705 }
706 
707 EXPORT_SYMBOL(mmc_wait_for_cmd);
708 
709 /**
710  *	mmc_stop_bkops - stop ongoing BKOPS
711  *	@card: MMC card to check BKOPS
712  *
713  *	Send HPI command to stop ongoing background operations to
714  *	allow rapid servicing of foreground operations, e.g. read/
715  *	writes. Wait until the card comes out of the programming state
716  *	to avoid errors in servicing read/write requests.
717  */
718 int mmc_stop_bkops(struct mmc_card *card)
719 {
720 	int err = 0;
721 
722 	BUG_ON(!card);
723 	err = mmc_interrupt_hpi(card);
724 
725 	/*
726 	 * If err is EINVAL, we can't issue an HPI.
727 	 * It should complete the BKOPS.
728 	 */
729 	if (!err || (err == -EINVAL)) {
730 		mmc_card_clr_doing_bkops(card);
731 		err = 0;
732 	}
733 
734 	return err;
735 }
736 EXPORT_SYMBOL(mmc_stop_bkops);
737 
738 int mmc_read_bkops_status(struct mmc_card *card)
739 {
740 	int err;
741 	u8 *ext_csd;
742 
743 	mmc_claim_host(card->host);
744 	err = mmc_get_ext_csd(card, &ext_csd);
745 	mmc_release_host(card->host);
746 	if (err)
747 		return err;
748 
749 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
750 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
751 	kfree(ext_csd);
752 	return 0;
753 }
754 EXPORT_SYMBOL(mmc_read_bkops_status);
755 
756 /**
757  *	mmc_set_data_timeout - set the timeout for a data command
758  *	@data: data phase for command
759  *	@card: the MMC card associated with the data transfer
760  *
761  *	Computes the data timeout parameters according to the
762  *	correct algorithm given the card type.
763  */
764 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
765 {
766 	unsigned int mult;
767 
768 	/*
769 	 * SDIO cards only define an upper 1 s limit on access.
770 	 */
771 	if (mmc_card_sdio(card)) {
772 		data->timeout_ns = 1000000000;
773 		data->timeout_clks = 0;
774 		return;
775 	}
776 
777 	/*
778 	 * SD cards use a 100 multiplier rather than 10
779 	 */
780 	mult = mmc_card_sd(card) ? 100 : 10;
781 
782 	/*
783 	 * Scale up the multiplier (and therefore the timeout) by
784 	 * the r2w factor for writes.
785 	 */
786 	if (data->flags & MMC_DATA_WRITE)
787 		mult <<= card->csd.r2w_factor;
788 
789 	data->timeout_ns = card->csd.tacc_ns * mult;
790 	data->timeout_clks = card->csd.tacc_clks * mult;
791 
792 	/*
793 	 * SD cards also have an upper limit on the timeout.
794 	 */
795 	if (mmc_card_sd(card)) {
796 		unsigned int timeout_us, limit_us;
797 
798 		timeout_us = data->timeout_ns / 1000;
799 		if (mmc_host_clk_rate(card->host))
800 			timeout_us += data->timeout_clks * 1000 /
801 				(mmc_host_clk_rate(card->host) / 1000);
802 
803 		if (data->flags & MMC_DATA_WRITE)
804 			/*
805 			 * The MMC spec "It is strongly recommended
806 			 * for hosts to implement more than 500ms
807 			 * timeout value even if the card indicates
808 			 * the 250ms maximum busy length."  Even the
809 			 * previous value of 300ms is known to be
810 			 * insufficient for some cards.
811 			 */
812 			limit_us = 3000000;
813 		else
814 			limit_us = 100000;
815 
816 		/*
817 		 * SDHC cards always use these fixed values.
818 		 */
819 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
820 			data->timeout_ns = limit_us * 1000;
821 			data->timeout_clks = 0;
822 		}
823 
824 		/* assign limit value if invalid */
825 		if (timeout_us == 0)
826 			data->timeout_ns = limit_us * 1000;
827 	}
828 
829 	/*
830 	 * Some cards require longer data read timeout than indicated in CSD.
831 	 * Address this by setting the read timeout to a "reasonably high"
832 	 * value. For the cards tested, 300ms has proven enough. If necessary,
833 	 * this value can be increased if other problematic cards require this.
834 	 */
835 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
836 		data->timeout_ns = 300000000;
837 		data->timeout_clks = 0;
838 	}
839 
840 	/*
841 	 * Some cards need very high timeouts if driven in SPI mode.
842 	 * The worst observed timeout was 900ms after writing a
843 	 * continuous stream of data until the internal logic
844 	 * overflowed.
845 	 */
846 	if (mmc_host_is_spi(card->host)) {
847 		if (data->flags & MMC_DATA_WRITE) {
848 			if (data->timeout_ns < 1000000000)
849 				data->timeout_ns = 1000000000;	/* 1s */
850 		} else {
851 			if (data->timeout_ns < 100000000)
852 				data->timeout_ns =  100000000;	/* 100ms */
853 		}
854 	}
855 }
856 EXPORT_SYMBOL(mmc_set_data_timeout);
857 
858 /**
859  *	mmc_align_data_size - pads a transfer size to a more optimal value
860  *	@card: the MMC card associated with the data transfer
861  *	@sz: original transfer size
862  *
863  *	Pads the original data size with a number of extra bytes in
864  *	order to avoid controller bugs and/or performance hits
865  *	(e.g. some controllers revert to PIO for certain sizes).
866  *
867  *	Returns the improved size, which might be unmodified.
868  *
869  *	Note that this function is only relevant when issuing a
870  *	single scatter gather entry.
871  */
872 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
873 {
874 	/*
875 	 * FIXME: We don't have a system for the controller to tell
876 	 * the core about its problems yet, so for now we just 32-bit
877 	 * align the size.
878 	 */
879 	sz = ((sz + 3) / 4) * 4;
880 
881 	return sz;
882 }
883 EXPORT_SYMBOL(mmc_align_data_size);
884 
885 /**
886  *	__mmc_claim_host - exclusively claim a host
887  *	@host: mmc host to claim
888  *	@abort: whether or not the operation should be aborted
889  *
890  *	Claim a host for a set of operations.  If @abort is non null and
891  *	dereference a non-zero value then this will return prematurely with
892  *	that non-zero value without acquiring the lock.  Returns zero
893  *	with the lock held otherwise.
894  */
895 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
896 {
897 	DECLARE_WAITQUEUE(wait, current);
898 	unsigned long flags;
899 	int stop;
900 	bool pm = false;
901 
902 	might_sleep();
903 
904 	add_wait_queue(&host->wq, &wait);
905 	spin_lock_irqsave(&host->lock, flags);
906 	while (1) {
907 		set_current_state(TASK_UNINTERRUPTIBLE);
908 		stop = abort ? atomic_read(abort) : 0;
909 		if (stop || !host->claimed || host->claimer == current)
910 			break;
911 		spin_unlock_irqrestore(&host->lock, flags);
912 		schedule();
913 		spin_lock_irqsave(&host->lock, flags);
914 	}
915 	set_current_state(TASK_RUNNING);
916 	if (!stop) {
917 		host->claimed = 1;
918 		host->claimer = current;
919 		host->claim_cnt += 1;
920 		if (host->claim_cnt == 1)
921 			pm = true;
922 	} else
923 		wake_up(&host->wq);
924 	spin_unlock_irqrestore(&host->lock, flags);
925 	remove_wait_queue(&host->wq, &wait);
926 
927 	if (pm)
928 		pm_runtime_get_sync(mmc_dev(host));
929 
930 	return stop;
931 }
932 EXPORT_SYMBOL(__mmc_claim_host);
933 
934 /**
935  *	mmc_release_host - release a host
936  *	@host: mmc host to release
937  *
938  *	Release a MMC host, allowing others to claim the host
939  *	for their operations.
940  */
941 void mmc_release_host(struct mmc_host *host)
942 {
943 	unsigned long flags;
944 
945 	WARN_ON(!host->claimed);
946 
947 	spin_lock_irqsave(&host->lock, flags);
948 	if (--host->claim_cnt) {
949 		/* Release for nested claim */
950 		spin_unlock_irqrestore(&host->lock, flags);
951 	} else {
952 		host->claimed = 0;
953 		host->claimer = NULL;
954 		spin_unlock_irqrestore(&host->lock, flags);
955 		wake_up(&host->wq);
956 		pm_runtime_mark_last_busy(mmc_dev(host));
957 		pm_runtime_put_autosuspend(mmc_dev(host));
958 	}
959 }
960 EXPORT_SYMBOL(mmc_release_host);
961 
962 /*
963  * This is a helper function, which fetches a runtime pm reference for the
964  * card device and also claims the host.
965  */
966 void mmc_get_card(struct mmc_card *card)
967 {
968 	pm_runtime_get_sync(&card->dev);
969 	mmc_claim_host(card->host);
970 }
971 EXPORT_SYMBOL(mmc_get_card);
972 
973 /*
974  * This is a helper function, which releases the host and drops the runtime
975  * pm reference for the card device.
976  */
977 void mmc_put_card(struct mmc_card *card)
978 {
979 	mmc_release_host(card->host);
980 	pm_runtime_mark_last_busy(&card->dev);
981 	pm_runtime_put_autosuspend(&card->dev);
982 }
983 EXPORT_SYMBOL(mmc_put_card);
984 
985 /*
986  * Internal function that does the actual ios call to the host driver,
987  * optionally printing some debug output.
988  */
989 static inline void mmc_set_ios(struct mmc_host *host)
990 {
991 	struct mmc_ios *ios = &host->ios;
992 
993 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
994 		"width %u timing %u\n",
995 		 mmc_hostname(host), ios->clock, ios->bus_mode,
996 		 ios->power_mode, ios->chip_select, ios->vdd,
997 		 ios->bus_width, ios->timing);
998 
999 	if (ios->clock > 0)
1000 		mmc_set_ungated(host);
1001 	host->ops->set_ios(host, ios);
1002 }
1003 
1004 /*
1005  * Control chip select pin on a host.
1006  */
1007 void mmc_set_chip_select(struct mmc_host *host, int mode)
1008 {
1009 	mmc_host_clk_hold(host);
1010 	host->ios.chip_select = mode;
1011 	mmc_set_ios(host);
1012 	mmc_host_clk_release(host);
1013 }
1014 
1015 /*
1016  * Sets the host clock to the highest possible frequency that
1017  * is below "hz".
1018  */
1019 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1020 {
1021 	WARN_ON(hz && hz < host->f_min);
1022 
1023 	if (hz > host->f_max)
1024 		hz = host->f_max;
1025 
1026 	host->ios.clock = hz;
1027 	mmc_set_ios(host);
1028 }
1029 
1030 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1031 {
1032 	mmc_host_clk_hold(host);
1033 	__mmc_set_clock(host, hz);
1034 	mmc_host_clk_release(host);
1035 }
1036 
1037 #ifdef CONFIG_MMC_CLKGATE
1038 /*
1039  * This gates the clock by setting it to 0 Hz.
1040  */
1041 void mmc_gate_clock(struct mmc_host *host)
1042 {
1043 	unsigned long flags;
1044 
1045 	spin_lock_irqsave(&host->clk_lock, flags);
1046 	host->clk_old = host->ios.clock;
1047 	host->ios.clock = 0;
1048 	host->clk_gated = true;
1049 	spin_unlock_irqrestore(&host->clk_lock, flags);
1050 	mmc_set_ios(host);
1051 }
1052 
1053 /*
1054  * This restores the clock from gating by using the cached
1055  * clock value.
1056  */
1057 void mmc_ungate_clock(struct mmc_host *host)
1058 {
1059 	/*
1060 	 * We should previously have gated the clock, so the clock shall
1061 	 * be 0 here! The clock may however be 0 during initialization,
1062 	 * when some request operations are performed before setting
1063 	 * the frequency. When ungate is requested in that situation
1064 	 * we just ignore the call.
1065 	 */
1066 	if (host->clk_old) {
1067 		BUG_ON(host->ios.clock);
1068 		/* This call will also set host->clk_gated to false */
1069 		__mmc_set_clock(host, host->clk_old);
1070 	}
1071 }
1072 
1073 void mmc_set_ungated(struct mmc_host *host)
1074 {
1075 	unsigned long flags;
1076 
1077 	/*
1078 	 * We've been given a new frequency while the clock is gated,
1079 	 * so make sure we regard this as ungating it.
1080 	 */
1081 	spin_lock_irqsave(&host->clk_lock, flags);
1082 	host->clk_gated = false;
1083 	spin_unlock_irqrestore(&host->clk_lock, flags);
1084 }
1085 
1086 #else
1087 void mmc_set_ungated(struct mmc_host *host)
1088 {
1089 }
1090 #endif
1091 
1092 int mmc_execute_tuning(struct mmc_card *card)
1093 {
1094 	struct mmc_host *host = card->host;
1095 	u32 opcode;
1096 	int err;
1097 
1098 	if (!host->ops->execute_tuning)
1099 		return 0;
1100 
1101 	if (mmc_card_mmc(card))
1102 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1103 	else
1104 		opcode = MMC_SEND_TUNING_BLOCK;
1105 
1106 	mmc_host_clk_hold(host);
1107 	err = host->ops->execute_tuning(host, opcode);
1108 	mmc_host_clk_release(host);
1109 
1110 	if (err)
1111 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1112 
1113 	return err;
1114 }
1115 
1116 /*
1117  * Change the bus mode (open drain/push-pull) of a host.
1118  */
1119 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1120 {
1121 	mmc_host_clk_hold(host);
1122 	host->ios.bus_mode = mode;
1123 	mmc_set_ios(host);
1124 	mmc_host_clk_release(host);
1125 }
1126 
1127 /*
1128  * Change data bus width of a host.
1129  */
1130 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1131 {
1132 	mmc_host_clk_hold(host);
1133 	host->ios.bus_width = width;
1134 	mmc_set_ios(host);
1135 	mmc_host_clk_release(host);
1136 }
1137 
1138 /*
1139  * Set initial state after a power cycle or a hw_reset.
1140  */
1141 void mmc_set_initial_state(struct mmc_host *host)
1142 {
1143 	if (mmc_host_is_spi(host))
1144 		host->ios.chip_select = MMC_CS_HIGH;
1145 	else
1146 		host->ios.chip_select = MMC_CS_DONTCARE;
1147 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1148 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1149 	host->ios.timing = MMC_TIMING_LEGACY;
1150 
1151 	mmc_set_ios(host);
1152 }
1153 
1154 /**
1155  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1156  * @vdd:	voltage (mV)
1157  * @low_bits:	prefer low bits in boundary cases
1158  *
1159  * This function returns the OCR bit number according to the provided @vdd
1160  * value. If conversion is not possible a negative errno value returned.
1161  *
1162  * Depending on the @low_bits flag the function prefers low or high OCR bits
1163  * on boundary voltages. For example,
1164  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1165  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1166  *
1167  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1168  */
1169 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1170 {
1171 	const int max_bit = ilog2(MMC_VDD_35_36);
1172 	int bit;
1173 
1174 	if (vdd < 1650 || vdd > 3600)
1175 		return -EINVAL;
1176 
1177 	if (vdd >= 1650 && vdd <= 1950)
1178 		return ilog2(MMC_VDD_165_195);
1179 
1180 	if (low_bits)
1181 		vdd -= 1;
1182 
1183 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1184 	bit = (vdd - 2000) / 100 + 8;
1185 	if (bit > max_bit)
1186 		return max_bit;
1187 	return bit;
1188 }
1189 
1190 /**
1191  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1192  * @vdd_min:	minimum voltage value (mV)
1193  * @vdd_max:	maximum voltage value (mV)
1194  *
1195  * This function returns the OCR mask bits according to the provided @vdd_min
1196  * and @vdd_max values. If conversion is not possible the function returns 0.
1197  *
1198  * Notes wrt boundary cases:
1199  * This function sets the OCR bits for all boundary voltages, for example
1200  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1201  * MMC_VDD_34_35 mask.
1202  */
1203 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1204 {
1205 	u32 mask = 0;
1206 
1207 	if (vdd_max < vdd_min)
1208 		return 0;
1209 
1210 	/* Prefer high bits for the boundary vdd_max values. */
1211 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1212 	if (vdd_max < 0)
1213 		return 0;
1214 
1215 	/* Prefer low bits for the boundary vdd_min values. */
1216 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1217 	if (vdd_min < 0)
1218 		return 0;
1219 
1220 	/* Fill the mask, from max bit to min bit. */
1221 	while (vdd_max >= vdd_min)
1222 		mask |= 1 << vdd_max--;
1223 
1224 	return mask;
1225 }
1226 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1227 
1228 #ifdef CONFIG_OF
1229 
1230 /**
1231  * mmc_of_parse_voltage - return mask of supported voltages
1232  * @np: The device node need to be parsed.
1233  * @mask: mask of voltages available for MMC/SD/SDIO
1234  *
1235  * 1. Return zero on success.
1236  * 2. Return negative errno: voltage-range is invalid.
1237  */
1238 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1239 {
1240 	const u32 *voltage_ranges;
1241 	int num_ranges, i;
1242 
1243 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1244 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1245 	if (!voltage_ranges || !num_ranges) {
1246 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1247 		return -EINVAL;
1248 	}
1249 
1250 	for (i = 0; i < num_ranges; i++) {
1251 		const int j = i * 2;
1252 		u32 ocr_mask;
1253 
1254 		ocr_mask = mmc_vddrange_to_ocrmask(
1255 				be32_to_cpu(voltage_ranges[j]),
1256 				be32_to_cpu(voltage_ranges[j + 1]));
1257 		if (!ocr_mask) {
1258 			pr_err("%s: voltage-range #%d is invalid\n",
1259 				np->full_name, i);
1260 			return -EINVAL;
1261 		}
1262 		*mask |= ocr_mask;
1263 	}
1264 
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL(mmc_of_parse_voltage);
1268 
1269 #endif /* CONFIG_OF */
1270 
1271 static int mmc_of_get_func_num(struct device_node *node)
1272 {
1273 	u32 reg;
1274 	int ret;
1275 
1276 	ret = of_property_read_u32(node, "reg", &reg);
1277 	if (ret < 0)
1278 		return ret;
1279 
1280 	return reg;
1281 }
1282 
1283 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1284 		unsigned func_num)
1285 {
1286 	struct device_node *node;
1287 
1288 	if (!host->parent || !host->parent->of_node)
1289 		return NULL;
1290 
1291 	for_each_child_of_node(host->parent->of_node, node) {
1292 		if (mmc_of_get_func_num(node) == func_num)
1293 			return node;
1294 	}
1295 
1296 	return NULL;
1297 }
1298 
1299 #ifdef CONFIG_REGULATOR
1300 
1301 /**
1302  * mmc_regulator_get_ocrmask - return mask of supported voltages
1303  * @supply: regulator to use
1304  *
1305  * This returns either a negative errno, or a mask of voltages that
1306  * can be provided to MMC/SD/SDIO devices using the specified voltage
1307  * regulator.  This would normally be called before registering the
1308  * MMC host adapter.
1309  */
1310 int mmc_regulator_get_ocrmask(struct regulator *supply)
1311 {
1312 	int			result = 0;
1313 	int			count;
1314 	int			i;
1315 	int			vdd_uV;
1316 	int			vdd_mV;
1317 
1318 	count = regulator_count_voltages(supply);
1319 	if (count < 0)
1320 		return count;
1321 
1322 	for (i = 0; i < count; i++) {
1323 		vdd_uV = regulator_list_voltage(supply, i);
1324 		if (vdd_uV <= 0)
1325 			continue;
1326 
1327 		vdd_mV = vdd_uV / 1000;
1328 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1329 	}
1330 
1331 	if (!result) {
1332 		vdd_uV = regulator_get_voltage(supply);
1333 		if (vdd_uV <= 0)
1334 			return vdd_uV;
1335 
1336 		vdd_mV = vdd_uV / 1000;
1337 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1338 	}
1339 
1340 	return result;
1341 }
1342 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1343 
1344 /**
1345  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1346  * @mmc: the host to regulate
1347  * @supply: regulator to use
1348  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1349  *
1350  * Returns zero on success, else negative errno.
1351  *
1352  * MMC host drivers may use this to enable or disable a regulator using
1353  * a particular supply voltage.  This would normally be called from the
1354  * set_ios() method.
1355  */
1356 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1357 			struct regulator *supply,
1358 			unsigned short vdd_bit)
1359 {
1360 	int			result = 0;
1361 	int			min_uV, max_uV;
1362 
1363 	if (vdd_bit) {
1364 		int		tmp;
1365 
1366 		/*
1367 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1368 		 * bits this regulator doesn't quite support ... don't
1369 		 * be too picky, most cards and regulators are OK with
1370 		 * a 0.1V range goof (it's a small error percentage).
1371 		 */
1372 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1373 		if (tmp == 0) {
1374 			min_uV = 1650 * 1000;
1375 			max_uV = 1950 * 1000;
1376 		} else {
1377 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1378 			max_uV = min_uV + 100 * 1000;
1379 		}
1380 
1381 		result = regulator_set_voltage(supply, min_uV, max_uV);
1382 		if (result == 0 && !mmc->regulator_enabled) {
1383 			result = regulator_enable(supply);
1384 			if (!result)
1385 				mmc->regulator_enabled = true;
1386 		}
1387 	} else if (mmc->regulator_enabled) {
1388 		result = regulator_disable(supply);
1389 		if (result == 0)
1390 			mmc->regulator_enabled = false;
1391 	}
1392 
1393 	if (result)
1394 		dev_err(mmc_dev(mmc),
1395 			"could not set regulator OCR (%d)\n", result);
1396 	return result;
1397 }
1398 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1399 
1400 #endif /* CONFIG_REGULATOR */
1401 
1402 int mmc_regulator_get_supply(struct mmc_host *mmc)
1403 {
1404 	struct device *dev = mmc_dev(mmc);
1405 	int ret;
1406 
1407 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1408 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1409 
1410 	if (IS_ERR(mmc->supply.vmmc)) {
1411 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1412 			return -EPROBE_DEFER;
1413 		dev_info(dev, "No vmmc regulator found\n");
1414 	} else {
1415 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1416 		if (ret > 0)
1417 			mmc->ocr_avail = ret;
1418 		else
1419 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1420 	}
1421 
1422 	if (IS_ERR(mmc->supply.vqmmc)) {
1423 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1424 			return -EPROBE_DEFER;
1425 		dev_info(dev, "No vqmmc regulator found\n");
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1431 
1432 /*
1433  * Mask off any voltages we don't support and select
1434  * the lowest voltage
1435  */
1436 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1437 {
1438 	int bit;
1439 
1440 	/*
1441 	 * Sanity check the voltages that the card claims to
1442 	 * support.
1443 	 */
1444 	if (ocr & 0x7F) {
1445 		dev_warn(mmc_dev(host),
1446 		"card claims to support voltages below defined range\n");
1447 		ocr &= ~0x7F;
1448 	}
1449 
1450 	ocr &= host->ocr_avail;
1451 	if (!ocr) {
1452 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1453 		return 0;
1454 	}
1455 
1456 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1457 		bit = ffs(ocr) - 1;
1458 		ocr &= 3 << bit;
1459 		mmc_power_cycle(host, ocr);
1460 	} else {
1461 		bit = fls(ocr) - 1;
1462 		ocr &= 3 << bit;
1463 		if (bit != host->ios.vdd)
1464 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1465 	}
1466 
1467 	return ocr;
1468 }
1469 
1470 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1471 {
1472 	int err = 0;
1473 	int old_signal_voltage = host->ios.signal_voltage;
1474 
1475 	host->ios.signal_voltage = signal_voltage;
1476 	if (host->ops->start_signal_voltage_switch) {
1477 		mmc_host_clk_hold(host);
1478 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479 		mmc_host_clk_release(host);
1480 	}
1481 
1482 	if (err)
1483 		host->ios.signal_voltage = old_signal_voltage;
1484 
1485 	return err;
1486 
1487 }
1488 
1489 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1490 {
1491 	struct mmc_command cmd = {0};
1492 	int err = 0;
1493 	u32 clock;
1494 
1495 	BUG_ON(!host);
1496 
1497 	/*
1498 	 * Send CMD11 only if the request is to switch the card to
1499 	 * 1.8V signalling.
1500 	 */
1501 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1502 		return __mmc_set_signal_voltage(host, signal_voltage);
1503 
1504 	/*
1505 	 * If we cannot switch voltages, return failure so the caller
1506 	 * can continue without UHS mode
1507 	 */
1508 	if (!host->ops->start_signal_voltage_switch)
1509 		return -EPERM;
1510 	if (!host->ops->card_busy)
1511 		pr_warn("%s: cannot verify signal voltage switch\n",
1512 			mmc_hostname(host));
1513 
1514 	mmc_host_clk_hold(host);
1515 
1516 	cmd.opcode = SD_SWITCH_VOLTAGE;
1517 	cmd.arg = 0;
1518 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1519 
1520 	err = mmc_wait_for_cmd(host, &cmd, 0);
1521 	if (err)
1522 		goto err_command;
1523 
1524 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1525 		err = -EIO;
1526 		goto err_command;
1527 	}
1528 	/*
1529 	 * The card should drive cmd and dat[0:3] low immediately
1530 	 * after the response of cmd11, but wait 1 ms to be sure
1531 	 */
1532 	mmc_delay(1);
1533 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1534 		err = -EAGAIN;
1535 		goto power_cycle;
1536 	}
1537 	/*
1538 	 * During a signal voltage level switch, the clock must be gated
1539 	 * for 5 ms according to the SD spec
1540 	 */
1541 	clock = host->ios.clock;
1542 	host->ios.clock = 0;
1543 	mmc_set_ios(host);
1544 
1545 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1546 		/*
1547 		 * Voltages may not have been switched, but we've already
1548 		 * sent CMD11, so a power cycle is required anyway
1549 		 */
1550 		err = -EAGAIN;
1551 		goto power_cycle;
1552 	}
1553 
1554 	/* Keep clock gated for at least 5 ms */
1555 	mmc_delay(5);
1556 	host->ios.clock = clock;
1557 	mmc_set_ios(host);
1558 
1559 	/* Wait for at least 1 ms according to spec */
1560 	mmc_delay(1);
1561 
1562 	/*
1563 	 * Failure to switch is indicated by the card holding
1564 	 * dat[0:3] low
1565 	 */
1566 	if (host->ops->card_busy && host->ops->card_busy(host))
1567 		err = -EAGAIN;
1568 
1569 power_cycle:
1570 	if (err) {
1571 		pr_debug("%s: Signal voltage switch failed, "
1572 			"power cycling card\n", mmc_hostname(host));
1573 		mmc_power_cycle(host, ocr);
1574 	}
1575 
1576 err_command:
1577 	mmc_host_clk_release(host);
1578 
1579 	return err;
1580 }
1581 
1582 /*
1583  * Select timing parameters for host.
1584  */
1585 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1586 {
1587 	mmc_host_clk_hold(host);
1588 	host->ios.timing = timing;
1589 	mmc_set_ios(host);
1590 	mmc_host_clk_release(host);
1591 }
1592 
1593 /*
1594  * Select appropriate driver type for host.
1595  */
1596 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1597 {
1598 	mmc_host_clk_hold(host);
1599 	host->ios.drv_type = drv_type;
1600 	mmc_set_ios(host);
1601 	mmc_host_clk_release(host);
1602 }
1603 
1604 /*
1605  * Apply power to the MMC stack.  This is a two-stage process.
1606  * First, we enable power to the card without the clock running.
1607  * We then wait a bit for the power to stabilise.  Finally,
1608  * enable the bus drivers and clock to the card.
1609  *
1610  * We must _NOT_ enable the clock prior to power stablising.
1611  *
1612  * If a host does all the power sequencing itself, ignore the
1613  * initial MMC_POWER_UP stage.
1614  */
1615 void mmc_power_up(struct mmc_host *host, u32 ocr)
1616 {
1617 	if (host->ios.power_mode == MMC_POWER_ON)
1618 		return;
1619 
1620 	mmc_host_clk_hold(host);
1621 
1622 	mmc_pwrseq_pre_power_on(host);
1623 
1624 	host->ios.vdd = fls(ocr) - 1;
1625 	host->ios.power_mode = MMC_POWER_UP;
1626 	/* Set initial state and call mmc_set_ios */
1627 	mmc_set_initial_state(host);
1628 
1629 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1630 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1631 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1632 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1633 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1634 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1635 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1636 
1637 	/*
1638 	 * This delay should be sufficient to allow the power supply
1639 	 * to reach the minimum voltage.
1640 	 */
1641 	mmc_delay(10);
1642 
1643 	mmc_pwrseq_post_power_on(host);
1644 
1645 	host->ios.clock = host->f_init;
1646 
1647 	host->ios.power_mode = MMC_POWER_ON;
1648 	mmc_set_ios(host);
1649 
1650 	/*
1651 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1652 	 * time required to reach a stable voltage.
1653 	 */
1654 	mmc_delay(10);
1655 
1656 	mmc_host_clk_release(host);
1657 }
1658 
1659 void mmc_power_off(struct mmc_host *host)
1660 {
1661 	if (host->ios.power_mode == MMC_POWER_OFF)
1662 		return;
1663 
1664 	mmc_host_clk_hold(host);
1665 
1666 	mmc_pwrseq_power_off(host);
1667 
1668 	host->ios.clock = 0;
1669 	host->ios.vdd = 0;
1670 
1671 	host->ios.power_mode = MMC_POWER_OFF;
1672 	/* Set initial state and call mmc_set_ios */
1673 	mmc_set_initial_state(host);
1674 
1675 	/*
1676 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1677 	 * XO-1.5, require a short delay after poweroff before the card
1678 	 * can be successfully turned on again.
1679 	 */
1680 	mmc_delay(1);
1681 
1682 	mmc_host_clk_release(host);
1683 }
1684 
1685 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1686 {
1687 	mmc_power_off(host);
1688 	/* Wait at least 1 ms according to SD spec */
1689 	mmc_delay(1);
1690 	mmc_power_up(host, ocr);
1691 }
1692 
1693 /*
1694  * Cleanup when the last reference to the bus operator is dropped.
1695  */
1696 static void __mmc_release_bus(struct mmc_host *host)
1697 {
1698 	BUG_ON(!host);
1699 	BUG_ON(host->bus_refs);
1700 	BUG_ON(!host->bus_dead);
1701 
1702 	host->bus_ops = NULL;
1703 }
1704 
1705 /*
1706  * Increase reference count of bus operator
1707  */
1708 static inline void mmc_bus_get(struct mmc_host *host)
1709 {
1710 	unsigned long flags;
1711 
1712 	spin_lock_irqsave(&host->lock, flags);
1713 	host->bus_refs++;
1714 	spin_unlock_irqrestore(&host->lock, flags);
1715 }
1716 
1717 /*
1718  * Decrease reference count of bus operator and free it if
1719  * it is the last reference.
1720  */
1721 static inline void mmc_bus_put(struct mmc_host *host)
1722 {
1723 	unsigned long flags;
1724 
1725 	spin_lock_irqsave(&host->lock, flags);
1726 	host->bus_refs--;
1727 	if ((host->bus_refs == 0) && host->bus_ops)
1728 		__mmc_release_bus(host);
1729 	spin_unlock_irqrestore(&host->lock, flags);
1730 }
1731 
1732 /*
1733  * Assign a mmc bus handler to a host. Only one bus handler may control a
1734  * host at any given time.
1735  */
1736 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1737 {
1738 	unsigned long flags;
1739 
1740 	BUG_ON(!host);
1741 	BUG_ON(!ops);
1742 
1743 	WARN_ON(!host->claimed);
1744 
1745 	spin_lock_irqsave(&host->lock, flags);
1746 
1747 	BUG_ON(host->bus_ops);
1748 	BUG_ON(host->bus_refs);
1749 
1750 	host->bus_ops = ops;
1751 	host->bus_refs = 1;
1752 	host->bus_dead = 0;
1753 
1754 	spin_unlock_irqrestore(&host->lock, flags);
1755 }
1756 
1757 /*
1758  * Remove the current bus handler from a host.
1759  */
1760 void mmc_detach_bus(struct mmc_host *host)
1761 {
1762 	unsigned long flags;
1763 
1764 	BUG_ON(!host);
1765 
1766 	WARN_ON(!host->claimed);
1767 	WARN_ON(!host->bus_ops);
1768 
1769 	spin_lock_irqsave(&host->lock, flags);
1770 
1771 	host->bus_dead = 1;
1772 
1773 	spin_unlock_irqrestore(&host->lock, flags);
1774 
1775 	mmc_bus_put(host);
1776 }
1777 
1778 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1779 				bool cd_irq)
1780 {
1781 #ifdef CONFIG_MMC_DEBUG
1782 	unsigned long flags;
1783 	spin_lock_irqsave(&host->lock, flags);
1784 	WARN_ON(host->removed);
1785 	spin_unlock_irqrestore(&host->lock, flags);
1786 #endif
1787 
1788 	/*
1789 	 * If the device is configured as wakeup, we prevent a new sleep for
1790 	 * 5 s to give provision for user space to consume the event.
1791 	 */
1792 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 		device_can_wakeup(mmc_dev(host)))
1794 		pm_wakeup_event(mmc_dev(host), 5000);
1795 
1796 	host->detect_change = 1;
1797 	mmc_schedule_delayed_work(&host->detect, delay);
1798 }
1799 
1800 /**
1801  *	mmc_detect_change - process change of state on a MMC socket
1802  *	@host: host which changed state.
1803  *	@delay: optional delay to wait before detection (jiffies)
1804  *
1805  *	MMC drivers should call this when they detect a card has been
1806  *	inserted or removed. The MMC layer will confirm that any
1807  *	present card is still functional, and initialize any newly
1808  *	inserted.
1809  */
1810 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811 {
1812 	_mmc_detect_change(host, delay, true);
1813 }
1814 EXPORT_SYMBOL(mmc_detect_change);
1815 
1816 void mmc_init_erase(struct mmc_card *card)
1817 {
1818 	unsigned int sz;
1819 
1820 	if (is_power_of_2(card->erase_size))
1821 		card->erase_shift = ffs(card->erase_size) - 1;
1822 	else
1823 		card->erase_shift = 0;
1824 
1825 	/*
1826 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 	 * card.  That is not desirable because it can take a long time
1828 	 * (minutes) potentially delaying more important I/O, and also the
1829 	 * timeout calculations become increasingly hugely over-estimated.
1830 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 	 * to that size and alignment.
1832 	 *
1833 	 * For SD cards that define Allocation Unit size, limit erases to one
1834 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1835 	 * Erase Size, whether it is switched on or not, limit to that size.
1836 	 * Otherwise just have a stab at a good value.  For modern cards it
1837 	 * will end up being 4MiB.  Note that if the value is too small, it
1838 	 * can end up taking longer to erase.
1839 	 */
1840 	if (mmc_card_sd(card) && card->ssr.au) {
1841 		card->pref_erase = card->ssr.au;
1842 		card->erase_shift = ffs(card->ssr.au) - 1;
1843 	} else if (card->ext_csd.hc_erase_size) {
1844 		card->pref_erase = card->ext_csd.hc_erase_size;
1845 	} else if (card->erase_size) {
1846 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1847 		if (sz < 128)
1848 			card->pref_erase = 512 * 1024 / 512;
1849 		else if (sz < 512)
1850 			card->pref_erase = 1024 * 1024 / 512;
1851 		else if (sz < 1024)
1852 			card->pref_erase = 2 * 1024 * 1024 / 512;
1853 		else
1854 			card->pref_erase = 4 * 1024 * 1024 / 512;
1855 		if (card->pref_erase < card->erase_size)
1856 			card->pref_erase = card->erase_size;
1857 		else {
1858 			sz = card->pref_erase % card->erase_size;
1859 			if (sz)
1860 				card->pref_erase += card->erase_size - sz;
1861 		}
1862 	} else
1863 		card->pref_erase = 0;
1864 }
1865 
1866 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1867 				          unsigned int arg, unsigned int qty)
1868 {
1869 	unsigned int erase_timeout;
1870 
1871 	if (arg == MMC_DISCARD_ARG ||
1872 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1873 		erase_timeout = card->ext_csd.trim_timeout;
1874 	} else if (card->ext_csd.erase_group_def & 1) {
1875 		/* High Capacity Erase Group Size uses HC timeouts */
1876 		if (arg == MMC_TRIM_ARG)
1877 			erase_timeout = card->ext_csd.trim_timeout;
1878 		else
1879 			erase_timeout = card->ext_csd.hc_erase_timeout;
1880 	} else {
1881 		/* CSD Erase Group Size uses write timeout */
1882 		unsigned int mult = (10 << card->csd.r2w_factor);
1883 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1884 		unsigned int timeout_us;
1885 
1886 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1887 		if (card->csd.tacc_ns < 1000000)
1888 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1889 		else
1890 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1891 
1892 		/*
1893 		 * ios.clock is only a target.  The real clock rate might be
1894 		 * less but not that much less, so fudge it by multiplying by 2.
1895 		 */
1896 		timeout_clks <<= 1;
1897 		timeout_us += (timeout_clks * 1000) /
1898 			      (mmc_host_clk_rate(card->host) / 1000);
1899 
1900 		erase_timeout = timeout_us / 1000;
1901 
1902 		/*
1903 		 * Theoretically, the calculation could underflow so round up
1904 		 * to 1ms in that case.
1905 		 */
1906 		if (!erase_timeout)
1907 			erase_timeout = 1;
1908 	}
1909 
1910 	/* Multiplier for secure operations */
1911 	if (arg & MMC_SECURE_ARGS) {
1912 		if (arg == MMC_SECURE_ERASE_ARG)
1913 			erase_timeout *= card->ext_csd.sec_erase_mult;
1914 		else
1915 			erase_timeout *= card->ext_csd.sec_trim_mult;
1916 	}
1917 
1918 	erase_timeout *= qty;
1919 
1920 	/*
1921 	 * Ensure at least a 1 second timeout for SPI as per
1922 	 * 'mmc_set_data_timeout()'
1923 	 */
1924 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1925 		erase_timeout = 1000;
1926 
1927 	return erase_timeout;
1928 }
1929 
1930 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1931 					 unsigned int arg,
1932 					 unsigned int qty)
1933 {
1934 	unsigned int erase_timeout;
1935 
1936 	if (card->ssr.erase_timeout) {
1937 		/* Erase timeout specified in SD Status Register (SSR) */
1938 		erase_timeout = card->ssr.erase_timeout * qty +
1939 				card->ssr.erase_offset;
1940 	} else {
1941 		/*
1942 		 * Erase timeout not specified in SD Status Register (SSR) so
1943 		 * use 250ms per write block.
1944 		 */
1945 		erase_timeout = 250 * qty;
1946 	}
1947 
1948 	/* Must not be less than 1 second */
1949 	if (erase_timeout < 1000)
1950 		erase_timeout = 1000;
1951 
1952 	return erase_timeout;
1953 }
1954 
1955 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1956 				      unsigned int arg,
1957 				      unsigned int qty)
1958 {
1959 	if (mmc_card_sd(card))
1960 		return mmc_sd_erase_timeout(card, arg, qty);
1961 	else
1962 		return mmc_mmc_erase_timeout(card, arg, qty);
1963 }
1964 
1965 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1966 			unsigned int to, unsigned int arg)
1967 {
1968 	struct mmc_command cmd = {0};
1969 	unsigned int qty = 0;
1970 	unsigned long timeout;
1971 	int err;
1972 
1973 	/*
1974 	 * qty is used to calculate the erase timeout which depends on how many
1975 	 * erase groups (or allocation units in SD terminology) are affected.
1976 	 * We count erasing part of an erase group as one erase group.
1977 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1978 	 * erase group size is almost certainly also power of 2, but it does not
1979 	 * seem to insist on that in the JEDEC standard, so we fall back to
1980 	 * division in that case.  SD may not specify an allocation unit size,
1981 	 * in which case the timeout is based on the number of write blocks.
1982 	 *
1983 	 * Note that the timeout for secure trim 2 will only be correct if the
1984 	 * number of erase groups specified is the same as the total of all
1985 	 * preceding secure trim 1 commands.  Since the power may have been
1986 	 * lost since the secure trim 1 commands occurred, it is generally
1987 	 * impossible to calculate the secure trim 2 timeout correctly.
1988 	 */
1989 	if (card->erase_shift)
1990 		qty += ((to >> card->erase_shift) -
1991 			(from >> card->erase_shift)) + 1;
1992 	else if (mmc_card_sd(card))
1993 		qty += to - from + 1;
1994 	else
1995 		qty += ((to / card->erase_size) -
1996 			(from / card->erase_size)) + 1;
1997 
1998 	if (!mmc_card_blockaddr(card)) {
1999 		from <<= 9;
2000 		to <<= 9;
2001 	}
2002 
2003 	if (mmc_card_sd(card))
2004 		cmd.opcode = SD_ERASE_WR_BLK_START;
2005 	else
2006 		cmd.opcode = MMC_ERASE_GROUP_START;
2007 	cmd.arg = from;
2008 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2009 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2010 	if (err) {
2011 		pr_err("mmc_erase: group start error %d, "
2012 		       "status %#x\n", err, cmd.resp[0]);
2013 		err = -EIO;
2014 		goto out;
2015 	}
2016 
2017 	memset(&cmd, 0, sizeof(struct mmc_command));
2018 	if (mmc_card_sd(card))
2019 		cmd.opcode = SD_ERASE_WR_BLK_END;
2020 	else
2021 		cmd.opcode = MMC_ERASE_GROUP_END;
2022 	cmd.arg = to;
2023 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2025 	if (err) {
2026 		pr_err("mmc_erase: group end error %d, status %#x\n",
2027 		       err, cmd.resp[0]);
2028 		err = -EIO;
2029 		goto out;
2030 	}
2031 
2032 	memset(&cmd, 0, sizeof(struct mmc_command));
2033 	cmd.opcode = MMC_ERASE;
2034 	cmd.arg = arg;
2035 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2036 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2038 	if (err) {
2039 		pr_err("mmc_erase: erase error %d, status %#x\n",
2040 		       err, cmd.resp[0]);
2041 		err = -EIO;
2042 		goto out;
2043 	}
2044 
2045 	if (mmc_host_is_spi(card->host))
2046 		goto out;
2047 
2048 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2049 	do {
2050 		memset(&cmd, 0, sizeof(struct mmc_command));
2051 		cmd.opcode = MMC_SEND_STATUS;
2052 		cmd.arg = card->rca << 16;
2053 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2054 		/* Do not retry else we can't see errors */
2055 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2056 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2057 			pr_err("error %d requesting status %#x\n",
2058 				err, cmd.resp[0]);
2059 			err = -EIO;
2060 			goto out;
2061 		}
2062 
2063 		/* Timeout if the device never becomes ready for data and
2064 		 * never leaves the program state.
2065 		 */
2066 		if (time_after(jiffies, timeout)) {
2067 			pr_err("%s: Card stuck in programming state! %s\n",
2068 				mmc_hostname(card->host), __func__);
2069 			err =  -EIO;
2070 			goto out;
2071 		}
2072 
2073 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2074 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2075 out:
2076 	return err;
2077 }
2078 
2079 /**
2080  * mmc_erase - erase sectors.
2081  * @card: card to erase
2082  * @from: first sector to erase
2083  * @nr: number of sectors to erase
2084  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2085  *
2086  * Caller must claim host before calling this function.
2087  */
2088 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2089 	      unsigned int arg)
2090 {
2091 	unsigned int rem, to = from + nr;
2092 
2093 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2094 	    !(card->csd.cmdclass & CCC_ERASE))
2095 		return -EOPNOTSUPP;
2096 
2097 	if (!card->erase_size)
2098 		return -EOPNOTSUPP;
2099 
2100 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2101 		return -EOPNOTSUPP;
2102 
2103 	if ((arg & MMC_SECURE_ARGS) &&
2104 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2105 		return -EOPNOTSUPP;
2106 
2107 	if ((arg & MMC_TRIM_ARGS) &&
2108 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2109 		return -EOPNOTSUPP;
2110 
2111 	if (arg == MMC_SECURE_ERASE_ARG) {
2112 		if (from % card->erase_size || nr % card->erase_size)
2113 			return -EINVAL;
2114 	}
2115 
2116 	if (arg == MMC_ERASE_ARG) {
2117 		rem = from % card->erase_size;
2118 		if (rem) {
2119 			rem = card->erase_size - rem;
2120 			from += rem;
2121 			if (nr > rem)
2122 				nr -= rem;
2123 			else
2124 				return 0;
2125 		}
2126 		rem = nr % card->erase_size;
2127 		if (rem)
2128 			nr -= rem;
2129 	}
2130 
2131 	if (nr == 0)
2132 		return 0;
2133 
2134 	to = from + nr;
2135 
2136 	if (to <= from)
2137 		return -EINVAL;
2138 
2139 	/* 'from' and 'to' are inclusive */
2140 	to -= 1;
2141 
2142 	return mmc_do_erase(card, from, to, arg);
2143 }
2144 EXPORT_SYMBOL(mmc_erase);
2145 
2146 int mmc_can_erase(struct mmc_card *card)
2147 {
2148 	if ((card->host->caps & MMC_CAP_ERASE) &&
2149 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2150 		return 1;
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(mmc_can_erase);
2154 
2155 int mmc_can_trim(struct mmc_card *card)
2156 {
2157 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2158 		return 1;
2159 	return 0;
2160 }
2161 EXPORT_SYMBOL(mmc_can_trim);
2162 
2163 int mmc_can_discard(struct mmc_card *card)
2164 {
2165 	/*
2166 	 * As there's no way to detect the discard support bit at v4.5
2167 	 * use the s/w feature support filed.
2168 	 */
2169 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2170 		return 1;
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL(mmc_can_discard);
2174 
2175 int mmc_can_sanitize(struct mmc_card *card)
2176 {
2177 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2178 		return 0;
2179 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2180 		return 1;
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL(mmc_can_sanitize);
2184 
2185 int mmc_can_secure_erase_trim(struct mmc_card *card)
2186 {
2187 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2188 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2189 		return 1;
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2193 
2194 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2195 			    unsigned int nr)
2196 {
2197 	if (!card->erase_size)
2198 		return 0;
2199 	if (from % card->erase_size || nr % card->erase_size)
2200 		return 0;
2201 	return 1;
2202 }
2203 EXPORT_SYMBOL(mmc_erase_group_aligned);
2204 
2205 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2206 					    unsigned int arg)
2207 {
2208 	struct mmc_host *host = card->host;
2209 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2210 	unsigned int last_timeout = 0;
2211 
2212 	if (card->erase_shift)
2213 		max_qty = UINT_MAX >> card->erase_shift;
2214 	else if (mmc_card_sd(card))
2215 		max_qty = UINT_MAX;
2216 	else
2217 		max_qty = UINT_MAX / card->erase_size;
2218 
2219 	/* Find the largest qty with an OK timeout */
2220 	do {
2221 		y = 0;
2222 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2223 			timeout = mmc_erase_timeout(card, arg, qty + x);
2224 			if (timeout > host->max_busy_timeout)
2225 				break;
2226 			if (timeout < last_timeout)
2227 				break;
2228 			last_timeout = timeout;
2229 			y = x;
2230 		}
2231 		qty += y;
2232 	} while (y);
2233 
2234 	if (!qty)
2235 		return 0;
2236 
2237 	if (qty == 1)
2238 		return 1;
2239 
2240 	/* Convert qty to sectors */
2241 	if (card->erase_shift)
2242 		max_discard = --qty << card->erase_shift;
2243 	else if (mmc_card_sd(card))
2244 		max_discard = qty;
2245 	else
2246 		max_discard = --qty * card->erase_size;
2247 
2248 	return max_discard;
2249 }
2250 
2251 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2252 {
2253 	struct mmc_host *host = card->host;
2254 	unsigned int max_discard, max_trim;
2255 
2256 	if (!host->max_busy_timeout)
2257 		return UINT_MAX;
2258 
2259 	/*
2260 	 * Without erase_group_def set, MMC erase timeout depends on clock
2261 	 * frequence which can change.  In that case, the best choice is
2262 	 * just the preferred erase size.
2263 	 */
2264 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2265 		return card->pref_erase;
2266 
2267 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2268 	if (mmc_can_trim(card)) {
2269 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2270 		if (max_trim < max_discard)
2271 			max_discard = max_trim;
2272 	} else if (max_discard < card->erase_size) {
2273 		max_discard = 0;
2274 	}
2275 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2276 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2277 	return max_discard;
2278 }
2279 EXPORT_SYMBOL(mmc_calc_max_discard);
2280 
2281 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2282 {
2283 	struct mmc_command cmd = {0};
2284 
2285 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2286 		return 0;
2287 
2288 	cmd.opcode = MMC_SET_BLOCKLEN;
2289 	cmd.arg = blocklen;
2290 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2291 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2292 }
2293 EXPORT_SYMBOL(mmc_set_blocklen);
2294 
2295 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2296 			bool is_rel_write)
2297 {
2298 	struct mmc_command cmd = {0};
2299 
2300 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2301 	cmd.arg = blockcount & 0x0000FFFF;
2302 	if (is_rel_write)
2303 		cmd.arg |= 1 << 31;
2304 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2305 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2306 }
2307 EXPORT_SYMBOL(mmc_set_blockcount);
2308 
2309 static void mmc_hw_reset_for_init(struct mmc_host *host)
2310 {
2311 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2312 		return;
2313 	mmc_host_clk_hold(host);
2314 	host->ops->hw_reset(host);
2315 	mmc_host_clk_release(host);
2316 }
2317 
2318 int mmc_hw_reset(struct mmc_host *host)
2319 {
2320 	int ret;
2321 
2322 	if (!host->card)
2323 		return -EINVAL;
2324 
2325 	mmc_bus_get(host);
2326 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2327 		mmc_bus_put(host);
2328 		return -EOPNOTSUPP;
2329 	}
2330 
2331 	ret = host->bus_ops->reset(host);
2332 	mmc_bus_put(host);
2333 
2334 	pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2335 
2336 	return ret;
2337 }
2338 EXPORT_SYMBOL(mmc_hw_reset);
2339 
2340 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2341 {
2342 	host->f_init = freq;
2343 
2344 #ifdef CONFIG_MMC_DEBUG
2345 	pr_info("%s: %s: trying to init card at %u Hz\n",
2346 		mmc_hostname(host), __func__, host->f_init);
2347 #endif
2348 	mmc_power_up(host, host->ocr_avail);
2349 
2350 	/*
2351 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2352 	 * do a hardware reset if possible.
2353 	 */
2354 	mmc_hw_reset_for_init(host);
2355 
2356 	/*
2357 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2358 	 * if the card is being re-initialized, just send it.  CMD52
2359 	 * should be ignored by SD/eMMC cards.
2360 	 */
2361 	sdio_reset(host);
2362 	mmc_go_idle(host);
2363 
2364 	mmc_send_if_cond(host, host->ocr_avail);
2365 
2366 	/* Order's important: probe SDIO, then SD, then MMC */
2367 	if (!mmc_attach_sdio(host))
2368 		return 0;
2369 	if (!mmc_attach_sd(host))
2370 		return 0;
2371 	if (!mmc_attach_mmc(host))
2372 		return 0;
2373 
2374 	mmc_power_off(host);
2375 	return -EIO;
2376 }
2377 
2378 int _mmc_detect_card_removed(struct mmc_host *host)
2379 {
2380 	int ret;
2381 
2382 	if (host->caps & MMC_CAP_NONREMOVABLE)
2383 		return 0;
2384 
2385 	if (!host->card || mmc_card_removed(host->card))
2386 		return 1;
2387 
2388 	ret = host->bus_ops->alive(host);
2389 
2390 	/*
2391 	 * Card detect status and alive check may be out of sync if card is
2392 	 * removed slowly, when card detect switch changes while card/slot
2393 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2394 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2395 	 * detect work 200ms later for this case.
2396 	 */
2397 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2398 		mmc_detect_change(host, msecs_to_jiffies(200));
2399 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2400 	}
2401 
2402 	if (ret) {
2403 		mmc_card_set_removed(host->card);
2404 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2405 	}
2406 
2407 	return ret;
2408 }
2409 
2410 int mmc_detect_card_removed(struct mmc_host *host)
2411 {
2412 	struct mmc_card *card = host->card;
2413 	int ret;
2414 
2415 	WARN_ON(!host->claimed);
2416 
2417 	if (!card)
2418 		return 1;
2419 
2420 	ret = mmc_card_removed(card);
2421 	/*
2422 	 * The card will be considered unchanged unless we have been asked to
2423 	 * detect a change or host requires polling to provide card detection.
2424 	 */
2425 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2426 		return ret;
2427 
2428 	host->detect_change = 0;
2429 	if (!ret) {
2430 		ret = _mmc_detect_card_removed(host);
2431 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2432 			/*
2433 			 * Schedule a detect work as soon as possible to let a
2434 			 * rescan handle the card removal.
2435 			 */
2436 			cancel_delayed_work(&host->detect);
2437 			_mmc_detect_change(host, 0, false);
2438 		}
2439 	}
2440 
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL(mmc_detect_card_removed);
2444 
2445 void mmc_rescan(struct work_struct *work)
2446 {
2447 	struct mmc_host *host =
2448 		container_of(work, struct mmc_host, detect.work);
2449 	int i;
2450 
2451 	if (host->trigger_card_event && host->ops->card_event) {
2452 		host->ops->card_event(host);
2453 		host->trigger_card_event = false;
2454 	}
2455 
2456 	if (host->rescan_disable)
2457 		return;
2458 
2459 	/* If there is a non-removable card registered, only scan once */
2460 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2461 		return;
2462 	host->rescan_entered = 1;
2463 
2464 	mmc_bus_get(host);
2465 
2466 	/*
2467 	 * if there is a _removable_ card registered, check whether it is
2468 	 * still present
2469 	 */
2470 	if (host->bus_ops && !host->bus_dead
2471 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2472 		host->bus_ops->detect(host);
2473 
2474 	host->detect_change = 0;
2475 
2476 	/*
2477 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2478 	 * the card is no longer present.
2479 	 */
2480 	mmc_bus_put(host);
2481 	mmc_bus_get(host);
2482 
2483 	/* if there still is a card present, stop here */
2484 	if (host->bus_ops != NULL) {
2485 		mmc_bus_put(host);
2486 		goto out;
2487 	}
2488 
2489 	/*
2490 	 * Only we can add a new handler, so it's safe to
2491 	 * release the lock here.
2492 	 */
2493 	mmc_bus_put(host);
2494 
2495 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2496 			host->ops->get_cd(host) == 0) {
2497 		mmc_claim_host(host);
2498 		mmc_power_off(host);
2499 		mmc_release_host(host);
2500 		goto out;
2501 	}
2502 
2503 	mmc_claim_host(host);
2504 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2505 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2506 			break;
2507 		if (freqs[i] <= host->f_min)
2508 			break;
2509 	}
2510 	mmc_release_host(host);
2511 
2512  out:
2513 	if (host->caps & MMC_CAP_NEEDS_POLL)
2514 		mmc_schedule_delayed_work(&host->detect, HZ);
2515 }
2516 
2517 void mmc_start_host(struct mmc_host *host)
2518 {
2519 	host->f_init = max(freqs[0], host->f_min);
2520 	host->rescan_disable = 0;
2521 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2522 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2523 		mmc_power_off(host);
2524 	else
2525 		mmc_power_up(host, host->ocr_avail);
2526 	mmc_gpiod_request_cd_irq(host);
2527 	_mmc_detect_change(host, 0, false);
2528 }
2529 
2530 void mmc_stop_host(struct mmc_host *host)
2531 {
2532 #ifdef CONFIG_MMC_DEBUG
2533 	unsigned long flags;
2534 	spin_lock_irqsave(&host->lock, flags);
2535 	host->removed = 1;
2536 	spin_unlock_irqrestore(&host->lock, flags);
2537 #endif
2538 	if (host->slot.cd_irq >= 0)
2539 		disable_irq(host->slot.cd_irq);
2540 
2541 	host->rescan_disable = 1;
2542 	cancel_delayed_work_sync(&host->detect);
2543 	mmc_flush_scheduled_work();
2544 
2545 	/* clear pm flags now and let card drivers set them as needed */
2546 	host->pm_flags = 0;
2547 
2548 	mmc_bus_get(host);
2549 	if (host->bus_ops && !host->bus_dead) {
2550 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2551 		host->bus_ops->remove(host);
2552 		mmc_claim_host(host);
2553 		mmc_detach_bus(host);
2554 		mmc_power_off(host);
2555 		mmc_release_host(host);
2556 		mmc_bus_put(host);
2557 		return;
2558 	}
2559 	mmc_bus_put(host);
2560 
2561 	BUG_ON(host->card);
2562 
2563 	mmc_power_off(host);
2564 }
2565 
2566 int mmc_power_save_host(struct mmc_host *host)
2567 {
2568 	int ret = 0;
2569 
2570 #ifdef CONFIG_MMC_DEBUG
2571 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2572 #endif
2573 
2574 	mmc_bus_get(host);
2575 
2576 	if (!host->bus_ops || host->bus_dead) {
2577 		mmc_bus_put(host);
2578 		return -EINVAL;
2579 	}
2580 
2581 	if (host->bus_ops->power_save)
2582 		ret = host->bus_ops->power_save(host);
2583 
2584 	mmc_bus_put(host);
2585 
2586 	mmc_power_off(host);
2587 
2588 	return ret;
2589 }
2590 EXPORT_SYMBOL(mmc_power_save_host);
2591 
2592 int mmc_power_restore_host(struct mmc_host *host)
2593 {
2594 	int ret;
2595 
2596 #ifdef CONFIG_MMC_DEBUG
2597 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2598 #endif
2599 
2600 	mmc_bus_get(host);
2601 
2602 	if (!host->bus_ops || host->bus_dead) {
2603 		mmc_bus_put(host);
2604 		return -EINVAL;
2605 	}
2606 
2607 	mmc_power_up(host, host->card->ocr);
2608 	ret = host->bus_ops->power_restore(host);
2609 
2610 	mmc_bus_put(host);
2611 
2612 	return ret;
2613 }
2614 EXPORT_SYMBOL(mmc_power_restore_host);
2615 
2616 /*
2617  * Flush the cache to the non-volatile storage.
2618  */
2619 int mmc_flush_cache(struct mmc_card *card)
2620 {
2621 	int err = 0;
2622 
2623 	if (mmc_card_mmc(card) &&
2624 			(card->ext_csd.cache_size > 0) &&
2625 			(card->ext_csd.cache_ctrl & 1)) {
2626 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2627 				EXT_CSD_FLUSH_CACHE, 1, 0);
2628 		if (err)
2629 			pr_err("%s: cache flush error %d\n",
2630 					mmc_hostname(card->host), err);
2631 	}
2632 
2633 	return err;
2634 }
2635 EXPORT_SYMBOL(mmc_flush_cache);
2636 
2637 #ifdef CONFIG_PM
2638 
2639 /* Do the card removal on suspend if card is assumed removeable
2640  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2641    to sync the card.
2642 */
2643 int mmc_pm_notify(struct notifier_block *notify_block,
2644 					unsigned long mode, void *unused)
2645 {
2646 	struct mmc_host *host = container_of(
2647 		notify_block, struct mmc_host, pm_notify);
2648 	unsigned long flags;
2649 	int err = 0;
2650 
2651 	switch (mode) {
2652 	case PM_HIBERNATION_PREPARE:
2653 	case PM_SUSPEND_PREPARE:
2654 		spin_lock_irqsave(&host->lock, flags);
2655 		host->rescan_disable = 1;
2656 		spin_unlock_irqrestore(&host->lock, flags);
2657 		cancel_delayed_work_sync(&host->detect);
2658 
2659 		if (!host->bus_ops)
2660 			break;
2661 
2662 		/* Validate prerequisites for suspend */
2663 		if (host->bus_ops->pre_suspend)
2664 			err = host->bus_ops->pre_suspend(host);
2665 		if (!err)
2666 			break;
2667 
2668 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2669 		host->bus_ops->remove(host);
2670 		mmc_claim_host(host);
2671 		mmc_detach_bus(host);
2672 		mmc_power_off(host);
2673 		mmc_release_host(host);
2674 		host->pm_flags = 0;
2675 		break;
2676 
2677 	case PM_POST_SUSPEND:
2678 	case PM_POST_HIBERNATION:
2679 	case PM_POST_RESTORE:
2680 
2681 		spin_lock_irqsave(&host->lock, flags);
2682 		host->rescan_disable = 0;
2683 		spin_unlock_irqrestore(&host->lock, flags);
2684 		_mmc_detect_change(host, 0, false);
2685 
2686 	}
2687 
2688 	return 0;
2689 }
2690 #endif
2691 
2692 /**
2693  * mmc_init_context_info() - init synchronization context
2694  * @host: mmc host
2695  *
2696  * Init struct context_info needed to implement asynchronous
2697  * request mechanism, used by mmc core, host driver and mmc requests
2698  * supplier.
2699  */
2700 void mmc_init_context_info(struct mmc_host *host)
2701 {
2702 	spin_lock_init(&host->context_info.lock);
2703 	host->context_info.is_new_req = false;
2704 	host->context_info.is_done_rcv = false;
2705 	host->context_info.is_waiting_last_req = false;
2706 	init_waitqueue_head(&host->context_info.wait);
2707 }
2708 
2709 static int __init mmc_init(void)
2710 {
2711 	int ret;
2712 
2713 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2714 	if (!workqueue)
2715 		return -ENOMEM;
2716 
2717 	ret = mmc_register_bus();
2718 	if (ret)
2719 		goto destroy_workqueue;
2720 
2721 	ret = mmc_register_host_class();
2722 	if (ret)
2723 		goto unregister_bus;
2724 
2725 	ret = sdio_register_bus();
2726 	if (ret)
2727 		goto unregister_host_class;
2728 
2729 	return 0;
2730 
2731 unregister_host_class:
2732 	mmc_unregister_host_class();
2733 unregister_bus:
2734 	mmc_unregister_bus();
2735 destroy_workqueue:
2736 	destroy_workqueue(workqueue);
2737 
2738 	return ret;
2739 }
2740 
2741 static void __exit mmc_exit(void)
2742 {
2743 	sdio_unregister_bus();
2744 	mmc_unregister_host_class();
2745 	mmc_unregister_bus();
2746 	destroy_workqueue(workqueue);
2747 }
2748 
2749 subsys_initcall(mmc_init);
2750 module_exit(mmc_exit);
2751 
2752 MODULE_LICENSE("GPL");
2753